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Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163.] proposed a highly illuminating
connection between the AdS=CFT holographic correspondence and operator algebra quantum error
correction (OAQEC). Here, we explore this connection further. We derive some general results about
OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation.
We introduce a new quantity called price, which characterizes the support of a protected logical system, and
find constraints on the price and the distance for logical subalgebras of quantum codes. We show that
holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholog-
raphy, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure.
We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive
curvature, the boundary physics must be highly nonlocal, an observation with potential implications for
black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS
curvature radius.
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I. INTRODUCTION

Quantumerror correction and the holographic principle are
two of the most far-reaching ideas in contemporary physics.
Quantum error correction provides a basis for believing that
scalable quantum computers can be built and operated in the
foreseeable future. The AdS=CFT holographic correspon-
dence is currently our best tool for understanding non-
perturbative quantum gravity. In a remarkable paper [1],
Almheiri, Dong, and Harlow suggested that these two deep
ideas are closely related.
The AdS=CFT correspondence is an exact duality

between two quantum theories—quantum gravity in
(Dþ 1)-dimensional anti–de Sitter space and a confor-
mally invariant quantum field theory (without gravity)
defined on its D-dimensional boundary. The observables
of the two theories are related by a complex dictionary,
which maps local operators supported deep inside the
bulk spacetime to highly nonlocal operators acting on
the boundary CFT. Almheiri et al. proposed interpreting
this dictionary as the encoding map of a quantum error-
correcting code, where the code subspace is the low-energy
sector of the CFT. Bulk local operators are regarded as

“logical” operators that map the code subspaceHC to itself,
and they are well protected against erasure of portions of
the boundary. The holographic dictionary is an encoding
map that embeds the logical system inside the physical
Hilbert space H of the CFT. This proposal provides a rich
and enticing new perspective on the relationship between
the emergent bulk geometry and the entanglement structure
of the CFT.
To model holography faithfully, the quantum error-

correcting code must have special properties that invite a
geometrical interpretation. Code constructions that realize
the ideas in Ref. [1], based on tensor networks that cover
the associated bulk geometry, were constructed in Ref. [2]
and extended in Ref. [3]. Importantly, it was shown [3] that
codes can have holographic properties even when the
underlying bulk geometry does not have negative curva-
ture; this insight may broaden our perspective on how AdS
space is special.
Our goal in this paper is to develop these ideas further.

Our motivation is twofold. On one hand, holographic codes
have opened a new avenue in quantum coding theory, and it
is worthwhile to explore more deeply how geometric
insights can provide new methods for deriving code
properties. On the other hand, holographic codes provide
a useful tool for sharpening the connections between
holographic duality and quantum information theory.
Specifically, as emphasized in Ref. [1], holographic codes
are best described and analyzed using the language of
operator algebra quantum error correction [4–7]. This
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powerful framework deserves to be better known, and
much of this paper is devoted to amplifying and applying it.
We view our work here as a step along the road toward

answering a fundamental question about quantum gravity
and holography: What is the bulk? The AdS=CFT corre-
spondence has bestowed many blessings but should be
regarded as a crutch that must eventually be discarded to
clear the way for future progress in quantum cosmology.
We think that strengthening the ties between geometric and
algebraic properties will be empowering and that operator
algebra quantum error correction can help us reach this
goal. As examples, we provide an algebraic characteriza-
tion of a point in the bulk spacetime and discuss criteria
for local correctability of the boundary theory. We also
elaborate on the notion of uberholography, in which bulk
physics can be reconstructed on a boundary subsystem with
fractal geometry.

A. Outline

In Sec. II, we review the formalism of operator algebra
quantum error correction (OAQEC). We explain how the
notion of code distance can be applied to a subalgebra of
a quantum code’s logical algebra, and we introduce the
complementary notion of the price of a logical subalgebra,
the size of the minimal subsystem of the physical Hilbert
space which supports the logical subalgebra. We also derive
some inequalities relating distance and price, and note that
distance and price are equal for the logical subalgebra
supported on a bulk point. In Sec. III, we review the
connection between holography and quantum error cor-
rection, emphasizing the role of OAQEC in the analysis of
holographic codes. We formulate the entanglement wedge
hypothesis, a geometric criterion that determines whether a
bulk logical subalgebra can be reconstructed on a specified
boundary region, and work out some of its implications. We
also discuss properties of punctures in the bulk geometry,
which provide a crude description of black holes inside
the bulk.
In Sec. IV, we explain the idea of uberholography

and compute the universal fractal dimension, which deter-
mines how price and distance scale with system size for a
holographic code defined on a hyperbolic disk. In Sec. V,
we investigate the conditions for local correctability in a
holographic code, where by “local” we mean that the
erasure of a small connected boundary region R can be
corrected by a recovery map that acts only in a slightly
larger region containing R. We explain that holographic
codes are locally correctable when the bulk geometry is
negatively curved asymptotically but not for asymptotic
flat or positive curvature. We interpret this property as a
signal of nonlocal physics on the boundary in the flat and
positively curved cases, and we also relate properties of
black holes to features of holographic codes with positive
curvature. In Sec. VI, we use geometrical and entropic
arguments to prove a strong quantum Singleton bound for

holographic codes, which constrains the price and distance
of a logical subalgebra. Section VII contains some con-
cluding comments.

II. OPERATOR ALGEBRA QUANTUM
ERROR CORRECTION

In this section, we briefly review the principles of
OAQEC [4–7], providing a foundation for the discussion
of holographic codes. We explain how the notion of code
distance can be generalized to the OAQEC setting. We also
introduce a related but complementary notion, the price of a
code and of a logical operator algebra. In a holographic
context, the distance of a bulk logical algebra characterizes
how well the bulk degrees of freedom are protected against
erasure of portions of the boundary, while its price
characterizes the minimal boundary region on which the
bulk degrees of freedom can be reconstructed.

A. von Neumann algebras

Since we formulate quantum error correction in an
operator algebra framework, we begin by reviewing the
structure of finite-dimensional von Neumann algebras.
For a finite-dimensional complex Hilbert space H, a von
Neumann algebra on H is a complex vector space of linear
operators acting onH, which is closed under multiplication
and Hermitian adjoint. Any such algebra A can be
characterized in the following way. The Hilbert space H
contains a subspace with a direct sum decomposition, such
that each summand is a product of two tensor factors:

H ⊇ ⨁
α
Hα ⊗ Hᾱ; ð1Þ

whereHα has dimension dα andHᾱ has dimension dᾱ. The
von Neumann algebra A can be expressed as

A ¼ ⨁
α
Mα ⊗ Iᾱ; ð2Þ

where Mα denotes the algebra of dα × dα matrices and Iᾱ
denotes the dᾱ × dᾱ identity matrix. The commutant A0 of
A contains all operators on H, which commute with all
operators in A, and can be expressed as

A0 ¼ ⨁
α
Iα ⊗ Mᾱ: ð3Þ

The center ZðAÞ of A, which is also the center of its
commutant, contains all elements of the form

⨁
α
mαIα ⊗ Iᾱ; ð4Þ

note that the center is Abelian.
A nontrivial von Neumann algebra (with more than one

summand) describes a quantum system with superselection
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sectors. We may regard α as a label that specifies a sector
with a specified value of a locally conserved charge. By
focusing on A, we focus our attention on operators that
preserve α. To interpret the decomposition, Eq. (1), we
imagine a system shared by two parties, Alice and Bob,
where in each α sector, the parties have equal and opposite
charges. The algebras A and A0 capture the charge-
preserving operations that can be applied by Alice and
Bob, respectively. Equivalently, we may say that a non-
trivial von Neumann algebra describes a system that
encodes both classical and quantum information, where
operators in the center ZðAÞ ¼ ZðA0Þ act only on the
classical data (the label α), while Mα acts on the quantum
data in the sector labeled by α.
In OAQEC, we consider HC to be a code subspace of a

larger physical Hilbert space; hence, A and A0 are algebras
of logical operators that preserve the code subspace. In the
case where there is a single summand and Mᾱ is one
dimensional,A is the complete algebra of logical operators.
This is the standard setting of quantum error-correcting
codes. If there is a single summand and Mᾱ is nontrivial,
then A is the algebra of “bare” logical operators in a
subsystem code. In this setting, the code subspace

HC ¼ Hα ⊗ Hᾱ ð5Þ

has a decomposition into a protected tensor factor Hα and
a “gauge” factor Hᾱ, and A acts only on the protected
system.
The more general setting, with a nontrivial sum over α,

arises naturally in the context of holographic duality, where
the code subspace corresponds to the low-energy sector of a
conformal field theory whose gravitational dual is a bulk
system with emergent gauge symmetry. The Abelian center
ZðAÞ of A can, for example, encode classical data of the
bulk geometry (see Ref. [8] for a recent tensor network
interpretation). An important example of such a classical
variable contained in A is the area operator (see Ref. [9])
that arises in the Ryu-Takayanagi formula relating boun-
dary entropy to bulk geometry.
Another reason the OAQEC formalism is convenient in

discussions of holography is that we can formulate the
notion of complementary recovery [10] using this lan-
guage. If the physical (boundary) Hilbert space has a
decomposition as a product RRc of two subsystems, we
may ask whether a subalgebra A acting on the code space
can be “reconstructed” as an algebra of physical operators
with support on R, in which case we may say that erasure of
Rc can be corrected for the algebra A. We say that the code
exhibits complementary recovery if the logical subalgebra
A can be reconstructed on R and its commutant A0 can
be reconstructed on Rc. Equivalently, complementary
recovery means that erasure of the physical subsystem
Rc is correctable with respect to A and erasure of the

complementary physical subsystem R is correctable with
respect to A0.

B. Correctability

Quantum error correction is a way of protecting properly
encoded quantum states from the potentially damaging
effects of noise with suitable properties. The noise can be
described by a completely positive trace-preserving map
(CPTP map), also called a quantum channel. A channel is a
linear map that takes density operators to density operators;
saying that the channel is “completely” positive means that
the positivity of the density operator is preserved even
when the channel acts on a system that is entangled with
other systems.
A channel N has an operator sum representation (also

called a Kraus representation) of the form

N ðρÞ ¼
X
a

NaρN
†
a; ð6Þ

where the condition

X
a

N†
aNa ¼ I ð7Þ

ensures that tr½NðρÞ� ¼ tr½ρ�. The operators fNag appearing
in the Kraus representation are called Kraus operators. If
there is only one Kraus operator in the sum, then the map is
unitary, taking pure states to pure states. If there are two
or more linearly independent Kraus operators, the map N
describes a decoherence process, in which pure states can
evolve to mixed states.
Equation (6) is the Schrödinger picture description of the

channel, in which N maps states to states. Since we are
particularly interested in whether operators (rather than
states) are well protected against noise, we find it more
convenient to consider the Heisenberg picture description
in which states are fixed and operators evolve. In this
picture, the noise acts on the operator X according to

N †ðXÞ ¼
X
a

N†
aXNa: ð8Þ

We say thatN † is the dual map ofN , also called the adjoint
map of N . The condition (7) ensures that N † maps the
identity operator to itself.
We consider a quantum system with Hilbert spaceH and

a noise channel N acting on the system. Quantum error
correction is a process that reverses the effect of N . This
error-correction process is itself a channel, called the
recovery channel and denoted R. Unless N is unitary,
error correction is not possible for arbitrary states of the
system. Instead, we consider a subspaceHC ofH, which is
called a quantum error-correcting code (QECC), and we
settle for a recovery channel that correctsN acting on states
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of HC. We say that R corrects N on code subspace HC if,
for any density operator ρ supported on HC,

ðR∘N ÞðρÞ ¼ ρ; ð9Þ

and we say that the noise channelN is correctable onHC if
there exists a recovery operator R that corrects N .
In the Heisenberg picture language, we may consider an

algebra of logical operators that act on the code space. We
denote the set of linear operators mappingH toH byLðHÞ.
If P denotes the orthogonal projector from H to HC, then
an operator X ∈ LðHÞ is logical if ½X;P� ¼ 0; hence, X
maps HC ¼ PH to itself:

XHC ¼ XPH ¼ PXH ⊆ HC: ð10Þ

It is clear from this definition that if X is logical, so is its
Hermitian adjoint X† (because P ¼ P†); furthermore, a
linear combination of logical operators is logical and so is a
product of logical operators. Hence, the set of all logical
operators forms an algebra, which we call the complete
logical operator of the code. The theory of operator algebra
quantum error correction addresses whether a subalgebra
of this complete logical algebra can be protected against
noise.
Sometimes, we are only interested in how a logical

operator X acts on the code space, so we consider the
corresponding operator PXP, which has support only on
HC. Operators of this type are also closed under multipli-
cation because, if X and Y both commute with P, then

PXP · PYP ¼ PðXYÞP: ð11Þ

In other words, if A is an algebra of logical operators in
LðHÞ, then PAP is an algebra of logical operators in
LðHCÞ. Two logical operators X and ~X might differ as
elements ofLðHÞ yet act on the code space in the sameway
because PXP ¼ P ~XP. In that case, we say that X and ~X are
logically equivalent, denoted X ∼P

~X.
Now we can formulate the notion of error correction in

the Heisenberg picture.
Definition 1 (correctability). The noise channel N is

correctable on the code spaceHC ¼ PHwith respect to the
operator X ∈ LðHÞ if and only if there exists a recovery
channel R such that

PðR∘N Þ†ðXÞP ¼ PXP: ð12Þ

This means that the operator X and the recovered
operator ðR∘N Þ†ðXÞ act on the code space in the same
way, though they may act differently on state vectors
outside the code space. Because this condition is linear
in X, the operators with respect to which N is correctable
form a linear space.

In an important series of works [4,11,12], culminating
in Refs. [5,6], the necessary and sufficient conditions for
correctability of a logical algebra were derived.
Theorem 1 (criterion for correctability). Given code

subspace HC ¼ PH and logical subalgebra A, the noise
channel N with Kraus operators fNag is correctable with
respect to A if and only if

½PN†
aNbP; X� ¼ 0 ð13Þ

for all X ∈ A and each pair of Kraus operators Na, Nb.
If A is the code’s complete logical algebra, Eq. (13)

becomes

PN†
aNbP ¼ cabP; ð14Þ

which is the well-known Knill-Laflamme error-correction
condition [13]. More generally, Eq. (13) says that PN†

aNbP
lies in the commutantA0 ofA. Invoking the general structure
of vonNeumann algebras reviewed in Sec. II A, we see from
Eq. (3) that PN†

aNbP is supported on the second factor of
each summand. In effect, Eq. (13) means that the Knill-
Laflammecondition is satisfied in each superselection sector
of the logical algebra.

C. Erasure and reconstruction

A noise channel of particular interest is the erasure
channel. To define the erasure channel, we consider a
decomposition of the Hilbert space H as a product of two
tensor factors,

H ¼ HR ⊗ HRc ; ð15Þ

we will sometimes express this decomposition more
succinctly as RRc. Anticipating the geometrical interpre-
tation of holographic codes, we call R a region and say that
Rc is its complementary region. We say that R is erased
when the quantum information in R is lost while the
information in Rc is retained. A noise channel describing
this process is

ΔRðρÞ ¼ σR ⊗ trRðρÞ; ð16Þ

which is called the erasure map on R, or the depolarizing
map on R; it throws away the state of R and replaces it by
the fixed state σR.
As for any noise channel, we say that the erasure channel

N ¼ ΔR is correctable with respect to the operator X if
there is a recovery operator R satisfying Eq. (12). As a
convenient shorthand, we say that the subsystem R is
correctable if erasure of R is correctable:
Definition 2 (correctable subsystem). Given a code

subspace HC ¼ PH and a logical subalgebra A, a sub-
system R ofH is correctable with respect to A if erasure of
R is a correctable map with respect to A.
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Whether R is correctable does not depend on how we
choose the state σR in Eq. (16); ifR recovers from ΔR, then
R∘ΔR recovers from Δ0

R, where Δ0
RðρÞ ¼ σ0R ⊗ trRðρÞ.

For the special case of erasure, the criterion for correct-
ability in Theorem 1 simplifies. We may choose σR ∝ IR,
in which case the Kraus operators realizing ΔR may be
chosen to be (up to normalization) the complete set of Pauli
operators supported on R, which constitute a complete
basis for operators acting on R. More generally, we may
realize ΔR by taking the Kraus operators in Eq. (6) as a
Haar average over the unitary operators supported on R.
We conclude as follows:
Lemma 1 (criterion for correctability of a subsystem).

Given code subspace HC ¼ PH and logical subalgebra A,
subsystem R of H is correctable with respect to A if and
only if

½PYP; X� ¼ 0 ð17Þ

for all X ∈ A and every operator Y supported on R.
Thus, erasure of R is correctable with respect to a logical

algebraA if and only if PYP lies in the commutantA0 ofA
for any operator Y supported on R. Because X is logical
(½X;P� ¼ 0), this criterion can also be written as
P½Y; X�P ¼ 0; that is, the commutator ½Y; X� maps the
code space to its orthogonal complement. IfA is the code’s
complete logical algebra, the criterion for correctability of
erasure becomes

PYP ¼ cP; ð18Þ

the Knill-Laflamme criterion for erasure correction [13].
If erasure of R is correctable with respect to logical

operator X, then it is possible to find an operator ~X that is
logically equivalent to X (PXP ¼ P ~XP) such that ~X is
supported on the complementary subsystem Rc. Borrowing
the language of the AdS=CFT correspondence, we may say
that X can be “reconstructed” on Rc. In the quantum
information literature, one says that X can be “cleaned” on
R, meaning that there is an equivalent logical operator that
acts trivially on the correctable set.
To see why this reconstruction is possible, we may

consider the dual Δ†
R of the erasure map ΔR, which satisfies

tr(XΔRðρÞ) ¼ tr(Δ†
RðXÞρ): ð19Þ

By the definition of correctability, Eq. (12), if R is
correctable with respect to X, then there is a recovery
map RR which corrects erasure, such that

PðRR∘ΔRÞ†ðXÞP ¼ PðΔ†
R∘R†

RÞðXÞP ¼ PXP: ð20Þ

Furthermore, the dual map Δ†
R takes any (not necessarily

logical) operator Y to an operator that acts trivially on R:

Δ†
RðYÞ ¼ IR ⊗ ~YRc: ð21Þ

We see that ðΔ†
R∘R†

RÞðXÞ is logically equivalent to X and
supported on Rc; that is, it is a reconstruction of X on the
complement of the erased subsystem.
To understand Eq. (21), we argue as follows. Consider a

unitary map supported on R, under which

ρ ↦ ρ0 ¼ ðUR ⊗ IRcÞρðU†
R ⊗ IRcÞ: ð22Þ

Hence, ρRc ¼ ρ0Rc , and therefore, ΔRðρÞ ¼ ΔRðρ0Þ, from
which we infer that

tr(Δ†
RðYÞρ) ¼ tr(Δ†

RðYÞρ0)
¼ tr(ðU†

R ⊗ IRcÞΔ†
RðYÞðUR ⊗ IRcÞρ): ð23Þ

If it holds for any state ρ, Eq. (23) implies

Δ†
RðYÞ ¼ ðU†

R ⊗ IRcÞΔ†
RðYÞðUR ⊗ IRcÞ ð24Þ

for any unitary UR. Equation (21) then follows. Thus, we
have shown the following:
Lemma 2 (reconstruction). Given code subspace HC ¼

PH and logical subalgebra A, if subsystem R of H is
correctable with respect to A, then A can be reconstructed
on the complementary subsystem Rc. In other words, for
each logical operator in A, there is a logically equivalent
operator supported on Rc.

D. Distance and price

In the standard theory of quantum error correction, we
consider the physical Hilbert space H to have a natural
decomposition as a tensor product of small subsystems, for
example, a decomposition into n qubits (two-level sys-
tems); n is the length of the code. This decomposition is
“natural” in the sense of being motivated by the underlying
physics—e.g., each qubit might be carried by a separate
particle, where the particles interact pairwise. Typically, we
suppose that the code subspace HC also has a decom-
position into “logical” qubits, in other words, that the
dimension of the code space is 2k, where k is a positive
integer. We may define the distance d of the code as the size
of the smallest set R of physical qubits for which erasure
of R is not correctable. Equivalently, d is the size of the
smallest region that supports observables capable of dis-
tinguishing among distinct logical states. We use the
notation ½½n; k; d�� for a code with n physical qubits, k
logical qubits, and distance d. For a given n, it is desirable
for k and d to be as large as possible, but there is a trade-off:
Larger k means smaller d and vice versa. This standard
theory can be generalized in some obvious ways; for
example, the dimension of the code subspace might not
be a power of 2, or the physical Hilbert space might be
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decomposed into higher-dimensional subsystems rather
than qubits.
The distance d loosely characterizes the error-correcting

power of the code. But if some encoded degrees of freedom
are better protected than others, then a more refined
characterization can be useful since the distance captures
only the worst case. In holographic codes, in particular,
bulk degrees of freedom far from the boundary are better
protected than bulk degrees of freedom near the boundary.
To describe the performance of a holographic code more
completely, we may assign a distance value to each of the
code’s logical subalgebras.
As in the standard theory, we assume the physical Hilbert

space is uniformly factorizable, H ¼ H⊗n
0 , where H0 is

finite dimensional. In applications to quantum field theory,
then, H is the Hilbert space of a suitably regulated theory;
for example, if the theory is defined on a spatial lattice, a
subsystem with Hilbert spaceH0 resides at each lattice site.
Guided by this picture, we refer to the elementary sub-
system as a “site.” By a “region” R we mean a subset of the
n sites, and the number of sites it contains is called the size
of R, denoted jRj. We may now define the distance of a
logical algebra A.
Definition 3 (distance). Given code subspace HC ¼

PH and logical subalgebra A, the distance dðAÞ is the size
of the smallest region R that is not correctable with respect
to A.
If A is the code’s complete logical algebra, then dðAÞ

coincides with the standard definition of distance for a
subspace code. In the case of a subsystem code, if A is the
algebra of “bare” logical operators that act nontrivially on
the protected subsystem and trivially on the gauge sub-
system, dðAÞ is the size of the smallest region that supports
a nontrivial “dressed” logical operator, one that acts non-
trivially on the protected subsystem and might act on the
gauge subsystem as well. In that case, dðAÞ coincides with
the standard definition of distance for a subsystem code.
More generally, we might want to consider multiple ways
of decomposing HC into a protected subsystem and its
complement, and our definition assigns a distance to each
of these protected subsystems.
For a given codeHC and logical algebra A, we may also

consider the smallest possible region R such that all
operators in A are supported on R. We call the size of
this region the price of the algebra.
Definition 4 (price). Given code subspace HC ¼ PH

and logical subalgebra A, the price pðAÞ is the size of the
smallest region R such that, for every operator X ∈ A, there
is a logically equivalent operator ~X that is supported on R.
As already noted, if region R is correctable with respect

to operator X, then an operator logically equivalent to X
can be reconstructed on the complementary region Rc. In
this sense, the notions of distance and price are dual to one
another. The relation between distance and price can be
formulated more precisely with some simple lemmas.

Lemma 3 (complementarity). Given code subspace
HC ¼ PH and logical subalgebra A, where H contains
n sites, the distance and price of A obey

pðAÞ þ dðAÞ ≤ nþ 1: ð25Þ

Proof.—Consider a region R that is correctable with
respect to A and also unextendable, meaning R has the
property that adding any additional site makes it noncorrect-
able. Then, there are noncorrectable sets with jRj þ 1 sites,
and therefore dðAÞ ≤ jRj þ 1. Furthermore, since R is
correctable, all operators in A can be reconstructed on its
complement Rc; hence, pðAÞ ≤ jRcj ¼ n − jRj. Adding
these two inequalities yields Eq. (25). □
We may anticipate that if a region R supports a nontrivial

logical algebra, then erasing R inflicts an irreversible
logical error. This intuition is correct if the algebra is
non-Abelian. Let us say that a logical subalgebra is non-
Abelian if it contains two logical operators X and Y such
that PXP and PYP are noncommuting. Then, we have the
following:
Lemma 4 (no free lunch). Given code subspace HC ¼

PH and non-Abelian logical subalgebra A, the distance
and price of A obey

dðAÞ ≤ pðAÞ: ð26Þ

Proof.—Consider two logical operators X and Y in A
(both commuting with P), such that PXP and PYP are
noncommuting. By the definition of pðAÞ, there is a region
R with jRj ¼ pðAÞ such that an operator ~Y logically
equivalent to Y is supported on R; hence,

0 ≠ ½PYP;PXP� ¼ ½P ~YP;PXP� ¼ ½P ~YP;X�: ð27Þ

This result means that region R does not satisfy the criterion
for correctability in Lemma 1 and therefore is not correct-
able with respect to A. By the definition of distance,
dðAÞ ≤ jRj ¼ pðAÞ, and Eq. (26) follows. □

If A is Abelian, then Eq. (26) need not apply. Consider,
for example, the three-qubit quantum repetition code,
spanned by the states j000i and j111i, and the logical
algebra generated by

Z̄ ¼ j000ih000j − j111ih111j: ð28Þ

This algebra has price p ¼ 1 because the operator
Z ⊗ I ⊗ I, supported only on the first qubit, is logically
equivalent to Z̄. On the other hand, the distance is d ¼ 3;
because the logical algebra can be supported on any one of
the three physical qubits, it is protected against the erasure
of any two qubits. Note that pþ d ¼ 4, saturating Eq. (25).
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For a traditional subspace code, we may define the price
of the code as the price of its complete logical algebra, just
as we define the code’s distance to be the distance of its
complete logical algebra. The price and distance of a code
are constrained by an inequality, which can be derived from
the subadditivity of von Neumann entropy. This constraint
on price is a corollary to the following theorem.
Theorem 2 (constraint on correctable regions).

Consider a code subspace HC ¼ PH, where H contains
n sites, and let k ¼ log dimHC= log dimH0. Suppose that
R1 and R2 are two disjoint correctable regions. Then,

n − k ≥ jR1j þ jR2j: ð29Þ

Proof.—Let A denote the code block H⊗n
0 , let T denote

a reference system, and let jΦi denote a state of AT in
which T is maximally entangled with the code space. The
criterion for correctability says that if R is a correctable
region, then for any operator Y supported on R, PYP ¼ cP;
therefore, if Y is supported on R and X is supported on T,

hΦjY ⊗ XjΦi ¼ hΦjPYP ⊗ XjΦi
¼ chΦjP ⊗ XjΦi
¼ chΦjI ⊗ XjΦi
¼ hΦjY ⊗ IjΦihΦjI ⊗ XjΦi: ð30Þ

Because hΦjY ⊗ XjΦi factorizes for any Y supported on
R and X supported on T, we conclude that the marginal
density operator of RT factorizes,

ρRT ¼ ρR ⊗ ρT; ð31Þ
if R is correctable.
To proceed, we use properties of the entropy

SðρÞ ¼ −trðρ log ρÞ; ð32Þ
where, for convenience, we define entropy using loga-
rithms with base dimH0. Because R1 and R2 are both
correctable, R1T and R2T are product states; therefore,

SðR1TÞ ¼ SðR1Þ þ SðTÞ; SðR2TÞ ¼ SðR2Þ þ SðTÞ:
ð33Þ

Denoting by Rc the region of the code block complemen-
tary to R1R2, and noting that the overall state of R1R2RcT is
pure, we have

SðR1RcÞ ¼ SðR2TÞ ¼ SðR2Þ þ SðTÞ; ð34Þ

SðR2RcÞ ¼ SðR1TÞ ¼ SðR1Þ þ SðTÞ; ð35Þ

adding these equations yields

SðTÞ ¼ 1

2
(SðR1RcÞ þ SðR2RcÞ − SðR1Þ − SðR2Þ) ð36Þ

¼ SðRcÞ − 1

2
(IðR1;RcÞ þ IðR2;RcÞ): ð37Þ

Since the mutual information IðR;RcÞ is non-negative
(subadditivity of entropy), SðTÞ ¼ k, and SðRcÞ ≤ jRcj ¼
n − jR1j − jR2j, we obtain Eq. (29). □

Corollary 1 (strong quantum Singleton bound).
Consider a code subspace HC ¼ PH, where H contains
n sites, and where k ¼ log dimHc= log dimH0. Then, the
distance d and price p of the code obey

p − k ≥ d − 1: ð38Þ

Proof.—In Eq. (29), choose R1 to be the complement of
the smallest region that supports the logical algebra of the
code (hence, jR1j ¼ n − p), and choose R2 to be any set of
d − 1 qubits not contained in R1. Then, Eq. (38) follows.□
Corollary 2 (quantum Singleton bound). Consider a

code subspace HC ¼ PH, where H contains n sites, and
where k ¼ log dimHc= log dimH0. Then,

n − k ≥ 2ðd − 1Þ; ð39Þ

where d is the code distance.
Proof.—Combine Corollary 1 and Lemma 3. □

Because of its resemblance to the Singleton bound

n − k ≥ d − 1; ð40Þ

satisfied by classical ½n; k; d� codes, Eq. (39) is called the
quantum Singleton bound. We therefore call Eq. (38) the
strong quantum Singleton bound. This bound is saturated,
for example, by the [[7,1,3]] Steane code. In that case, the
logical Pauli operators X̄ and Z̄ can both be supported on a
set of three qubits; therefore, the price is p ¼ 3, and the
bound becomes

1 ¼ k ≤ p − dþ 1 ¼ 3 − 3þ 1 ¼ 1: ð41Þ

This strong quantum Singleton bound constrains the
distance and price of a traditional subspace code, and it is
natural to wonder what we can say about similar constraints
on the distance and price of a logical subalgebra. In Sec. VI,
we will see that for holographic codes, using more
sophisticated entropic arguments, we can derive an operator
algebra version of the strong quantum Singleton bound.

III. HOLOGRAPHY AND QUANTUM
ERROR CORRECTION

The AdS=CFT correspondence [14] is a remarkable
proposed equivalence between two theories—quantum
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gravity in the bulk of a (Dþ 1)-dimensional asymptotically
anti–de Sitter spacetime, and conformally invariant quan-
tum field theory (CFT), without gravity, residing on the
D-dimensional boundary of the spacetime. A very complex
dictionary relates operators acting in the bulk theory to
the corresponding operators in the boundary theory. This
dictionary is only partially understood, but it is known that
local operators acting deep inside the bulk correspond to
highly nonlocal operators acting on the boundary. Much
evidence indicates that geometrical properties of the bulk
theory are intimately related to the structure of quantum
entanglement in the boundary theory [15,16]. Further
elucidation of this relationship should help to clarify
how spacetime geometry can arise as an emergent property
of a nongravitational theory.
A puzzling feature of the correspondence is that a single

bulk operator can be faithfully represented by a boundary
operator in multiple ways. In a very insightful paper,
Almheiri, Dong, and Harlow [1] suggested interpreting
this ambiguity using the language of quantum error
correction. According to their proposal, the low-energy
sector of the boundary CFT can be viewed as a code
subspace of the CFT Hilbert space, corresponding to
weakly perturbed AdS geometry in the bulk, and the local
operators acting on the bulk can be regarded as the logical
operators acting on this code subspace. Local operators in
the bulk can be reconstructed on the boundary in multiple
ways, reflecting the property of quantum error-correcting
codes that operators acting differently on the physical
Hilbert space H may be logically equivalent when acting
on the code subspace HC. High-energy states of the CFT,
which are outside the code space, correspond to large black
holes in the bulk.
In Ref. [2], holographic codes were constructed, which

capture the features envisioned in Ref. [1]. Such codes
provide a highly idealized lattice regularization of the
AdS=CFT correspondence, with bulk and boundary lattice
sites. The code subspace, or bulk Hilbert space, is (dis-
regarding some caveats expressed below) a tensor product
of finite-dimensional Hilbert spaces, one associated with
each bulk site, and likewise, the boundary Hilbert space is a
tensor product of finite-dimensional Hilbert spaces, one
associated with each boundary site. The code defines an
embedding of the bulk Hilbert space inside the boundary
Hilbert space. The embedding map can be realized by a
tensor network construction based on a uniform tiling of
the negatively curved bulk geometry. This tensor network
provides an explicit holographic dictionary, in particular,
mapping each (logical) bulk local operator (with support on
a single bulk site) to a corresponding physical nonlocal
operator on the boundary (acting on many boundary sites).
From the perspective of quantum coding theory,

holographic codes are a family of quantum codes in which
logical degrees of freedom have a pleasing geometri-
cal interpretation, and as emphasized in Ref. [3], this

connection between coding and geometry can be extended
beyond anti–de Sitter space. From the perspective of the
AdS=CFT correspondence, holographic codes strengthen
our intuition regarding how quantum error correction
relates to emergent geometry. Both perspectives provide
ample motivation for further developing these ideas.
The precise sense in which the low-energy sector of a

CFT realizes a quantum code remains rather murky. But
loosely speaking, the logical operators are CFT operators
that map low-energy states to other low-energy states.
Operators that are logically equivalent act on the low-
energy states in the sameway, but they act differently on the
high-energy states that are outside the code space. The
algebra of logical operators needs to be truncated because
acting on a state with a product of too many logical
operators may raise the energy too high, and thus, the
resulting state leaves the code space.
From the bulk point of view, there is a logical algebraAx

associated with each bulk site x, and formally, the complete
logical algebra of the code is, in a first approximation,

A ¼ ⊗
x
Ax; ð42Þ

where the tensor product is over all bulk sites. However,
implicitly, the number of bulk local operators needs to be
small enough so that the backreaction on the geometry can
be safely neglected. If so many bulk operators are applied
that the bulk geometry is significantly perturbed, then the
code space will need to be enlarged, as explained Sec. III B.
A further complication is that gauge symmetry in the
bulk may prevent the bulk algebra from factorizing as in
Eq. (42).
The holographic dictionary determines how the logical

operator subalgebra supported on a region in the bulk (a set
of logical bulk sites) can be mapped to an operator algebra
supported on a corresponding region on the boundary (a set
of physical boundary sites). The geometrical interpretation
of this relation between the bulk and boundary operator
algebras will be elaborated in the following subsections.

A. Entanglement wedge reconstruction

For holographic codes, whether a specified subsystem
of the physical Hilbert space H is correctable with respect
to a particular logical subalgebra can be formulated as a
question about the bulk geometry. This connection between
correctability and geometry is encapsulated by the entan-
glement wedge hypothesis [17–20], which holds in
AdS=CFT [21,22]. This hypothesis specifies the largest
bulk region whose logical subalgebra can be represented on
a given boundary region.
The entanglement wedge hypothesis can be formulated

for dynamical spacetimes, but for our purposes, it will
suffice to consider a special case. We consider a smooth
Riemannian manifold B, which may be regarded as a
spacelike slice through a static bulk spacetime. Somewhat
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more generally, we may imagine that B is a slice through a
Lorentzian manifold, which is invariant under time reversal
about B. Any B can be locally extended to such a
Lorentzian manifold, which solves the Einstein field
equation without matter sources. To formulate the entan-
glement wedge hypothesis for this case, we need the
concept of a minimal bulk surface embedded in B. We
denote the boundary of B by ∂B and consider a boundary
region R ⊆ ∂B.
Definition 5 (Minimal surface). Given a Riemannian

manifold B with boundary ∂B, the minimal surface χR
associated with a boundary region R ⊆ ∂B is the minimum
area co-dimension-one surface in B which separates R
from its boundary complement Rc (see Fig. 1 for some
examples).
For the most part, we assume that the minimal surface χR

is unique and geometrically well defined. Some choices of
geometry B and boundary region R admit more than one
minimal surface, but one can usually slightly alter the
choice of R in order to make the minimal surface χR unique.
Note that, according to Definition 5, R and Rc have the
same minimal surface.
Now, we can define the entanglement wedge.
Definition 6 (entanglement wedge). Given a boundary

region R ⊆ ∂B, the entanglement wedge of R is a bulk
region E½R� ⊆ B, whose boundary is ∂E½R� ≔ χR ∪ R,
where χR is the minimal surface for R (see Fig. 1 for
some examples).
Note that under the uniqueness assumption for the

minimal surface χR, the entanglement wedge EðRÞ of a
boundary region R and the entanglement wedge EðRcÞ of
its boundary complement Rc cover the full bulk manifold
B, and they intersect exclusively at the minimal surface.

Hypothesis 1 (geometric complementarity). Given a
region R ⊆ ∂B and its boundary complement Rc, we have
that χR ¼ χRc ¼ E½R�∩E½Rc� and E½R� ∪ E½Rc� ¼ B.
As we will see, this geometric statement, which holds for

a generic manifold B and boundary region R, leads to very
strong code-theoretic guarantees under the entanglement
wedge hypothesis.
For a holographic code, the entanglement wedge hypoth-

esis states a sufficient condition for a boundary region to be
correctable with respect to the logical subalgebra supported
at a site in the bulk. Because of Lemma 2, this condition
also informs us that the logical subalgebra can be recon-
structed on the complementary boundary region. Evoking
the continuum limit of the regulated bulk theory, we will
sometimes refer to a bulk site as a point in the bulk, though
it will be implicit that associated logical subalgebra is finite
dimensional and slightly smeared in space.
Hypothesis 2 (entanglement wedge hypothesis). If the

bulk point x is contained in the entanglement wedge E½R�
of boundary region R, then the complementary boundary
region Rc is correctable with respect to the logical bulk
subalgebra Ax. Thus, for each operator in Ax, there is a
logically equivalent operator supported on R.
This connection between holographic duality and oper-

ator algebra quantum error correction has many implica-
tions worth exploring.
For a holographic code corresponding to a regulated

boundary theory, there are a finite number of boundary
sites, each describing a finite-dimensional subsystem.
Thus, we can speak of the length n of the code, meaning
the number of boundary sites, as well as the distance d and
price p of the code (or of any logical subalgebra), which
also take integer values. It is convenient, though, to imagine
taking a formal continuum limit of the boundary theory in
which the total boundary volume stays fixed as n → ∞,
while maintaining a uniform number of boundary sites per
unit boundary volume as determined by the bulk induced
metric. Without intending to place restrictions on the
dimension of B, from now on, we use the term area when
speaking about the size of a boundary region, and we save
the term volume for describing the size of a bulk region.
In the continuum limit, we may still mention n, d, and p,
but now taking real values; n becomes the total area of the
boundary, while dðAÞ is the area of the smallest boundary
region that is not correctable with respect to logical
subalgebra A, and pðAÞ is the area of the smallest
boundary region that supports A. For now, to ensure that
backreaction on the bulk geometry is negligible, we
suppose that the bulk algebra A has support on a constant
number of points. In the formal continuum limit, then, the
logical algebra has negligible dimension, in effect defining
a k ≈ 0 code if the size of the logical system is expressed in
geometrical units.
The entanglement wedge hypothesis has notable conse-

quences for the logical subalgebra Ax supported at a bulk

FIG. 1. Geometric notions of minimal surface and entangle-
ment wedge. In each diagram, we highlight a boundary region R
with a crayon stroke; the corresponding minimal surface χR is
indicated, and the entanglement wedge E½R� is shaded in green.
On the left, B is a hyperboloid whose boundary ∂B has two
connected components, where R is one of those components
(the one on the right). The minimal surface cuts the hyperboloid
at its waist, and the entanglement wedge is everything to the right
of χR. In the central diagram, B is the interior of a Euclidean
ellipse; the boundary region R ¼ R1⊔R2 has two connected
components, and χR also has two connected components. As
shown, the connected components of χR need not be homologous
to R1 and R2, allowing E½R1⊔R2� to be significantly larger than
E½R1�⊔E½R2�. On the right, B is the Poincaré disc, portraying an
infinite hyperbolic geometry. The minimal surface is a geodesic
in the bulk with end points on ∂B.
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point x. Consider the distance of Ax. For any boundary
region R with boundary complement Rc, if x ∈ E½Rc�, then
R is correctable with respect to Ax. On the other hand, if
x ∈ E½R�, then Ax can be reconstructed on R; arguing as
in the proof of Lemma 4, R cannot be correctable with
respect to Ax if R supports Ax and Ax is non-Abelian. By
geometric complementarity, either x ∈ E½Rc� or x ∈ E½R�;
we conclude that R is correctable with respect to Ax if and
only if x ∈ E½Rc�. By the definition of distance, then,

dðAxÞ ¼ min
R⊆∂B∶x∈EðRcÞ

jRj; ð43Þ

assuming Ax is non-Abelian.
Now consider the price of Ax. According to the

entanglement wedge hypothesis, Ax can be reconstructed
on R if x ∈ E½R�. On the other hand, if x∈E½R�, then x ∈
E½Rc� by geometric complementarity, and therefore,Ax can
be reconstructed on Rc. Because operators supported on R
commute with operators supported on Rc, it is not possible
for Ax to be reconstructed on both R and Rc if Ax is non-
Abelian. We conclude that Ax can be reconstructed on R if
and only if x ∈ E½R�. By the definition of price, then,

pðAxÞ ¼ min
R⊆∂B∶x∈EðRÞjRj; ð44Þ

assuming Ax is non-Abelian.
Geometric complementarity says that x ∈ E½R� if and

only if x∈E½Rc�. Therefore, by comparing Eqs. (43) and
(44), we see that the expressions for the distance and the
price are identical. Thus, we have shown the following:
Lemma 5 (price equals distance for a point). For a

holographic code, letAx be the non-Abelian logical algebra
associated with a bulk point x. Then,

pðAxÞ ¼ dðAxÞ: ð45Þ

Thus, in a holographic code, the bound pðAxÞ ≥ dðAxÞ
in Lemma 4 is saturated by the logical subalgebra of a
point. It is intriguing that a geometrical point admits this
simple algebraic characterization, suggesting how geomet-
rical properties might be ascribed to logical subalgebras in a
broader setting.
We can extend this reasoning to a bulk region X that

contains a finite number of bulk points, continuing to
assume that the number of operator insertions is sufficiently
small that backreaction on the bulk geometry can be
neglected and that the logical subalgebra factorizes as in
Eq. (42). In that case, a boundary region R is correctable
with respect to the algebra AX if it is correctable with
respect to Ax for each bulk point x in X. Therefore,

dðAXÞ ¼ min
x∈X

dðAxÞ: ð46Þ

Equation (44) can also be extended to a bulk region X:

pðAXÞ ≔ min
R⊆∂B∶X⊆E½R�

jRj; ð47Þ

assuming that each nontrivial operator in AX fails to
commute with some other operator in AX. If all points
of X are contained in E½R�, it follows that pðAXÞ ≤ jRj.
We emphasize again that these properties apply not only

to AdS bulk geometry but also to other quantum code
constructions satisfying geometric complementarity and
the entanglement wedge hypothesis. Such codes were
constructed in Ref. [2] for tensor networks associated with
tilings of bulk geometries having nonpositive curvature.
These results were extended to arbitrary graph connectivity
in Ref. [3], where a discrete generalization of the entan-
glement wedge hypothesis was found to be valid in the
limit of large bond dimension. Taking a suitable limit,
these codes can be viewed as regularized approximations
to underlying smooth geometries.

B. Punctures in the bulk

In quantum gravity, there is an upper limit on the
dimension of the Hilbert space that can be encoded in a
physical region known as the Bousso bound [23]; the log
of this maximal dimension is proportional to the surface
area of the region. When one attempts to surpass this limit,
a black hole forms, with entropy proportional to the area of
its event horizon.
This feature of bulk quantum gravity can be captured by

holographic codes, rather crudely, if we allow punctures in
the bulk. A subsystem of the code space HC resides along
the edge of each such puncture, and the holographic tensor
network provides an isometric embedding of this logical
subsystem in the physical Hilbert space H that resides on
the exterior boundary of the bulk geometry. This picture is
crude because, in an actual gravitational theory, a black
hole in the bulk would carry mass and modify the bulk
curvature outside the black hole. For our purposes, this
impact on the curvature associated with a puncture will not
be particularly relevant, and we will, for the most part,
ignore it here.
In the continuum limit, we associate the holographic

code with a Riemannian bulk manifold B as in Sec. III A,
but now the boundary ∂B is the union of two components:
the exterior (physical) boundary, denoted Φ, and the
interior (logical) boundary, denoted Λ. The logical boun-
dary is the union of the boundaries of all punctures. For
the physical region R ⊆ Φ, we now need to distinguish
between its boundary complement ∂BnR and its physical
complement ΦnR. The entanglement wedge hypothesis
continues to apply, where now it is understood that the
minimal surface χR separates R from its boundary comple-
ment. In AdS=CFT, this is called the homology constraint,
meaning that R⊔χR is the boundary of a bulk region.
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As we take the continuum limit n → ∞ with the bulk
geometry fixed, we assume as before that the density of
sites per unit area on ∂B is uniform, with the same density
on both the physical boundary and the logical boundary. If
we assume as in Sec. III A that the bulk logical algebra
outside of the punctures is supported on a bounded number
of bulk points, then the size k of the logical system is
determined by the area of the logical boundary:

k=n ¼ jΛj=jΦj: ð48Þ

A holographic code without punctures obeys the cel-
ebrated Ryu-Takayanagi formula [15], which asserts that
for a boundary region R, the entanglement entropy of R
with its physical complement Rc ≔ ΦnR is the area jχRj
of the minimal surface separating R from Rc, with area
measured in the same units used to define jΦj and jΛj. To
extend this formula to a manifold B with punctures, we
imagine introducing a reference system T that is maximally
entangled with the logical system Λ so that the joint state of
T⊔Φ is pure. For a physical boundary region R ⊆ Φ, the
area jχRj of the minimal surface separating R from its
boundary complement Λ⊔ðΦnRÞ is the entanglement
entropy of R with T⊔ðΦnRÞ in this pure state.
One way to visualize the purifying reference system T is

inspired by the thermofield double construction used in
AdS=CFT [24]. Given a manifold B with physical boun-
daryΦ and logical boundaryΛ, we introduce a second copy
~B of the manifold, with physical boundary ~Φ and logical
boundary ~Λ (see Fig. 2). Then, we join Λ and ~Λ, obtaining
manifold B ~B, whose physical boundary Φ ~Φ has two
connected components. This construction describes two
holographic codes, whose logical systems are maximally
entangled; the second copy of the code provides the
reference system purifying the first copy. The combined
manifold B ~B has no punctures, and we can apply the
original formulation of the Ryu-Takayanagi formula to B ~B.

For a boundary region R ⊆ Φ, the minimal surface χR
separating R from ~Φ⊔ðΦnRÞ never reaches into ~B, and
therefore, it coincides with the minimal surface separating
R from Λ⊔ðΦnRÞ. [We note that if the logical boundary Λ
represents the event horizon of a static (2þ 1)-dimensional
black hole, then, because a geodesic outside the black hole
is the spatial trajectory of a light ray, χR either fully contains
Λ or avoids it entirely. For a nonstatic geometry, it is
possible for χR to include only part of Λ.]
The Ryu-Takayanagi formula relating entanglement

entropy SðRÞ to jχRj is actually the leading term in a
systematic expansion [25], in which the next correction
arises from entanglement among bulk degrees of freedom,
specifically the bulk entanglement of EðRÞ with its bulk
complement. In fact, the division of SðRÞ into the geo-
metrical contribution jχRj and the bulk entanglement
contribution is not a renormalization group invariant; the
geometrical contribution dominates in the extreme low-
energy limit of the boundary theory, and the bulk entropy
becomes more important as we probe the boundary theory
at shorter and shorter distances. We implicitly work in the
low-energy limit in which geometrical entanglement is
dominant. Even in this framework, it is possible to include
bulk entanglement in our discussion, in accordance with the
so-called ER ¼ EPR principle [26], which identifies entan-
glement with wormhole connectedness. For example, we
can consider two punctures of equal size in the bulk and
identify their logical boundaries Λ1 and Λ2, so the two
logical systems are maximally entangled. If R is sufficiently
large, the minimal surface χR in the bulk might pass in
between the two punctures and include (say) the logical
boundary Λ1 in order to satisfy the homology constraint.
Then, the entanglement entropy of R includes a contribu-
tion jΛ1j due to inclusion of the puncture in its entangle-
ment wedge E½R�. In this way, the geometrical
entanglement of R can capture the bulk entanglement
shared by the punctures.
Up until now, we have implicitly assumed that the

holographic code provides an isometric embedding of
the logical system Λ into the physical system Φ. This
requirement places restrictions on the geometry of the
puncture(s). The Ryu-Takayanagi formula provides one
possible way to understand the restriction. Suppose that the
reference system T is maximally entangled with the logical
boundary Λ so that the state of T⊔Φ is pure, and the
entanglement entropy of Φ is jΛj. This must agree with
the geometrical entropy given by jχΦj ¼ jχΛj, the area of
the minimal surface separating Φ and Λ. Holographic
tensor network constructions suggest a stronger constraint,

χΦ ¼ χΛ ¼ Λ; ð49Þ

since in that case, the tensor network provides an explicit
isometric map from Λ intoΦ. This consistency condition is
illustrated in Fig. 3. The constraint equation (49) ensures

FIG. 2. The left diagram illustrates the thermofield double
construction, in which a bulk manifold Bwith logical boundaryΛ
is extended to two copies of B with their logical boundaries
identified. This doubled manifold B ~B describes two holographic
codes whose logical systems are maximally entangled. The other
two diagrams illustrate that, for a boundary region R contained in
the physical boundaryΦ of B, the corresponding minimal surface
lies in B.
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that the geometrical entanglement entropy SðΛÞ is com-
patible with the Bekenstein-Hawking entropy jΛj of a black
hole with event horizon at Λ, as we should expect when the
microstates of the black hole are maximally entangled with
a reference system. If several such black holes approach
one another, they must coalesce into a larger black hole in
order to enforce Eq. (49). See Fig. 3.
For a holographic code with punctures, we may consider

the logical subalgebra associated with a bulk region X ⊆ B,
where now X may include pieces of Λ. Because we are
considering the low-energy regime in which geometric
entanglement dominates bulk entanglement and backreac-
tion on the geometry due to bulk fields is negligible, we
ignore the contribution of bulk points to the logical
subalgebra, just as in Eq. (48). Therefore, if X does
intersect with Λ, then the effective size of the logical
system is given by

kX ¼ jΛ∩Xj; ð50Þ

the area of the portion of Λ contained in X. (In the language
of holographic tensor network codes [2], we are assuming
that most bulk tensors carry no logical indices, so nearly all
of the bulk logical indices contained in the bulk region X
are located on the logical boundary.)
For bulk region X, we consider a reference system T that

is maximally entangled with the logical subsystem residing
in X ⊆ B. Then, when we say thatAX can be reconstructed
on boundary region R ⊆ Φ, we mean that R contains a

subsystem that is maximally entangled with T. If we apply
the entanglement wedge hypothesis to a manifold B with
a logical boundary, we can use the same reasoning as in
Sec. III A to obtain a geometrical expression for the price of
the logical algebra:

pðAXÞ ≔ min
R⊆Φ∶X⊆E½R�

jRj: ð51Þ

On the other hand, a boundary region R ⊆ Φ will be
correctable with respect to AX if AX is supported on the
physical complement ΦnR of R, and the expression for
distance becomes

dðAXÞ ≔ min
R⊆Φ∶X⊆E½ΦnR�

jRj: ð52Þ

It is important to notice that the minimization in dðAXÞ is
over X not contained in the entanglement wedge of the
physical complement, rather than the boundary comple-
ment, of R. In particular, when X is a single point fxg in the
bulk, the expressions for price and distance are not identical
because the entanglement wedges E½R� and E½ΦnR� are not
complementary regions of the bulk. Therefore, Lemma 5
does not apply to the case of a bulk manifold B with logical
boundaries.
The geometrical interpretations for price and distance

of AX allow us to prove a version of the strong quantum
Singleton bound that applies to subalgebras with non-
vanishing kX in the continuum limit. This will be explained
in Sec. VI.

IV. NEGATIVE CURVATURE AND
UBERHOLOGRAPHY

Next, we discuss a general property of holographic codes
defined on bulk manifolds with asymptotically uniform
negative curvature, which we call uberholography. The
essence of uberholography is that both the distance and
price of a logical subalgebra scale sublinearly with the
length n of the holographic code. In the formal continuum
limit n → ∞, the logical subalgebra can be supported on a
fractal subset of the boundary, with fractal dimension
strictly less than the dimension of the boundary. This
fractal dimension is a universal feature of the code, in the
sense that it does not depend on which logical subalgebra
we consider. Uberholography is intriguing, as it suggests
that (Dþ 1)-dimensional bulk geometry can emerge, not
just from an underlying D-dimensional system, but also
from a system of even lower dimension.
Though uberholography applies more generally, to be

concrete, we consider the bulk to have a two-dimensional
hyperbolic geometry with radius of curvature L. Now the
boundary is one dimensional, and the minimal “surface” χR
associated with connected boundary region R is really a
bulk geodesic, whose “area” is actually the geodesic’s
length. For our purpose, we need to know only one feature

FIG. 3. Necessary condition χΛ ¼ Λ for the interior boundary
of a Riemannian manifold B to be identified as a logical system.
In both diagrams, the physical Hilbert space H resides on the
exterior boundary Φ of B, and Λ is the boundary of the punctures
in the bulk, which are shaded in black. The green region is
the entanglement wedge E½Φ�, bounded by Φ and the minimal
surface χΦ ¼ χΛ separating Φ from Λ; the gray region is BnE½Φ�.
For purposes of illustration, we assume the bulk metric is
Euclidean. On the left, we have χΛ ¼ Λ, and the interpretation
of Λ as a logical system is consistent. On the right, we have
χΛ ≠ Λ, and two possible reasons for this are illustrated. First,
a connected component of Λ may fail to be convex. Second,
the union Λ1 of several connected components of Λ may be
encapsulated by a surface ~Λ1 with smaller area than Λ1, in which
case the logical system resides on ~Λ1 rather than Λ1. The
emergence of this new logical system is reminiscent of the
merging of small black holes to form a larger black hole.
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of the bulk geometry: For an interval R on the boundary
with length jRj, the length of the bulk geodesic χR
separating R from its boundary complement is

jχRj ¼ 2L logðjRj=aÞ: ð53Þ

Here, a is a short-distance cutoff, which we may think of as
a lattice spacing for the boundary theory, so jRj=a is the
number of boundary sites contained in R. Applying the
Ryu-Takayanagi formula, we conclude that the entangle-
ment entropy SðRÞ scales logarithmically with the size of
R, which is the expected result for the vacuum state of a
CFT in one spatial dimension.
For some bulk region X, we compute the distance of the

logical subalgebra AX associated with X. This distance
dðAXÞ is the size of the smallest boundary region R which
is not correctable with respect to X. Pick a point x in X, and
choose a connected boundary region R such that E½R�
contains x, but just barely—if we choose a slightly smaller
connected boundary region R0 ⊂ R, then E½R0� will not
contain x. Since x ∈ EðRÞ, we know that R is not
correctable with respect to Ax, and therefore dðAXÞ ≤
jRj. We could get a tighter upper bound on dðAXÞ if we find
a smaller boundary region R0 ⊂ R whose entanglement
wedge still contains x. There may be no such connected
boundary region, but can we find a disconnected R0 ⊂ R
such that x ∈ E½R0�?
Let us try punching a hole in R. In other words, we divide

R into three consecutive disjoint intervals R1HR2, where

jR1j ¼ jR2j ¼
�
r
2

�
jRj;

jHj ¼ ð1 − rÞjRj;
0 < r < 1; ð54Þ

and then remove the middle (hole) interval H, leaving the
disconnected region R0 ¼ R1R2 ¼ RnH. There are two
possible ways to choose bulk geodesics that separate R0
from its complement (illustrated in Fig. 4), either χR1

⊔χR2

or χR⊔χH; the minimal surface χR0 is the smaller of these
two. Thus, if

jχR1
j þ jχR2

j > jχRj þ jχHj; ð55Þ

we get

E½R0� ¼ E½R�nE½H�; ð56Þ

removing H from R has the effect of removing E½H�
from E½R�. Therefore, E½R0� still contains x, and hence
dðAXÞ ≤ jR0j.
If we choose H as large as possible, while respecting

Eq. (55), then Eq. (53) implies

jR1j · jR2j ¼ jRj · jHj ⇒ r2=4 ¼ ð1 − rÞ; ð57Þ

which is satisfied by

r=2 ¼
ffiffiffi
2

p
− 1: ð58Þ

Each connected component of R0 is smaller than R by this
factor.
Now we repeat this construction recursively. In each

round of the procedure, we start with a disconnected region
~R such that E½ ~R� contains x, where ~R is the union of many
connected components of equal size. Then, we punch a
hole out of each connected component to obtain a new
region ~R0 such that E½ ~R0� still contains x. Punching the holes
increases the number of connected components by a factor
of 2 and reduces the size of each component by a factor
of r=2.
The procedure halts when the connected components are

reduced in size to the lattice spacing a, which occurs after
m rounds, where

a ¼ ðr=2ÞmjRj: ð59Þ

The remaining region Rmin has 2m components, each
containing one lattice site. so that

dðAXÞ ≤ jRminj=a ¼ 2m ¼ ðjRj=aÞα; ð60Þ

where

α ¼ log 2
logð2=rÞ ¼

1

log2ð
ffiffiffi
2

p þ 1Þ ≈ 0.786: ð61Þ

The initial interval R is surely no larger than the whole
boundary, so the distance is bounded above by nα for any
logical subalgebra, where d and n are expressed as a
number of boundary sites (rather than length along the
boundary).
We can also consider codes with punctures in the bulk.

To be specific, suppose B is a hyperbolic disk of proper
radius rout, with a single puncture at the center of radius rin.
The code length n is proportional to the circumference of
the outer boundary, and the size k of the logical system is

FIG. 4. Two possible geometries for the entanglement wedge
E½R0� of a boundary region R0 ¼ R1⊔R2 with two connected
components separated by the interval H. In the left diagram, the
minimal surface is χR0 ¼ χR1

⊔χR2
, and the entanglement wedge is

E½R0� ¼ E½R1�⊔E½R2�. In the right diagram, the minimal surface is
χR0 ¼ χR⊔χH , where R ¼ R1HR2, and the entanglement wedge
is E½R0� ¼ E½R�nE½H�.
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proportional to the circumference of the inner boundary.
Because the circumference of a circle with radius r is
2πLer=L, the rate of the code is

k=n ¼ eðrin−routÞ=L: ð62Þ
We may choose an interval R on the boundary, such that χR
is tangent to the inner boundary at a single point. The length
of this geodesic is essentially twice the difference between
the inner and outer boundaries, so Eq. (53) implies

rout − rin ¼ L logðjRj=aÞ: ð63Þ
Using the recursive construction to repeatedly carve holes
out of R, we obtain the bound Eq. (60) on the code distance,
which becomes

d ≤ ðjRj=aÞα ¼ ðeðrout−rinÞ=LÞα ¼ ðn=kÞα ð64Þ
(with the code distance expressed as a number of boundary
sites). This scaling of the code distance, with α ≈ 0.786,
compares favorably with the bound [27] on local commut-
ing projector codes defined on a two-dimensional
Euclidean lattice, for which α ¼ 1=2.
The scaling pðAXÞ ∼ nα applies to price as well as

distance. Once we have found a sufficiently large boundary
region R such that E½R� contains the bulk region X, we can
proceed to hollow out R recursively until we reach the
much smaller region Rmin such that jRminj=a ¼ ðjRj=aÞα,
where E½Rmin� still contains X, and hence AX is supported
on Rmin. The resulting region Rmin, with fractal dimension
α, has a geometry reminiscent of the Cantor set, as
illustrated in Fig. 5.

It is interesting to compare this universal exponent α for
planar uberholography with the scaling laws for distance
and price realized by other code families, such as holo-
graphic tensor network codes and concatenated quantum
codes. In fact, it can be quite challenging to obtain tight
lower bounds on distance and price for tensor network code
constructions; see the Appendix for further discussion.

V. QUANTUM MARKOV CONDITION
AND LOCAL CORRECTABILITY

For a holographic code, consider (as in Sec. IV) a
connected region R ¼ R1HR2, which is the disjoint union
of three adjoining intervals. Imagine that the middle
interval H is erased. If H is correctable, there is a recovery
map R that corrects this erasure error. However, now we
ask whether a stronger condition is satisfied: Is it possible
to choose a recovery map taking R0 ¼ R1R2 to R so that
RR0→R0H “fills in” the erased holeH? If the erasure ofH can
be corrected by a map that acts only on a somewhat larger
region containing H (larger by a constant factor indepen-
dent of system size), then we say that erasure is locally
correctable.
The quantum Markov condition provides a criterion for

local correctability [28]. We say that the state ρABC of three
disjoint regions A, B, C obeys the quantum Markov
condition (also called quantum conditional independence) if

0¼ IðA;CjBÞ¼SðABÞþSðBCÞ−SðABCÞ−SðBÞ; ð65Þ

which is equivalent to saying that the strong subadditivity
inequality is saturated (satisfied as an equality). If the
Markov condition is satisfied, then ρABC can be recon-
structed from the marginal state ρAB using a map RB→BC,
which maps B → BC:

RB→BC∶ ρAB ↦ ρABC; ð66Þ

known as the Petz recovery map [29]. See Ref. [30] for a
construction of amap that is robust to condition (65) holding
only approximately. Likewise, in view of the symmetry of
the condition under the interchange of A andC, ρABC can be
reconstructed from ρBC by a map from B to AB.
In fact, Eq. (65) implies that B has a decomposition as a

direct sum of tensor products of Hilbert spaces,

HB ¼ ⨁
j
HBj

¼ ⨁
j
HBL

j
⊗ HBR

j
; ð67Þ

and that the state of ABC has the block-diagonal form

ρABC ¼ ⨁
j
pjρABL

j
⊗ ρBR

j C
: ð68Þ

Evidently, we can recover ρABC from ρAB by replacing each
ρBR

j
by ρBR

j C
, without touching the system A.

FIG. 5. This figure illustrates uberholography for the case of
a two-dimensional hyperbolic bulk geometry. The inner logical
boundary is contained inside the entanglement wedge, shaded in
blue, of a boundary region R. By repeatedly punching holes of
decreasing size out of this boundary region, we obtain a much
smaller region Rmin whose entanglement wedge still contains
the logical boundary. Thus, the logical algebra is supported on
a fractal boundary set, whose geometry is reminiscent of the
Cantor set.
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To apply the Markov condition to our holographic
setting, consider a holographic code with no punctures,
where the state of the physical boundary is pure. We choose
A, B, C to be three disjoint regions whose union is the
complete boundary, namely,

A ¼ Rc; B ¼ R0; C ¼ H; ð69Þ
where Rc denotes the boundary region complementary to
R. Because the state of the complete boundary is pure,
SðABCÞ ¼ 0 and SðHÞ ¼ SðHcÞ; therefore, the condition
Eq. (65) becomes

SðABÞ þ SðBCÞ ¼ SðBÞ⇔SðHÞ þ SðRÞ ¼ SðR0Þ: ð70Þ
When this condition is satisfied, R0 can be divided into two
subsystems, where one purifies the state of H and the other
purifies the state of Rc. To correct the erasure ofH, we need
only restore the entanglement between R0 and H, and for
this purpose, there is no need to venture outside R.

A. Hyperbolic bulk

Using the Ryu-Takayanagi formula, this statement
Eq. (70) about entropy would follow from a statement
about minimal surfaces:

χR0 ¼ χH⊔χR; ð71Þ
which is the same as the condition (discussed in Sec. IV)
for the entanglement wedge E�R0� to be E½R�nE½H�. For the
case in which the bulk is a hyperbolic disk, the calculation
in Sec. IV shows that erasure of H can be corrected by a
recovery map that acts on region R containing H, where
jRj=jHj ¼ ð1 − rÞ−1 ¼ 3þ 2

ffiffiffi
2

p
≈ 5.828. Thus, the era-

sure error is locally correctable. This local correctability
is a general feature of holographic codes with asymptoti-
cally uniform negative bulk curvature.
We may also consider the case of a manifold with

punctures, where the logical boundary Λ is maximally
entangled with a reference system. In that case, the entropy
of the physical boundary matches SðΛÞ, and the Markov
condition is satisfied provided that

jχR0 j þ jχΛj ¼ jχHc j þ jχRj; ð72Þ
which holds if

χR0 ¼ χH⊔χR; χHc ¼ χH⊔χΛ: ð73Þ
As for the case without punctures, Eq. (73) will be satisfied
ifH is a sufficiently small interval on the physical boundary
of the hyperbolic disk and R is an interval containing H,
where jRj is larger than jHj by a constant factor. The
interpretation is the same as before; Eq. (73) implies that R0
contains a subsystem that purifies H, so there is no need to
reach outside of R to recover from the erasure of H.

It is also notable that if the Markov condition Eq. (65) is
approximately satisfied, then a local recovery map can
be constructed which approximately corrects the erasure
of H. This is important because in realistic AdS=CFT, the
Markov condition is not exactly satisfied because of the
small corrections to the Ryu-Takayanagi formula, which
we have neglected. Local correctability in the approximate
setting has been discussed recently in Refs. [28,31,32].
While holographic codes based on tensor networks can

successfully reproduce the Ryu-Takayanagi relation satis-
fied by the von Neumann entanglement entropy of the
boundary theory [2,3], they do not correctly capture the
properties of Rényi entropies [33–35] and therefore do not
provide a fully satisfactory description of conformal field
theories with dual geometries. It is fortunate that the
Markov condition Eq. (65), and its approximate version
[36], is stated in terms of von Neumann entanglement
entropies. We therefore expect that holographic tensor
network codes can provide a reasonable picture of local
correctability in realistic holography.

B. Flat bulk

The criterion for local correctability is satisfied by
generic negatively curved bulk geometries but not by bulk
geometries that are flat or positively curved. Consider,
for example, a Euclidean two-dimensional disk with unit
radius. For an interval R on the boundary that subtends
angle θ, the geodesic χR is a chord of the boundary circle
with length jχRj ¼ 2 sinðθ=2Þ. Suppose we erase a hole H
that subtends angle 2δ and correct the erasure by acting in a
larger region R that contains H. If R ¼ R1HR2 subtends
angle 2ϕ, where jR1j ¼ jR2j, the Markov condition can be
satisfied only if

jχR1
j þ jχR2

j ¼ 4 sin ððϕ − δÞ=2Þ
≥ jχRj þ jχHj ¼ 2 sinðϕÞ þ 2 sinðδÞ: ð74Þ

If δ and ϕ are small, this condition becomes, to leading
order in small quantities,

δ ≤ ϕ3=16: ð75Þ

Thus, when jHj is small, jRj ∼ jHj1=3 is far larger; the
erasure is not locally correctable. The same will be true,
even more so, for a positively curved bulk geometry.
The failure of local correctability for holographic codes

associated with flat and positively curved bulk manifolds
suggests that, in these cases, the physics of the boundary
system is highly nonlocal; in particular, the boundary state
is not likely to be the ground state of a local Hamiltonian.
This conclusion is reinforced by the observation that,
according to the Ryu-Takayanagi formula, the entangle-
ment entropy of a small connected region on the boundary
of a flat ball scales linearly with the boundary volume of the
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region; this strong violation of the entanglement area law
would not be expected in the ground state if the
Hamiltonian is local.
That flat bulk geometry implies nonlocal boundary

physics also teaches us a valuable lesson about
AdS=CFT. A holographic tensor network provides not
just an isometric map from the logical boundary Λ to the
physical boundary Φ of the manifold B, but also a map
from Λ to the boundary ∂X of a bulk region X that contains
Λ. If the bulk geometry of X is flat or nearly flat, the
entanglement structure of holographic codes indicates that
the system supported on ∂X should exhibit flagrant
violations of bulk locality. This picture suggests that black
holes in the bulk that are small compared to the AdS
curvature scale ought to have highly nonlocal dynamics, as
seems necessary for these small black holes to be fast
scramblers of quantum information [37,38].

C. Positively curved bulk

This nonlocality of boundary physics is even more
pronounced for holographic codes defined on positively
curved manifolds. Consider the extreme case of a two-
dimensional hemisphere B, with the boundary ∂B at its
equator. Geodesics on the sphere are great circles, lying in a
plane that passes through the sphere’s center. For any
boundary region R with jRj ≠ j∂Bj=2, there is a unique
minimal surface χR, which lies in ∂B; for jRj < j∂Bj=2, we
have χR ¼ R, while for jRj > j∂Bj=2, we have χR ¼ ∂BnR.
Invoking the Ryu-Takayanagi formula, we see that as R
increases in size, the entropy SðRÞ rises linearly as jRj until
R occupies half of the boundary; it then decreases linearly
thereafter. This behavior is the same as for a Haar-random
pure state [39].
For jRj < j∂Bj=2, the entanglement wedge E½R� contains

only R, while for jRj > j∂Bj=2, we have R⊔χR ¼ ∂B, and
the entanglement wedge E½R� is all of the hemisphere B.
Accordingly, for any region X in the bulk with associated
bulk logical algebra AX, the price pðAXÞ and distance
dðAXÞ are both given by j∂Bj=2. This also mimics the
behavior of a Haar-random pure state.
If we regulate bulk and boundary by introducing a lattice

spacing a, then the number n of boundary sites in the code
block is

n ¼ j∂Bj=a ¼ 2πr=a; ð76Þ

where r is the radius of the sphere. It is noteworthy that the
area of the hemisphere, expressed in lattice units, is

jBj=a2 ¼ 2πr2=a2 ¼ n2=2π; ð77Þ

which is quadratic in n. Since the hemisphere is the surface
of smallest area whose boundary reproduces the entangle-
ment structure of a Haar-random state, it is tempting to
interpret the area n2=2π as a measure of the circuit

complexity of preparing this state, in accordance with
the complexity-equals-action conjecture [40]. Indeed, a
random geometrically local circuit in the bulk containing
Oðn2Þ gates can closely approximate a unitary 2-design,
which prepares a state with the desired properties [41].
As noted in Sec. III B, we can crudely model a black hole

in the bulk by punching a hole in the bulk, with the
microstates of the black hole residing on the logical
boundary Λ of the puncture. If we introduce a reference
system that is maximally entangled with Λ, then the black
hole microstates are maximally mixed, and the entangle-
ment entropy SðΛÞ ¼ jΛj counts these microstates, in
agreement with the black hole’s Bekenstein-Hawking
entropy. Alternatively, we might wish to describe a black
hole in a typical pure state, rather than a highly mixed state.
Our observations about the properties of a holographic code
defined on a hemisphere suggest how this can be done.
Instead of entangling its boundary with a reference system,
we fill the puncture with a hemispherical cap. The tensor
network filling this cap realizes the minimal geometrically
local procedure for preparing the black hole’s highly
scrambled pure state.

VI. HOLOGRAPHIC STRONG QUANTUM
SINGLETON BOUND

In Sec. II D, we discussed the strong quantum Singleton
bound, Corollary 1, which relates p, d, and k for a code
subspace, and we left open whether this bound can be
extended to more general logical operator algebras. Here,
we will see that, for holographic codes, such an extension is
possible.
We consider the case of a holographic code with

punctures in the bulk; hence, there is a physical boundary
Φ and a logical boundaryΛ as discussed in Sec. III B. In the
formal continuum limit, the code parameters p, d, and k are
measured in units of area, and the contribution to the area
from O(1) boundary sites can be neglected; hence, Eq. (38)
becomes

k ≤ p − d: ð78Þ

Wewould like to show that this constraint applies to logical
subalgebras of a holographic code.
We consider a region X in the bulk, and its associated

logical subalgebra AX. The region X may contain a portion
of the logical boundary Λ, as well as some additional
isolated points in the bulk. We denote the intersection X∩Λ
of X with the logical boundary by ΛX; if ΛX is nonempty,
then the bulk points are a negligible portion of the
subalgebra AX, whose size is therefore

kX ¼ jΛXj: ð79Þ

In what follows, for the sake of clarity, we denote the
minimal surface associated with boundary region R by
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χðRÞ, in place of the subscript notation χR used earlier. We
also use the notation Rc for the physical complement ΦnR,
and p, d, k as a shorthand for pðAXÞ, dðAXÞ, kX.
Let Rp be a region of the physical boundary Φ such that

jRpj ¼ pðAXÞ and E½Rp� contains X; this means that the
associated minimal surface χðRpÞ must contain ΛX. Let
Rd ⊆ Rp be a subset of Rp such that, in the regulated theory
with a nonzero lattice spacing, Rd contains one less
boundary site than the distance of AX; therefore, Rd is
surely correctable with respect toAX, and in the continuum
limit (where a single site has negligible size), jRdj ¼
dðAXÞ. Because Rd is correctable, the entanglement wedge
of its physical complement Rc

d contains X, which means
that χðRc

dÞ contains ΛX.
We may consider gradually “growing” a boundary

region from Rd to Rp, obtaining an inequality by observing
that the corresponding minimal surface cannot grow faster
than the boundary surface itself:

jRpj − jRdj ≥
Z

Rp

Rd

dR
djχðRÞj
dR

¼ jχðRpÞj − jχðRdÞj;

jRc
dj − jRc

pj ≥
Z

Rc
d

Rc
p

dR
djχðRÞj
dR

¼ jχðRc
dÞj − jχðRc

pÞj:

Together with p − d ¼ jRpj − jRdj ¼ jRc
dj − jRc

pj, this
implies

p − d ≥
jχðRpÞj − jχðRdÞj þ jχðRc

dÞj − jχðRc
pÞj

2
: ð80Þ

Now recall that χðRpÞ contains ΛX. Hence, the rest of the
minimal surface χðRpÞ, excluding ΛX, is χðRp ∪ ΛXÞ, or in
other words,

χðRpÞ ¼ χðRp ∪ ΛXÞ ∪ ΛX

⇒ jχðRpÞj ¼ jχðRp ∪ ΛXÞj þ jΛXj: ð81Þ

Likewise, χðRc
dÞ contains ΛX, which implies

jχðRc
dÞj ¼ jχðRc

d ∪ ΛXÞj þ jΛXj: ð82Þ

Plugging this into Eq. (80) yields

p − d − jΛXj ¼ p − d − k

≥
1

2
ðjχðRp ∪ ΛXÞj þ jχðRc

d ∪ ΛXÞj
− jχðRdÞj − jχðRc

pÞjÞ: ð83Þ

Now we can use the property that two complementary
boundary regions share the same minimal bulk surface
(where by the “complement” we mean the boundary
complement rather than the physical complement; that
is, we are simultaneously taking the complement with

respect to the logical and physical boundaries). Let us
denote by Λc

X the complement of ΛX with respect to the
logical boundary so that Λ ¼ ΛXΛc

X. Then,

χðRc
d ∪ ΛXÞ ¼ χðRd ∪ Λc

XÞ; ð84Þ

χðRc
pÞ ¼ χðRp ∪ ΛXΛc

XÞ; ð85Þ

and hence,

p − d − k ≥ jχðRp ∪ ΛXÞj=2þ jχðRd ∪ Λc
XÞj=2

− jχðRdÞj=2 − jχðRp ∪ ΛXΛc
XÞj=2: ð86Þ

Using the Ryu-Takayanagi relation between entropy and
area, and identifying

AB ¼ Rp ∪ ΛX; BC ¼ Rd ∪ Λc
X;

B ¼ Rd; ABC ¼ Rp ∪ ΛXΛc
X;

the right-hand side of Eq. (86) is proportional to

SðABÞ þ SðBCÞ − SðBÞ − SðABCÞ; ð87Þ

which is non-negative by strong subadditivity of entropy.
This completes the holographic proof of the strong quan-
tum Singleton bound.
Theorem 3 (holographic strong quantum Singleton

bound). Consider a holographic code with logical boundary
Λ, and a logical subalgebraAX associated with bulk region
X, where kX ¼ jX∩Λj. Then, the price and distance of AX
obey

kX ≤ pðAXÞ − dðAXÞ: ð88Þ

It is intriguing that we used strong subadditivity of
entropy in this holographic proof, which applies to logical
subalgebras, while the proof of Corollary 1, which applies
to the price and distance of a traditional code subspace,
used only subadditivity. We have not found a proof of the
strong quantum Singleton bound that applies to logical
subalgebras and that does not use holographic reasoning; it
is an open question whether Eq. (88) holds beyond the
setting of holographic codes.

VII. DISCUSSION AND OUTLOOK

Our studies of holographic codes have only scratched the
surface of this subject. More in-depth studies are needed,
including searches, guided by geometrical intuition, for
codes with improved parameters and investigations of the
efficiency of decoding.
Regarding the implications of holographic codes for

quantum gravity, we have uncovered several hints that may
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help steer future research. We have seen that positive
curvature of the bulk manifold can improve properties
such as the code distance but at a cost—increasing distance
is accompanied by enhanced nonlocality of the boundary
system. The observation that the logical algebra of a bulk
point has price equal to distance is a step toward character-
izing bulk geometry using algebraic ideas, and we antici-
pate further advances in that direction. Uberholography, in
bulk spacetimes with asymptotically negative curvature,
illustrates how notions from quantum coding can elucidate
the emergence of bulk geometry beyond the appearance of
just one extra spatial dimension.
Following Refs. [1,10], we have discussed boundary

reconstruction of bulk physics using the formalism of
OAQEC [5,6], which captures salient features of hologra-
phy. To make firmer contact with realistic AdS=CFT, this
discussion should be extended to the setting of approximate
OAQEC [42]. First steps in this direction have already been
taken in Ref. [31], a study of approximate erasure correc-
tion in the (1þ 1)-dimensional Ising CFT at very low
temperatures, and in Ref. [32], an investigation of approxi-
mate local correctability in a MERA network, which has
polynomially decaying correlations on its boundary.
We are encouraged by recent progress connecting

quantum error correction and quantum gravity, but much
remains unclear. Most obviously, our discussion of the
entanglement wedge and bulk reconstruction applies only
to static spacetimes or very special spatial slices through
dynamical spacetimes. Applying the principles of quantum
coding to more general dynamical spacetimes is an impor-
tant goal, which poses serious unresolved challenges.

ACKNOWLEDGMENTS

F. P. would like to thank Nicolas Delfosse, Henrik
Wilming, and Jens Eisert for helpful discussions and
comments. F. P. gratefully acknowledges funding provided
by the Institute for Quantum Information andMatter, a NSF
Physics Frontiers Center, with support from the Gordon
and Betty Moore Foundation, as well as the Simons
Foundation through the It from Qubit program and the
FUB through the ERC project (TAQ). This research was
supported in part by the National Science Foundation under
Grant No. NSF PHY-1125915.

APPENDIX: COMPARISON OF
UBERHOLOGRAPHY DIMENSIONAL
EXPONENT WITH EXPLICIT CODES

In Sec. IV, we computed the universal fractal dimension
α ≈ 0.786 for a holographic code defined on the Poincaré
disk, assuming that geometric complementarity and the
entanglement wedge hypothesis are precisely satisfied. We
may also define a fractal dimension for other code families,
such as concatenated quantum codes or holographic tensor
network codes. Choosing a particular logical algebraA (for

example, the algebra of a logical qubit at the center of the
bulk), let

αp ≔ lim
l→∞

logpl

lognl
; αd ≔ lim

l→∞

log dl
log nl

; ðA1Þ

where pl and dl are the price and distance of the logical
algebra after l levels of concatenation or equivalent
iteration. (If A is the algebra of local operators at the
center of the bulk, then we may think of l as the radial
distance from the center of the bulk to its boundary.) The
“no free lunch” lemma ensures that αp ≥ αd.
By a concatenated code, we mean a recursive hierarchy

of codes within codes; these can be constructed in many
ways. In the simplest case, we consider an ½½n; 1; d�� code
C1, with just one logical qubit, which has an encoder
isometrically mapping one qubit to a block of n physical
qubits. The code C2, which has k ¼ 1 and length n2 ¼ n2, is
obtained by applying this encoder to each of the n physical
qubits in C1; likewise, the code Cl, with length nl, is
obtained by applying the encoder to each of the nl−1 qubits
in the code Cl−1. The corresponding tensor network, with
one logical qubit at its center, is a branching tree extending
radially outward, in which each branch has n descendants.
Suppose that n is odd and the code C1 has the largest

possible distance d ¼ ðnþ 1Þ=2. The complementarity
bound Eq. (25) then implies that the price is p ¼ d; the
full logical algebra can be supported on d of the n qubits,
and all nontrivial logical Pauli operators have weight d.
Therefore, all nontrivial logical operators of Cl can be
supported on dl qubits, and all have weight dl. We
conclude that

αp ¼ αd ¼
log d
log n

: ðA2Þ

As n increases, αp and αd approach 1 from below. Although
the tensor network can be embedded in a plane, it does not
approximate the geometry of the Poincaré disk, and its
price and distance obey a different scaling law than we
found in Sec. IV.
A more complicated recursive encoding scheme, based

on an ½½n; k; d�� code C1 with k > 1, is depicted in Fig. 6.
In this case, the C1 encoder maps k qubits to a block of n
qubits. To build the code Cl, we first assemble k copies of
the code Cl−1, and then apply the k → n encoder for C1
altogether nl−1 times, where each encoder acts on k qubits
drawn from the k distinct copies. Each time we add another
layer to the code, the number of encoded qubits increases
by a factor of k, and the number of physical qubits increases
by a factor of n; therefore,

nl ¼ nl; kl ¼ kl: ðA3Þ
However, in this case, the price and distance of Cl are not
so easy to calculate, though we can derive some simple
bounds. When we add an additional layer to the code, each
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nontrivial logical operator of Cl−1 maps to a logical
operator of Cl whose weight is at least d times larger;
furthermore, if all logical operators of Cl−1 can be
supported on w physical qubits, then at most pw qubits
are needed to support all logical operators of Cl. We
therefore have

dl ≤ dl ≤ pl ≤ pl: ðA4Þ

However, to make a more precise statement about the price
and distance of Cl, we need more information about the
structure of C1.
We may also consider the price and distance of holo-

graphic tensor network codes, which capture some of the
features of full-blown AdS=CFT duality [2]. For example,
we can tile the Poincaré disk with pentagons and associate
a six-index “perfect tensor” with each pentagon, where
each pentagon carries a single logical qubit. For this
pentagon code, where A is the logical algebra of the
central pentagon, we find that the price plðAÞ and distance
dlðAÞ are badly mismatched (where l denotes the graph
distance from the central pentagon to the physical boundary
of the tensor network). In fact, the distance dlðAÞ ¼ 4 is a
constant independent of l, as explained in Sec. 5.6 of
Ref. [2]; in other words, there are logical operators of
weight 4 that act nontrivially on the central qubit. In
contrast, we expect the price to scale as plðAÞ ¼ n

αp5
l

with 0.786 < αp5 < 1 (i.e., with an exponent larger than
the value attained in idealized holography). This upper
bound may be derived using a discrete version of the hole-
punching approach, thereby explicitly constructing a subset

of the physical boundary qubits for which the greedy
algorithm of Ref. [2] reaches the central tensor. It is more
difficult to obtain lower bounds on pl, as these cannot be
witnessed by examples.
A nontrivial scaling exponent for the distance dlðAÞ can

be obtained if we thin out the logical qubits, replacing
pentagons in the bulk by hexagons that carry no logical
qubit index. (In such codes, the central qubit is well
protected against erasure of a randomly chosen nonzero
fraction of all the physical boundary qubits, as shown in
Ref. [2].) Codes with relatively sparse bulk logical qubits
are better suited than the pentagon code for illustrating the
ideas we have explored in this paper, where we have
focused on the regime in which geometric entanglement
dominates bulk entanglement. We may anticipate that
holographic tensor network code families that mimic the
geometry of the Poincaré disk will have a price-scaling
exponent αp that approximates α ≈ 0.786 from above and a
distance-scaling exponent αd that approximates α from
below. We have confirmed this expectation by studying
some examples, though we have no rigorous general
argument.
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