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1.1 Biology of termites 

Termites, a type of social insect, are one of the most successful insects in the world. They live 

in groups of hundreds to millions of individuals, which leads to vast ecosystem-dominating life 

forms (Oster and Wilson 1978). With the considerable ecological importance, termites can 

compose up to 95% of insect biomass in tropical underground ecosystems (Watt et al. 1997) 

and 21% of the total invertebrate biomass in rainforest epiphytes (Ellwood and Foster 2004). 

They function as decomposers of dead organic matters in tropical and subtropical regions 

(Bignell and Eggleton 2000) due to their ability to digest lignocellulose with their symbionts 

that include bacteria and/or protists (Ohkuma 2003; Brune 2014).  

Termites are sometimes referred to as “white ants” because its extreme phenotypical 

resemblance to ants, although they are not close relatives. Termites are diploid, 

hemimetabolous social insects that evolved from cockroaches (Inward et al. 2007a; Korb 2007, 

2008), while ants are haplodiploid, holometabolous insects that evolved from wasps and are 

close relatives of bees (Thorne and Traniello 2003; Howard and Thorne 2010). The termites 

develop in incomplete metamorphosis from eggs, via larvae to different castes (Korb and 

Hartfelder 2008). The individuals in a termite colony are genetically closely related as normally 

a pair of reproductives are responsible for breeding, except for cases with multiple pairs of 

reproductives in a colony. 

1.1.1 Phylogeny of termites 

There are in total around 3000 living termite species, all of which are eusocial. The existing 

termites are classified into nine families: Mastotermitidae, Hodotermitidea, Archotermopsidae, 

Stolotermitidae, Kalotermitidae, Stylotermitidae, Rhinotermitidae, Serritermitidae and 

Termitidae (Engel et al. 2009). There are two suprafamilial termite lineages, the Euisoptera 

and the Neoisoptera (Engel et al. 2009; Cameron et al. 2012). The former is composed by 

termite species except Mastotermitidae and the latter is composed by Stylotermitidae, 

Rhinotermitidae, Serritermitidae and Termitidae (Engel et al. 2009).  

Depending on the presence of protists in the hind gut, termite species are traditionally 

classified into two groups: lower termites (protists and bacteria) and higher termites (only 

bacteria) (Krishna and Weesner 1969; Krishna and Weesner 1970). The lower termites include 

termite species except the family of Termitidae that is composed all the higher termites. 

Around 70% of all termite species are composed by higher termites. 

Termites are a sister group of subsocial wood-feeding cockroaches (Figure 1.1), the 

Cryptocercudiae, and nested in the cockroach order Blattodea based on phylogenetic analysis 

of gene markers and mitochondrial genomes (Lo et al. 2000; Inward et al. 2007a; Inward et al. 
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2007b; Legendre et al. 2008; Engel et al. 2009; Cameron et al. 2012; Bourguignon et al. 2015; 

Djernæs et al. 2015; Legendre et al. 2015). During the last two decades, the termite phylogeny 

has been vigorously investigated. These studies have adopted morphological data or multiple 

genes from nuclear or mitochondrial to resolve the termite phylogeny, especially the lower 

termite families Hodotermitidea, Archotermopsidae, Stolotermitidae. However, with the 

development of next generation sequencing technology, there is currently no comprehensive 

phylogenetic analysis of the termites using phylogenomic data. 

Figure 1.1 The simplified phylogeny of termite and Cryptocercus (Inward et al. 2007a). The picture of 

termites is from Neotermes castaneus and the pictures of Cryptocercus are from Cryptocercus 

pudacoensis. a, b represent the two important evolutionary events mentioned in text.  

It has been reported that the termites have diverged from cryptocercid roaches in the 

Late Jurassic based on fossil records, which predates the origins of ants and bees by around 

35 million years (Engel et al. 2009). This indicates that termites are probably the oldest 

eusocial animals (Engel et al. 2009). In addition, the most abundant termite family, the 

Termitidae, diversified during the Miocene (Engel et al. 2009). 

1.1.2 Termites as social insects 

Alongside sexual reproduction and multicellularity, eusociality is considered one of the major 

transitions in evolution (Szathmáry and Smith 1995), which mostly occurs in insects, the 

Hymenoptera (ants, bees and wasps) and termites. In both groups, the evolution of a 

reproductively altruistic caste was critical, as it facilitated the evolution of advanced division of 

labour and the emergence of sophisticated caste structures. 

During the evolution of termites, there are two important evolutionary transitions (Figure 

1.1). The first is the transition of solitary cockroaches to wood-feeding subsocial cockroaches. 

The prime social characters evolved and shared by Cryptocercus and termites: 1) unique 

flagellates, 2) biparental care, and 3) proctodeal trophallaxis (Inward et al. 2007a; Nalepa 

2010). The second is the transition of subsocial cockroaches to social termites. The true social 

characters have evolved during this transition: 1) true sterile castes-soldier, 2) overlapping 
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generation, and 3) division of labour (Inward et al. 2007a; Nalepa 2010). The evolution of 

soldiers, a sterile caste in termites, is of particular importance as it represents the point of no-

return in social evolution (Boomsma and Gawne 2018). This path of evolved sterile caste is 

different from Hymenoptera (Tian and Zhou 2014), where the first sterile caste to evolve was 

the worker. However, the appearance of true workers is a further transition in termites, which 

has been considered as multiple origin (Inward et al. 2007b; Legendre et al. 2008). 

Termites have different castes within a colony which is a reflection of division of labour 

in social evolution, including workers, soldiers and reproductives (Figure 1.2). Workers are the 

most abundant individuals in a colony. In some lower termite species including 

Archotermopsidae, Stolotermitidae, Kalotermitidae, Prorhinotermitinae, the true workers are 

missing and the workers are called “false worker” or “pseudogates” as they can further develop 

into either reproductives or soldiers (Korb and Hartfelder 2008). In Mastotermitidae, 

Hodotermitidea, Rhinotermitinae and Serritermitidae, the true worker caste presents as in  

Figure 1.2 The left picture is from a colony of Mastotermes darwiniensis. The right picture is from 

Neotermes castaneus with different castes. R: Reproductives (a neotenic reproductives in picture); W: 

worker (“false worker” in this species); S: soldier. 

higher termites (Inward et al. 2007b; Legendre et al. 2008). The soldier caste makes up 5-20% 

of a typical insect colony, and is the only true sterile caste that presents across all termite 

species except for a few species that underwent a secondary loss of the sterile soldier caste 

(Bourguignon et al. 2016a). The reproductives are normally the least abundant individuals in 

a termite colony and can be categorized into primary reproductives or neotenic reproductives 

(Korb and Hartfelder 2008). The primary reproductives are alates that shed their wings after 

the tandem flight and establish a new colony, while the neotenic reproductives are 

replacements of dead primary reproductives and developed from the origin colony where they 

live in (Korb and Hartfelder 2008). 
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The developmental pathways in termites differ between families (Korb and Hartfelder 

2008; Roisin and Korb 2010; Korb et al. 2015). Depending on the presence of true workers, 

the development can be categorized as linear (Figure 1.3) or bifurcated (Roisin and Korb 2010) 

in lower termites and higher termites. In the linear development, the species have totipotent 

immature stages that can develop into caste options and possible with regressive moulting 

(Korb and Hartfelder 2008). In bifurcated development, workers and soldiers diverge from the 

nymphs and cannot subsequently develop into alates (Korb and Hartfelder 2008; Roisin and 

Korb 2010; Korb et al. 2015). 

Figure 1.3 A representative linear developmental path of lower termites (except Mastotermitidea, 

Hodotermitidea, Rhinotermitinae and Serritermitidae) (Judith Korb 2008). 

Different castes are responsible for different tasks in the colony. The task specialization 

in the castes is associated with multiple morphological, physiological and behavioral 

adaptations (Hölldobler and Wilson 2009; Tian and Zhou 2014; Bourguignon et al. 2016b; 

Engel et al. 2016; Kaji et al. 2016; Robson and Traniello 2016). Workers (where present) 

typically carry out the majority of housekeeping tasks such as brood care and foraging. 

Soldiers (where present) display explicit morphological and behavioral specializations adapted 

for defence (Šobotník et al. 2010; de Roode and Lefèvre 2012; Tian and Zhou 2014; 

Bourguignon et al. 2016b; Kaji et al. 2016). The reproductives are responsible for the 

production of eggs to guarantee the reproduction of the colony. 

1.2 Immunity in social insects 

The elaborate division of labour in social insects lead to their success in the eco-system. 

However, this does not come without costs. The genetically closed individuals and high 

population density within the colony are perfect environment for the propagation of parasites 

and pathogens (Alexander 1974; Schmid-Hempel 1998). But, termites have evolved a 

sophisticated immune system to counteract these drawbacks (Rosengaus et al. 1999b; 

Traniello et al. 2002; Cremer et al. 2007; Bulmer et al. 2009; Cremer et al. 2018). There are 

Egg 
Dependent  

larvae 

Late instar larvae 

(‘false worker’) 
Nymphal 
 instars 

Neotenic  
reproductives 

Presoldier Soldier 

Alate 
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two levels of immune defence in termites as other social insects: individual immunity and social 

immunity. 

Figure 1.4 An illustration of the two levels immunity in termites, including individual immunity (cellular 

immunity and humoral immunity) and social immunity (an example of allogrooming in red circle 

representing a type of social immunity). 

1.2.1 Individual immunity 

The insect immune system has been widely studied in Drosophila and Tenebrio, which 

includes both cellular and humoral immunity. Cellular immunity comprises phagocytosis, 

encapsulation and nodulation, which are mediated by various types of hemocytes, including 

granular cells, crystal cells, oenocytoids and plasmatocytes (Lavine and Strand 2002). 

Humoral immunity is composed of three main immune pathways, Toll, immune deficiency 

(IMD), and Janus kinase/signal transducers and activators of transcription (JAK-STAT), and a 

melanisation process. 

Insect innate immune molecules occur as three broad types: receptors, signaling 

components and effectors (Viljakainen 2015; Hillyer 2016). Following infection, pattern 

recognition receptors bind to microorganisms, which leads to the induction of three principal 

signaling pathways responsible for the regulation of the insect humoral immune response, 

known as the Toll, IMD, and JAK-STAT pathways. These canonical pathways are responsible 

for, amongst other effects, the synthesis of antimicrobial peptides such as defensins and 

attacins (Hillyer 2016). Many of the functions of genes involved in these pathways derive from 

a considerable body of research carried out in Drosophila and to a lesser extent, other insects. 

In flies we understand that the Toll pathway responds largely to fungi and gram-positive 

bacteria, and is mediated by peptidoglycan receptor proteins (PGRPs), gram-negative binding 

proteins (GNBPs), serine protease cascades, Toll-receptors, Myeloid differentiation primary 

response 88 (MyD88), Tube, Pelle, and Dorsal-related immunity factor (Dif)/Dorsal 

transcription factors (Valanne et al. 2011). The IMD pathway mainly responds to gram-
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negative bacteria, and is comprised of PGRPs, Imd, Fas-associated protein with death domain 

(FADD), a caspase Dredd, Transforming growth factor-activated kinase 1 (TAK1)-binding 

protein (TAB), TAK, IκB (inhibitor of nuclear factor κB) kinase (IKK), and Relish (Myllymäki et 

al. 2014). Conversely, the JAK-STAT pathway is thought to regulate inflammation and stress 

responses. It is principally composed of Cytokines, Domeless, Hopscotch, and Signal 

transducers and activators of transcription (STAT) (Agaisse and Perrimon 2004). The 

melanisation process is initiated by the recognition of receptors mostly pattern recognition 

receptors, mediated by a cascade of serine protease and activated phenoloxidases which are 

the rate-limiting enzymes in the process of melanogenesis (Nakhleh et al. 2017). This process 

is toxic against a wide range of parasites, bacteria and fungi as well as some virus.  

As an individual insect, the members in a termite colony have a full immune system like 

other insects. From previous genome studies, it has been shown that termites and 

cockroaches have full repertoire of immune genes (Terrapon et al. 2014; Korb et al. 2015; Li 

et al. 2018). In addition, a defensin-like class of antimicrobial peptides-the termicins- has been 

firstly identified in termites (Da Silva et al. 2003), which possess antifungal activity. But 

individual immunity has lack of fully understand in termite castes or in their relatives, subsocial 

cockroaches. 

1.2.2 Social immunity 

Apart from the individual immune system in the members of a colony, a collective immunity in 

the colony level has been found in social insects, termed as “social immunity” (Cremer et al. 

2007). These mechanisms encompass a range of behaviours that reduce parasites by barring, 

burying or even cannibalizing infected individuals (Cremer et al. 2007) or communicating the 

presence of pathogens to other nestmates (Rosengaus et al. 1998b; Rosengaus et al. 1999a).  

It can also extend to hygienic behaviours such as mutual grooming (de Roode and Lefèvre 

2012; Konrad et al. 2012), and the collection (de Roode and Lefèvre 2012; Konrad et al. 2015) 

or synthesis of antimicrobial compounds that reduce infectiousness and disease susceptibility 

(Bulmer et al. 2009). It also refers to socially-mediated immunization (Rosengaus et al. 1998b; 

Rosengaus and Traniello 2001; Hughes et al. 2002; Traniello et al. 2002; Konrad et al. 2012), 

whereby prophylactic transfer of molecular effectors (Hamilton et al. 2011) or low dose 

pathogens (Hughes et al. 2002; Hamilton et al. 2011; Konrad et al. 2012) lead to protection of 

susceptible nestmates against infection. 

Apart from the size effect of groups, the caste formation seems also important to social 

immunity. It has been shown that social thrips and termite soldiers have dual roles in physical 

defence and antimicrobial protection (Turnbull et al. 2012; Mitaka et al. 2017b). In addition, 

the variety of castes can boost the protection of immunity in groups (Gao et al. 2012). This 
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effect could be mediated by the cuticle hydrocarbons of infected individuals (McAfee et al. 

2017) and odorant proteins (Qiu and Cheng 2017). This protection can related to social 

behaviours (Pull et al. 2018) or physiological changes of nestmates (Hernández López et al. 

2017).  

1.2.3 Immunity in cockroaches 

To reveal the evolution of immunity in termites, it is necessary to clearly understand the 

immunity of their ancestors-cockroaches, and especially their sister group, Cryptocercus. 

Many cockroaches are highly successful detritivores as well as being renowned domestic 

pests found across the globe (Bell et al. 2007). Frequent exposure to a rich antigenic 

environment should be associated with effective strategies to limit pathogen infection (Mayer 

et al. 2016). However, cockroach immunity has been ignored for a long time until recently the 

genomes of Blattela germanica and Periplaneta americana were sequenced (Harrison et al. 

2018a; Li et al. 2018). Expansions of specific immune gene families have been reported in 

these two cockroaches, particularly of receptors GNBP and PGRP as well Toll-receptors in 

Toll immune pathway and hemolymph lipopolysaccharide-binding proteins (LPSBPs) 

(Harrison et al. 2018a; Li et al. 2018). This expansion seems to relate their adaptation to 

antigenic environment. 

1.2.4 Evolution of immunity in social insects 

As called social cockroaches, the evolve of molecular immunity in termites is very interesting, 

which could possibly help to understand the eusociality in social insects. In bees, it has been 

shown that a depauperated immune repertoire precedes the evolution of eusociality 

(Barribeau et al. 2015). In addition, there are positive selections in many immune related 

genes, including members of Toll and JAK-STAT pathways and serine protease inhibitors in 

both social and solitary bees (Viljakainen et al. 2009; Barribeau et al. 2015).  In termites, 

positive selection has also been detected in termicin, GNBPs and Relish in Nasutitermes 

(Bulmer and Crozier 2004; Bulmer and Crozier 2005) as well as in termicin in Reticulitermes 

(Bulmer et al. 2010). However, how the termite immunity evolved during the evolution of 

eusociality is remained to be explored. 

1.3 Aim of the thesis 

The overarching aim of this thesis is to understand the evolution of immunity in termites in the 

following aspects: 1) the individual immunity in termite ancestors, cockroaches, 2) how the 

termite molecular immune system evolved during the transition of eusociality, 3) does the 

social immunity depend on caste formation in termites. 
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1.4 Description of project 

In my study, I used transcriptome analysis to explore the evolution of immunity in termites. In 

order to explore immunity in termites, the immune genes and immune response of one of their 

ancestral cockroaches, Blatta orientalis, was firstly investigated. Secondly, I studied the 

evolution of immunity in a broad way by detecting the expansion and contraction of immune 

gene families based on a better constructed phylogenetic tree using transcriptomics. In 

addition, I compared the immune response among castes in a lower termite species, 

Neotermes castaneus, along with a comparison to a subsocial cockroach Cryptocercus 

meridanus and a solitary cockroach B. orientalis. Thirdly, to understand the high level of group 

immunity, I studied the social immune function of a sterile caste -soldier- in a basal termite 

species, Mastotermes darwiniensis. 

In Chapter I, I challenged cockroach adults by injection with a mixture of heat-killed 

microbes (Bacillus thuringiensis, Pseudomonas entomophila, Saccharomyces cerevisiae) to 

stimulate an immune response. The immune genes in B. orientalis were identified and the 

immune response was analysed by transcriptomics. We found that B. orientalis has an 

expansion of receptors GNBP, PGRP and hemolymph LPS-binding proteins (LPSBP). This 

expansion also has been reported in other cockroaches, P. americana and B. germanica. After 

immune challenge, we found a broad immune response in B. orientalis, which may indicate 

an adaptation of antigenic environment in cockroaches. 

In the first part of Chapter II, I constructed a phylogeny of termite species across five 

important families based on available transcriptomic and genomic data. The results confirm 

the location of termites as a sister group of Cryptocercus. The most recent common ancestor 

of both dated back to the lower Jurassic and diverged from Blattidae in the upper Triassic. In 

addition, the immune related genes from 47 gene families were identified across 18 species 

of termites and cockroaches in order to explore the expansion and contraction of immune 

genes. We found there is a putative loss of the drosomycin in the most recent common 

ancestor of Cryptocercus and termite species. In addition, we observed rapid changes in the 

diversity of immune gene families, especially notable contractions in effectors (catalase and 

thioredoxin peroxidase) and receptors (C-type lectin), during the origin and subsequent 

diversification of the major termite lineages. 

Subsequently, the immune response of termite castes in a lower termite species, N. 

castaneus, was investigated in the second part of Chapter II. Different castes showed different 

immune responses after challenged with a mixture of heat-killed bacteria. Soldiers and 

reproductives showed a broader immune response than workers. Then, I compared the 

immune response of castes to the subsocial cockroach, C. meridianus, and the solitary 
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cockroach, B. orientalis. The cockroaches showed broad immune response whereas the 

immune response in termites varies in castes. These results indicate that the immune 

response in termites may have been shaped by the evolution of eusociality in two ways: 

contraction of immune gene families and the differentiated immune response. 

In Chapter III, I studied the social immune function of soldiers in M. darwiniensis. Even 

though soldiers are unable to engage in grooming behaviour, it was found that the presence 

of soldiers significantly improves the survival of nestmates following entomopathogenic 

infection. I found that the oral secretions produced by soldiers are sufficient to protect 

nestmates against infection, and the secretions have potent inhibitory activity against a broad 

spectrum of microbes. Furthermore, I demonstrated the copious exocrine oral secretions 

produced by soldiers contain a high concentration of proteins involved in digestion, chemical 

biosynthesis, and immunity. These findings indicate that termites are likely to have evolved a 

sterile soldier caste with important functions not only in colony defence but also in social 

immunity. 

In conclusion, the above mentioned results support that the termite immunity system is 

likely related to their eusociality. Along with the robust immune response in cockroaches, this 

also hints that the different immune response in termite castes is possibly related to the 

division of labour in termites. This is further supported by the result that social immunity at the 

group level is not only the effect of group size but also the formation of castes.
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2.1 Abstract 

The animal immune system acts as a key interface between hosts and microbes, yet little is 

known about immunity in a large majority of animal lineages. We address this by investigating 

immunity in the oriental cockroach (Blatta orientalis), a worldwide urban pest. The rich 

antigenic environment in which cosmopolitan cockroaches live makes them particularly 

interesting targets for research in immunity. Using a de novo transcriptome approach, we 

identify a full repertoire of insect immune genes, including all members of the canonical Toll, 

Immune Deficiency and JAK-STAT pathways. We report a high diversity of hemolymph 

lipopolysaccharide-binding proteins, which are C-type Lectins, as well an expanded set of 

genes involved in the Toll pathway. Following experimental immune challenge, we find that B. 

orientalis responds by inducing a broad immune response as well as shifting resources away 

from processes involved in transport and localization and towards immune defense. These 

results indicate that cockroaches possess effective and potentially long-lasting protection 

against infection, key traits for thriving in a rich antigenic environment. In addition to generating 

valuable insight into an ecologically and societally relevant insect, our study provides essential 

data for research into the evolution of insect immunity. 

 

Keywords: cockroach, immune response, Toll, hemolymph lipopolysaccharide-binding 

protein  
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2.2 Introduction 

Many cockroaches are highly successful detritivores as well as being renowned domestic 

pests found across the globe (Bell et al. 2007). Urban-dwelling cockroaches are adapted to 

antigen-rich surroundings due to frequent exposure to environmental microbes. Such 

cockroaches pose a substantial public health concern as vectors of emerging infectious 

diseases and as causes of allergies such as asthma (Pomés et al. 2017). The US Food and 

Drug Administration recognizes four common worldwide cockroach pest species: Blattella 

germanica (German cockroach), Blatta orientalis (Oriental cockroach), Periplaneta americana 

(American cockroach), and Supella longipalpa (Brown-banded cockroach). Many of the 

characteristics associated with these globally invasive pests represent attractive targets for 

research, including for studies into toxicology, chemical metabolism and communication (Li et 

al. 2018). Cockroaches also represent model organisms in social evolution (Lihoreau et al. 

2012; Harrison et al. 2018b), behavioral ecology (Logue et al. 2009; Lihoreau and Rivault 

2010), neurobiology (Booth et al. 2009), gut microbiota (Bertino-Grimaldi et al. 2013; Wada-

Katsumata et al. 2015), as well as being a potential source of novel antimicrobial peptides for 

use in applied medicine (Lee et al. 2012; Kim et al. 2016; Mylonakis et al. 2016; Chowański et 

al. 2017). 

Frequent exposure to a rich antigenic environment should be associated with effective 

strategies to limit pathogen infection (Mayer et al. 2016). Indeed, cockroaches employ both 

behavioral and physiological immune mechanisms to mitigate opportunistic infections. 

Cockroach behavioral immunity can include avoidance of dead infected conspecifics (Kaakeh 

et al. 1996), grooming (Bell et al. 2007), and even body temperature adjustments following 

immune-challenge (Bronstein and Conner 1984). In terms of physiological immunity, 

cockroaches possess robust innate mechanisms, including both cellular and humoral immune 

components. Following bacterial infection, cockroaches respond with cellular immunity, which 

can include phagocytosis and nodule-formation (Verrett et al. 1987; Rahmet-Alla and Rowley 

1989; Kulshrestha and Pathak 1997). With respect to humoral immunity, many antimicrobial 

peptides have been identified from the american cockroach, P. americana (Kim et al. 2016) 

as well as several antibacterial and antifungal proteins, which have been characterized from 

the hemolymph (Jomori et al. 1990; Jomori and Natori 1991; Basseri et al. 2016; Arumugam 

et al. 2017). Interestingly, american cockroaches are thought to produce a two-phase immune 

response following infection (Faulhaber and Karp 1992) consisting of an initial short non-

specific phase followed by a longer specific phase, possibly mediated by hemocytes (Ryan 

and Karp 1993) and/or proteins in hemolymph (Karp et al. 1994). However, until recently, the 

molecular mechanisms of cockroach immunity have remained poorly understood. 
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The insect immune system has been studied extensively in recent years, particularly in 

flies and beetles (Hoffmann 2003; Hoffmann and Reichhart 2002; Irving et al. 2001; Tauszig 

et al. 2000; Pham et al. 2007; Haine et al. 2008; Rolff and Reynolds 2009; Arefin et al. 2014; 

Buchon et al. 2014; Milutinović et al. 2016; Johnston et al. 2014; Duneau et al. 2017; Zanchi 

et al. 2017). Insect innate immune molecules occur as three broad types (not withstanding 

exceptions): receptors, signaling components and effectors (Viljakainen 2015; Hillyer 2016). 

Following infection, pattern recognition receptors bind to microorganisms, which leads to the 

induction of three principal signaling pathways responsible for the regulation of the insect 

humoral immune response, known as the Toll, Immune Deficiency (IMD) and Janus 

kinase/signal transducers and activators of transcription (JAK-STAT) pathways. These 

canonical pathways are responsible for, amongst other effects, the synthesis of antimicrobial 

peptides such as defensins and attacins (Hillyer 2016). Many of the functions of genes 

involved in these pathways derive from a considerable body of research carried out in 

Drosophila and to a lesser extent, other insects. In flies we understand that the Toll pathway 

responds largely to fungi and gram-positive bacteria, and is mediated by peptidoglycan 

receptor proteins (PGRPs), gram-negative binding proteins (GNBPs), serine protease 

cascades, Toll-receptors, Myeloid differentiation primary response 88 (MyD88), Tube, Pelle 

and Dorsal-related immunity factor (Dif)/Dorsal transcription factors (Valanne et al. 2011). The 

IMD pathway mainly responds to gram-negative bacteria, and is comprised of PGRPs, IMD, 

Fas-associated protein with death domain (FADD), Dredd, Transforming growth factor-

activated kinase 1 (TAK1)-binding protein (TAB), TAK, IκB (inhibitor of nuclear factor κB) 

kinase (IKK) and Relish (Myllymäki et al. 2014). Conversely, the JAK-STAT pathway is thought 

to regulate inflammation and stress responses. It is principally composed of Cytokines, 

Domeless, Hopscotch and Signal transducers and activators of transcription (STAT) (Agaisse 

and Perrimon 2004). Last but not least, melanization plays a key role in insect immunity and 

is mediated by Pattern Recognition Receptors (PRR), serine proteinase cascades and 

phenoloxidase (Cerenius et al. 2008; González‐Santoyo and Córdoba‐Aguilar 2012). 

Two recently published cockroach genomes, B. germanica and P. americana (Harrison 

et al. 2018b; Li et al. 2018) in addition to some transcriptomic studies (Zhou et al. 2014; Chen 

et al. 2015) indicate that these cockroaches possess a full repertoire of canonical insect 

immune pathways (Li et al. 2018). But next to nothing is known about the Oriental Cockroach, 

B. orientalis, a major yet neglected common cockroach pest species. Here, we carry out a 

systematic transcriptomic survey of B. orientalis immunity by analyzing differential gene 

expression following immune challenge. We show that B. orientalis possesses an extensive 

range of immune genes, including major expansions of immune families as well as a strong 
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immune response to immune challenge. Our study contributes much needed insight into a 

highly relevant but until recently overlooked group of insects. 

2.3 Material and Methods 

Insect culture 

The adults of B. orientalis were provided by the German Environment Agency, Umwelt Bundes 

Amt and kept at 26 °C, 75% relative humidity in the dark. They were fed with ad libitum access 

to food (77.0 % dog biscuit powder, 19.2 % oat flakes and 3.8 % brewer’s yeast) supplemented 

with apples and carrots, which were replaced weekly. We collected ootheca from adults at the 

same day to set up our experiment. Following hatching from ootheca, individual juveniles were 

kept separately in boxes in the same conditions as above, until the adult stage. Adults were 

immune challenged within 1-2 weeks after the final molt. 

Microorganisms preparation 

Pseudomonas entomophila (DSM 28517T, Gram-negative), Bacillus thuringiensis (DSM 2046T, 

Gram-positive) and Saccharomyces cerevisiae (DSM 1333T) were used to raise a broad 

immune response in challenged cockroaches. P. entomophila and B. thuringiensis were 

purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) and 

were stored at -70 °C in the Bundesanstalt für Materialforschung und -prüfung (BAM) prior to 

use. S. cerevisiae was available via the BAM microorganism collection 

(https://agw3.bam.de/biomikrosearch/searchRefOrg). P. entomophila and B. thuringiensis 

were activated overnight before being inoculated for growth at 28 °C and 30 °C in nutrient 

broth (recipe following to DSMZ instruction), respectively. S. cerevisiae was activated at 25 °C 

in universal yeast medium and grown for 36 hours. All cultures were washed twice with 

Ringers’ solution, heat-killed at 95 °C for 10 min and mixed equal amount to form a cocktail 

with a final concentration of 5*108 ml-1. 

Immune challenge 

Adult cockroaches were weighed and injected with 5*106 equivalent of cells per gram of the 

prepared microbial cocktail between 5th and 6th ventral abdominal sternites after being 

swabbed with 96% ethanol. Control adults were injected with the same amount of Ringer’ 

solution adjusted by weight. We collected two replicates of four independent biological 

individuals for both the control and infected groups. After injection, cockroaches were kept in 

55 mm diameter cups individually supplied with fresh water for 24 h before being frozen with 

liquid nitrogen. Samples were stored at -70 °C until RNA extraction. 

RNA isolation and purification 
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Whole insects were used for total RNA isolation. Each individual was cut into 4-6 pieces with 

sterile scissors. For RNA extraction, each piece was suspended in pre-cooled Trizol (Thermo 

Fisher Scientific), and homogenized with a 5-mm steel bead (Qiagen) using a FastPrep®-24 

homogenizer (MP Biomedicals) twice at 4 m/s for 15 s. Recovery of RNA was followed 

according to manufacturer’s instructions for Trizol (Thermo Fisher Scientific), with chloroform 

extraction and isopropanol precipitation, followed by re-dissolving RNA in storage solution 

(Ambion). RNA from extracted pieces were pooled for individual cockroach samples and 

subsequently incubated with 2 units of TurboDNase (Ambion) for 30 min at 37 °C and then 

purified using an RNAeasy Mini kit (Qiagen) following manufacturer's instructions. Quantity 

and quality of RNA were determined by Qubit and Bioanalyzer 2100. 

De novo transcriptome sequencing 

Four barcoded, non-normalized cDNA libraries were prepared using NEXTflexTM Rapid 

Directional mRNA-seq kit (Bioo Scientific) and represented two replicates from challenged and 

control treatments. Libraries were prepared according to manufacturer’s instructions. Briefly, 

polyadenylated mRNA was enriched by poly-A beads from 10μg pools of total RNA by pooling 

equal quantities from 4 individuals for each replicate. First-strand and second-strand cDNA 

from each pool was synthesized, fragmented and barcoded with NEXTflexTM RNA-seq 

Barcode Adapters. The prepared libraries were sequenced on an Illumina NextSeq500/550 

platform at the Berlin Center for Genomics in Biodiversity Research (BeGenDiv). 

Transcriptome assembly and annotation 

Raw reads were trimmed to remove sequencing barcodes and cDNA synthesis adaptors, 

while reads shorter than 25 bp following trimming were discarded using Trimmomatic as 

incorporated inside Trinity (version 2.3.2) (Grabherr et al. 2011). FastQC was initially 

employed to assess sequencing quality. Pair-end reads from all libraries were assembled 

using Trinity with default k-mer length (25). The assembly quality was assessed by 

Benchmarking Universal Single-Copy Orthologs (BUSCO v2) with the Insect BUSCO set from 

orthoDB (version 9) (Simão et al. 2015) as well as by examining the representation of reads. 

The assembly was subjected to BLASTp against nr database from NCBI by Diamond 

(Buchfink et al. 2015) for acquiring the taxonomic composition of the best blast hits and gaining 

insight into the presence of other organisms in samples. 

The assembly was annotated by following the guidelines of Trinotate 

(https://trinotate.github.io/). The proteins from the assembly were predicted by TransDecoder 

(version 3.0.1) (http://transdecoder.github.io). Homology searches, predictions and domain 

identifications were performed locally and subsequently integrated into database at an e-value 

https://trinotate.github.io/
http://transdecoder.github.io/
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threshold of 1e-03. Briefly, nucleotide and predicted peptide sequences predicted by 

TransDecoder were used to query SwissProt with BLASTx and BLASTp, respectively. Protein 

domains, signal peptides, and transmembrane domains were determined by HMMER (v3.1b2) 

against the pfam database(Finn et al. 2011), SignalP 4.0(Petersen et al. 2011), and TmHMM 

2.0 (Krogh et al. 2001), respectively.  

Immune related proteins identification 

To confirm the identity of predicted proteins, a complementary prediction method was 

employed to search for proteins with putative immune function. We employed HMMER to 

identify proteins using a domain-based search strategy. Then we complemented a HMMER 

search with a blast approach inside the trinotate suites. To quantify the presence of domains 

containing putative immune functions, we modified a previously published method (Sackton 

et al. 2017). Briefly, immune gene families from 31 species (available on 

https://github.com/ShulinHe/Blatta_orientalis) in the orthoDB database as well as Termicin 

and Transferrins from Uniprot (insects) were first downloaded. We built a set of HMM profile-

curated alignments based on all protein families. The complete set of predicted proteins (> 60 

amino acids in length) from transcriptomes were searched for matches against predicted 

immune-related HMMs using HMMER 3.1. Afterwards, the HMMER output was filtered by: 

excluding targets with E-values > 0.001 for the best domain, excluding targets with overall E-

value greater than 10-5, and assigning the targets that have multiple HMMs to best e-value 

HMM. The genes that have multiple immune predicted proteins from different isoforms was 

assigned to the protein that has the highest overall E-value HMM. The filtered HMMER output 

were then further selected using annotations from trinotate. Putative gene targets were 

selected when the HMMER output of their predicted proteins fitted their annotations of blastp 

and blastx in trinotate. Subsequently, targets were removed when their predicted proteins 

were shorter than 100 amino acids in families other than antimicrobial peptides. We adopted 

a conservative approach for accepting the identity of immune gene target. Firstly, because it 

is theoretically possible that different components from the same subcluster may represent 

spliced isoforms of a single gene, we aligned nucleotide sequences and corresponding 

predicted proteins from each subcluster against one other using MAFFT (Katoh et al. 2017) 

and excluded sequences that were variable in length but otherwise identical (this applied to 5 

of 377 putative immune gene sequences). Secondly, to account for different fragments of the 

same gene potentially appearing in different subclusters of a single cluster (and being 

erroneously described as two separate genes), we ran an additional blastx search on all 

putative subcluster sequences. If more than one subcluster had an identical target in the top 

10 entries of a DIAMOND blastx search (and overlapped by less than 9 amino acids – a value 

determined by the use of a 25 k-mer parameter during transcriptome assembly), only the 

https://github.com/ShulinHe/Blatta_orientalis
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longest subcluster was retained (this applied to 13 of 372 putative immune gene sequences). 

These additional measures enabled us to more accurately differentiate between spliced 

isoforms or fragmented gene sequences and true paralogs. The identified hemolymph 

lipopolysaccharide-binding proteins (LPSBPs) were compared with LPSBPs annotated from 

Z. nevadensis, B. germanica and Cryptotermes secundus by building a gene tree from all 

sequences aligned to a reference LPSBP sequence from P. americana (Appendix I-A, 

Appendix I-B). 

Transcript Abundance Estimation and Differential Expression Analysis 

Transcript expression following treatment was estimated by Kallisto (Bray et al. 2016). To 

minimize the potential influence of transcripts from symbionts, including protist and potential 

bacterial contamination, we excluded gene expression data according to taxonomic analysis. 

Differential gene expression was analyzed using the R package DESeq2 (Love et al. 2014) 

with standard settings in conjunction with tximport (Soneson et al. 2015). We defined genes 

as being significantly differentially expressed when fold changes were larger than 2, with an 

adjusted p-value < 0.05. Differentially expressed genes were subject to Gene Ontology (GO) 

enrichment analysis, as performed by the R package goseq with an adjusted p-value cut-off 

of 0.05. The GOs were extracted from Trinotate annotations. After enrichment analysis, GO 

redundancy was reduced by using REVIGO (Supek et al. 2011).  

Quantitative PCR 

Total RNA from each individual for sequencing was used for quantitative PCR. cDNA was 

synthesized with M-MLV Reverse Transcriptase (Promega) using Random (Promega) and 

Oligo(dT)15 Primer (Promega) according to manufacturer’s instructions. The genes and 

primer sequences used for quantitative PCR are listed in Appendix I-D. Relative expression 

of these genes was determined using SensiFAST™ SYBR Lo-ROX Kit (Bioline) following 

three-step cycling. A standard curve of pooled, five-times serially diluted cDNA was run for the 

chosen genes. RPL22 (ribosomal protein 22) was used as a reference gene. Fold-change 

calculations were performed by using the Pfaffl method (Pfaffl 2001) and a Mann–Whitney U 

test was employed to compare gene expression between treatment and control groups using 

R v.3.2.3 (Team 2016). Data are presented as means ±SE. 

Data availability 

Appendix contains two figures of LPSBPs, a phylogenetic tree of LPSBPs (Appendix I-A) and 

an alignment of LPSBPs (Appendix I-B), a figure of fold changes of the genes in three immune 

pathways (Appendix I-C), a table of primer information for Quantitative PCR (Appendix I-D) 

and a table of fold changes of immune genes in the Toll pathway for 3 different species 
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(Appendix I-E). Appendix I-F contains details of identified immune related genes. Appendix I-

G contains output of Gene Ontology analysis of differentially expressed genes. Sequence data 

are available at NCBI SRA under the accession number: SRP150731. Full code and scripts 

to perform the analyses in this study are made available at 

https://github.com/ShulinHe/Blatta_orientalis. 

2.4 Results 

2.4.1 Transcriptome statistics 

In total, 151.4 million RNA-seq raw reads were generated from all libraries. Depending on the 

library, approximately 0.4 % of the reads were excluded after trimming and quality control, 

leaving 150.8 million reads available for subsequent de novo transcriptome assembly. 

Table 2.1 Number of identified immune related genes for each family. 

Family name No. of genes Family name No. of genes 

AMPs  Receptors  

Attacin 2 GNBP 9 

Holotricin 2 PGRP 15 

Drosomycin 1 Toll_receptor 11 

Defensin 2 Spaetzle 7 

Termicin 2 Fibinogen Related protein 4 

Canonical immune 

effectors 

 Galectin 5 

Catalase 7 C-type Lectins 

(Hemolymph 

lipopolysaccharide-binding 

proteins [LPSBPs]) 

54 (46) 

 
Transferrin 3 

Lysozyme 12 

Peroxiredoxin 7 MD2-Like Receptors 7 

PPO 1 
Thioester-Containing 

Proteins 
4 

Hemocyanin 1 Other 

protease/regulators 

 

Glutathione peroxidase 2 
Apoptotic protease-

activating factor 
1 

Peroxidase 16 Inhibitor of apoptosis 2 

  Caspase 7 

Pathways  Autophagy protein 19 

Toll_pathway members 12 Scavenger receptor 17 

IMD_pathway members 10 
Clip-Domain Serine 

protease 
103 

JAK_STAT members 4 Serpin 23 

https://github.com/ShulinHe/Blatta_orientalis
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The assembly contained 475,977 transcripts clustered into 400,034 contigs with 

E90N50 of 1151bp. The BUSCO analysis identified 97.3% complete orthologs (58.9% single-

copy orthologs and 38.4% duplicated orthologs), 2.0% fragmented orthologs, and 8% missing 

orthologs. The assembly represented 94.24% of reads after mapping by bowtie2. We found 

the blastp results of the assembly when run against the nr database to be composed as follows: 

23.7% Blattella (cockroach), 22.9% Cryptotermes (termite), 13.7% Zootermopsis (termite), 2.6% 

Nilaparvata (planthopper), 1.7% Myzus (aphid), 1.5% Centruriodes (scorpion), and 33.8% 

other. We used Trinotate to annotate our assembly and, in total, 21.9% of the transcripts 

(104,396 of 475,977) were annotated by trinotate suites. 

2.4.2 Immune related gene identification 

We used an HMM-based approach to identify predicted proteins with homology to previously 

characterized immune related gene families from 31 insect species. We found 372 immune 

genes in total from our assembly, including conserved Toll, IMD, and JAK-STAT pathways 

members as well as canonical receptors and effectors (Table 2.1; Appendix I-F). In these 

identified immune genes, 51.61% (192) consisted of complete open reading frames 

(ORF),38.00% (141) of 5’ prime partial ORFs, 2.15% (8) of 3’ prime partial ORFs and 8.33% 

(31) of internal ORFs. 

2.4.3 Gene ontology enrichment analysis following immune challenge  

After removing bacterial and protist transcripts, 99.7% of the total transcripts (472,826) were 

subjected to differential gene expression analysis. Of the 394,960 “genes” in B. orientalis with 

detectable expression in our analysis, 562 (FDR<0.05) were upregulated following immune 

Figure 2.1 A) MA plot of expressed and differentially expressed genes marked in grey and red 

respectively. Differential expression analysis was performed by DEseq2. B) Plot of enriched GO 

categories in the immune-challenge group all relate to “Biological process” (BP, in red) and “Molecular 

function” (MF, in blue), except a single GO term (GO:0042943, Molecular Function, D-amino acid 

transmembrane transporter activity, adjusted p-value: 0.043, 2 genes upregulated [of 3 in total]). 

C)Plot of enriched GO categories in the control group all relate to BP in red and MF in blue. GO 

analysis was performed by goseq script in Trinity software and reduced redundancy by REVIGO. 
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challenge while 380 genes (FDR<0.05) were downregulated, representing 0.14% and 0.09% 

of expressed genes, respectively (Figure 2.1). Of the upregulated and downregulated genes, 

87.3% (491) and 69.2% (263) are significantly differentially regulated compared to the control 

treatment. This reduced set of differentially expressed genes was used for GO clustering to 

uncover broad changes occurring in cockroaches following immune challenge. 

As expected, genes upregulated by immune challenge are enriched for GO terms 

relating to immunity and stimulus response. Additionally, the upregulated genes were enriched 

in GO terms relating to bacterial structure degradation as well as in biological process GO 

terms that are suggestive of a coordinated protein synthesis, including “protein processing”, 

“regulation of cytokine production” and “proteolysis” (Figure 2.1, Appendix I-G). In contrast, 

genes downregulated by infection are enriched for GO terms that were related to transport, 

localization, and lipid metabolic process (Appendix I-G). These patterns indicate a 

physiological shift in cockroaches from transport and lipid metabolic to immune defence and 

stimulus response. 

2.4.4 Immune gene regulation after infection 

Of the differentially expressed genes, 42 were annotated as immune related genes, including 

29 induced (5.91% of total differentially upregulated genes) and 13 repressed genes (4.94% 

of differentially downregulated genes). The differentially regulated immune related genes after  

Figure 2.2 A) Heatmap of differentially expressed immune genes from DESeq2 analysis. B) qRT-PCR 

of attacin, defensin, GNBP, PGRP2, relish (upregulated) and transferrin (unchanged), Fatty acid 

synthase-2(FAS-2), Facilitated trehalose transporter Tret1 (Tret1-6), Lipase 3, Monocarboxylate 

transporter 13(MOT13), Pancreatic lipase-related protein 2(LIPR2) (downregulated) using RPL22 as a 

reference gene. Significance level comparisons: **, p<0.001; *, p<0.05; NS, not significant. Transferrin 

was not differentially expressed in the DESeq2 analysis (or qPCR) and so is not represented in panel 

A. C) Heatmap of differentially expressed transport and lipid metabolism related genes from DESeq2 

analysis.  
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infection represented 11.29% of the total immune related genes that were identified (including 

oxidases and autophagy related genes, as well as C-type lectins, which are not included in 

the GO term “immune response” from the Trinotate annotation.). Of these genes, 24 were with 

complete ORFs, 16 were 5’ prime partial ORFs and 2 were internal ORFs. Upregulated 

immune related genes included antimicrobial peptides (attacin and defensin), recognition 

factors (3 hemolymph lipopolysaccharide-binding proteins [LPSBPs], 2 GNBPs,3 PGRPs), 

and signaling pathways components (1 caspase-2, 10 serine proteases, 2 serpins, 1 Relish 

and 1 Tolls) as well as 3 lysozymes and 1 peroxidase. Downregulated immune genes included 

4 serine proteases, 3 LPSBPs, a Galectin-8, a PGRP-SC2, a Phenoloxidase 2 and a termicin. 

The expression of these immune genes is shown as a heatmap in Figure 2.2. We confirmed 

a subset of the expressed genes (5 upregulated, 5 downregulated, 1 no change) by 

quantitative PCR (Figure 2.2). 

2.5 Discussion 

We analyzed the immune repertoire and response of B. orientalis to a general immune 

challenge to gain greater insight into the molecular basis of immunity in this highly successful 

cosmopolitan pest species. Using a de novo approach, we assembled a transcriptome with 

high completeness, enabling us to identify 372 immune-related genes based on orthoDB and 

Z. nevadensis immune ortholog group predictions. We detected a broad response to immune 

challenge involving a number of established immune pathways, and this broad response was 

associated with significant shifts away from energy storage and cellular transport processes. 

Figure 2.3 Schematic representation of members of the three main immune pathways (IMD, TOLL and 

JAK-STAT) in B. orientalis, as compared with Z. nevadensis and P. americana. Reported genes with a 

gray border indicate that these genes are also described in P. americana. Immune gene information 

combines data from the present study with two others (Terrapon et al. 2014; Li et al. 2018).  
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In comparison to other well studied insects, we find that B. orientalis possesses a 

conserved repertoire of immune genes, corroborating findings from two other cockroach 

species, B. germanica and P. americana (Dziarski 2004; Jeong et al. 2014; Zhou et al. 2014; 

Li et al. 2018). Components of entire pathways including Toll, IMD and JAK-STAT were 

identified (Figure 2.3), which is in contrast to some other insects such as the pea aphid, 

Acyrthosiphon pisum (Gerardo et al. 2010). Interestingly, we found a relatively expanded Toll 

pathway in B. orientalis, including 9 GNBPs, 11 Tolls and 7 spaetzles (Figure 2.4). This pattern 

of expansion also applies to P. americana and B. germanica, but not to the termite 

Zootermopsis nevadensis or to more distantly related insects such as Tribolium castaneum 

(Zou et al. 2007). This indicates a possible localized expansion in the cockroaches. 

Figure 2.4 Number of predicted PGRP and Toll pathway genes. The cladogram is based on established 

insect relationships (Misof et al. 2014). Gene numbers derive from this and three other studies (Zou et 

al. 2007; Terrapon et al. 2014; Li et al. 2018). Box colors represent number of genes determined per 

family. White = not detected. 

We identified 46 putative Hemolymph lipopolysaccharide-binding proteins (LPSBPs) in 

B. orientalis in addition to 8 other C-type Lectins (CTLs) (Table 1, Appendix I-F). Such a high 

diversity of CTLs has not been reported in any other insect until a recent report of 86 LPSBPs 

in B. germanica (Harrison et al. 2018a), although some holometabolan insect lineages (Diptera, 

Lepidoptera) reportedly possess moderately high species-specific expansions of CTL genes 

(Xia et al. 2017). We confirmed the identity and evolutionary divergence of cockroach LPSBPs 

by comparing our B. orientalis predicted protein sequences (N=46) against annotated LPSBPs 

from B. germanica (N=37); Z. nevadensis (N=39) and Cryptotermes secundus (N=24) 

(Appendix I-A, Appendix I-B). These data indicate the presence of a conserved expansion of 

diverse LPSBPs in cockroaches and termites. As a form of C-type Lectin, LPS-binding proteins 

may function as opsonins by binding surface molecules of invading microorganisms (Jomori 

et al. 1990; Jomori and Natori 1991; Jomori and Natori 1992). A C-type Lectin from the 

hemolymph of the cockroach, P. americana, has also been shown to possess phenoloxidase 

activity (Chen et al. 1995; Arumugam et al. 2017). Clearly, much greater research is required 

to understand the precise functions of these effectors in cockroaches, which may also include 

roles in nodule formation, melanization, encapsulation as well as microbiome regulation (Xia 
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et al. 2017). Such a high diversity of lipopolysaccharide binding proteins in B. orientalis points 

towards a strong immune effector presence in cockroach hemolymph, yet another indicator of 

this cockroach’s ability to thrive in a rich microbial environment. Hemolymph LPS-binding 

proteins have also been implicated in the acute non-specific phase of the cockroach immune 

response (Jomori and Natori 1991) and we suspect that they could also feature in a more 

specific second phase of cockroach immunity (Faulhaber and Karp 1992), although this 

remains speculative. We also identified 15 PGRP proteins, similar to the 18 PGRPs found in 

P. americana, but more than the 13 and 6 PGRPs detected in B. germanica (Li et al. 2018) 

and the termite Z. nevadensis (Terrapon et al. 2014) respectively. This expansion of PGRP 

and Hemolymph LPS-binding proteins might explain the relatively specific (Faulhaber and 

Karp 1992) and strong antimicrobial response (Li et al. 2018) of cockroaches towards gram-

negative bacteria. Such an effective response coupled with the need to identify effective 

antimicrobials against gram-negative bacteria could make these insects promising targets for 

novel antimicrobial compounds (Kim et al. 2016). 

Antimicrobial peptides play a crucial role in the insect humoral immune response. We 

identified the classical antimicrobial peptides, attacin and defensin as well as five other 

defensin-like peptides: 2 termicins, 1 drosomycin and 2 holotricins. Attacin is a glycine-rich 

protein mainly possessing antibacterial activity against Gram-negative bacteria by binding the 

bacterial outer membrane and inhibiting protein synthesis (Carlsson et al. 1991; Carlsson et 

al. 1998). Defensin is a cysteine-rich peptide possessing antibacterial activity against Gram-

positive bacteria by forming bactericidal channels in the outer membrane (Cociancich et al. 

1993; Maget-Dana and Ptak 1997). The total number of antimicrobial peptides in our study 

was similar to the number identified in P. americana (11 AMPs) but more than the number 

reported in B. germanica (6 AMPs, although see (Harrison et al. 2018a) which unexpectedly 

reports 10 copies of drosomycin) and Z. nevadensis (2 AMPs) (Terrapon et al. 2014; Li et al. 

2018). This AMP diversity could provide an additional layer of protection, potentially 

contributing to the diphasic immune response previously described in P. americana. Evidence 

for a diphasic response has also been found in Tenebrio beetles, which possess an expanded 

set of Tenecin AMPs that remain activated for a long period following infection (Johnston et 

al. 2014). In cockroaches and termites, the AMP Termicin, which was first identified in 

Pseudacanthotermes spiniger (Bulmer et al. 2012; Liu et al. 2016), shares structural 

similarities with defensin (Da Silva et al. 2003) and shows strong antifungal activity (Lamberty 

et al. 2001). Drosomycin is another antifungal antimicrobial peptide and it is regulated by the 

Toll pathway in Drosophila (Zhang and Zhu 2009). An abundance of antifungal AMPs suggests 

strong selection for defence against pathogenic fungi in cockroaches: traits that could well 

have been crucial during the subsequent expansion of the soil and substrate-dwelling termites.  
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After being challenged by a mixture of microbes including gram-negative and gram-

positive bacteria and a yeast, cockroaches responded by regulating a number of relevant 

immune pathway components, including molecules involved in recognition and signaling as 

well as effector molecules (Appendix I-D). In general, GO-terms pointed to a significant 

enrichment of upregulated genes involved in host-immune defence and bacterial cell wall 

degradation, as well as upregulation of serine proteases and serine protease inhibitors. By 

contrast, downregulated genes were significantly enriched in functions relating to transport 

(both biological process and molecular function categories) as well as nutrient-reservoir 

activity, indicating a shift away from energy storage and cell-transport processes and towards 

immunity. Surprisingly, except two lipid metabolic related GO terms, we did not detect 

enrichment of genes directly involved in other metabolic activity, suggesting that cockroaches 

possess and utilize abundant energy reserves during infection. 

Of the differentially regulated immune genes, we identified two antimicrobial peptides: 

attacin and defensin. Attacin and defencin may function together to regulate mixed infections. 

Alternatively, they may act synergistically by targeting components of bacterial cells (Baeder 

et al. 2016; Yu et al. 2016). In addition, we found that three hemolymph LPS-binding proteins 

were induced, which as described above are C lectin-related proteins that are thought to 

function as opsonins (Jomori and Natori 1992). Along with other detected canonical effectors 

such as lysozymes, the induction of these antimicrobial proteins indicate that cockroaches 

possess a broad response to infection. Induced proteins also included pattern recognition 

receptors (GNBPs, PGRPs), Toll receptors, Relish, serine proteases as well as serpins, 

demonstrating that B. orientalis engages both the Toll and IMD pathway to regulate 

antimicrobial protein and peptide expression. These findings show that cockroaches, like other 

insects, possess a full capacity to respond to infection (an example of toll pathway members 

in Appendix I-E), beginning with microbial recognition and ending with microbial elimination, 

supporting results reported previously for P. americana (Li et al. 2018). Interestingly, Termicin, 

which plays a an important antifungal role in the eusocial termites (Lamberty et al. 2001; Da 

Silva et al. 2003) was downregulated in cockroaches following immune challenge. This protein 

harbors a CSαβ structure, much like defensin, in addition to an amidated C-terminal, possibly 

explaining its primary function against fungi (Lamberty et al. 2001; Yi et al. 2014). The 

downregulation of this gene might be the result of the specific nature of the microbial mixture 

used to challenge the cockroaches. On the other hand, the cockroach immune response has 

been reported to last for over 14 days (Faulhaber and Karp 1992), indicating that further 

mechanistic studies over a longer time frame are required to understand the complete 

temporal dynamics of cockroach immunity. 
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To conclude, we find that B. orientalis possesses significant immune gene expansions 

including a high diversity of effector proteins, an enriched Toll pathway, and a broad response 

to immune challenge. Such a powerful armory is likely to provide effective and potentially long-

lasting protection against infection: key traits for thriving in rich antigenic environments. In 

addition to generating valuable insight into an ecologically and societally-relevant group of 

insects, our study provides essential data for comparative research exploring the evolution of 

insect immunity. 
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3.1 Abstract 

As a major group of social insects, termites are an important target for the evolution of 

eusociality. However, termite immunity and knowledge relating to its evolution are unclear. In 

this study, we employed transcriptomics to study the evolution of individual immunity in 

termites. Firstly, we constructed a comprehensive phylogeny of termites and cockroaches 

based on phylogenomic data. Secondly, we explored the evolution of termite immune system 

by detecting the contraction and expansion of immune gene families in 18 species of termite 

and cockroach across a gradient of eusociality. Finally, we compared immune responses of a 

social termite, Neotermes castaneus with a solitary cockroach, Blatta orientalis and a 

subsocial cockroach, Cryptocercus meridianus. As a result, we found that the evolution of 

eusociality in termites can be dated to the lower Jurassic. In addition, we observed rapid 

changes in the diversity of immune gene families, especially notable contractions in effectors 

(catalase and thioredoxin peroxidase) and receptors (C-type lectin), during the origin and 

subsequent diversification of the major termite lineages. Furthermore, different immune 

responses were detected between termite castes, which may be a consequence of division of 

labor in termites. Interestingly, the immune response of the subsocial C. meridianus was 

similar to the response observed in the solitary cockroach B. orientalis. These results suggest 

that the molecular immune system in termites has been modulated by the evolution of 

eusociality. These findings provide important sights into the evolution of the immune system 

in a major social insects group, increasing needed knowledge concerning the key evolutionary 

event of eusociality. 

Keywords: phylogeny, subsocial, contraction and expansion, caste, C-type lectin 
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3.2 Introduction 

The origin of eusociality is considered to be one of the major evolutionary transitions 

(Szathmáry and Smith 1995). It occurs mostly in social insects, which live in groups of 

hundreds to millions of individuals. The hallmark of eusociality is the appearance of a 

permanently sterile caste, which in social insects can be achieved in two ways: via the 

evolution of a worker caste or the evolution of a solider caste (Tian and Zhou 2014). The 

former applied to social insects in Hymenoptera (ants, bees and wasps) and the latter applied 

to social termites. Compared with the well-studied Hymenoptera, termites are a key model for 

the study of the evolution of eusociality in the social societies where the soldier caste was the 

first sterile caste to evolve.  

Termites are hemimetabolous diploid insects, which in contrast to the holometabolous 

haplodiploid Hymenoptera (Korb 2008). They are a sister group to Cryptocercus, a subsocial 

wood-feeding cockroach genus that lives in family groups (Inward et al. 2007a). Therefore, 

termites are also called as “social cockroach”. Evolved from a solitary cockroach ancestor, 

these lineages represent an interesting transition between solitary, subsocial and truly social 

groups.   

During the evolution of eusociality, the formation of a social system with a permanently 

sterile caste represents a crucial point of no-return transition (Szathmáry and Smith 1995; 

Boomsma and Gawne 2018). In termites, the soldier is a sterile caste that presents in all 

species except a secondary evolutionary loss in a few higher termites (Inward et al. 2007b; 

Bourguignon et al. 2016a). Apart from that, true workers, a secondarily evolved sterile caste, 

can be found in all higher termite species and some lower termite species. Other lower 

termites that lack the sterile worker caste have a majority of false-workers (“pseudogates”) in 

colonies, which have the ability to develop either into soldiers or reproductives. In addition to 

sterile castes, termites have a reproductive caste: primary reproductives and/or neotenic 

reproductives. Primary reproductives consist of queens and kings that found the colony after 

a dispersal flight. They are winged and represent a terminal developmental stage. Neotenic 

reproductives, mostly known from lower termites, are replacement queens/kings that develop 

from the natal colony (Myles 1999; Korb and Hartfelder 2008). They also represent a terminal 

developmental stage with neotenic morphological features, such as aptery and a weakly 

sclerotized cuticle. In possessing a suite of divergent morphological and behavioral adaptions, 

different castes in termite colonies are specialized to perform different tasks, for example, 

soldiers for defense, (false) workers for foraging and reproductives for reproduction (Legendre 

et al. 2008; Tian and Zhou 2014; Engel et al. 2016).  An effective system of differentially 
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specialized castes is thought to be one of the main reason for the raise of social insects, 

including termites, as ecosystem-dominating life forms (Oster and Wilson 1978).  

An important adaption of eusociality in social insects is effective immune mechanism 

against easy spread of disease/pathogens in a high population density colony of genetical 

close-related members (Alexander 1974; Schmid-Hempel 1998). The immune system in 

social insects is composed of individual immunity and social immunity. As a social colony is 

constituted by individuals, each member would possess individual immune system, as is the 

case in other solitary insects. Individual immunity has been studied especially in flies and 

beetles (Hoffmann 2003; Hoffmann and Reichhart 2002; Irving et al. 2001; Tauszig et al. 2000; 

Pham et al. 2007; Haine et al. 2008; Rolff and Reynolds 2009; Arefin et al. 2014; Buchon et 

al. 2014; Milutinović et al. 2016; Johnston et al. 2014; Duneau et al. 2017; Zanchi et al. 2017). 

It includes three immune pathways: immune deficiency (IMD), Toll, and Janus kinase (JAK)-

signal transducer and activator of transcription (STAT). These immune pathways are 

constituted by pattern recognize proteins, signaling components and effectors. Social 

immunity is a collective immune protection found in social insects, and is thought to operate 

mainly  at the colony level (Cremer et al. 2007; Cremer and Sixt 2009; Cotter and Kilner 2010; 

Cremer et al. 2018). With cooperation of individuals in a colony, social immunity includes 

various types of social behavior, like allogrooming, to prevent infection (Cremer et al. 2007; 

Cremer and Sixt 2009; Cotter and Kilner 2010; Cremer et al. 2018). Consequently, individuals 

in a colony contribute to both levels of immunity. However, individual immunity of different 

castes in termites remains unclear. Furthermore, how individual immunity of termites evolved 

during the transition to eusociality is unknown. 

In social insects, it has been reported that the expression of some genes, including some 

immune genes, is caste biased (Scharf et al. 2003; Mitaka et al. 2016; Jones et al. 2017; 

Mitaka et al. 2017a). Caste has been shown to significant impact on the expression of a 

number of immune genes in Coptotermes formosanus (Husseneder and Simms 2014). 

Therefore, we hypothesized that immune response in termites is differentiated by caste and 

relative weaker than subsocial wood roaches and solitary cockroaches because of specialized 

functions of castes in a social colony. According to genomic studies, the canonical insect 

immune gene families have been shown to be fully represented in termites (Terrapon et al. 

2014; Korb et al. 2015). However, the social bees have instead shown to possess a 

depauperate immune repertoire (Evans et al. 2006), although this contraction in immune 

genes was later shown to have predated the evolution of eusociality (Barribeau et al. 2015). 

We also predicted that immune gene families would be fully represented and unlinked to 

transition of eusociality in termites as that in social bees.  
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In our study, we employed de novo transcriptome to study the evolution of individual 

immunity in termites across a gradient of eusociality. Firstly, we constructed a comprehensive 

phylogeny of termites and cockroaches based on currently available transcriptomic data sets. 

Secondly, we predicted the number of members in 47 immune gene families from 18 termite 

and cockroach species to explore the evolution of the immune system during the eusociality 

of termites. At last, we compared the immune response of a social termite, Neotermes 

castaneus, a solitary cockroach, Blatta orientalis and a subsocial cockroach, Cryptocercus 

meridianus. 

3.3 Materials and Methods 

Insects and microorganisms 

Solitary cockroaches, B. orientalis and B. germanica, were kept at 26 °C, 75% relative humidity 

with full dark. They were fed with mixed dog food ad libitum and supplied with apples and 

carrots. Two subsocial wood roaches, C. meridianus and C. pudacuoensis, were collected in 

China. Larvae and different castes from 9 termite species were extracted from colonies that 

were kept in the Federal Institute of Materials Research and Testing (BAM), Berlin, Germany. 

Termite colonies were fed regularly with pre-decayed birch wood or dry grass. Seven species 

of higher termites were collected from China and Cameroon. The details of sampled insects 

are listed in Appendix II-A. A Gram-negative bacterium (Pseudomonas entomophila, DSM 

28517T), a Gram-positive bacterium (Bacillus thuringiensis, DSM 2046T) and a yeast 

(Saccharomyces cerevisiae, DSM 1333T) were stored in BAM and cultivated for use in 

subsequent immune challenge experiments.  

Sample collection 

P. entomophila and B. thuringiensis were grown at 28 °C and 30 °C in nutrient broth, 

respectively. S. cerevisiae were grown for 36 h in universal yeast medium. All cultures were 

washed twice with Ringers’ solution, mixed equal mount to form a cocktail with a final 

concentration of 5*108 CFU/ml. The suspension was heat-killed at 95 °C for 10 min before 

injection or pricking. 

For de novo RNAseq assembly, all experimental insects (except wood roaches collected 

from China) were frozen in liquid nitrogen immediately after collecting from colony. Regarding 

species collected from China, they were taken back to laboratory, immersed in RNAlater or 

frozen in liquid nitrogen. In addition, to stimulate an immune response, experimental 

cockroach adults were weighed and swabbed with ethanol before injection with the equivalent 

of 5*106 cells per gram prepared cocktail bacteria. Experimental cockroach larvae and all 

termites were pricked by using a sterile needle which was contaminated with prepared heat-
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killed microbial suspension. Challenged insects (except wood roaches immersed in RNAlater) 

were frozen in liquid nitrogen at 24 h after challenge. All collected samples were preserved at 

-70 °C for RNA extraction. Each treatment and group had four replicates. 

For quantification of gene expression by RNAseq, wood roaches and three termite 

castes of Neotermes castaneus were weighed and injected with the equivalent of 5*106 cell 

per gram prepared cocktail bacteria. Each treatment had 16 replicates of each termite caste 

and 8 replicates for wood roaches. The control groups were injected the equivalent volume of 

Ringer’s solution. After injection, individuals were kept separately under the same condition 

as mentioned previously. The termites were frozen in liquid nitrogen at 24 h after immune 

challenge and the wood roaches were immersed in RNAlater before stored in freezer prior to 

transportation. All sampled insects were preserved in -70 °C until RNA extraction. 

Total RNA extraction and de novo transcriptome sequence 

Whole insects were used for total RNA isolation. The termites and larvae of cockroach for de 

novo RNAseq assembly were pooled by treatment and caste for RNA extraction. The rest 

sample were extracted individually. For cockroaches, each Individual was separated into 4-6 

parts for RNA extractions before total RNA was pooled together. Samples were suspended in 

pre-cooled Trizol (Thermo Fisher Scientific), and homogenized with a 5-mm steal bead 

(Qiagen) using a homogenizer (MP Biomedicals) twice at 2 M/s for 10 s. RNA was isolated 

according to the manufacturer’s instructions with chloroform extraction and isopropanol 

precipitation, and dissolved in RNA storage solution (Ambion). Subsequently, the total RNA 

was incubated with 2 units of TurboDNase (Ambion) for 30 min at 37 °C and purified using an 

RNAeasy Mini kit (Qiagen) according to the manufacturer's instructions. Quantity and quality 

of RNA were determined by Qubit and Bioanalyzer 2100. 

Equal quantities of total RNA from each extraction were pooled together according to 

species in de novo RNAseq assembly. For quantification of gene expression by RNAseq, total 

RNA from 8 individuals (each termite caste) or 4 individuals (wood roaches) from the same 

treatment were pooled. The pools of total RNA were used for library preparation. Barcoded 

cDNA libraries were prepared using a NEXTflexTM Rapid Directional mRNA-seq kit (Bioo 

Scientific) according to the manufacturer’s instructions. Briefly, polyadenylated mRNA was 

enriched using poly-A beads from total RNA and fragmentated. First and second-strand cDNA 

were synthesized and barcoded with NEXTflexTM RNA-seq Barcode Adapters. The libraries 

were sequenced on an Illumina NextSeq500/550 platform at Berlin Center for Genomics in 

Biodiversity Research (BeGenDiv). 
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Transcriptome assembly 

The raw sequence reads were trimmed and filtered to remove barcodes, adapters, short reads 

(<25 bp) and reads containing low quality bases using trimmomatic, as incorporated in Trinity 

(version v2.5.1) (Grabherr et al. 2011; Haas et al. 2013). The retained reads were assembled 

by Trinity with default parameters (Kmer length: 25) for annotation and/or differential 

expression analysis. The assembly completeness was assessed by Benchmarking Universal 

Single-Copy Orthologs (BUSCO v2) with the Arthropod BUSCO set from orthoDB (version 9) 

(Simão et al. 2015). For the phylogenetic analysis, the trimmed reads were further filtered by 

Botwie2 (Langmead and Salzberg 2012) to remove rRNA and mitochondrial DNA with 

converted indices built from related sequences of cockroaches, termites and protists from 

NCBI. For those raw reads of Illumina sequence that were downloaded from SRA database 

(Appendix II-B), we used the same filter procedures to prepare the assemblies for phylogenetic 

analysis. For those raw reads of 454 sequence that were downloaded from SRA database 

were assembled using Newbler v2.7 (454 Life Sciences/ Roche). 

Ortholog inference and matrix preparation 

For phylogenetic analysis, the assemblies were subjected to ortholog prediction and matrix 

preparation. To prepare for orthology analysis, each assembly was filtered to retain only the 

most highly expressed isoforms of each gene. Quantification was performed using Kallisto 

(Bray et al. 2016) and isoforms were filtered using script in Trinity. The redundancy in each 

assembly was further reduced by CD-HIT-EST (Fu et al. 2012) with 95% similarity cut-off. The 

potential remained rRNA and mitochondrial sequence in assemblies were filtered again using 

Bowtie2 with the same Bowtie2 indices mentioned previously. Subsequently, the final 

assemblies were translated into protein by Transdecoder (version 5.0.1) with a minimum 

length of 60 amino acids. The translated protein sequences were used for ortholog analysis 

by OrthoFinder (version v2.0.0), which is an all-to-all and gene length balanced method to find 

ortholog groups and suitable for transcriptome data (Emms and Kelly 2015). For the ortholog 

analysis, we also included the official gene sets from Zootermopsis nevadensis 

(http://termitegenome.org/) and Macrotermes natalensis (http://gigadb.org/dataset/100057). 

After ortholog prediction, the single ortholog groups that meet the following criteria were 

selected for matrix building. To mitigate the taxon representation bias per orthogroup, we 

selected orthogroups that include at least one representative of each of the following taxa: 1) 

Mastotermes, 2)Zootermopsis, 3)Kalotermitidea(Kalotermes, Neotermes, Cryptotermes), 

4)Hodotermposis, 5)Coptotermes, 6)Reticulitermes, 7)Prorhinotermes. The longest sequence 

from each selected orthogroup was quired against the ncbi nr database using blast to check 

for bacterial and protist contamination. Subsequently, these orthogroups were aligned using 

http://termitegenome.org/
http://gigadb.org/dataset/100057
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MAFFT (Katoh and Standley 2013) with the L-INS-i alignment algorithm. To reduce potential 

ambiguously aligned positions, each aligned orthogroup was masked by trimAI v1.2 (Capella-

Gutiérrez et al. 2009) with the gappyout function. Subsequently, orthogroups were 

concatenated with Phyutility (Smith and Dunn 2008). 

Phylogenetic analysis and molecular dating 

We employed two different approaches to analyse our matrix: maximum likelihood with 

RAxML(v8.2.12) (Stamatakis 2014) and Bayesian inference with ExaBayes (v1.4.1) (Aberer 

et al. 2014). In RAxML analysis, 1000 rapid bootstrap replicates were calculated by employing 

the PROTGAMMAAUTO model. The parsimony random seed (-p) and bootstrap random seed 

(-x) were set to 12345.  In ExaBayes analysis, two runs were performed and each with four 

chains. The starting seed (-s) was set to 258. Analyses were run until both runs had average 

standard deviation of split frequencies (asdsf) below 1% for at least 106 generations. 

To estimate the divergence of time for termites, a molecular clock analysis was 

performed with PhyloBayes (v4.1) (Lartillot and Philippe 2004). The topology of the 

phylogenetic tree was constrained to the consensus tree obtained from ExaBayes. An 

uncorrelated relaxed clock model, uncorrelated gamma multipliers (-ugam), was applied in our 

analysis under birth death prior (-bd) with soft bounds (-sb). Four independent chains were 

run with 5 fossil calibration points. To avoid constraining numerous nodes based on the same 

fossil, each fossil was used to constrain only a single node and no maximum age was set 

except for the root node. The following age constraints were employed in this study: all 

cockroaches and Isoptera: 140-311 mya (representing the age of root) (Labandeira 1994), 

Cryptocercus and Isoptera:137-∞ (Engel et al. 2007a), Hodotermitidae and other Isoptera, 

excluding Mastotermes: 130-∞(Krishna et al. 2013),  Kalotermitidae and Rhinotermitidae plus 

Termitidae: 110-∞ (Grimaldi et al. 2008), Rhinotermitinae: 44-∞ (Engel et al. 2007b). We 

assessed burn-in, convergence among runs, and run performance by examining parameter 

files with the program TRACER v1.6.0 (Suchard et al. 2018). Each chain was run over 10000 

cycles, sampling posterior rates and dates with an initial burning of 20%. Posterior estimation 

of divergence time was computed from the chain with the highest ESS. 

Transcriptome annotation and identification of Immune related proteins  

Each assembly (except Pericapritermes sp.,due to low completeness) was queried against 

the NCBI nr database using the DIAMOND implementation of Blastx (Buchfink et al. 2015) 

and taxonomic classification of each query sequence was performed using the Lowest 

Common Ancestor algorithm. The assemblies were annotated by following the guidelines of 

Trinotate (https://trinotate.github.io/). The proteins of each assembly were predicted by using 
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TransDecoder (v5.2.0) ( http://transdecoder.github.io) with a minimum length of 60 amino 

acids. Homology searches, predictions and domain identifications were performed locally and 

subsequently integrated into SQLite database at an e-value threshold of 1e-03. Briefly, 

assembled nucleotide and corresponding peptide sequences predicted by TransDecoder 

were used to query SwissProt with Blastx and Blastp, respectively. Protein domains, signal 

peptides, and transmembrane domains were determined by HMMER (v3.1b2)(Finn et al. 

2011), SignalP v4.0(Petersen et al. 2011), and TmHMM v2.0(Krogh et al. 2001), respectively. 

Immune related proteins were identified by searching predicted proteins for the 

presence of immune function containing domains and annotations from Trinotate. To quantify 

the presence of domains containing putative immune function, we first downloaded immune 

gene families from 31 species (available on https://github.com/ShulinHe/Blatta_orientalis) as 

well as Termicin and insect transferrins from Uniprot and then constructed a set of HMM 

profiles based on alignments of all protein families. The complete set of predicted proteins 

from each transcriptome were searched for matches to predict immune-related HMMs using 

HMMER. Afterwards, the HMMER output was filtered by: excluding targets with E-values > 

0.001 for the best domain, excluding targets with overall E-value greater than 10-5, and 

assigning the targets that have multiple HMMs to best e-value HMM. The genes that have 

multiple immune predicted proteins from different isoforms was assigned to the protein that 

has the highest overall E-value HMM. The filtered HMMER output were then further selected 

using annotations from Trinotate. Putative gene targets were selected when the HMMER 

output of their predicted proteins fitted their annotations of Blastp, Blastx or Pfam in Trinotate. 

Subsequently, targets were removed when their predicted proteins were shorter than 100 

amino acids in families other than antimicrobial peptides. We adopted a conservative 

approach for accepting the identity of immune gene target. Firstly, because it is theoretically 

possible that different components from the same subcluster may represent spliced isoforms 

of a single gene, we aligned nucleotide sequences and corresponding predicted proteins from 

each subcluster against one other using MAFFT (Katoh and Standley 2013) and excluded 

sequences that were variable in length but otherwise identical. Secondly, to account for 

different fragments of the same gene potentially appearing in different subclusters of a single 

cluster (and being erroneously described as two separate genes), we ran an additional blastx 

search on all putative subcluster sequences. If more than one subcluster had an identical 

target in the top 10 entries of a DIAMOND Blastx search (and overlapped by less than 9 amino 

acids – a value determined by the use of a 25 k-mer parameter during transcriptome 

assembly), only the longest subcluster was retained. 

 

http://transdecoder.github.io/
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Immune gene family analysis 

Based on the dated phylogeny, the expansion and contraction of immune gene families was 

predicted by CAFE 4.0 (-p 0.05) (De Bie et al. 2006), which is based on protein family size 

and topology of a phylogenetic tree. The annotated immune proteins of Z. nevadensis 

(Terrapon et al. 2014) were used for estimation of error model (-diff 5) as true dataset and the 

immune proteins from this study were inferred as prune dataset. Subsequently, the estimated 

error model was applied to all of the species in the whole dataset. The model of birth and 

death rate (lambda) was estimated with two different parameters in cockroaches and termites, 

respectively. The significance of the chosen model was determined by genfamily and lhtest 

commands in CAFE.  

Transcript Abundance Estimation and Differential Expression Analysis 

Transcript expression after immune challenge in C. meridianus and different N. castaneus 

castes was estimated using Kallisto (Bray et al. 2016). Differential gene expression was 

analysed using the R package DESeq2 (Love et al. 2014) with remove of the potential 

transcripts from symbionts, including protist and bacteria from taxonomy classification. In this 

study, we considered the genes as significantly differential expressed when fold change > 2 

and adjusted p-value < 0.05. The differential expressed genes were subject to Gene Ontology 

(GO) enrichment analysis by the R package GOseq with an adjusted p-value cut-off at 0.05. 

The GOs were extracted from the Trinotate annotation. After GO enrichment analysis, the 

redundancy of enriched GOs was reduced by using REVIGO (Supek et al. 2011).  

To compare the immune response in different castes, the number of differentially 

expressed genes in each immune protein family was estimated according to different castes 

in N. castaneus. Furthermore, the number of significant differentially expressed immune 

related genes was also compared between different castes with C. meridianus and B. 

orientalis in order to explore the relation of evolution of immune response and eusociality.  

Quantitative PCR 

Total RNA from each individual for sequencing was used for quantitative PCR. cDNA was 

synthesized with M-MLV Reverse Transcriptase (Promega) using Random (Promega) and 

Oligo(dT)15 Primer (Promega) according to manufacturer’s instructions. The genes and 

primer sequences used for quantitative PCR are listed in Appendix II-D. Relative expression 

of these genes was determined using SensiFAST™ SYBR Lo-ROX Kit (Bioline) following 

three-step cycling. A standard curve of pooled, five-times serially diluted cDNA was run for the 

chosen genes. RPL22 (ribosomal protein 22) and RPL24 (ribosomal protein 24) were used as 

reference genes for N. castaneus and C. meridianus, respectively. Fold-change calculations 
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were performed by using the Pfaffl method (Pfaffl 2001) and a Mann–Whitney U test was 

employed to compare gene expression between treatment and control groups using R v.3.2.3 

(Team 2016). Data are presented as means ±SE. 

3.4 Results 

3.4.1 Transcriptome and annotation statistics 

In this study, we sequenced 15 termite transcriptomes, 2 Cryptocercus transcriptomes, and 

other 2 cockroach transcriptomes. After quality trimming, each library retained 98.92%- 99.83% 

of total reads survived for following assembling. Each assembly per species has 0.12- 0.21 

million transcripts with 82.7%-97.7% complete BUSCOs (except 69.0% of completeness in 

Pericapritermes sp., which only was used for phylogeny analysis) (Table 3.1). 

Note: C, complete BUSCOs; S, complete and single-copy BUSCOs; D, complete and duplicated 
BUSCOs; F, fragmented BUSCOs; M, missing BUSCOs 

3.4.2 Phylogenetic analysis  

In order to construct a comprehensive phylogeny of termites, we analyzed 35 transcriptomes 

and genomes, of which 2 termite genomes and 14 available raw data sets were used. Five 

families (Mastotermitidae, Archotermopsidae, Kalotermitidae, Rhinotermitidae and Termitidae) 

of termites have been covered and two cockroach family (Blaberidae, Ectobiidae) were used 

as outgroup. An amino acid data matrix with an average of 85.86% gene occupancy per 

species was assembled from predicted orthogroups. The resulting matrix comprises 118 

orthogroups with 18230 amino acid positions and 13.16% missing data.  

Table 3.1 Details of sequenced species and corresponding assemblies in this study 

Specie name 
Library Size 
(No. of reads 

[Million]) 

No. of 
assembled 
transcripts 

BUSCO (orthodb v9, insect, n=1066) 

Blattella germanica 33.3 169296 C:91.6%[S:65.2%,D:26.4%],F:7.0%,M:1.4% 
Blatta orientalis 30.2 177500 C:82.8%[S:59.6%,D:23.2%],F:13.4%,M:3.8% 

Cryptocercus meridianus 32.3 142716 C:90.5%[S:56.4%,D:34.1%],F:7.5%,M:2.0% 
Cryptocercus pudacoensis 30.4 117983 C:83.3%[S:50.8%,D:32.5%],F:13.1%,M:3.6% 
Mastotermes darwiniensis 36.6 200400 C:89.5%[S:55.6%,D:33.9%],F:8.3%,M:2.2% 

Neotermes castaneus 40.3 214244 C:97.0%[S:46.7%,D:50.3%],F:2.4%,M:0.6% 
Kalotermes flavicollis 39.0 180046 C:96.9%[S:48.6%,D:48.3%],F:2.6%,M:0.5% 

Zootermopsis nevadensis 42.4 196687 C:94.5%[S:47.2%,D:47.3%],F:5.1%,M:0.4% 
Cryptotermes brevis 30.5 175760 C:86.2%[S:55.6%,D:30.6%],F:10.4%,M:3.4% 

Coptotermes formosanus 22.3 141751 C:84.5%[S:53.3%,D:31.2%],F:10.9%,M:4.6% 
Reticulitermes flavipes 32.9 168192 C:97.7%[S:50.6%,D:47.1%],F:1.7%,M:0.6% 

Prorhinotermes inopiinatus 28.7 189751 C:86.0%[S:51.3%,D:34.7%],F:10.5%,M:3.5% 
Macrotermes subhyalinus 33.7 137016 C:84.1%[S:53.8%,D:30.3%],F:11.3%,M:4.6% 

Pericapritermes sp. 21.9 122403 C:69.0%[S:51.6%,D:17.4%],F:20.9%,M:10.1% 
Indotermes sp. 27.6 136912 C:82.7%[S:58.8%,D:23.9%],F:12.0%,M:5.3% 

Dicuspiditermes sp. 26.5 165729 C:89.7%[S:57.0%,D:32.7%],F:7.2%,M:3.1% 
Globitermes sp. 23.2 146581 C:83.0%[S:52.5%,D:30.5%],F:12.7%,M:4.3% 
Bulbitermes sp. 28.6 154438 C:87.5%[S:53.4%,D:34.1%],F:9.4%,M:3.1% 

Promirotermes sp. 36.6 149335 C:86.4%[S:49.2%,D:37.2%],F:9.9%,M:3.7% 
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Figure 3.1 Phylogeny of termites based on RAxML and Exabayes. The number on each node 

represents support of boostrap values from RAxML/likelihood score from Exabayes. Different colors 

of lines indicate traditional classification of termites and cockroaches. Zootermopsis*: Zootermopsis 

nevadensis nuttingi. 

The phylogenetic trees obtained from two different methods, RAxML and ExaBayes, 

have identical topologies (Figure 3.1).  Cryptocercidae and Isoptera are sister groups and form 

a clade that is close related to Blattidae. Mastotermitidae is the basal family of termites and a 

sister group to all the others. Archotermopsidae is located between Mastotermitidae and 

Kalotermitidae. Kalotermitidae is a monophyletic group in the phylogeny. Rhinotermitidae is a 

paraphyletic group, comprised of the monophyletic Rhinotermitinea and Prorhinotermitinae. 

The Rhinotermitinea is comprised of Coptotermes and Reticulitermes. Termitidae is 

monophyletic and a sister group to Rhinotermitinae.   
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Figure 3.2 The fossil calibrated phylogenetic tree of termites from Phylobayes. The age of nodes is 

indicated with 95% confidence interval. The bold marked species were newly sequenced in this study 

and used for immune gene evolutionary analysis. The contraction and expansion of immune gene 

families of nodes were indicated in blue and red text, respectively. The number and * in [ ] indicated the 

number of change in that gene family and significance level (*: 0.05 and **: 0.01). 

As illustrated in the time calibrated phylogenetic tree (Figure 3.2), most recent common 

ancestors (MRCA) of Cryptocercus and termites can be dated to the lower Jurassic, 188.785± 

20.2835 (152.798-229.182, 95% confidence interval (CI)) million years ago (mya) and 

diverged from Blattidae in the upper Triassic, around 228.054±23.4771(182.986-272.735, 95% 

CI) mya. As the origin of sociality in termites, the root of termites is estimated to be 

161.83±17.5812(132.681-199.622,95% CI) million years old from the upper Jurassic. The root 
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of higher termites, Termitidea, is estimated to be around 57.7964±8.20891(43.4321-75.9709, 

95%CI) million years old from the upper Paleocene and diverged from lower termites around 

76.5212±10.4448(58.7171-99.541, 95%CI) mya in upper Cretaceous. 

3.4.3 Expansion and contraction of immune gene families 

Immune related genes from 47 families were categorized as either receptor, effector or 

signaling component. Using a combined identification of hmmsearch and trinotate annotation, 

except a family of effector, drosomycin, that was lost in termites and wood roaches, all other 

gene families were represented in both cockroaches and termites (Figure 3.3).  

Figure 3.3 Predicted gene numbers in 47 immune gene families from 18 termite and cockroach species. 

*: the gene number of immune gene families from previous study (Terrapon et al. 2014). Blank represent 

not reported in previous study.  

After applying an error estimation, we found the global evolution rate of immune gene 

families in cockroaches (birth/death rate[lambda]=0.0035) is lower than that of termites 

(lamda=0.0057). Different components of immune related genes have different evolutionary 

rates. In cockroaches, the evolutionary rate (lamda=0.0007) of effectors is much lower than 

that of signaling components and receptors, which is close to the global rate. However, three 

components have strikingly different evolutionary rates in termites. The signaling molecules 

have the highest evolutionary rate (lambda=0.0062). The evolutionary rates in effectors 

(lambda=0.0012) and effectors (lambda=0.0018) are close.  

In effectors, we found that the thioredoxin peroxidase (TPX) gene family has undergone 

expansion in the root of monophyletic Kalotermitidae, while it had a contraction in the root of 

Termitidea. In addition, we found a contraction of catalase (CAT) in MRCA of all termites. 

Apart from that, CAT, lysozyme (LYS) and defensin also showed expansion in some nodes of 

higher termites (Figure 3.2). In the receptors, we found that C-type lectin (CTL) show 

sp. 

sp. 
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contraction during the evolution of social termites (Figure 3.2). It showed contractions in MRCA 

of subsocial wood roaches and social termites as well as in MRCA of Rhinotermitidae and 

Termitidae. We did not detect rapid change of signal molecules during the eusociality of 

termites. 

3.4.4 Immune response in termite castes and cockroaches 

In order to characterize immunity in termite castes, we compared immune responses of three 

castes from N. castaneus. After immune challenge, there were 67 genes significantly 

upregulated in workers, 219 in soldiers, and 477 in reproductive. There were 215 genes 

significantly downregulated in workers, 196 in soldiers and 760 in reproductive (Figure 

3.4A/Figure 3.4B). Following gene ontology (GO) analysis, we observed a high number of 

enriched immune related GO terms from upregulated genes of soldiers (Figure 3.4C, Appendix 

II-E). In contrast, fewer enriched immune related GO terms was found in workers and 

reproductives (Figure 3.4C).  

 

Figure 3.4 A) Ratio-average plot of gene expression in different castes. Red indicates differentially 

expressed genes. B) The number of significant differentially expressed genes after immune challenge 

in different castes.  Red: upregulated, blue: downregulated. C) The significant enriched GO terms in 

categories of Biological process (BP) and Molecular Function (MF) from significant upregulated genes 

in treatment of different castes. Enriched GO terms were filtered by adjust p-value (<=0.05) and 

redundancy was reduced by REVIGO. 
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Expressions of immune related genes are categorized by castes according to the result 

of principle component analysis (Figure 3.5A) and the reproductives clearly had the highest 

expression of these genes (Figure 3.5B).  After immune challenge, 5 immune related genes  

 

Figure 3.5 A) Principle component analyses of immune related genes from different castes of N. 

castaneus, red: control and light blue: treatment. B) The heatmap of expressed immune related genes 

in different castes. C) The significant differentially regulated immune related genes after immune 

challenge in different castes compared to control group.  C: Control, T: Treatment. Red square: 

upregulated, blue square: downregulated. D) The qPCR of six immune related genes in different castes 

(each treatment and group has 6-8 individuals with two replicated of each). R.:Reproductives, S.: 

Soldiers, W.: workers. Significance level comparisons: **, p<0.001; *, p<0.05; NS, not significant. GNBP 

and termicin were not differentially expressed in the DESeq2 analysis (and qPCR) and so are not 

represented in panel c. 

Relish GNBP 

HPX Transferrin-1 
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were significantly upregulated in workers, 10 in soldiers and 13 in reproductives (Figure 3.5C). 

The differential expression of part of these genes was confirmed by qPCR (Figure 3.5D). 

Figure 3.6 A) Ratio-average plot of expression genes in C. meridianus. red indicates differential 

expressed genes. B) The significant enriched GO terms in categories of Biological process (BP) and 

Molecular Function (MF) from significant upregulated genes in treatment. Enriched GO terms were 

filtered by adjusted p-value (<=0.05) and redundancy was reduced using REVIGO. C) Significant 

differentially regulated immune related genes after immune challenge in treatment compared to control 

group.  D) Expression of seven immune related genes (each treatment and group have 6-8 individuals 

with two technical replicates of each) as measured by qPCR. Significance level comparisons: **, 

p<0.001; *, p<0.05; NS, not significant. ML-1 was not differentially expressed in the DESeq2 analysis 

(and qPCR) and so is not represented in panel c. 



Chapter II 

44 
 

After immune challenge with heat-killed bacteria, 800 and 1507 genes were significantly 

downregulated and upregulated in the subsocial cockroach C. meridianus, respectively. The 

upregulated genes represent a robust immune response indicated by enriched immune 

related GO terms (Appendix II-E). In these significantly regulated genes, there are 34 

upregulated and 23 downregulated immune related genes (Figure 3.6).  

To explore the relationship between immune response and division of labour in termites, 

we quantified the number of immune-related genes which were differentially expressed in 

response to a common immune challenge in three termite castes, a subsocial cockroach and 

a solitary cockroach. We observed that the immune response of the two cockroach species is 

similarly broad with differential expression of receptors, signalling components, and effectors. 

Termite reproductives and soldiers displayed a similar but relatively weaker pattern of immune 

gene expression after challenge whereas differential expression in workers was limited to the 

effectors attacin, lysozyme and peroxidase as well as the ML receptor family (Figure 3.7). 

 

Figure 3.7 The number of significantly differentially expressed immune related genes in each gene 

families and three immune pathways (IMD, TOLL, JAK-STAT) of three castes (worker, soldier, 

reproductive in N. castaneus), C. meridianus and B. orientalis. Black: effectors, Green: receptors, Red: 

signling components. 

3.5 Discussion 

In this study, it is the first time that a number of transcriptomes from termites and cockroaches 

have been sequenced, especially for the difficulty to sample uncommon subsocial 

Cryptocercus. Firstly, a phylogenetic analysis of termites and cockroaches was performed 
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based on available transcriptomic data sets. It confirms the phylogenetic location of termites 

and shows that the root of termites can be dated to the lower Jurassic. Secondly, to 

characterize the immune systems in termites, we identified immune related genes of 47 

families in termite and cockroach species followed by detecting the contraction and expansion 

of gene family during the evolution of eusociality. It shows that gene families of catalase, 

thioredoxin peroxidase and C-type lectins have undergone significant contractions during the 

origin and subsequent diversification of the major termite lineages. Subsequently, we 

compared the immune response of termite castes and cockroaches. We found different 

immune responses in termite castes which probably are related to division of labour, but also 

may reflect variation in the allocation of resources to individual immune defences among the 

sterile and non-sterile caste and potentially between immature and terminal stages of 

development. 

As social insects, reproductive division of labour, especially the appearance of sterile 

caste, is a main character in termites. After immune challenge, we find a weaker immune 

response in workers, but a comparatively broader immune response in reproductives and 

soldiers. The observed weak immune response in workers may reflect a trade-off in individual 

immune system as they are the most expendable component of a colony’s overall fitness. 

Workers are also responsible for the majority of daily tasks in a colony including social 

immunity (Rosengaus et al. 1998b), and individual immunity may receive comparatively lower 

investment by comparison. But, it is also possible that workers in lower termites don’t have 

fully developed immune systems because they represent an immature stage, unlike 

reproductives and soldiers, which are terminal developmental stages (Korb and Hartfelder 

2008). In contrast, a relatively robust induced immune response in soldiers may indicate the 

capacity of multiple defence roles in termite colony in addition to physical defence, which has 

been suggested in Reticulitermes speratus (Fuller 2007; Mitaka et al. 2017b). The relatively 

high colony-level cost of producing and maintaining soldiers may also contribute the 

consequence. Interestingly, a high overall expression of immune related genes in 

reproductives has been found despite potential trade-offs with reproduction (Calleri et al. 2007). 

Overall, different pattern of upregulated immune gene families and different enriched GO 

terms after immune challenge, as well as different expressions of total immune genes indicate 

that immune responses and immune investments are shaped by caste. This reflects a 

modulation of the individual immune system in insect societies following evolution of division 

of labour.  

To characterize the change of immune system in the evolution of termites, a 

phylogenetic analysis in termites was performed based on available transcriptomes. The 

topology of the phylogenetic tree in this study is in line with previous studies that are based 
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on nuclear/mitochondrial gene markers or mitochondrial genome (Inward et al. 2007a; Inward 

et al. 2007b; Legendre et al. 2008; Engel et al. 2009; Cameron et al. 2012; Bourguignon et al. 

2015). As has been shown, the sister groups of Cryptocercus and termites has been 

recognized (Inward et al. 2007a; Inward et al. 2007b; Legendre et al. 2008; Engel et al. 2009; 

Cameron et al. 2012; Bourguignon et al. 2015; Che et al. 2016; Bourguignon et al. 2017). The 

divergence of termites and Cryptocercus could be dated to the lower Jurassic, which is older 

than the origin of eusocial ants from the middle Jurassic (Moreau et al. 2006). In addition to 

the overlap of confidence interval, the estimated ages in this study are generally older than 

that in mitochondrial genome or phenotypic data (Engel et al. 2009; Bourguignon et al. 2015) 

but similar to a multiple-fossils calibration analysis (Ware et al. 2010).  

Subsocial wood roaches are crucial to understanding the evolution of termites due to 

their evolutionary position (Klass et al. 2008). We compared the immune response of termite 

castes to a subsocial cockroach and a solitary cockroach. In terms of upregulated immune 

genes, soldiers but particularly reproductives showed similar patterns in inducing a relatively 

broad immune response compared to subsocial and solitary cockroaches. More studies of 

immune response of termite that possess true workers are needed to further understand this 

relationship. In addition, a similar pattern of response in cockroaches indicated that the 

transition from solitary to subsocial system did not significantly affect individual induced 

immunity, which is interesting since it also is detected that the contraction of certain immune 

gene family predated the divergence of Cryptocercus and termites. This raises the possibility 

that changes to the environment, diet, or even the gut microbiota were important drivers of 

immune gene contractions in the ancestor of termite and Cryptocercus.  

However, both solitary and social bees have been reported to possess a depauperate 

immune repertoire (Barribeau et al. 2015), indicating a possible difference in the evolutionary 

route of immunity in bees and termites. For example, it has been demonstrated that rapid 

evolution of immune proteins in ants and bees (Viljakainen et al. 2009) may be due to relaxed 

selection constraint due to the evolution of eusociality (Harpur and Zayed 2013). However, it 

seems to be complicated in termites as an expansion of gene families in some clades of 

termites was also detected in my study. Furthermore, strong evidence exists to support 

expansion of genes in cockroaches compared to other non-social insects (Harrison et al. 

2018a; Li et al. 2018), which would indicate the possible rapid expansion of genes in the 

ancestor of cockroach (Harrison et al. 2018a) followed by a partial reduction in termites.  

A higher gain and loss rate of immune related gene families in termites does indicate 

that the appearance of a sterile caste system may have influenced the evolution of immune 

genes, especially in immune receptors and effectors. The evolutionary rate of signaling 
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components is lower than that of effectors and receptors suggesting the selection force of the 

former is not as strong as that of the latter groups that directly come into contact with microbes.  

In these rapid changes of immune gene families, drosomycin had been lost in subsocial 

wood roaches and eusocial termites. The drosomycin was first identified in Drosophila as an 

antifungal peptide (Zhang and Zhu 2009).  It is unclear whether this loss is caused by 

environmental change or the appearance of eusociality. But it is possible that novel pleiotropic 

antifungal functions of other molecules, such as GNBP2 (Bulmer et al. 2009; Bulmer et al. 

2012), or synergistic function formed during this change (Velenovsky et al. 2016), eliminating 

the need for this additional antimicrobial peptide. Additionally, catalase, which repairs or 

prevents cell damage caused by oxidative stress (Finkel and Holbrook 2000), has undergone 

a contraction in the MRCA of termites followed by a re-expansion in some higher termite 

lineages. A contraction of TPX, a type of peroxidase known as peroxiredoxins (Radyuk et al. 

2001), was also found in the MCRA of higher termites. Conversely, an expansion of this gene 

family was observed in the MRCA of Kalotermitidae. In addition to the expansion of 

antioxidants in cockroach (Harrison et al. 2018a), the rapid changes of these immune gene 

families indicate a particularly strong evolutionary correlation between antioxidant systems 

and termite eusociality or ecology. This could also be the reason for contraction of the C-type 

lectin gene family in the MRCA of Cryptocercus and termites as well as in the MRCA of 

Rhinotermitidae and Termitidae. The contraction of immune gene families during this transition 

could also possibly be an adaptation as a counterpart to social immunity, which has also been 

suggested in bees and ants (Harpur and Zayed 2013). These findings further indicate that the 

transition to sociality significantly shape the evolution of the termite immune system, in 

contrast to bees (Barribeau et al. 2015) and our previous hypothesis. This difference could be 

as a consequence of the different evolution paths of social system or as a consequence of 

major shift in the different living environment which were richly antigenic in cockroach 

ancestors, which have expanded set of some immune genes families (Chapter I)(Harrison et 

al. 2018a; Li et al. 2018).  

In conclusion, we constructed a phylogenomic tree of termites and found the evolution 

of eusociality in termites could be dated to the lower Jurassic. In addition, it revealed different 

immune responses in termite castes, which could be the consequence of division of labour in 

termites. Furthermore, we found contraction of immune gene families during the evolution of 

termites, particularly in effectors and receptors. These indicate that the molecular immune 

system underwent significant modifications during the termite evolution. 
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4.1 Abstract 

The importance of soldiers to termite society defense has long been recognized, but the 

contribution of soldiers to other societal functions, such as colony immunity, is less well 

understood. We explore this issue by examining the role of soldiers in protecting nestmates 

against pathogen infection. Even though they are unable to engage in grooming behavior, we 

find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly 

improves the survival of nestmates following entomopathogenic infection. We also show that 

the copious exocrine oral secretions produced by Darwin termite soldiers contain a high 

concentration of proteins involved in digestion, chemical biosynthesis, and immunity. The oral 

secretions produced by soldiers are sufficient to protect nestmates against infection, and they 

have potent inhibitory activity against a broad spectrum of microbes. Our findings support the 

view that soldiers may play an important role in colony immunity, and broaden our 

understanding of the possible function of soldiers during the origin of soldier-first societies. 

Keywords: external; social; immunity; soldier; antimicrobial; proteome  
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Summary 

Alongside sexual reproduction and multicellularity, eusociality is considered one of the major 

transitions in evolution (Szathmary and Smith 1995). Eusociality has evolved most often 

among the insects, particularly the Hymenoptera (the ants, bees and wasps) and termites. 

The hallmark of social evolution in insects is the appearance of permanently sterile castes, 

which is reflected by reproductive division of labour. A notable feature of insect societies is the 

emergence of sophisticated immune adaptations at the individual and group level to control 

the spread of disease. However, the evolution of termite immunity remains poorly understood. 

In particular, information regarding molecular evolution of the canonical immune pathways, 

and how innate and induced immunity were shaped by the evolution of a sterile caste system, 

remain major gaps in knowledge. 

A comparative approach in the study of the evolution of termite immunity requires robust 

knowledge of the immune system of the nearest non-social insect lineages: the cockroaches. 

To this end, the immunity of a cockroach, Blatta orientalis, was explored in Chapter I. Using 

de novo transcriptomes, a full repertoire of immune gene members was identified. Interestingly, 

expansions of immune gene families of receptors, including GNBP, PGRP and hemolymph 

LPS-binding protein (LPSBP) were identified. After immune challenging cockroaches with a 

mixture of heat-killed microbes (Bacillus thuringiensis, Pseudomonas entomophila, 

Saccharomyces cerevisiae), I was able to record a broad induced response in canonical 

immune pathways, pointing to the presence of effective and potentially long-lasting protection 

against infection, which is a key trait for organisms that thrive in a rich antigenic environment. 

In the first part of Chapter II, I examined the evolution of immunity in termites by first 

reconstructing a termite phylogeny with 19 newly sequenced transcriptomes and 16 available 

genomic datasets. As a result, we confirmed termites as the sister group to the Cryptocercus, 

a subsocial cockroach genus, and located their most recent common ancestor (MRCA) to the 

lower Jurassic. An evolutionary analysis of immune related gene families was then performed 

based on 18 of the newly sequenced transcriptomes. A family of antimicrobial peptide, 

Drosomycin, was found to be lost in the ancestor to the subsocial wood roaches and all 

termites. A further analysis of two other classic effectors, catalase and thioredoxin peroxidase, 

revealed a rapid contraction of the former in the ancestor to all eusocial termite species and a 

rapid contraction of the latter in the root of Termitidae. In addition, a family of receptors, C-

type lectins (CTLs), showed contraction in the MRCA of Cryptocercus and termites as well as 

in the root of the Rhinotermitidae. In addition, these contracted gene families underwent a 

subsequent re-expansion in some individual higher termite lineages. These results suggest a 

substantial re-modelling of the termite immune system during the evolution of eusociality.  
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This qualitative analysis focusing on major shifts in termite immunity was followed in the 

second part of Chapter II by a quantitative analysis of individual immunity across different 

castes of a representative lower termite, Neotermes castaneus. Gene expression changes 

were then compared with a subsocial wood roach, Cryptocercus meridianus, and the solitary 

cockroach, B. orientalis. Interestingly, I found evidence for higher investment into innate 

immunity in the reproductive termite caste as compared to sterile soldier caste members or 

false-workers. Furthermore, the induced immune response elicited in soldiers, but particularly 

in the reproductive caste mimicked the induced immune responses of C. meridianus and B. 

orientalis more closely than the response of false-workers. Additionally, the induced response 

to the same experimental immune challenge was remarkably similar between the subsocial C. 

meridianus and the solitary B. orientalis. From these results, I argue that the evolution of 

division of labor in termites was linked to the evolution of a fundamental change in individual 

immune defence between the sterile and non-sterile castes. 

In Chapter III, I expand on the role of the sterile caste in eusociality and immunity by examining 

the function of soldiers in social immunity in the Darwin termite, Mastotermes darwiniensis. In 

this chapter, M. darwiniensis soldiers are shown to contribute significantly to the social 

immunity of the colony by increasing the survival of groups of workers, probably via the 

secretion of potent orally-derived antimicrobial substances. In a comprehensive proteomic 

analysis, I demonstrate that M. darwiniensis soldier oral secretions possess a rich array of 

immune related proteins and enzymes involved in the biosynthesis of cytotoxins such as 

benzoquinone. These findings shed new light on termite societies, indicating that termites are 

likely to have evolved a sterile soldier caste with important functions not only in colony defence 

but also in social immunity. 

In this thesis I reveal how the termite immune system evolved during the transition to 

eusociality. I have established a robust foundation for the study of molecular immunity in 

termites and contributed new insights into the evolution of immunity in social animals in 

general. As the contraction and re-expansion of receptors and effectors in termites indicates, 

the function of a number of immune gene families should be examined in much greater detail. 

Furthermore, it will be particularly interesting to explore the individual immune (as well as 

general) responses of termite in a wider social context, particularly given the observed immune 

differences that were detected between the termite castes. Comparisons with immune 

adaptations in the Hymenoptera and other social animals would also be highly beneficial to 

understand commonalities and differences during this key evolutionary transition.  
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Zusammenfassung 

Neben sexueller Reproduktion und Multizellularität wird Eusozialität als einer der größten 

Evolutionssprünge angesehen (Szathmary and Smith 1995). Eusozialität evolvierte am 

häufigsten bei Insekten, ins besonders bei Hymenopteren (Ameisen, Bienen und Wespen) 

und Isopteren (Termiten). Das Hauptkennzeichen der Evolution von Eusozialität bei Insekten 

ist das Aufkommen einer permanent sterilen Kaste, was durch reproduktive Arbeitsteilung 

widergespiegelt wird. Eine weitere bemerkenswerte Besonderheit von 

Insektengesellschaften artgleicher Individuen, ist die Entstehung von ausgefeilten 

Immunanpassungen auf individueller und auf Gruppenebene. Dadurch wird die Ausbreitung 

von Krankheiten verhindert. Die Evolution von Immunabwehr bei Termiten ist jedoch kaum 

verstanden. Vor allem die molekulare Evolution von kanonischen Immunsignalwegen und 

wie angeborene und induzierte Immunität durch die Evolution einer sterilen Kaste beeinflusst 

wurde, sind im Wesentlichen unverstanden.      

Ein vergleichender Ansatz für Studien über die Evolution der Immunität bei Termiten 

erfordert solide Kenntnisse über das Immunsystem der nächsten nicht-sozialen Verwandten, 

den „Schaben“.  u diesem  weck wurde in Kapitel I das Immunsystem der von Blatta 

orientalis untersucht. Unter Zuhilfenahme von de novo Transkriptomanalysen wurde das 

volle Repertoire von Immungenen dieser Spezies identifiziert. Dadurch konnten 

Erweiterungen von Immungenfamilien von Rezeptoren wie GNBP, PGRP und dem 

Hämolymphe LPS-Bindeprotein (LPSBP) ausgemacht werden. Nachdem eine 

Immunantwort der Schaben mit durch Hitze abgetöteten Mikroben (Bacillus thuringiensis, 

Pseudomonas entomophila, Saccharomyces cerevisiae) induziert wurde, war ich dazu in der 

Lage als Antwort darauf ein großes Spektrum von induzierten kanonischen 

Immunsignalwegen zu dokumentieren. Dies deutet auf das Vorhandensein einer effektiven 

und langanhaltenden Krankheitsabwehr hin, welche ein wesentliches Merkmal von 

Organismen ist, die in reichen antigenen Umgebungen leben. 

Im ersten Teil von Kapitel II, untersuchte ich die Evolution von Immunität bei Termiten 

indem ich zunächst eine Phylogenie mit 19 neu sequenzierten Transkriptomen und 16 

bereits vorhandenen genomischen Datensätzen rekonstruierte. Als ein Ergebnis konnten 

dabei gezeigt werden, dass Termiten eine Schwestergruppe von Cryptocercus, welches eine 

subsoziale Schabengattung ist, darstellen. Außerdem verzeichnete ich jüngsten 

gemeinsamen Vorfahren (MRCA) im unteren Jura. Anschließend wurde eine evolutionäre 

Analyse von dem durch das Immunsystem zusammenhängenden Genfamilien basierend auf 

18 der neuen Transkriptomsequenzen durchgeführt. Dabei stellte sich heraus, dass eine 

Familie von antimikrobiellen Peptiden, Dorsomycin, im Laufe der Evolution bei dem 
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Vorfahren der subsozialen Holzschaben und allen Termiten verloren gegangen ist. Eine 

weitere Analyse der anderen beiden klassischen Effektoren Katalase und Thioredoxin-

Peroxidase konnte eine rapide Reduzierung des erstenren im Vorfahren aller eusozialen 

Termiten und eine rapide Reduzierung des letzteren in der Ursprung von Termitidae zeigen. 

Zusätzlich dazu zeigte die Rezeptorfamilie der C-Typ Lektine (CTLs) eine Reduzierung im 

MRCA von Cryptocercus und Termiten sowie ebenfalls im Ursprung der Rhinotermitidae. 

Interessanter Weise unterliefen diese reduzierten Genfamilien eine anschließende 

Rückexpansion in einigen individuellen Linien höherer Termiten. Diese Ergebnisse deuten 

auf eine substantielle Umbildung des Termitenimmunsystems während der Evolution von 

Eusozialität hin. 

Dieser qualitativen Analyse fokussierend auf Evolutionssprüngen in der Immunität von 

Termiten folgte im zweiten Teil von Kapitel II eine quantitative Analyse von individueller 

Immunität anhand verschiedener Kasten einer repräsentativen niederen Termitenart, 

Neotermes castaneus. Änderungen in der Genexpression wurden daraufhin mit der 

subsozialen Holzschabe Cryptocercus meridianus und der solitären Schabe B. orientalis 

verglichen. Interessanter Weise fand ich Hinweise für ein höheres Investment in angeborene 

Immunität bei reproduktiven Termitenkasten im Vergleich zu sterilen Soldatkasten oder 

„falschen“ Arbeitern.  usätzlich dazu imitiert die induzierte Immunantwort hervorgerufen in 

Soldaten und besonders in der reproduktiven Kaste die induzierte Immunantwort von C. 

meridianus and B. orientalis wesentlich ähnlicher genauer als die von „falschen“ Arbeitern. 

Die angeborene Reaktion auf die gleiche Herausforderung des Immunsystems war 

bemerkenswerter Weise zwischen den subsozialen C. meridianus und den solitären B. 

orientalis sehr ähnlich. Anhand dieser Ergebnisse leite ich ab, dass die Evolution von 

Arbeitsteilung bei Termiten mit der Evolution von fundamentalen Änderungen in der 

individuellen Immunantwort zwischen sterilen und nicht-sterilen Kasten verknüpft wurde. 

In Kapitel III erweitere ich die Rolle der sterilen Kaste bezogen auf Eusozialität und 

Immunität durch Beleuchten der Funktion von Soldaten bei der sozialen Immunität anhand 

der Darwintermite Mastotermes darwiniensis. In diesem Kapitel wird gezeigt, dass Soldaten 

von M. darwiniensis signifikant zur sozialen Immunität der Kolonie beitragen. Dies geschieht 

wahrscheinlich durch Erhöhung der Überlebensfähigkeit der Arbeiter durch die Sekretion 

von wirkungsvollen oralen antimikrobiellen Substanzen bei Soldaten. In einer umfangreichen 

Proteomanalyse konnte ich zeigen, dass die oralen Sekrete der Soldaten von M. 

darwiniensis ein reichhaltiges Arsenal von mit dem Immunsystem im Zusammenhang 

stehenden Proteinen und Enzymen, die in der Biosynthese von Zytokinen wie z.B. 

Benzoquinon eine Rolle spielen, aufweisen. Diese Ergebnisse werfen ein neues Licht auf 

das Sozialleben von Termiten indem sie darauf hinweisen, dass Termiten wahrscheinlich 
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eine sterile Soldatenkaste nicht nur für die Kolonieverteidigung benötigen, sondern auch in 

der sozialen Immunität evolviert haben.    

In dieser Dissertation zeige ich wie das Immunsystem von Termiten während des 

Überganges zur Eusozialität evolvierte. Ich habe ein solides Fundament für künftige Studien 

zur molekularen Immunität von Termiten gelegt und neue Einsichten in die Evolution von 

Immunität bei sozialen Tieren im Allgemeinen geliefert. Wie die Reduktion und erneute 

Expansion von Rezeptoren und Effektoren bei Termiten zeigen, sollte die Funktion etlicher 

Immungenfamilien künftig noch detaillierter untersucht werden. Des Weiteren wird es 

besonders interessant sein die individuelle (als auch die generelle) Immunantwort von 

Termiten in einem weiten sozialen Kontext zu erforschen. Dies wird besonders durch die 

beobachteten Unterschiede zwischen den Termitenkasten bekräftigt. Außerdem wären 

Vergleiche bezogen auf Immunanpassungen mit Hymenopteren und anderen sozialen 

Tieren sehr nützlich um Gemeinsamkeiten und Unterschiede während dieses 

Schlüsselevolutionssprunges besser verstehen zu können.  
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Appendix 

Appen ix I-A  

Phylogenetic reconstruction of putative LPSBPs from B  orientalis, B  germanica,    ne a ensis, and    

secun us. Predicted protein sequence of B  orientalis from our study are named as follows: Bo_LPSBP  . 

Sequences of the other four species were downloaded from NCBI, abbreviated as follows: Bg, B  germanica; 

 n,    ne a ensis; Cs,    secun us. Protein IDs are as given in NCBI. The alignment was performed by MAFFT 

(Katoh 

and 

Standley 

2013) and 

the tree 

was built 

by PhyML 

in 

Sea iew 

(Gouy et 

al. 2009). 
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Appen ix I-B 

Alignment of putative LPSPBs from B  orientalis, B  germanica,    ne a ensis and    secun us against the 

reference sequence for P  americana (BAA00616.1), with gaps removed using trimAl (Capella-Gutiérrez et al. 

2009). The region of the alignment containing the predicted C-lectin domain is indicated by dotted sections in 

the first row above the alignment. 

 

                                                                                                                                                         ..... 

  1 Bg_PSN29010.1   100.0% 100.0%     ---FYVLYWCLGISTAFSYSLDGSSPFKISISSRNNATGHSIAQVQLLHEGASEYLGSWDVDVEHRTSSNGDSEPVLIVATVTAPPRKP-FGYELKPGLGYYKMHTKGEGWHAARDVCYE     

  2 Bg_PSN54454.1   100.0%  90.1%     MLAVYVLYWFLGISTAFSYSLDGSSPFKISISSRNNATGHSIAQVQLLHEGASEYLGSWDVDVEHRTSSNGDSEPVLIVATVTAPPRKP-FGYELKPGLGYYKMHTKGEGWHAARDVCYE     

  3 Bg_PSN32344.1    82.3%  44.0%     ----------------------------------------MLERLQLQH--EDSDGRPLEVDIFHKTSKYENKGTVLIVASVAGPPQKPEPQYEVLFGLGYYKFHREPLNWNEARKVCEK     

  4 Bo_LPSBP2        62.3%  45.7%     --------------------------------------------------------------------------------------QKPGAGYELVPDLGFYKFRTDFKDFSDAVKACSE     

  5 Bo_LPSBP32       98.2%  44.1%     MLRVGVLLWIVDLSNGLQCSPSQSNSLRFSITSNKNRTGHWVAQVKLEHG--DNDGLPLHVDVDHTAAKCKGSESVSIVATVSAPPRRPGPDYELVPDLGYYKFHTDFQSWYEARQTCAQ     

  6 Bo_LPSBP36       98.2%  41.9%     MLRLGVLLWIVDVSMGLQCSPSQANLLNFSITSNKNETGHWVAKVNLKHG--DNYGLPLHINVDHTAALCENSDSVYIVATISAPPRIPSAGYELLPGLGYYKFHTDYKNWYDARKTCIQ     

  7 Zn_KDR21757.1    99.5%  40.6%     MWLSIVLLWCVAASTELQC-SPQALAFRFSINSQRNKTGQWNAQVKLEHEAGNKEVRPWEVEVDHSTAKCGNVESVVIIVTIRGTPHMDAPGYELIPGLGGYKFHNEVKTWAEAREICVQ     

  8 Zn_XP_021915191  99.5%  40.6%     MWLSIVLLWCVAASTELQC-SPQALAFRFSINSQRNKTGQWNAQVKLEHEAGNKEVRPWEVEVDHSTAKCGNVESVVIIVTIRGTPHMDAPGYELIPGLGGYKFHNEVKTWAEAREICVQ     

  9 Bo_LPSBP45       98.6%  42.9%     WKMYFLVLWIPDSSTGLQCTSLVPHTLKFSLISRRNNTGHWTAEVKLEHGAGQKEVGPWEVDIDHTTEKCDNNDSVLIVATVTAPPQRPSSDYDLLTGLGYYKMHTKGTKWYDALRTCEE     

 10 Bg_PSN54438.1    96.8%  35.0%     MLGFCVIVFFSGAFCHQECNVIRTKPMKFSITSRRNFTGHWIAEVKLDHGADEKDAGPWDVDIEHETEICGKEEAIHVRATLM--------GYSLAPGFGYYRLHTDLKTWDEALKACEE     

 11 Bo_LPSBP4        61.8%  30.7%     --------------------------------SLR------------------------------------------------------ALGYDLIFGFGYYKLHTNVKTWEESQVVCKH     

 12 Bo_LPSBP33       99.5%  37.9%     MRYLCCLLYWVRNCEGSSCNSPRTPAFKFTIRSVRNQTGHWVAQVHLGHNAQQEDVGPWVVDINHSTAKCEDTESIDIFATITAPTSAPASGYELIPGLGYYKLNPEVRTWHEALDACKK     

 13 Bo_LPSBP7        95.5%  40.2%     MNSICSLLLCLGDSFAAQCFSSDSSSLKFSLSSSRNSTGHWIAQVKLGHGAGLKDSGPWEVDVDHTIMKCEGQDSVLLVASITAPAIKFLLGYNLLAGLGYYKLHTDHKTWHEAQEVCEK     

 14 Bo_LPSBP21       65.0%  41.5%     MCRFLLLFSCLEVSFALECVSSDSKSLKFSLISRRNSTGQWIAQVKLGHGAGSNDSGPWEVDIDHTIAKCEGQDSIMVVATVAAPSFTFGLGYDLVPGLGYYKLHTDVKTWHEALKACEQ     

 15 Bo_LPSBP22       99.5%  42.9%     MFRICMQLWCVGSLAANHCTSRPSSAFKFSITSRRNSTGHWIAQVKLEHNAEGKEAGPWEVDVDHETSKCDNSDAITIAATITAPSSTSAVGYDLVPGLGYYKLHTDVKTWHEALKTCEQ     

 16 Bo_LPSBP11      100.0%  39.7%     VKMVYCVFWCANVCVGLQCVLPHTSALKFSVISLRNETGHWIAQMLLGHDAGDKSAGPWEVDVDHTTAKCEDSESILISAKITAPPTTHAPDYELVPGLGYYKLHIDVNTWHNAKKICEE     

 17 Bo_LPSBP20      100.0%  43.3%     IRMVSCLFWCAKVCAGLQCALPHTSALKLSVTSQRNETGHWIAQLQLGHDAGNTSAGPWEVDIDHTTAKCEDSESILISAKITAPPTLLAPGYELVPGMGYYKMHTDVNTWHGAKKFCEE     

 18 Bg_PSN57939.1    63.6%  41.1%     -----------------------------------------FIQVALNHESSSDENREWTVEVDHTTTKCDNSDMVQLVATATAPPSRLRTDYEFFPELGYYKFHKDTVTWPVAREMCAK     

 19 Cs_XP_023714066 100.0%  52.7%     MCRAYCALICCGCCADLQCSSLRFSDLKFSIKSLRNLTGHWTAEVQLSHGAGHKETGPWEVDIDHITSKCEDTESILIVAKVTGPPQRPGKDYELVPGLGYYKLHTSGKTWLEARDICVQ     

 20 Zn_KDR10087.1   100.0%  51.8%     MFLVFCVLFQCVVCNDAQCALPRPNSFTFSINSVRNLTGHWTAQVQLEHGASRKDVGPWVADIEHTTTTCEDSESIHIVATVTAPPQRPGGDYELIPKLGYYKFHTSGKNWREARQICEQ     

 21 Zn_XP_021937021 100.0%  51.8%     MFLVFCVLFQCVVCNDAQCALPRPNSFTFSINSVRNLTGHWTAQVQLEHGASRKDVGPWVADIEHTTTTCEDSESIHIVATVTAPPQRPGGDYELIPKLGYYKFHTSGKNWREARQICEQ     

 22 Zn_XP_021937022  99.1%  50.9%     MFLVFCVLFQCVVCNDAQCALPRPNSFTFSINSVRNLTGHWTA--QLEHGASRKDVGPWVADIEHTTTTCEDSESIHIVATVTAPPQRPGGDYELIPKLGYYKFHTSGKNWREARQICEQ     

 23 Bo_LPSBP8        85.0%  45.7%     ------------------------------------ESGIWVAQISLDHGSNSKIDGPWFLDVNHTTTKCEKSETVHLVATVTAPAFIPGPSYELVSGLGYYKFYPILVNWSKARQTCAL     

 24 Bo_LPSBP0        62.7%  46.0%     -------------------------------------------------------------------------------------PKRPGPDYELIPGLGYYKFHKIGKSWEQGRDTCFE     

 25 Bo_LPSBP26      100.0%  37.1%     MKRLCGILCVPFITSSTNLSPAYAKQFKFSVLTSRNKTGHWTSQVQMNHGADKMDRGPWEVDIDHKATKCEEDESILIVTTVTAPPKRPGPDYELIPGLGYYKFHKTGKTWEEARDTCFQ     

 26 Bo_LPSBP16       99.1%  41.5%     MVTYVCFFWYIGTTCGQQSVSFVSTPVKFSMNSYRNLTGHWVTQVKLEHGVKSKQIGTFDVDVEHTTKKYETSETVHIVATITAPPQRPGRDYELVQDLGYYKLHTEPRNWHTAREKCIK     

 27 Bo_LPSBP15       90.5%  44.0%     ------------------------RTEKTSLRLQDIVTSKAMLQHKGHQVTGMQNAGPWHLDMDHTTFNCEGEETIILIATVTAPPRKPSPNYELIHGLGYYKLHTEGKNWYDARLICAQ     

 28 Bg_PSN41356.1    99.1%  43.3%     MYPIYTLACLVATNTALECSPPGSSSFKFSIKSRQNLTGERVAQIHMESNGRPKEVGILDVDIEQTNIECQDTENTIIIATISEPPRLNGPGYEFVPGLGYYKIHTDVKTWHGAYATCAK     

 29 Bg_PSN54440.1    99.1%  42.4%     MYLSCSLAHWVQIAPALECGPSPSNTLKFSIRNRQNLTGSWVAQIYVEEEGRNKDSNPLDVDIEHTTIKCQNTESVLIGATISVPPRRSGYGYELVPGFGYYKFHTELESWHAAQVICIQ     

 30 Bg_PSN54441.1    62.7%  44.0%     -----------------------------------------------------------------------------------SPTPSPEPGYEFVPGVGYYKLHTAFKNWHAVRIICMQ     

 31 Bg_PSN54446.1    99.1%  35.3%     MYLVSTLALCIPTALTIKCASSDPETLKFSIINKQNNTGNKYVQIFVEEYGRNRQSAPLDVDIEHKRMGCENTDSILISATISSPTPSPEPGYEFVPNVGYYKLHTAFKNWHAARIICMQ     

 32 Bg_PSN54447.1    99.1%  35.3%     MYLVSTLALCIPTALTIKCASSDPETLKFSIINKQNNTGNKYVQIFVEEYGRNRQSAPLDVDIEHKRMGCENTDSILISATISSPTPSPEPGYEFVPNVGYYKLHTAFKNWHAARIICMQ     

 33 Bo_LPSBP30      100.0%  40.6%     MFLATLFLIFVKVTTSSFCNSTVLPQFQLSIESYRNTTGQWVAQVKFDHAAENDDAGHWKVHVNHATAKCNGKESVQMVTTVTGPPNRAGPDYELIPGLGYYKFHSEVKNWYEARQICAQ     

 34 Bo_LPSBP43       99.5%  40.2%     MSAFCVLVYLVEASRVSDCNSTDARSIKFSLLSKRNSTGHWIAQVQLGHEVKKSESGPWEVDIDHSTVTCENNEAILISATVTAPPQS-NHDYELVAGMGYYKFHVKPKNWFQARRICIQ     

 35 BAA00616.1      100.0%  40.2%     MMNLSVLLMCIPISVPEECPIADPSDFKFSITSNRNKTGHWTAQVRLEHGEHQHNRDLWQVDLEQTTTTCAGVKSVQIITTITAPPPTAPPGYELSAVLGYYKFHKTPKTWDEARIICQQ     

 36 Bo_LPSBP27      100.0%  41.1%     MMNLSVLLMCIPISVPEECPIADPSDFKFSITSSRNKTGHWTAQVRLEHGENQYESDLWQVDLVQTTTTCAGVKSVQIITTIAAPPPTTPPGYELSAGLGYYKFHKTPKTWDEARKTCQQ     

 37 Cs_XP_023714242 100.0%  38.4%     MATLSVLLPCARASRSDKCQTPDISNLKFSLSSHRNQTGHWVAQVKLEHGGEHSETGLWHVDLEQTSTQCDGSHSVQTVASITAPPPVPPPGYELFPGVGYYKFHTTPKTWDEARRICQQ     

 38 Cs_XP_023708265 100.0%  37.9%     MATLSVLLPCARASRSDKCQTPDISNLKFTLSSHRNQTGHWVAQVKLEHGGEHSETGLWHVDLEQTSTQCDGSHSVQTVASITAPPPGPPPGYELFPGVGYYKFHRTPKTWDEARRICQQ     

 39 Cs_PNF16204.1    98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 40 Cs_PNF16205.1    98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 41 Cs_PNF16206.1    98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 42 Cs_XP_023724384  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 43 Cs_XP_023724387  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 44 Cs_XP_023724388  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 45 Cs_XP_023724389  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 46 Cs_XP_023724386  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 47 Cs_XP_023724385  98.6%  37.5%     IYLLAVMCACVSLSWAQNCPSQKHAAAKFTINSHRNQTGHWISQVWLQHSPDHTVTSPWMVEVEQNTASCKGVESVQLVATLTAPPIRAGPGYELRRGVGYYKIHTEPKTWQEARQICEQ     

 48 Zn_KDR16864.1    98.6%  37.9%     VVLLSLLCASISVCWSNSCPSQTQAAAKFTISSRRNQTGHWISQVRLEHGTQHIVTSPWTVEVEQNTASCQGLESVQLVATVTAPPPRAGPGYELRNGLGYYKVHSEPRNWQEARKICAE     

 49 Zn_XP_021924720  98.6%  37.9%     VVLLSLLCASISVCWSNSCPSQTQAAAKFTISSRRNQTGHWISQVRLEHGTQHIVTSPWTVEVEQNTASCQGLESVQLVATVTAPPPRAGPGYELRNGLGYYKVHSEPRNWQEARKICAE     

 50 Zn_XP_021924721  98.6%  37.9%     VVLLSLLCASISVCWSNSCPSQTQAAAKFTISSRRNQTGHWISQVRLEHGTQHIVTSPWTVEVEQNTASCQGLESVQLVATVTAPPPRAGPGYELRNGLGYYKVHSEPRNWQEARKICAE     

 51 Bo_LPSBP34       98.6%  36.2%     MQNAILLCACTSFVNSQTCPAQKQSNLKFTINSRRNQTGHWISQVKLQHGSNENSASPWTIQVEQSTMSCEGVDTVQLEATLTSPPPKAGPGYELHRGIGYYKLHKEPKKWTEARQICQQ     

 52 Bo_LPSBP1        50.9%  44.6%     ----------------------------------------------------------------------------------------------------------------EAIRICEQ     

 53 Bo_LPSBP31       98.6%  34.4%     MMFTILILS-IEEIQSREC--SLQTPIKFTITSQRNETGHWTAKVELEHEAKNPDIRPFELELEHRSLKCTGDDIIQIEANIKAPPPRAGPGYELFPGKGYYKFHSKSATWNDARTICNQ     

 54 Zn_KDR17640.1   100.0%  38.8%     MVLLFLLLFWGSPSPDMQCSLPRSASMSLTITSRRNQTGHRFAQIRLDHGAQEAETGAWEVDMDHSTVICDGIESVNIVATVTVPPPRAGPDYELFPGMGYYKLHTTPRTWNEALRTCAV     

 55 Zn_XP_021923414 100.0%  38.8%     MVLLFLLLFWGSPSPDMQCSLPRSASMSLTITSRRNQTGHRFAQIRLDHGAQEAETGAWEVDMDHSTVICDGIESVNIVATVTVPPPRAGPDYELFPGMGYYKLHTTPRTWNEALRTCAV     

 56 Zn_XP_021923415 100.0%  38.8%     MVLLFLLLFWGSPSPDMQCSLPRSASMSLTITSRRNQTGHRFAQIRLDHGAQEAETGAWEVDMDHSTVICDGIESVNIVATVTVPPPRAGPDYELFPGMGYYKLHTTPRTWNEALRTCAV     

 57 Zn_XP_021923416  97.3%  37.9%     MVLLFLLLFWGSPSPDMQCSLPRSASMSLTITSRRNQTGHRFAQIRLDHGAQEAETGAWEVDMDHSTVICDGIESVNIVATVT------GPDYELFPGMGYYKLHTTPRTWNEALRTCAV     

 58 Bo_LPSBP28       98.6%  37.1%     MVTLCSALVCATVQESAQC--TRSSGGRFTLISRRNDTGHWIAEVRMDHSGD-DARSPWELDVEHNSIFCGESETISVQVTIAAPPTRVAEGYELFPAVGYYKFHTEGLTWREAVRACSR     

 59 Cs_PNF31739.1   100.0%  39.7%     MVPAFAILLSVCASEGGKCIETRSSSMKFSILSHRNKTGHWIAQVGLQHGGNADKGPSWEVDLEHTVTSCDSHDSIDIKATLTAPPDLPTPGYELFPLMGYYKFHPIGLTWRDALRVCAQ     

 60 Cs_XP_023709454 100.0%  39.7%     MVPAFAILLSVCASEGGKCIETRSSSMKFSILSHRNKTGHWIAQVGLQHGGNADKGPSWEVDLEHTVTSCDSHDSIDIKATLTAPPDLPTPGYELFPLMGYYKFHPIGLTWRDALRVCAQ     

 61 Zn_KDR16872.1    83.6%  31.2%     MRFTFGLALAVSADRGSNCVEPRSNSMKFSLVSQKNTTGQWTAQLQLIHDGRTDERSSWEVDLEQSVISCNGQERINLTATLTAPPEPPTPGYELFPRMGYYKFHPTGHIWKDALSVCMQ     

 62 Zn_XP_021924656 100.0%  35.7%     MRFTFGLALAVSADRGSNCVEPRSNSMKFSLVSQKNTTGQWTAQLQLIHDGRTDERSSWEVDLEQSVISCNGQERINLTATLTAPPEPPTPGYELFPRMGYYKFHPTGHIWKDALSVCMQ     

 63 Bg_PSN44007.1    95.0%  36.6%     MKLFAVF--C------ICCASSPNTDFKYSISSRRDLSGHWISKVQLEQ---AKYYGPVELEVGQTTNKYGAGEALVISATLSAPPGLPGPGYVLMPGFGYYKYHKVGKSWEDAVLACAA     

 64 Bg_PSN47668.1    96.4%  34.8%     MKLFALF--C---SWGICCASSPNTDFKYSISSRRDLSGDWVSKVQLEQ---AKYYGPVDLEVGQATKKYDAGEALVISATLSAPPGLPGEGYVLMPGFGYYKYHKVGKSWEDAVLACAA     

 65 Zn_KDR07896.1    98.6%  39.7%     MRALYVLSWCLRVDTQLPCASSRKTNFKFSVISRRNLTGNWIAHMSLEH---GPESGQWEVDIDHTTVTCDGRRSILVTNTVVAPLGKPAPGYELVPGLGYYKFYKIGKSWWEAQATCVE     

 66 Zn_XP_021940175  98.6%  39.7%     MRALYVLSWCLRVDTQLPCASSRKTNFKFSVISRRNLTGNWIAHMSLEH---GPESGQWEVDIDHTTVTCDGRRSILVTNTVVAPLGKPAPGYELVPGLGYYKFYKIGKSWWEAQATCVE     

 67 Bo_LPSBP38       67.7%  34.5%     --------------------------------------------------------GE------------------LRKSSRLGPRAPPAPGYEFVPGFGYYKFYVTGKSWRDAEETCEQ     

 68 Bo_LPSBP41      100.0%  38.4%     MQLCMILLWCCVDAAQETCKDKRAIDFKFSVTSVRNSTGQWIARAELERLADNLAPEVWELDVEQTTVKCEDQETVVIVATVSGESLKLGPGYELVPAVGYYKLHTKARNWQDARNICVE     

 69 Cs_XP_023721833  97.3%  37.8%     --MTWFMLWCIILARG-QCPSHQQAAMKLTITSERNSTGYWIARVSLDHGAHEHEVGPWEVDVDHSSVKCNDVESVHLVTTITAPPQHLHLNYKLLPGLGYYRFHDIPASWYKAAVTCRK     

 70 Zn_KDR20371.1    97.7%  36.9%     --MIWSVLWWINIATGQQCSSYQHETVKLVIKSQRNNTGHWVAQVSLNHGAYQHEEGPWELDVDHSVEKCDEEESVHLVATIAVPPRHIHVQYKLLPDLGYYRFHDVPVTWYKAVITCTA     

 71 Zn_XP_021918073  97.7%  36.9%     --MIWSVLWWINIATGQQCSSYQHETVKLVIKSQRNNTGHWVAQVSLNHGAYQHEEGPWELDVDHSVEKCDEEESVHLVATIAVPPRHIHVQYKLLPDLGYYRFHDVPVTWYKAVITCTA     

 72 Zn_KDR12893.1    92.7%  36.5%     ----------------MEASRTSETSVKFYQTTRRNQTGLLHEEFQLAHEAGPKDVGHWKADINHTTSICGDSESILIDASVTEPAPNVLPGYELVPGLGYYKLHIVGKSWQEARKTCEE     

 73 Zn_XP_021932138  98.6%  36.6%     QKMICCVLCCFGACIGLQCTYPQSKKIKFTIVSRRNQTGQWTAQFQLAHEAGPKDVGHWKADINHTTSICGDSESILIDASVTEPAPNVLPGYELVPGLGYYKLHIVGKSWQEARKTCEE     

 74 Zn_XP_021932140  97.7%  36.2%     QKMICCVLCCFGACIGLQCTYPQSKKIKFTIVSRRNQTGQWTA--QLAHEAGPKDVGHWKADINHTTSICGDSESILIDASVTEPAPNVLPGYELVPGLGYYKLHIVGKSWQEARKTCEE     

 75 Bo_LPSBP14       99.5%  38.4%     YTMVCCVLMCFRESSGLQCASPHTKTLKLSIVSRRNQTGHWVAQVQLGHEAELQDAGPWELDLNHTTAKCDNSESVLITAMVTAPSLSASPGYEVMAGLGYYKLHTTGRTWNEALQICEQ     

 76 Bo_LPSBP9        99.5%  40.5%     --MLCVLLFGVQAASELKCNSPKSMSFKMSLIGRRNRTGHWTSQAQIEYKTSNQETAAVDVDIEQNVTKCQGGEIVQIVATAIAPPFSPGADYELITEFGYYKLHTNIKNWLDAYDVCRQ     

 77 Bo_LPSBP23       99.5%  38.0%     ---LLLLLLDVRLESEFSCKSSKSRNIKLSVTSQRNRTGHWTSQAHLEHRGFYKETEPVELDMAQIVTKCDDDEILIIVATVTSPPTMTGPDYEFVPEFGYYKLHRSAKKWVQAMDACKA     

 78 Bg_PSN46951.1    78.2%  36.8%     --MLLMVLALGVLVQGEFCTSQRPSSVKFSLKSEKNSTGNWNAQLQFQHAVLPNQPGPWEVDMEQITDKCKELEYITIVANISGPATTLGPGYEFIPGLGYYKLHPEVKIWSEARGICEQ     

 79 Bg_PSN54456.1    87.7%  34.5%     MDR-----W----------GHETAKPFRKTNQSRD-------VRVQLEHGADENETAPWKVDIDHSSAKCDGGDSVLIEATITVPPRDDPADYELLPGLGYYKFHTDIKTWENARDICEK     

 80 Bo_LPSBP44       59.1%  43.0%     -----------------------------------------------------------------------------------------PPDYEHVPGLGYYKFHTDIKTWEKARDVCVQ     

 81 Cs_PNF42388.1    98.2%  38.8%     TQLVMCMLWCAGASADYPCPAQNSPAFKFSVTSRRNKTGHWIAQVEMEHGADENEVGPWKADVKQSTAKCGGIDSVFLLATVVVPPRDAPADYELLPGLGYYKFHTDIKTWGKARDMCEN     

 82 Cs_PNF42389.1    98.2%  38.8%     TQLVMCMLWCAGASADYPCPAQNSPAFKFSVTSRRNKTGHWIAQVEMEHGADENEVGPWKADVKQSTAKCGGIDSVFLLATVVVPPRDAPADYELLPGLGYYKFHTDIKTWGKARDMCEN     

 83 Cs_XP_023714238  98.2%  38.8%     TQLVMCMLWCAGASADYPCPAQNSPAFKFSVTSRRNKTGHWIAQVEMEHGADENEVGPWKADVKQSTAKCGGIDSVFLLATVVVPPRDAPADYELLPGLGYYKFHTDIKTWGKARDMCEN     

 84 Zn_KDR10083.1    98.2%  40.6%     MQVIFSVLWCAGASSDFGCPEKNSPALKFSVTSRRNKTGHWIAQVQMEHGADGDEAGPWQVDIDQSHAKCKNSDSVFIVATVTVPPKDEPADYELVPGLGYYKFHTDIRTWEKARVVCEK     

 85 Zn_XP_021937020  98.2%  40.6%     MQVIFSVLWCAGASSDFGCPEKNSPALKFSVTSRRNKTGHWIAQVQMEHGADGDEAGPWQVDIDQSHAKCKNSDSVFIVATVTVPPKDEPADYELVPGLGYYKFHTDIRTWEKARVVCEK     

 86 Bo_LPSBP18       94.5%  33.5%     MMMVILLFWCVDASEDSLCAGPRRGEIKYSITGHRNASGHWISRLQFDHEAG---HRPWQVNIDQSTSVCRNKNYIHIEATIVVPPSPSNPDYFLVPGHGYYKYHSGGVTWDEARRKCEQ     

 87 Bo_LPSBP39       98.2%  35.7%     MRSYYIVLFCGGAFASQECTSTPTTNLKFAFFSERNKEGQWNVQVQLQH----EDNKTWEVDVDQKTINCDGTESIIITANITASPEKKPSDYQLLDGLGYYKFHPEPETWHDARDTCDK     

 88 Bo_LPSBP3        97.3%  40.2%     METAIGILVLFALGAASHCSSTFPAGLKFSINSRRNSTGHWIAKVNMEHGAGQNEAGPWDVDIEHTTTKCEDGESILITATITAPPQKRGPNYELVPDVGYYKIHTKGSTWFDARKTCIK     

 89 Bo_LPSBP13       97.3%  29.9%     MHALVCTMWCVDISNSIECASRHHDDFEFVVISRRNSSNQWVAELQFHHNSEHKEVRPWTLGVKKYTDDCENFETVRVVATVTVPSKHTRSDYHLLPGLGYYKLHKNMKNFDGAWETCAQ     

 90 Bo_LPSBP17       78.2%  36.7%     ------------------------------------QKG-------------MGNLEPVDVNVTKTTTMCEDVKVFKISATISVPSKQQSPGYELIQGFGYYKMHVTNKTWNEAYHFCEL     

 91 Bg_PSN36991.1    73.6%  26.6%     ----------MRMRRNQ------------------------------------------RLPTEEETSI---------HNNFFPLSDSPTPLYEFFTSLGYYKLHTNPKTWDEAKLICEK     

 92 Bg_PSN53543.1    96.8%  29.0%     MTRVLSFIYLVEISSTQACKPHELGDVKVSISNIKNKPGLFYTQVKVDEGPDNGKKSCYKINIQQD-TSCPETP----NKNTK--QDSPGPFYERVRGMGFYKLHTQSKTWKEAKAICER     

 93 Bo_LPSBP6        75.9%  38.3%     --------------------------------------------VKLEKGSCNPDKTSLEINVEPD-CECLHSQ-----------RDPPRPFYELVPGLGYYKFHNRGMSWFNAKLACES     

 94 Bo_LPSBP35       93.6%  34.4%     MQTVLVLIWC---NTANRCCDAQGSNINLTVSNRCNNTGHLLSQVALESDPEEGKPRSWKVEINQDTCSCYEKQ-----------KEPPRPHYELFPGLGYYKLHNQQKSWNEAKTTCQK     

 95 Bo_LPSBP12       98.2%  33.0%     MVA----LWFVTVVTAFSCNSTRDQDIRIDIVSRRSVSGKLTTQIKLEESWNQQERSSWQEDIVHDSTCSSTVNELNLNGSLVNKREPPRPHYEFVPGLGYYKLHNKGKPWQDAKLTCEQ     

 96 Bo_LPSBP29       99.5%  35.9%     ----MASLWFAVVESATECDPSRALDLKLSIKSRLNKTGHLVAQVKLEDGSGEDKKNYWEVDFDHDTSCSSVPRPLTLGASEFPQREIPGPFYQLIPKLGYYKLHNQPRKWLEAKYICQK     

 97 Zn_KDR10086.1    99.5%  37.1%     VQLLCILLWLTSVSASSHCVSSKPAGFEFSLKSSRNNTGHWTAQVQLEHGVRHEDNGPWEVSIEHITSKCEDSETVRIEATVIVPPARPRQDYQIIPGHGYYKLHTSGKTWNQAFWTCRD     

 98 Bg_PSN42397.1    58.6%  27.4%     -------------------------------------------------------------------PKC-------------------PSDYKQRVPGEYYKYHSETKTWFEAWATCEN     

 99 Cs_XP_023720909  95.9%  34.7%     --MWLCLLSAAGSAAEFKCAEPPSAM-KFSLTSYRNKTGHWKAQVQLEHRATEQDSAEWEVDIDHRTPQYNGSDTILIVATVTVPPVGTPEGYRKFSESDYFKVYAAENSWVPARDICQK     

100 Zn_KDR12554.1    96.8%  33.3%     --MCGCLLSLLLLTSESTCSRHPATIFKLAITSFRNKTGHWTAQLQLEHKGNEDGEVTREVDFDQTTPHCDGTETVFIVATITTAPEGIPPGYKRLSNSNYFKEYPEATKWIEARDICER     

101 Zn_XP_021932674  96.8%  33.3%     --MCGCLLSLLLLTSESTCSRHPATIFKLAITSFRNKTGHWTAQLQLEHKGNEDGEVTREVDFDQTTPHCDGTETVFIVATITTAPEGIPPGYKRLSNSNYFKEYPEATKWIEARDICER     

102 Zn_XP_021932675  96.4%  33.3%     --MCGCLLSLLLLTSESTCSRHPATIFKLAITSFRNKTGHWTAQLQLEHKGNEDGEVTREVDFDQTTPHCDGTETVFIVATITT-PEGIPPGYKRLSNSNYFKEYPEATKWIEARDICER     

103 Zn_XP_021932676  95.9%  32.9%     --MCGCLLSLLLLTSESTCSRHPATIFKLAITSFRNKTGHWTA--QLEHKGNEDGEVTREVDFDQTTPHCDGTETVFIVATITTAPEGIPPGYKRLSNSNYFKEYPEATKWIEARDICER     
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104 Zn_XP_021932677  95.5%  32.9%     --MCGCLLSLLLLTSESTCSRHPATIFKLAITSFRNKTGHWTA--QLEHKGNEDGEVTREVDFDQTTPHCDGTETVFIVATITT-PEGIPPGYKRLSNSNYFKEYPEATKWIEARDICER     

105 Bg_PSN49027.1    91.4%  33.0%     MMMYFILLR-SGL------YSGYSNLTKFFMSSYRNISGHWMAQVTLDH---DGDSGPCEVNLDHTTVPYEKGERVIVFATITVPPLQTGNGYVHLQGFGIYKIHKEKKNWMDAMQTCTK     

106 Bg_PSN49028.1    74.1%  38.8%     ----------------------------------------------MEH---DEDPGPLEMKLDHKIIKCAERNRVLMVATITGP--APETDYELIPGHGLYKIHNGKMNWYKALKTCKR     

107 Cs_PNF31397.1    92.7%  29.9%     MATILLMLLCATSSTSTQGPALDSPKITVLVTYRRNQTGHLVAQVKLEDGDNGQTSSAQTETASNS------------KASVANS----APGQQQLSDVIRYSFHTTGKTWDEARRICDQ     

108 Cs_XP_023709785  92.7%  29.9%     MATILLMLLCATSSTSTQGPALDSPKITVLVTYRRNQTGHLVAQVKLEDGDNGQTSSAQTETASNS------------KASVANS----APGQQQLSDVIRYSFHTTGKTWDEARRICDQ     

109 Cs_XP_023722707  52.7%  22.9%     ---MYAL-------------------------------------VAVGHSASRVTPRNWYFSVSNS------------NVAITNS----EPGQQQLSNVTRYSFHTTGKKWDEARRICDQ     

110 Bg_PSN35117.1    68.2%  20.5%     MKLVIVL---FGM-------------------------------------------------------------MLVVAASVIGNSTREQKGYTKVNNLGYFKIYNDYRTWAHAFQQCYN     

111 Zn_KDR09967.1    75.9%  23.7%     MKATVSILAC------VRC----TCG---------NASDHHADKLSFEKDVS---VKTWELN--------------LL-----------ASGYQLRTNLGYYKLYTTSLKWGQAWKKCEA     

112 Zn_XP_021937186  75.9%  23.7%     MKATVSILAC------VRC----TCG---------NASDHHADKLSFEKDVS---VKTWELN--------------LL-----------ASGYQLRTNLGYYKLYTTSLKWGQAWKKCEA     

113 Bo_LPSBP5        75.9%  25.0%     MNCFPAILA-------LSV-------LSLTDYSAGNFNGKKFDKVHLDN--------TWVQN--------------LL-----------ANGYQLHPGVGYYKLYKTPVSWQDAWKKCED     

114 Bg_PSN54431.1    58.6%  18.4%     MKNTACI--C---A---------------------------------------------------------------------------------VSSDTYYYLSKEKKSWFDARNYCAK     

115 Bg_PSN54434.1    35.5%  21.4%     --------------------------------------------------------------------------------------------------MGAY------------------     

116 Zn_KDR12220.1    55.5%  17.9%     MAT---------------------------------------------------------------A---------YI---------------------GLASISTTGSQRHGPRPGSSD     

117 Zn_XP_021933288  55.5%  17.9%     MAT---------------------------------------------------------------A---------YI---------------------GLASISTTGSQRHGPRPGSSD     

118 Bo_LPSBP37       66.8%  21.4%     MWL-------------KLC------------------------------------------------CAC------AVLVGLSSADIQPVEGYSLYPGLGFYKYYRSIKTWAEAWKQCDA     

119 Bg_PSN30713.1    80.5%  30.4%     MGL------C----------------------SDKKVVG-----VRMENGG----GQPWDVYVDRKIVHFNDSQKSAIVATIVLPGEK-FFGYDHVPGVGYYQVYNYAKNWIEAVQTCAE     

120 Bg_PSN36100.1    91.8%  32.4%     MLWVYIVFSC------AVCQGSDISAYDLSTSDQQNETRRWLMEVQLQQ---D--GQPWNLNVSHATIKISPLSQVDVGVTETRSSSGTHSNYEEVPGLGYYKFHRKAKSWYEAKNICEN     

121 Bg_PSN40159.1    28.2%  31.3%     ------------------------------------------------------------------------------------------------------------MNWLNSVKLCEE     

122 Bg_PSN55224.1    93.6%  32.6%     MCRIWLL--CVLV---GMCKGYIIPEFNFEISSLKNKTGQWYAEVRLDHEG----KNPWDVYVNHTTISHKGSDTVAIVATIIPPQEEVLPGYSRVARFGYYKVHRDHKNWLDALKECEK     

123 Bg_PSN52365.1    79.1%  31.9%     -------------------MGYDIPNFNFSILSRHNETGSWYADVQLAH----EEKHIWDVYVDHTTTVWNGSKSIVIDAKIV-----------------FYNW--RNTTWHQAVKVCEE     

124 Bg_PSN46288.1    52.7%  28.1%     -------------------------------------------------------------------------------------------------------MHNETLTWSEALKTCNE     

125 Bg_PSN46289.1    76.4%  26.3%     --------------------------------------------MQIGQKAEKEVSDSWIGDIEHSVSTYENFNYIEVGTTFIVPPTSP-------KPTSSLKMHNETLTWSEALKTCNE     

126 Bg_PSN46290.1    84.5%  27.4%     --------------------------MKLSITNHRNKTGYLTTQMQIGQKAEKEVSDSWIGDIEHSVSTYENFNYIEVGTTFIVPPTSP-------KPTSSLKMHNETLTWSEALKTCNE     

127 Bg_PSN46291.1    62.7%  17.5%     MAM-----------------------------------------------------------------------EICLSSSSTVPPTSP-------KPTSSLKMHNETLTWSEALKTCNE     

128 Bg_PSN42527.1    98.2%  33.2%     MKKAVAFLVFMTVESALHCSSPRTTDFKITVTSRRNKTGHWIAEVQMDHDSSDTVSGPWELSVEQSTASCEQSRSVRIDATAIVPPKAGVEGYKLVPGVGSYKLHMNPKTWDEARQVCEE     

129 Bo_LPSBP40       98.6%  29.0%     MTRGVAALV---VGKELHCSAPSTPVISFTITSRRNETGHWIAEVQLDHDASDQSSGPWELRVTQSTRTCERDQTVRIEAVVTVPPKAEKSDYTVLPGVGQYKLHTTAQTWDEARRTCEA     

130 Zn_KDR10085.1    46.4%  20.1%     MENVGLI---ATV-----------------------------------------------------SGDCEAGL--EILATYCTNTVRPNQDYELVSGVGFYKMHTEAVSWDEVRKACID     

131 Cs_XP_023714269  69.5%  21.0%     MLRTLMLLV-------AVC-------------------------VIQGH---------------------------VLQQNATQRWSKVSHKYQRLYRASYYNVHDEPLTWFEASNVCGS     

132 Bg_PSN50693.1    85.0%  32.4%     MLAVYSVFW-GGVMMQQQCTSQQTSATKFSVASRRNQTGHWNAKLHLQHETPYEVSDLLEVEVDHRTTKCENFESVLLDVALAAPPSAEPLGYELVKGFGYYKLYTIGRTWEEAFKICAR     

133 Bg_PSN30567.1    59.1%  15.7%     MQR-------------------------------------------------------------------------RV-----EP-------YISSPGLGQYNLYNIPVNWGLAWEQCRA     

134 Bo_LPSBP25       71.4%  20.5%     MPVTFIL---IAL-----------------------TSVVWTLPNKLFH---HDS-----------T----------------APPAQYKSGYIHRPGLGYYKFYDIAADWGTAWKQCYE     

135 Bg_PSN30568.1    69.5%  21.0%     MRASVVI--CGAV---------------------RDNTG---------------------------T-----------SPNDTAPKRHPIGSYRFFPGVGFYKFYKFKVPWGDAWAQCRD     

136 Bg_PSN31863.1    74.1%  34.3%     MFPLFLL--CGAITEGTDWSIPNPQNIKISIFSRRNETGQLFVQVKFEEDSPPNIKSSWEVDIDHNSRASGKKPSV--------P----GLHYVFVEGLGYYKFHNKATKWWEAKRICEK     

137 Bg_PSN31864.1    35.9%  16.6%     MFPLFLL--CGAITEGTDWSIPNPQNIKISIFSRRNETGQLFVQVKFEEDSPPNIKSSWEVDIDHNSRASGKKPEV--------------------------------------------     

138 Bo_LPSBP42       70.9%  25.0%     IQS-------------QHC-----------------RLGNYTSNNTRSH------VKMWQLVV-----------ALVI-----------CAGAELVPGLGYYWVPRSEFRFDEAMSRCYY     

139 Bo_LPSBP24       90.0%  26.3%     MSSLVTL---------LSC-----LIVTSSATTEKEDAGYQLIKYKVHR------PATWEE--GQSTYNSEEKEAVLVIEYYINPPRDRWSTYDEYQGYGHYKLHTEGKTWVEAYQTCVN     

140 Bo_LPSBP10       88.6%  23.2%     MKYVACL--CAGVVTGFVC--RNPYLSKLTITVDKDIEDNWVPKLELKL---YDMMTAYPENVLRITAECEGMECV-------------GIDYHSLPKLGFYKCHSVPKSWFKASTICEQ     

141 Cs_XP_023708549  69.5%  22.5%     M------------------------------------------------------AKLWSYSL-------------CLLATLCMVQAKPRTGYIYFPGGGYYRLYKRPIIWAEARRNCQQ     

142 Zn_KDR17639.1    70.5%  23.0%     M------------------------------------------------------EKIWSCLM-------------LVLASLCAVHMKPRSGYVHYPGAGYYRLAKKPASWGEGRRNCQQ     

143 Zn_XP_021923355  70.5%  23.0%     M------------------------------------------------------EKIWSCLM-------------LVLASLCAVHMKPRSGYVHYPGAGYYRLAKKPASWGEGRRNCQQ     

144 Zn_XP_021923356  70.5%  23.0%     M------------------------------------------------------EKIWSCLM-------------LVLASLCAVHMKPRSGYVHYPGAGYYRLAKKPASWGEGRRNCQQ     

145 Zn_XP_021923357  70.5%  23.0%     M------------------------------------------------------EKIWSCLM-------------LVLASLCAVHMKPRSGYVHYPGAGYYRLAKKPASWGEGRRNCQQ     

146 Zn_KDR10088.1    97.3%  24.6%     MRLSALL--CVTLAWGTQSEGKPLVETSLRLEAPDSDTGDWTAEVQIEHHADIKEDGSWTLDIARAT---EDTDTDKISTTTEIPPRVEPDNFEYFKGVGWFKLDNRNLQWPDARDACAE     

147 Bo_LPSBP19       98.6%  24.3%     MR-TVLL--CVAVAVVAKCGAPPTRTTTLRLTAQRNDTGFWTTKMTIEHHFNNHDGGTWTLKVKHTSTTYQDEETLEITTTTEEPPRSRNKGYEYHEGVGWIKLNTSHWQWPEARQGCED     

 

 

 

                                      ........................................ ............................................................... 

  1 Bg_PSN29010.1   100.0% 100.0%     EGGHLLIINSEREVAVARNLLRKHPKLYDDWRNSWTYVGISDEIKEGDFRTIFGETLNSTGYTMWGPNEPGEGTSGNCGCVGRRGDLADTDCENHLAYICEQPL     

  2 Bg_PSN54454.1   100.0%  90.1%     EGGHLLIINSEREVAVARNLLRKHPKLYDDWRNGCAYVGISDEIKEGDFRTVLGEPLNSTGYTKWGNNEPGEGKSGNCGCVTRTGVLADTGCGNQLVYICELPL     

  3 Bg_PSN32344.1    82.3%  44.0%     EGAHMVILNSEKEALALRQLWIPFPKLFDDWRNNWAYTGIHDTYKDGYYVTIFDTPLNETGYDKWYSGQPDGTTKENCGVVNRTGTLGDVPCTSKLSFFCEQEF     

  4 Bo_LPSBP2        62.3%  45.7%     EGTHLAIINSDEEADALKSFWDPHPKLYTDWKNNCAYVGFHDKDIEGQYVTIFNNSLNSTGFVKWHPGEPSNVPPEDCGIVFRSGLLGDVTCTYKLAFFCEKEL     

  5 Bo_LPSBP32       98.2%  44.1%     EGAHLAIINSETETKALLRFWIPSPKMFNDWRNDWAYIGLHDHYVEGQYVTIFDTPLNETGFSKWNPSEPNGGAGENCGLVRRLGTLADAPCNVKLAFFCEL--     

  6 Bo_LPSBP36       98.2%  41.9%     EGAHLAVINSEAESKALLKFWLPHPKMFNDWRNDWAHIGFHDHYNEGQFVTIFDTPLNEAGFSKWQPPNPDGGNNDDCGVVRRFGTLGDIPCSAKLAFICEQ--     

  7 Zn_KDR21757.1    99.5%  40.6%     EDAHLVIINSQREANALLHFWVPHPKIFNDWRNDWAHIGFHDQYVEGEYVTIFNDPLNSTGYAVWTTNQPDGRVTENCGVANRSSTLADVGCGVQLPFFCEQEL     

  8 Zn_XP_021915191  99.5%  40.6%     EDAHLVIINSQREANALLHFWVPHPKIFNDWRNDWAHIGFHDQYVEGEYVTIFNDPLNSTGYAVWTTNQPDGRVTENCGVANRSSTLADVGCGVQLPFFCEQEL     

  9 Bo_LPSBP45       98.6%  42.9%     EGAHLVVLNSEQEARALAVMWENHPKLFVDWRNEWAYIGAHDINVEGEYVTIFNQPLNSTGYSKWQSGQPNGG---NCLVMLRAGTLGDVSCTDELAFFCEKEL     

 10 Bg_PSN54438.1    96.8%  35.0%     EGAHLAVLNSEKEAKALSPFWDAHPKIQGGGGNNWAHIGFHDKFHDGQYVTIFNESLSAVGYMKWLPGDPHRYPGEDCGVARRDNLIGDLTCNAKMPYFCEWGY     

 11 Bo_LPSBP4        61.8%  30.7%     EGTHLLVVNTDQEARALKTLWDNTPKIPKAAHNDWAWAGFHDQFQEGEYLTIFNETLKSAGYEKWNAQEPSG-TNQNCGGFGRNLLLADYPCYNKLAFFCEQEL     

 12 Bo_LPSBP33       99.5%  37.9%     EGTHLLILNSEQEAKAMNYFWQKYPNFAGATTQSWAWIGFHDQYKEGEYVTVFNDPLTTTGYMKWSPSEPHG-ANQDCGLLGQHSLLADFPCNSKQPFFCEREI     

 13 Bo_LPSBP7        95.5%  40.2%     EGTHLAVINSEHEAKGLTNMGD----------FIWAYVGFHDNYVEGQYITIFNQSLSDAGYAKWHRGEPVQGTAYNCGCISKNSFLGVARCTDKMMFFCEQNL     

 14 Bo_LPSBP21       65.0%  41.5%     EGAHLAIINSEAEAKALRPFWDMNPKI-----------------------------------------------------------------------------     

 15 Bo_LPSBP22       99.5%  42.9%     EGAHLAIINSEAEAKALRPFWDMNPKILDGAPNDWAHAGFHDLYKEGEYLTIFNQTLVGAGYVKWYPGDPDG-VNQNCGLVIRDNLLADIPCNAKQPFFCEKEL     

 16 Bo_LPSBP11      100.0%  39.7%     EGAHLVVINSEKEAQVLKSLWDKNPTITGGTHTDWAWIGFHDLYREGEFVTIFNQTLQSAGYSIFHPSDGKGGSGQNCGLIDRALRLGDHTCEDKDPFFCEKEI     

 17 Bo_LPSBP20      100.0%  43.3%     EGAHLVIVNSETEAQVLKNLWDKNPKITGGTHTDWAWIGFHDLYKEGEFVTIFNQTLESAGYKKFHPSEGKGGSNENCGLIHRGLELADYNCNHKDPYFCEKEL     

 18 Bg_PSN57939.1    63.6%  41.1%     EGAHLLILNSKVEFEAVKQMWGKYPNISTDWRNDFIHLGLTDHVQEGQFYTLFGTVLFMTLF------------------------------------------     

 19 Cs_XP_023714066 100.0%  52.7%     EGTHLLILNSEKEAGVIRSIWKRHPRLFDGWRNSCAYIGIHDEYAEGEYVTLFGEPLNGTGYTTWAQNEPGEGTSGNSGCVGREGALYDTNGNNELAFFCEQEL     

 20 Zn_KDR10087.1   100.0%  51.8%     EGAHLLILNSEEEAGVIRSFWRRHPKLFDGWRNSCAYIGIHDEFVEGEYITLFGESLNATGYARWAKNEPGEGTSGNSGCVGRDGALYDTNGFNHLAFFCEQEL     

 21 Zn_XP_021937021 100.0%  51.8%     EGAHLLILNSEEEAGVIRSFWRRHPKLFDGWRNSCAYIGIHDEFVEGEYITLFGESLNATGYARWAKNEPGEGTSGNSGCVGRDGALYDTNGFNHLAFFCEQEL     

 22 Zn_XP_021937022  99.1%  50.9%     EGAHLLILNSEEEAGVIRSFWRRHPKLFDGWRNSCAYIGIHDEFVEGEYITLFGESLNATGYARWAKNEPGEGTSGNSGCVGRDGALYDTNGFNHLAFFCEQEL     

 23 Bo_LPSBP8        85.0%  45.7%     EGAHLLILNSEKEFAAIKRMWDLHPKIAADWRNNFIHIGMTDHEIEGQFFTLFGEHINATGYAKWAPTEPNSGIGANCAGVARTGLYQDSSCGNQLAFFCEQEL     

 24 Bo_LPSBP0        62.7%  46.0%     EGAHLAIPNSEAEAQAMLSLWRQHPREQLKQYIDYVFLGIHDRFKEGEYVTIFGQPLEATGYATWATREPSNSTSENCGSLVRSGGYNDIRCSEILPFICEQDL     

 25 Bo_LPSBP26      100.0%  37.1%     EGAYLATPNSENEELAMRSLWRRHPREKLKQYIDYIFVGFHDQFQQGDYITIFDEPLLATGYVKWASGEPSNSPKEDCGSLDPGSGYNDIKCTDVLPFICKQDL     

 26 Bo_LPSBP16       99.1%  41.5%     EGAHIAVINSASEFEAMKKIWDRYPTITDDWRNIYSLLGVSDLETAKNFITIFGEHINATGYSKWHPSQPN--YDGHCVVVQRNGLLHDTTCDILFPFFCEQEL     

 27 Bo_LPSBP15       90.5%  44.0%     EGAHLAIINSEHEAEELKAILARHPKILSDWRNEYAYIGMSDIRGDGVWITIFGQPLNATGYTKWAPGQPNEVKKGNCGLMQRTGGLHDVMCEVAFAFLCEQEL     

 28 Bg_PSN41356.1    99.1%  43.3%     EGAYLAIINSVYEFSILRELWDRHPKITDEWTNNYAYLGISDLETHKNFLTIFGDPVNSTGYTKWSSNQPN--YDGHCVDVDRQGRLHDTDCDIKMPFFCEQKK     

 29 Bg_PSN54440.1    99.1%  42.4%     EGAYLAIINSFVEVSIMKKLWDPHPKLTDDWRNPYAFIGASDLKKNKEFVTVFDQPVNDTGYSNWAPGNPK--FTGHCVVVQRNGHLHDTDCQAKFPFFCEQSL     

 30 Bg_PSN54441.1    62.7%  44.0%     EGAHLAIINSFVEVSILKKLWTPHPKLTEDWTNNYAFIGVTDLTKTRNFVTIFDQPLNTTGYENWASGYPN--FTGDCLVIARDGRIYETNCENKLAFLCETYF     

 31 Bg_PSN54446.1    99.1%  35.3%     EGAHLAIINSFVEVSILKKLWTPYPKLAEDWPNEYAFIGVSDLKKTRNFVTIFDQPLNTTGYENWASGYPN--FTGDCLVIARDGRIHEINCEHKLAFLCERYF     

 32 Bg_PSN54447.1    99.1%  35.3%     EGAHLAIINSFVEVSILKKLWTPYPKLAEDWPNEYAFIGVSDLKKTRNFVTIFDQPLNTTGYENWASGYPN--FTGDCLVIARDGRIHEINCEHKLAFLCERYF     

 33 Bo_LPSBP30      100.0%  40.6%     EGGHLLIANSPEEAKSMSVFWARHPKITNDIRNDWAHVGIHDLNQEGEWVTIFDKPLNTTGFTKWLGNEPNGGTNEDCGDINRHAQLADVVCTLELPFICEQEL     

 34 Bo_LPSBP43       99.5%  40.2%     EGADLAVVNSEIEARALILIWEEYPKVFDDWKNSNSFIGVHDNYKEGEFVTVFNQSLNSTGFLNWNIGEPNGKTGENCVCLHKEGTLVDVSCLLELTFFCEREI     

 35 BAA00616.1      100.0%  40.2%     EGGHLVIINSEDESKVLQNLFSKVTKTEGATNNDYIFIGIHDRFVEGEFITIFGKPLATTGFTRWVSIQPDNAGNENCGSMHPNGGLNDIPCPWKLPFVCEVEL     

 36 Bo_LPSBP27      100.0%  41.1%     EGGHLEIINSEEESKALQNLFSKVTKTEGATNNDYIFVGIHDRFVEGEFITIFGKPLDTTGFTRWAPTQPDNAGSENCGSMHRNGGLNDITCSWKLPFVCEVEL     

 37 Cs_XP_023714242 100.0%  38.4%     EGGYLVVINSEAESKVMQNFLDGARNIKGATHNDYAFVGFHDRFVEGEYLTVFGKPLSSMGFARWALKQPDNAGNENCGSIHRNGGLKDIPCPWKLPFFCEKKT     

 38 Cs_XP_023708265 100.0%  37.9%     EGGYLVVINSEAESKVMQNFLDGARNIKGANHNDYAFVGFHDRFVEGEYLTVFGKPLSSTGFARWALQQPDNAGNENCGSIHRNGGLNDIPCPWKLPFFCEHKT     

 39 Cs_PNF16204.1    98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 40 Cs_PNF16205.1    98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 41 Cs_PNF16206.1    98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 42 Cs_XP_023724384  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 43 Cs_XP_023724387  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 44 Cs_XP_023724388  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 45 Cs_XP_023724389  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 46 Cs_XP_023724386  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 47 Cs_XP_023724385  98.6%  37.5%     EGAHLAVINSEEESKVLQSLFA---PVAAKLKVAWAFVGFHDLYNEGQYLTIFDEPLNSSGFYRWVVGQPDNWPGEDCGSIHTNGGLNDLTCTAKVPFICEQEL     

 48 Zn_KDR16864.1    98.6%  37.9%     EGAHLAIINSEEESKAVQSMFV---PVAEKAKTVWAFIGFHDLYTEGQYLTIFDEPLNSTGFYRWATNQPDNYPGEDCGSIHTNGGINDLACQAKVPFICEQEL     

 49 Zn_XP_021924720  98.6%  37.9%     EGAHLAIINSEEESKAVQSMFV---PVAEKAKTVWAFIGFHDLYTEGQYLTIFDEPLNSTGFYRWATNQPDNYPGEDCGSIHTNGGINDLACQAKVPFICEQEL     

 50 Zn_XP_021924721  98.6%  37.9%     EGAHLAIINSEEESKAVQSMFV---PVAEKAKTVWAFIGFHDLYTEGQYLTIFDEPLNSTGFYRWATNQPDNYPGEDCGSIHTNGGINDLACQAKVPFICEQEL     

 51 Bo_LPSBP34       98.6%  36.2%     EGAHLVIVNSEEEDKVLQSMFA---PVAEKLKTVWAFIGFHDLYTEGQFLTIFDEPLNSTGFYRWSSGQPDNYPGEDCGSIHINGGLNDLYCEAKVPFICEQEL     

 52 Bo_LPSBP1        50.9%  44.6%     EGAHLAIINSDEESQVMGNLLARHPKLQDVVHQGAAFLGFHDMYVEGQYVTIFGEPLNSTGYVKWNLNQPDNSPGEDCGSVVTNGKLNDLPCRVKEAFICEQEI     

 53 Bo_LPSBP31       98.6%  34.4%     EGAHLAIVNSEEESKVLKEIFSRFPKIKDVTYNDFAFIGFHDLYTEGLYLTIYDKPLSSTGFTRWAGGQPDDGGNEDCGSIHRSGGLNDLVCDKKHAFICEQEF     

 54 Zn_KDR17640.1   100.0%  38.8%     EGAHLAIVNSESEARFLQLLFSRHPKITGGNHNDYAYLGVHDMFSEGQFTTIFGDPLNNTGYMKWVGGQPDNGPGSDCLSLYRQANFNDLPCNWKLAAFCEQEV     

 55 Zn_XP_021923414 100.0%  38.8%     EGAHLAIVNSESEARFLQLLFSRHPKITGGNHNDYAYLGVHDMFSEGQFTTIFGDPLNNTGYMKWVGGQPDNGPGSDCLSLYRQANFNDLPCNWKLAAFCEQEV     

 56 Zn_XP_021923415 100.0%  38.8%     EGAHLAIVNSESEARFLQLLFSRHPKITGGNHNDYAYLGVHDMFSEGQFTTIFGDPLNNTGYMKWVGGQPDNGPGSDCLSLYRQANFNDLPCNWKLAAFCEQEV     

 57 Zn_XP_021923416  97.3%  37.9%     EGAHLAIVNSESEARFLQLLFSRHPKITGGNHNDYAYLGVHDMFSEGQFTTIFGDPLNNTGYMKWVGGQPDNGPGSDCLSLYRQANFNDLPCNWKLAAFCEQEV     

 58 Bo_LPSBP28       98.6%  37.1%     EGAHLAIINSETESSVLQSLFARHTKLSNVSDQNHAFLGYHDLHKEGTFLTVFGHALNTTGFLRWSSSQPNNAPDSDCGGMHRNGGLNDLPCNWKVSFFCEQPL     

 59 Cs_PNF31739.1   100.0%  39.7%     EGAHLAVINSQEEANLIKSLYDLHPKVQNSADNNNAFLGYHDFYIEGQFETIFGQSLNTTGYKNFTPGQPNNAPEQDCGGVTRAGLLNDLPCNSRYAFFCEMEL     

 60 Cs_XP_023709454 100.0%  39.7%     EGAHLAVINSQEEANLIKSLYDLHPKVQNSADNNNAFLGYHDFYIEGQFETIFGQSLNTTGYKNFTPGQPNNAPEQDCGGVTRAGLLNDLPCNSRYAFFCEMEL     

 61 Zn_KDR16872.1    83.6%  31.2%     EGAHLAIINSKAEANLIKGLFA------------------------------------STGYYVFTSGQPNNAPDQDCGGVTREGLLNDLPCNTRYAFFCEMEL     

 62 Zn_XP_021924656 100.0%  35.7%     EGAHLAIINSKAEANLIKGLFARYLEVKSSTDNNHAFLGYHDHYNEGQYETILGQPLNSTGYYVFTSGQPNNAPDQDCGGVTREGLLNDLPCNTRYAFFCEMEL     

 63 Bg_PSN44007.1    95.0%  36.6%     EGAYLAVPNSDAEYQAMKRIWDIHPSIYTDWRKNHFYIGLSDKAKEGEWITIFGQPINETGYTKWSAGEPDGGASQDCLLLTIDSTLHDISCSAEVSFMCERDI     

 64 Bg_PSN47668.1    96.4%  34.8%     EGASLAVPNSDAEYQAMKKIWDIHPSIYTDWRKNHFYIGLSDKAKEGEWITIFGQPINETGYSKWGAGQPNGGVAEDCLLLTFDSLLHDVGCSAQVSFMCERAI     

 65 Zn_KDR07896.1    98.6%  39.7%     EGAYLIIPNSDQEFEAVKKIWDRFPSPYTDWRKNHVFMGVSDIAREGHFMSVLGETLNSTGYLRWSSNQPDGGRNEDCLVLTVNSFLHDTACAAEVAFICERGL     

 66 Zn_XP_021940175  98.6%  39.7%     EGAYLIIPNSDQEFEAVKKIWDRFPSPYTDWRKNHVFMGVSDIAREGHFMSVLGETLNSTGYLRWSSNQPDGGRNEDCLVLTVNSFLHDTACAAEVAFICERGL     

 67 Bo_LPSBP38       67.7%  34.5%     EGAHLVIANSMDEFVAIKKIWDRYPSPYTDWRKNHVYMGVTDIAKESHFVSVLGETLNATGYTVWGPNQPDGGAKEDCLLLTVNTHIHDVACQAAVSFICEREL     

 68 Bo_LPSBP41      100.0%  38.4%     EGAHLAIVNSDKEAAVLGAMLIRNPDIESVWKNEWAYLGFHDQYSEGEFVTVLNKPLNSTGFEKWYPLQPANNTRENCGLINKKALLGDTECYRLLPFFCEKEL     

 69 Cs_XP_023721833  97.3%  37.8%     ENGHLLVLNSPKEFVELKKIWDA-----SGVKGDYLHVGINDFDKEAQFVTVLGDLVNSTGYAQWGPNEPNSGDTANCGAVKRTGDLYDSHCKNLFPFFCEQSL     

 70 Zn_KDR20371.1    97.7%  36.9%     ENGHLLILNSPKEFTELKKIWDA-----SGVKGDFLHIGINDFDKEAVFVTVLGDSLNSTGYAPWGPNEPNSGATANCGALKRTGELHDSYCSNQFPFFCEKNL     

 71 Zn_XP_021918073  97.7%  36.9%     ENGHLLILNSPKEFTELKKIWDA-----SGVKGDFLHIGINDFDKEAVFVTVLGDSLNSTGYAPWGPNEPNSGATANCGALKRTGELHDSYCSNQFPFFCEKNL     

 72 Zn_KDR12893.1    92.7%  36.5%     EGAHLLVIDSEYEAKNMARLWKEYPAFL-ARNTYYAFIGFHDLGNEGEVVTIFDKSLASTGYDNWDSTEND--IRYNCGLFVQNHKIEIGTCSIARGFFCEHEL     

 73 Zn_XP_021932138  98.6%  36.6%     EGAHLLVIDSEYEAKNMARLWKEYPAFL-ARNTYYAFIGFHDLGNEGEVVTIFNKSLASTGYDNWDSTEND--IRYNCGLFVQNHKIEIGTCSIARGFFCEHEL     

 74 Zn_XP_021932140  97.7%  36.2%     EGAHLLVIDSEYEAKNMARLWKEYPAFL-ARNTYYAFIGFHDLGNEGEVVTIFNKSLASTGYDNWDSTEND--IRYNCGLFVQNHKIEIGTCSIARGFFCEHEL     

 75 Bo_LPSBP14       99.5%  38.4%     EGAHLLILNSEEEANVVGSLWDRGSKFVDVVNDVYAHIGFHNLYKDEEFVTIFNQSLTSTGFMKWSSGHPTR-NPKFCGLFGRKKVLADDACLYKRAFFCEAEL     
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 76 Bo_LPSBP9        99.5%  40.5%     ENAHLLIINSEKEAKAVQRLWIRHSKSLGDWRDSYSYVGIHDKFKEGNFVTIFNQPLSEIGYNKWS-KEPSGTTSENCGMVNFEGEYGDAPCSVAMTFICEQEL     

 77 Bo_LPSBP23       99.5%  38.0%     EKAHLLIINSDKEAKAIQRVWLRHPKNFNDWRDHWIFVGIHDQFEEGKFITVFSQSLNDTGYTKWS-QEPSRGRTENCGISNVKGEYGDADCAETMAFICEKEI     

 78 Bg_PSN46951.1    78.2%  36.8%     EGAHLLIINSDREANALLHFWTPYPKIYTDWRNDWALIGFHDQFVEGEYVTIFGKY------------------------------------------------     

 79 Bg_PSN54456.1    87.7%  34.5%     EGAHLAVINSLTEAKTLPSIWIH--NIFKDWRKDSAYIGNWDPLENGEFVTIFNETLEEAGYSKWFPDEPD--FMGHCGMLRSNSLLDNTYCNEKLLFICELK-     

 80 Bo_LPSBP44       59.1%  43.0%     EGAHLAVINSLAEAKKLPSIWIH--NIFNDWRKDSAYIGMWDPEKTGEFVTIFNETLDSAGYNKWFPDEPD--FMGHCGMLRSNSLLGNTYCNEKLLYICELKE     

 81 Cs_PNF42388.1    98.2%  38.8%     EGAHLVVINSLTEAKTLPSIWIR--DVFNDWRKDAAYIGTWDPEGNGEFVTIFNETLEAAGYNKWFPDEPN--FMGHCGMLRSNSLLGNTFCDEKLLFICEFKE     

 82 Cs_PNF42389.1    98.2%  38.8%     EGAHLVVINSLTEAKTLPSIWIR--DVFNDWRKDAAYIGTWDPEGNGEFVTIFNETLEAAGYNKWFPDEPN--FMGHCGMLRSNSLLGNTFCDEKLLFICEFKE     

 83 Cs_XP_023714238  98.2%  38.8%     EGAHLVVINSLTEAKTLPSIWIR--DVFNDWRKDAAYIGTWDPEGNGEFVTIFNETLEAAGYNKWFPDEPN--FMGHCGMLRSNSLLGNTFCDEKLLFICEFKE     

 84 Zn_KDR10083.1    98.2%  40.6%     EGAYLAVINSLTEAKSLSVIWIR--NLFKDWRKDAAYIGTWDPHETGDFVTIFNETLETAGYNKWFPDEPD--FMGHCGILGSNSLLGNTHCNEKLLFICELTE     

 85 Zn_XP_021937020  98.2%  40.6%     EGAYLAVINSLTEAKSLSVIWIR--NLFKDWRKDAAYIGTWDPHETGDFVTIFNETLETAGYNKWFPDEPD--FMGHCGILGSNSLLGNTHCNEKLLFICELTE     

 86 Bo_LPSBP18       94.5%  33.5%     EGAHLAIMNSESEAKALSALITTGP---------WAHIGNWDTQKKGQFLTLFNQSLNDAGYNKWSPGEPDYPGVQNCGLLNPNSLLGNTPCELKFPFICEFDS     

 87 Bo_LPSBP39       98.2%  35.7%     ECAHLVVINSQKEADALVNLWKPYYSLFHDWRNDWAHIGFYYHKTKGQYVTIFNQPLKSTGYDKWEHGEPSSPDTQFCGAASRASTLGDVNCDEKLAFICEADH     

 88 Bo_LPSBP3        97.3%  40.2%     EGTHLVVINSEAEANALLHIMAVNN------DTKVIYVGFNDIVKEGDYITVSGEPLNKTGFLRWAPHEPNPKSSEDCGTFRNPGQYNDVTCTVLHAFICEQEL     

 89 Bo_LPSBP13       97.3%  29.9%     EGAHLAVINSETEALALVPWWVTFS------AQNYPFIGLYDPKKNGRFVTVFNETQDVAGYNKWMAGEPDAKGVQNCGLLSTAGTLANGGCDSIKPFICEFES     

 90 Bo_LPSBP17       78.2%  36.7%     EGAHLLVLNSEEEANALKRLWVKHPGKPGGW--NWAYVGFHCLFNEGKFVTLFNQPLTEAGYNKWYPGHPGASPSRFCGIVHDSMMLGDTICNDHLAFICELEI     

 91 Bg_PSN36991.1    73.6%  26.6%     EGAHLAIINSKEEVEIVQELRRRLPKIFNNNLDDHVIVGVTDREHEGSWKSIFNQSLSETGYSEWHPNEPNGGTVENCLDLHISGKFNDFRCNLQLPFVCEKEL     

 92 Bg_PSN53543.1    96.8%  29.0%     EGAHLAIMNSAEEVALLQEFRRRLPRLHGNGLDDLVYLGFNDIQTEGVWVTIFNEPLYLTGYTNWELGEPNNGTNENCGCIVLSGRIHDCLCSDVIPFFCELEL     

 93 Bo_LPSBP6        75.9%  38.3%     EGAHLAIINSRREVEVLKELRDRLPILYNGWRDDTIYIGITDKEVENTWVTIFGEPLSSTGFSEWDQGLPNKGVKGNCGIFRPSAKLHDCDCNAVLGFYCERKL     

 94 Bo_LPSBP35       93.6%  34.4%     EGAHLAVINSQDEVEVFRYLRDRLPKLHGDARDDFLFIGMTDIKEEGKWVTIFGEPQTEMGFNLWEEGEPGGGRNENCGLLKITGKFHDGGCPYLAGFYCELEL     

 95 Bo_LPSBP12       98.2%  33.0%     EGAHLAIINSQKELDVLLELWQRLPKLYSDWKGYNILIGMTDVVTEDKWITIFGKAVSEAGFNVWHPDQPSGGTSENCGVLVASGKLADFPCNVEAPFYCEQEA     

 96 Bo_LPSBP29       99.5%  35.9%     EGAHLGIINSQTEAHYVKEMWNRLPKLQNDWRKGFIFLGVSDTRIEKYWETILDEPFNKAGYYQWGRNEPDGGNRENCMALYVDGNLVDTSCEQEFAFFCENTL     

 97 Zn_KDR10086.1    99.5%  37.1%     EGTHLVVLNSVEEVSVVKSIWEKTHNFSNIEYKEFIFLGLR-RGTDGSFITYTGVPLNETGYQVWAKNEPNNAGDESCLSMTDTGGLNDAYCERKLAFMCEREL     

 98 Bg_PSN42397.1    58.6%  27.4%     EGGHLAVLRSDEQAKYVGALGGEG--------FDWAFIGFQDMFQEGNFITLFDETLEEAGYNKWPNSDPNGGTSENCGVIFPNGLLGDYKCQNPRTFICQIDI     

 99 Cs_XP_023720909  95.9%  34.7%     EGAHLAVVNSEAEARFITSLWNSK--------SDWAFIGTHDLYEEGIYVTIYNQSLSAAGYDKWFLGEPNGGTAENCGVINRNTLLGNYFCNRHLPFICEFQN     

100 Zn_KDR12554.1    96.8%  33.3%     EGAHLAIINSEAEGKFVSSLWTNKL-------FLWAFIGTHDLYEEGNFVTIHNQTLQEAGYNRWSPGEPNGGSTENCGVIFQNGLLGNYFCSLPLPFFCEFEP     

101 Zn_XP_021932674  96.8%  33.3%     EGAHLAIINSEAEGKFVSSLWTNKL-------FLWAFIGTHDLYEEGNFVTIHNQTLQEAGYNRWSPGEPNGGSTENCGVIFQNGLLGNYFCSLPLPFFCEFEP     

102 Zn_XP_021932675  96.4%  33.3%     EGAHLAIINSEAEGKFVSSLWTNKL-------FLWAFIGTHDLYEEGNFVTIHNQTLQEAGYNRWSPGEPNGGSTENCGVIFQNGLLGNYFCSLPLPFFCEFEP     

103 Zn_XP_021932676  95.9%  32.9%     EGAHLAIINSEAEGKFVSSLWTNKL-------FLWAFIGTHDLYEEGNFVTIHNQTLQEAGYNRWSPGEPNGGSTENCGVIFQNGLLGNYFCSLPLPFFCEFEP     

104 Zn_XP_021932677  95.5%  32.9%     EGAHLAIINSEAEGKFVSSLWTNKL-------FLWAFIGTHDLYEEGNFVTIHNQTLQEAGYNRWSPGEPNGGSTENCGVIFQNGLLGNYFCSLPLPFFCEFEP     

105 Bg_PSN49027.1    91.4%  33.0%     ENAHLLIVNSENEFSALKLLGNIEG---------PYHTSINDLYEEGQFVTQFSDSLNTTGYIKWRPNEPNQGAAGNCVRIFSSGIMADDECNMSYSFICERKL     

106 Bg_PSN49028.1    74.1%  38.8%     EDAHLVILNSEEELTKLKFLGKIEG---------DFYTSINDLEKEGHFVTQFGDTLNSTGFMKWIPGEPNNGFSGNCVRVLPLGKIADGDCNSNFAFICEKPI     

107 Cs_PNF31397.1    92.7%  29.9%     EGSHLAVINSETEWRVLHDLYALAPVINDVVTSSWAFIGLHDRFVEGEFLTIQGKPLESTGFALWDSPEPNNLGNENCGSISRYGHLNDVYCSYRLAFFCEQES     

108 Cs_XP_023709785  92.7%  29.9%     EGSHLAVINSETEWRVLHDLYALAPVINDVVTSSWAFIGLHDRFVEGEFLTIQGKPLESTGFALWDSPEPNNLGNENCGSISRYGHLNDVYCSYRLAFFCEQES     

109 Cs_XP_023722707  52.7%  22.9%     EGSHLAIINSEAESRVLHDLYALTPFAKDVDRNNWAFIGFHDRFVKGEFLTIQ---------------------------------------------------     

110 Bg_PSN35117.1    68.2%  20.5%     DGGYLFIPNSEEEVNVVKSLMSLYP------DEDYFAIGVHDQFLNGYFLTIHGDVFDNSKYALWNSGEPNNLGNEDCVVMLPTGFLNDLSCERKTFFVCEHEY     

111 Zn_KDR09967.1    75.9%  23.7%     DGTHLLIINSETEAQAVREIVSSYP------SQYAYIIGFHDYFLEGYYVSIHGMRLEDEGYSKWGSGQPDNWGSEHCGAMRKDGSLADVHCTYSMWFICEHEI     

112 Zn_XP_021937186  75.9%  23.7%     DGTHLLIINSETEAQAVREIVSSYP------SQYAYIIGFHDYFLEGYYVSIHGMRLEDEGYSKWGSGQPDNWGSEHCGAMRKDGSLADVHCTYSMWFICEHEI     

113 Bo_LPSBP5        75.9%  25.0%     DGAHLLILNSDAEAELARKIMSTLS------SSFAFHAGFHDLFAEGRYITIQGENLNSAGYNKWASGQPDNWGDEHCGAVRKNALLADVHCTSKFWFICEREP     

114 Bg_PSN54431.1    58.6%  18.4%     HGAHLVVINSEEEANILRSLMAPYT------QEPWFLIGFNDFEIEGKYHTVTGLSLSKTGYNKWDFGEPSKTVEEDCGSMSRNALLNDYGCNFKRYFICEKEL     

115 Bg_PSN54434.1    35.5%  21.4%     ------------------------------TQESYFLVGFNDVEDEGNYRTVTGCSLKETGYYKWDAFEPTKTEEEDCGSMSRNALLNDYRCHMKAHFICEKEI     

116 Zn_KDR12220.1    55.5%  17.9%     DGAHLVVINSEAEAQLIRQLLTGVN------PQHYVYVGFHKHYNNNVFLTIEGKRLEHSGYYKWSPGKPSNDPNHKCGAVFPSALLTNKDCTGQWYFICEHQL     

117 Zn_XP_021933288  55.5%  17.9%     DGAHLVVINSEAEAQLIRQLLTGVN------PQHYVYVGFHKHYNNNVFLTIEGKRLEHSGYYKWSPGKPSNDPNHKCGAVFPSALLTNKDCTGQWYFICEHQL     

118 Bo_LPSBP37       66.8%  21.4%     DGAHLVVINSDAEAQVMRQLLTGVN------PQHYTYIGFHKFYALDVFHTVEGKRLDRTGYYKWAPGKPGSDANHKCGAIFPSGLLVNKDCTGQWGFICENEL     

119 Bg_PSN30713.1    80.5%  30.4%     DGSYLVIINSREEAEAIINLLRKNN-----VHGHKPWVGVSDLFEEGNFVTIFNENMQNTGFKWWHPREPDGGTKENCLWISYNYGLGDAPCAQKRPFICEKSK     

120 Bg_PSN36100.1    91.8%  32.4%     EGGHLAIFNSDQEVQILKLMTAKQI-----CKDKSYWIGFHDEYQEGTYVTIFNDTLKSAGYTKWYTNQPYQGKTWNCGCFSYDFGLGTSACTNDLPFICEQ--     

121 Bg_PSN40159.1    28.2%  31.3%     NGGHLLVIDSQKEANEILSLLDIIP-----YKGKDYWLGVHDEYNKGVYMTIFSK-------------------------------------------------     

122 Bg_PSN55224.1    93.6%  32.6%     EGAHLLILNSKEEALEMKKLLKQSR-----TERFWHWIGVHDYYKEGMYITIFNQPLSTVGFQEWYSGQPDGGDKQNCIYLQFEFGMGDVDCNGRGPYICEKEI     

123 Bg_PSN52365.1    79.1%  31.9%     EGGYLLVTKSKDETREILPLVKQ-------LWSEWFFVGTHDNYQEGVYVTVQNDTLQSTGFPWW-PGEPDDNTGWNCGCFQLKFGLSDCLCMATLPFICKKEI     

124 Bg_PSN46288.1    52.7%  28.1%     EGAHLLVINSWEEARRVDHLILNSS-----SLYLRHWIGVHDLFGNDNFYTIFHTSLESTGYANWRNGQPDDLSIEDCLYYIYNDGIGNIACDDKYPFVCEEIL     

125 Bg_PSN46289.1    76.4%  26.3%     EGAHLLVINSWEEARRVDHLILNSS-----SLYLRHWIGVHDLFGNDNFYTIFHTSLESTGYANWRNGQPDDLSIEDCLYYIYNDGIGNIACDDKYPFVCEEIL     

126 Bg_PSN46290.1    84.5%  27.4%     EGAHLLVINSWEEARRVDHLILNSS-----SLYLRHWIGVHDLFGNDNFYTIFHTSLESTGYANWRNGQPDDLSIEDCLYYIYNDGIGNIACDDKYPFVCEEIL     

127 Bg_PSN46291.1    62.7%  17.5%     EGAHLLVINSWEEARRVDHLILNSS-----SLYLRHWIGVHDLFGNDNFYTIFHTSLESTGYANWRNGQPDDLSIEDCLYYIYNDGIGNIACDDKYPFVCEEIL     

128 Bg_PSN42527.1    98.2%  33.2%     EDGHLLVLDQEYEVDIIKQMFQENPDV---KPNDIAWIGVHDQFSEGKYVTITGENLGNDDFVKWDPEDQTNTIAEDCIAVDRQGELLDGPCLTKIIFFCEHD-     

129 Bo_LPSBP40       98.6%  29.0%     EGAYLLVLDRDKELPVIKDMFAQAPTITNSSWDDMAWVGVHDLFTEGNFVTVLGRSYSSKDFVKWSKGKTKEAAHDDCVAVELDGELYDTSCDSRLPFFCERAV     

130 Zn_KDR10085.1    46.4%  20.1%     EGSHLVILNSLTEVEVVKSIWSKHPIISGSQWPEYIYIGAHDLL------------------------------------------------------------     

131 Cs_XP_023714269  69.5%  21.0%     EGAHLLIINSPAEAEAVKRFVDPTV--------ETYSVGFHDLFNEGTFTTVQCQSLQEAGYNHWALLEPSSFHNENCGGINQQIFLLDIVCSNHYPFICEYEP     

132 Bg_PSN50693.1    85.0%  32.4%     DGAHLLVINSAQEANGMKPLLEK------------------------------NETLESSGYAEWHSGEPNSGVGLNCGELYVDLTLGITSCTYTYPFICEM--     

133 Bg_PSN30567.1    59.1%  15.7%     DGGHLLVLDSQEELNFVRKLIKKRT------DSFYTYIGVHDLLNVDHFVTVLDKDFIPSNVNQLRNVENVGFGEKQCLVITPTGRLNALSCEQEHPFICEVET     

134 Bo_LPSBP25       71.4%  20.5%     DNAHLVVINSEEEKHLVRKLSTN-------TKKYYVFIGVHDLFKHNHFVTILGNEIGESRINKFDPYKKLHNGLEHCVAINREGNYSPIKCSYHYPFICEKEE     

135 Bg_PSN30568.1    69.5%  21.0%     DNAHLVVIDSEKELEVVKLLQIQAK------SKDWCHIGVHDLYLNTRYITVLDEEFTPSSFNKWNQNEPTNNAAENCVGVLPTGFLGDLGCGTALPFICEYEV     

136 Bg_PSN31863.1    74.1%  34.3%     EGTHLVIINSQEEVEVLKELRLRLPMLGKDWRDDTVYVGINDIEVENSWVTIFGKHFSRLQ-------------------------------------------     

137 Bg_PSN31864.1    35.9%  16.6%     --TTLAFI----------------------YR------------------------------------------------------------------------     

138 Bo_LPSBP42       70.9%  25.0%     EGGHLVVINSDAEAKVVSDLMAKYV------TTPQVYVGFSDQLEEGYYITVNDQPLQQTGYTKWAEGFPSGGTKNTCGAANAKGELVEVDCYTILNLVCEKEL     

139 Bo_LPSBP24       90.0%  26.3%     EGAHLAVVNSQQEARLLRNILRKHQSLSSADDNDMVAIGFHMTYEQKEYVTIFGGSIKIAGYAKWARRQPSPGLENHCGAFTRDGKLYMSKCNKKLAFICEKDM     

140 Bo_LPSBP10       88.6%  23.2%     ENGHLLVLNSEEEFDAIKDMWHT-----SMMEGAYIHIGVNDIDKEGEFVTASAEPIADSGYVKWGYEEPSRNATVNCVALDIEGRFYNIQCSRKLPFCCEGRI     

141 Cs_XP_023708549  69.5%  22.5%     EGASLAVVNSQQEAENLRTLYLDYG--NADVANATVHIGIHDIFIEGEYLTVRSEPLIATGFVRWKPGFPIGDEQNNCGAFDTAKYILDGPCDAKLPYICEIPE     

142 Zn_KDR17639.1    70.5%  23.0%     EGAILSIVNSPSEAGILKALYLSEGKLNDDPTSGTIHIGFHDLFVEGEYLTVRGEPIIATGFVRWKPGYPVSDDLHNCGAFDTNQFILDIPCELELPYVCEISE     

143 Zn_XP_021923355  70.5%  23.0%     EGAILSIVNSPSEAGILKALYLSEGKLNDDPTSGTIHIGFHDLFVEGEYLTVRGEPIIATGFVRWKPGYPVSDDLHNCGAFDTNQFILDIPCELELPYVCEISE     

144 Zn_XP_021923356  70.5%  23.0%     EGAILSIVNSPSEAGILKALYLSEGKLNDDPTSGTIHIGFHDLFVEGEYLTVRGEPIIATGFVRWKPGYPVSDDLHNCGAFDTNQFILDIPCELELPYVCEISE     

145 Zn_XP_021923357  70.5%  23.0%     EGAILSIVNSPSEAGILKALYLSEGKLNDDPTSGTIHIGFHDLFVEGEYLTVRGEPIIATGFVRWKPGYPVSDDLHNCGAFDTNQFILDIPCELELPYVCEISE     

146 Zn_KDR10088.1    97.3%  24.6%     VGAHLAVPDTPQRVTVFLKLFKRHPDIARAILRQQVYVGVSDPDRSRHFTTVQGKPFAPE-FPIWFRTEPDNAPGEYCVTFHIEGRTRDVPCFYELPFFCEKDI     

147 Bo_LPSBP19       98.6%  24.3%     EGAHLAVPDTLLKISVFRQLLKYNADIKRAVLKNQVFVGVYDSDRSRKLITVVGQPFQPESESFWFPNEPNNAAGEECVTLHLEGKLRDVPCYYNLPFICQID- 
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Appen ix I-C 

Fold changes of the genes related to three main pathways. The overlap in gene families represents 

the fold changes of different genes in the same gene family, except Toll and Spaetzle family, whose 

fold changes have been indicated in following Appendix I-E. 
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Appen ix I-D 

Details on primers for quantitative PCR for Chapter I 

Name Primer Temperature (°C) 
Model 

Thermocycler 

Relish 
F:5'-TTCCTGGCTCTACCTGTC-3' 

57 

Stratagene 
Mx3005PTM 

R:5'-TTGCAGCTATACCGTCCT-3' 

Attacin 
F:5'-ACAGTGGTCGAAGGTGCT-3' 

57 
R:5'-TTGGGATGAAGATGATTCTG-3' 

GNBP1 
F:5'-TGGAAATTTGGCTCGTACCTC-3' 

59 
R:5'-ACGTCTTGAACCCCATAACCT-3' 

Transferrin 
F:5'-AACTACACGGACGTAATTGAGC-3' 

59 
R:5'-ACATTTCTCCAGTTCCGTGTC-3' 

RPL22 
F:5'-CAACAACTCTGAGCCAATC-3' 

561/572 
R:5'-GTAAACTCCGACATTCCTT-3' 

Defensin 
F:5'-TTAGCTGCTCCTCTGACA-3' 

57 

Biorad 
CFX96 
C1000 

R:5'-GTCTTCCTCTGCTGTGAC-3' 

PGRP2 
F:5'-GCGGTTGGCACCAGATAG-3' 

58 
R:5'-AGTTGCTTCGTGGCTTCA-3' 

FAS 
F:5'-TGCTGGTAGCCCTATGGAA-3' 

57 
R:5'-TCGTCTGGGAGTCAGTTGG-3' 

Tret1 
F:5'-GCTGTGATCGGTCCTTGTA-3' 

57 
R:5'-ATCCCATCGTGACTCCTCT-3' 

Lipase 3 
F:5'-AGGACCCACGATGACCCAA-3' 

57 
R:5'-TAACGGCGGACGGCTACTT-3' 

MOT13 
F:5'-TTGGTGCTATCTTCGTCTT -3' 

57 
R:5'-CCTAGTCCAGTGCCTTGTA-3' 

LIPR2 
F:5'-CGCCCATGATTGCAGTAAA-3' 

57 
R:5'-TCCATAACGACGGACGAAG-3' 
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Appen ix I-E 

Comparison of fold changes of the genes in Toll pathway in D. Oregon, B. orientalis, M. 
sexta. 

Gene/Gene 
Family 

Drosophila OregonR (adult 
male)(De Gregorio et al. 2001) 

B. 
orientalis(adults) 

Manduca sexta (naïve 
larvae)(Cao et al. 2015) 

Septic injury 
(24 hr) 

Fungal infection 
(24 hr) 

Our study (24 hr) 
Fat body 
(24 hr) 

Hemocytes 
(24 hr) 

GNBP1 - - 53.8/4.0 - - 
GNBP2 - - 1.3 - - 

PGRP-SD 9.5 1.4 1.2 - - 

Spaetzle 1.8 1.5 
0.5/3.3/1.1/0.9/1.0/1.

4/0.6 
1.4/1.5/4.1 3.9/2.2/3.6 

Toll 2.3 1.3 
0.9/0.6/0.9/1.3/2.5/2.
3/1.2/0.8/1.1/1.1/0.8 

2.5/0.7/2.5
/2.5/2.9 

6.2/0.8/6.2/6
.4/0.9 

MyD88 - - 1.6 1.5 1.5 
Traf6 - - 1.0 - - 
Pelle - - 1.4 5.1 2.2 

Cactus 3.7 2.1 1.8 9.2 1.8 
Dif/Drosal 1.4/2.2 1.0 1.9 1.3 1.2 

Tube - - 1.1 8.4 0.8 
Pellino - - 1.4 2.3 1.3 

 Note: The multiple values in cells represent the fold changes of different genes in the same 

gene family. 
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Appen ix I-F 

Predicted immune-related genes in B. orientalis. 

Subcomponent ID Famliy Name Gene Name 
ORF type 
(Predicted 
protein) 

Predicted 
protein 
length 

Target ID 
(BLASTX,Trinotate) 

E-value 
(BLASTX, 
Trinotate) 

TRINITY_DN203797_c6_g1_i2 Apaf-caspas Apoptotic protease-activating factor 1 complete 1399 APAF_MOUSE 2.1E-88 

TRINITY_DN200927_c0_g1_i2 ATG12 Autophagy protein 12-like complete 133 APG12_DROME 2.04E-42 

TRINITY_DN210395_c7_g1_i1 ATG13 Autophagy-related protein 13 homolog complete 404 ATG13_DROME 4.92E-73 

TRINITY_DN207592_c4_g3_i4 ATG14 Beclin 1-associated autophagy-related key regulator 5prime_partial 495 BAKOR_HUMAN 4.44E-76 

TRINITY_DN206239_c0_g1_i1 ATG14 UV radiation resistance associated protein complete 880 UVRAG_MOUSE 5.11E-76 

TRINITY_DN209538_c7_g1_i2 ATG18B WD repeat domain phosphoinositide-interacting protein 2 complete 461 WIPI2_XENLA 0 

TRINITY_DN209743_c1_g1_i1 ATG18B WD repeat domain phosphoinositide-interacting protein 3 complete 345 WIPI3_XENLA 0 

TRINITY_DN204622_c2_g1_i2 ATG18B WD repeat domain phosphoinositide-interacting protein 4 complete 354 WIPI4_DANRE 1.69E-150 

TRINITY_DN211938_c7_g1_i2 ATG2 Autophagy-related protein 2 homolog B complete 2186 ATG2B_MOUSE 0 

TRINITY_DN206859_c0_g1_i1 ATG3 Ubiquitin-like-conjugating enzyme ATG10 5prime_partial 128 ATG10_HUMAN 8.64E-33 

TRINITY_DN203305_c6_g1_i2 ATG3 Ubiquitin-like-conjugating enzyme ATG3 complete 317 ATG3_BOVIN 9.78E-147 

TRINITY_DN203283_c6_g1_i1 ATG4b Cysteine protease ATG4D complete 434 ATG4D_MOUSE 8.21E-117 

TRINITY_DN207415_c8_g2_i1 ATG5 Autophagy protein 5 complete 265 ATG5_BOVIN 1.54E-108 

TRINITY_DN199491_c0_g1_i1 ATG6 Beclin-1-like protein complete 429 BECN1_DROME 1.05E-166 

TRINITY_DN208632_c6_g1_i2 ATG7 Ubiquitin-like modifier-activating enzyme ATG7 complete 735 ATG7_MOUSE 0 

TRINITY_DN208319_c2_g1_i1 ATG8 Gamma-aminobutyric acid receptor-associated protein complete 118 GBRAP_RAT 1.13E-71 

TRINITY_DN211417_c2_g1_i1 ATG9 Autophagy-related protein 9A complete 814 ATG9A_HUMAN 0 

TRINITY_DN198255_c0_g1_i2 Attacin Attacin-A complete 217 ATTA_DROME 3.5E-09 

TRINITY_DN144643_c0_g1_i1 Attacin Attacin-B 5prime_partial 139 ATTB_DROME 0.000457 

TRINITY_DN207862_c0_g2_i1 Attacin Holotricin-2 complete 120   

TRINITY_DN212656_c6_g1_i7 Cactus_Toll NF-kappa-B inhibitor cactus complete 448 CACT_DROME 8.97E-63 

TRINITY_DN204960_c1_g1_i4 Caspar_IMD FAS-associated factor 1 complete 670 FAF1_HUMAN 2.09E-166 

TRINITY_DN204197_c0_g1_i1 Caspar_IMD FAS-associated factor 2 complete 444 FAF2_XENTR 3.44E-140 

TRINITY_DN200568_c1_g1_i1 CASPs Caspase-1-1 complete 305 CASP1_DROME 5.9E-43 

TRINITY_DN200683_c1_g1_i2 CASPs Caspase-1-2 complete 491 CASP1_SPOFR 1.05E-57 
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TRINITY_DN200765_c0_g1_i1 CASPs Caspase-1-3 complete 368 CASP1_SPOFR 1.02E-41 

TRINITY_DN202202_c0_g1_i2 CASPs Caspase-1-4 complete 303 CASP1_SPOFR 1.6E-84 

TRINITY_DN207137_c3_g1_i2 CASPs Caspase-1-5 complete 468 CASP1_SPOFR 6.07E-82 

TRINITY_DN211317_c5_g1_i3 CASPs Caspase-1-6 complete 290 CASP1_SPOFR 6.46E-125 

TRINITY_DN207884_c5_g1_i1 CASPs Caspase-2 complete 426 CASP2_CHICK 9.97E-41 

TRINITY_DN211335_c4_g1_i3 CASPs Caspase-8 5prime_partial 648 CASP8_DROPS 2.03E-63 

TRINITY_DN200371_c0_g1_i1 CATs Catalase-1 complete 229 CATA_DROME 1.64E-113 

TRINITY_DN206745_c0_g1_i1 CATs Catalase-2 5prime_partial 546 CATA_RUGRU 0 

TRINITY_DN209411_c5_g4_i1 CATs Catalase-3 5prime_partial 163 CATA_BOVIN 6.07E-50 

TRINITY_DN209411_c5_g5_i2 CATs Catalase-4 5prime_partial 539 CATA_PIG 0 

TRINITY_DN210101_c1_g1_i1 CATs Catalase-5 complete 509 CATA_RUGRU 0 

TRINITY_DN212150_c1_g1_i1 CATs Catalase-6 complete 509 CATA_DROME 0 

TRINITY_DN89736_c0_g1_i1 CATs Catalase-7 5prime_partial 159 CATA_ASCSU 2.01E-27 

TRINITY_DN200662_c1_g1_i1 CLIPs Cationic trypsin-1 5prime_partial 271 TRY3_RAT 3.18E-49 

TRINITY_DN209414_c10_g1_i2 CLIPs Cationic trypsin-2 complete 296 TRY1_CANLF 1.72E-15 

TRINITY_DN194388_c0_g1_i1 CLIPs Chymotrypsin BI-1 complete 276 CTRB1_LITVA 2.37E-61 

TRINITY_DN200811_c0_g1_i1 CLIPs Chymotrypsin BI-2(CLIP-7) 5prime_partial 297 CTRB1_LITVA 5.21E-70 

TRINITY_DN204403_c0_g1_i3 CLIPs Chymotrypsin BI-3 complete 313 CTRB1_LITVA 7.72E-63 

TRINITY_DN207574_c0_g1_i2 CLIPs Chymotrypsin BI-4 5prime_partial 266 CTRB1_LITVA 2.8E-50 

TRINITY_DN202663_c0_g1_i2 CLIPs Chymotrypsin-1-1 internal 246 CTR1_SOLIN 1.94E-27 

TRINITY_DN204325_c10_g3_i1 CLIPs Chymotrypsin-1-2 complete 283 CTR1_SOLIN 1.37E-13 

TRINITY_DN201014_c0_g1_i2 CLIPs Chymotrypsin-2 5prime_partial 255 CTR2_VESCR 5.49E-47 

TRINITY_DN202780_c0_g1_i1 CLIPs Chymotrypsin-C complete 267 CTRC_HUMAN 1.71E-25 

TRINITY_DN212694_c2_g1_i3 CLIPs Coagulation factor X complete 289 FA10_CHICK 1.29E-43 

TRINITY_DN205643_c7_g1_i3 CLIPs Coagulation factor XII complete 316 FA12_PIG 2.98E-44 

TRINITY_DN198392_c0_g1_i1 CLIPs Kallikrein-13(CLIP-11) 5prime_partial 332 KLK13_HUMAN 6.76E-18 

TRINITY_DN198284_c0_g2_i1 CLIPs Limulus clotting factor C complete 291 LFC_CARRO 1.28E-47 

TRINITY_DN207071_c1_g2_i1 CLIPs Limulus clotting factor C(CLIP-3) complete 620 LFC_CARRO 5.35E-39 

TRINITY_DN177253_c0_g2_i1 CLIPs Plasma kallikrein-1 5prime_partial 311 KLKB1_BOVIN 4.19E-32 

TRINITY_DN204587_c3_g1_i2 CLIPs Plasma kallikrein-2 5prime_partial 308 KLKB1_BOVIN 9.75E-54 
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TRINITY_DN210028_c8_g1_i1 CLIPs Plasma kallikrein-3 complete 309 KLKB1_HUMAN 3.93E-46 

TRINITY_DN197303_c0_g2_i5 CLIPs Proclotting enzyme-1 complete 211 PCE_TACTR 2.5E-26 

TRINITY_DN201210_c0_g2_i1 CLIPs Proclotting enzyme-2 complete 297 PCE_TACTR 1.49E-45 

TRINITY_DN207232_c6_g2_i1 CLIPs Proclotting enzyme-3 complete 306 PCE_TACTR 4.57E-45 

TRINITY_DN43074_c1_g1_i1 CLIPs Proclotting enzyme-4 internal 104 PCE_TACTR 3.69E-21 

TRINITY_DN201196_c3_g1_i1 CLIPs Proclotting enzyme(CLIP-10) complete 328 PCE_TACTR 3.82E-46 

TRINITY_DN203423_c3_g1_i1 CLIPs Proclotting enzyme(CLIP-8) 5prime_partial 461 PCE_TACTR 3.03E-62 

TRINITY_DN201352_c0_g1_i2 CLIPs Putative serine protease 41 5prime_partial 574 PRS41_HUMAN 8.57E-34 

TRINITY_DN200535_c0_g1_i4 CLIPs Retinol dehydrogenase 14 complete 261 RDH14_HUMAN 6.05E-62 

TRINITY_DN204701_c0_g1_i1 CLIPs Serine protease 44 complete 371 PRS44_MOUSE 9.92E-42 

TRINITY_DN199952_c0_g1_i1 CLIPs Serine protease 48 complete 259 PRS48_HUMAN 3.85E-23 

TRINITY_DN199209_c0_g2_i1 CLIPs Serine protease easter-4 complete 355 EAST_DROME 1.14E-28 

TRINITY_DN203131_c1_g1_i1 CLIPs Serine protease easter-5 complete 360 EAST_DROME 7.42E-46 

TRINITY_DN204331_c12_g1_i4 CLIPs Serine protease easter-6 complete 308 EAST_DROME 3.52E-46 

TRINITY_DN34868_c0_g1_i1 CLIPs Serine protease easter-7 internal 146 EAST_DROME 3.65E-14 

TRINITY_DN210614_c3_g1_i2 CLIPs Serine protease easter-1 complete 418 EAST_DROME 4.34E-84 

TRINITY_DN206030_c8_g1_i2 CLIPs Serine protease easter-2 5prime_partial 399 EAST_DROME 4.8E-74 

TRINITY_DN205038_c16_g1_i1 CLIPs Serine protease easter-3 internal 531 EAST_DROME 3.83E-14 

TRINITY_DN103011_c0_g1_i1 CLIPs Serine protease hepsin internal 102 HEPS_RAT 4.61E-09 

TRINITY_DN191962_c0_g1_i1 CLIPs Serine protease snake complete 323 SNAK_DROME 3.87E-64 

TRINITY_DN205149_c0_g1_i2 CLIPs Serine protease snake(CLIP-2) 5prime_partial 392 SNAK_DROME 7.76E-70 

TRINITY_DN203899_c0_g1_i1 CLIPs Serine protease snake(CLIP-4) complete 394 SNAK_DROME 1.33E-64 

TRINITY_DN212041_c0_g2_i1 CLIPs Serine protease snake(CLIP-5) complete 352 SNAK_DROME 8.49E-54 

TRINITY_DN202525_c0_g1_i1 CLIPs Serine protease snake(CLIP-9) 5prime_partial 376 SNAK_DROME 1.48E-43 

TRINITY_DN120666_c0_g1_i1 CLIPs Serine proteinase stubble-1 5prime_partial 211 STUB_DROME 1.43E-16 

TRINITY_DN180733_c0_g1_i1 CLIPs Serine proteinase stubble-2 5prime_partial 307 STUB_DROME 4.25E-142 

TRINITY_DN192813_c2_g1_i1 CLIPs Serine proteinase stubble-3 internal 103 STUB_DROME 3.09E-16 

TRINITY_DN199205_c2_g1_i1 CLIPs Serine proteinase stubble-4 internal 130 STUB_DROME 3.76E-20 

TRINITY_DN207404_c7_g1_i4 CLIPs Serine proteinase stubble-5 complete 408 STUB_DROME 1.04E-38 

TRINITY_DN211676_c1_g1_i1 CLIPs Serine proteinase stubble-6 5prime_partial 396 STUB_DROME 2.37E-26 
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TRINITY_DN205845_c4_g1_i1 CLIPs Testisin complete 271 TEST_MOUSE 1.23E-33 

TRINITY_DN195636_c1_g1_i1 CLIPs Transmembrane protease serine 11B-like protein internal 144 TM11B_MOUSE 3.85E-12 

TRINITY_DN213919_c0_g3_i1 CLIPs Transmembrane protease serine 11G complete 258 TM11G_RAT 1.94E-34 

TRINITY_DN186830_c0_g1_i1 CLIPs Transmembrane protease serine 3 complete 295 TMPS3_MOUSE 1.58E-30 

TRINITY_DN202673_c1_g1_i1 CLIPs Trypsin complete 260 TRYP_PHACE 1.03E-38 

TRINITY_DN205799_c16_g1_i1 CLIPs Trypsin 3A1 complete 265 TRY3_AEDAE 5.19E-62 

TRINITY_DN199291_c0_g1_i2 CLIPs Trypsin 5G1 5prime_partial 253 TRY5_AEDAE 1.58E-21 

TRINITY_DN146385_c0_g1_i1 CLIPs Trypsin eta 3prime_partial 157 TRYU_DROER 2.23E-20 

TRINITY_DN28487_c0_g2_i1 CLIPs Trypsin eta 5prime_partial 150 TRYU_DROER 1.43E-24 

TRINITY_DN116125_c0_g1_i1 CLIPs Trypsin II-P29 5prime_partial 230 TRY3_CHICK 1.26E-47 

TRINITY_DN198412_c0_g2_i1 CLIPs Trypsin zeta complete 263 TRYZ_DROME 5.59E-28 

TRINITY_DN138339_c0_g1_i1 CLIPs Trypsin-1-1 5prime_partial 282 TRYP_NEOBL 7.18E-43 

TRINITY_DN165791_c2_g1_i1 CLIPs Trypsin-1-2 internal 164 TRYP_ASTAS 1.74E-39 

TRINITY_DN190257_c0_g1_i1 CLIPs Trypsin-1-3 5prime_partial 263 TRYDG_DROME 1.46E-52 

TRINITY_DN194806_c1_g1_i1 CLIPs Trypsin-1-4 5prime_partial 159 TRY1_ANOGA 3.77E-41 

TRINITY_DN201020_c2_g1_i1 CLIPs Trypsin-1-5 5prime_partial 266 TRYP_ASTAS 6.01E-46 

TRINITY_DN201073_c0_g1_i1 CLIPs Trypsin-1-6 5prime_partial 264 TRY1_ANOGA 3.17E-69 

TRINITY_DN201373_c1_g1_i1 CLIPs Trypsin-1-7 5prime_partial 301 TRYP_ASTAS 1.68E-48 

TRINITY_DN202628_c0_g1_i1 CLIPs Trypsin-1-8 5prime_partial 314 TRY1_ANOGA 1.63E-59 

TRINITY_DN202673_c0_g1_i1 CLIPs Trypsin-1-9 5prime_partial 260 TRY1_ANOGA 1.03E-43 

TRINITY_DN202753_c4_g1_i1 CLIPs Trypsin-1-10 5prime_partial 176 TRYP_ASTAS 2.22E-31 

TRINITY_DN203473_c0_g2_i1 CLIPs Trypsin-1-11 5prime_partial 293 TRYP_ASTAS 1.19E-47 

TRINITY_DN203701_c0_g1_i2 CLIPs Trypsin-1-12 5prime_partial 273 TRY1_ANOGA 1.56E-54 

TRINITY_DN204594_c1_g1_i3 CLIPs Trypsin-1-13 5prime_partial 248 TRYP_ASTAS 3.24E-48 

TRINITY_DN205704_c1_g1_i1 CLIPs Trypsin-1-14 5prime_partial 260 TRY1_ANOGA 3.62E-61 

TRINITY_DN210519_c2_g1_i1 CLIPs Trypsin-1-15 complete 261 TRYP_ASTAS 2.25E-44 

TRINITY_DN211373_c1_g1_i1 CLIPs Trypsin-1-16 5prime_partial 262 TRY1_ANOGA 8.15E-60 

TRINITY_DN229351_c0_g1_i1 CLIPs Trypsin-1-17 5prime_partial 169 TRYP_ASTAS 3.7E-44 

TRINITY_DN203274_c4_g3_i1 CLIPs Trypsin-2-1 5prime_partial 125 TRY2_SALSA 1.39E-24 

TRINITY_DN204349_c0_g1_i1 CLIPs Trypsin-2-2 5prime_partial 287 TRY2_ANOGA 1.21E-42 
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TRINITY_DN164285_c1_g1_i1 CLIPs Trypsin-3-1 5prime_partial 256 TRY3_ANOGA 1.33E-45 

TRINITY_DN198524_c0_g1_i1 CLIPs Trypsin-3-2 5prime_partial 251 TRY3_ANOGA 1.09E-35 

TRINITY_DN199137_c0_g1_i1 CLIPs Trypsin-3-3 5prime_partial 269 TRY2_ANOGA 1.21E-52 

TRINITY_DN202672_c0_g1_i2 CLIPs Trypsin-3-4 complete 257 TRY3_ANOGA 1.68E-61 

TRINITY_DN207975_c4_g4_i3 CLIPs Trypsin-3-5 complete 261 TRY3_ANOGA 6.52E-54 

TRINITY_DN198196_c0_g1_i1 CLIPs Trypsin-4 complete 269 TRY4_ANOGA 6.74E-21 

TRINITY_DN211048_c3_g1_i1 CLIPs Trypsin-5(CLIP-1) 5prime_partial 261 TRY5_ANOGA 1.22E-41 

TRINITY_DN168020_c0_g1_i1 CLIPs Trypsin-7-1 internal 126 TRY7_ANOGA 2.07E-28 

TRINITY_DN168098_c0_g1_i1 CLIPs Trypsin-7-2 3prime_partial 250 TRY4_ANOGA 1.73E-48 

TRINITY_DN197824_c0_g1_i1 CLIPs Trypsin-7-3 5prime_partial 232 TRY7_ANOGA 2.86E-39 

TRINITY_DN201441_c0_g1_i1 CLIPs Trypsin-7-4 5prime_partial 268 TRY7_ANOGA 4.32E-61 

TRINITY_DN201757_c0_g1_i1 CLIPs Trypsin-7-5 5prime_partial 238 TRY7_ANOGA 2.23E-57 

TRINITY_DN202314_c0_g1_i3 CLIPs Trypsin-7-6 complete 265 TRY7_ANOGA 1.61E-26 

TRINITY_DN205251_c0_g1_i1 CLIPs Trypsin-7-7 5prime_partial 259 TRY1_ANOGA 3.49E-60 

TRINITY_DN205378_c3_g1_i2 CLIPs Trypsin-7-8 complete 261 TRY7_ANOGA 6.43E-58 

TRINITY_DN205922_c0_g1_i1 CLIPs Trypsin-7-9 complete 286 TRY7_ANOGA 7.29E-43 

TRINITY_DN206189_c5_g1_i1 CLIPs Trypsin-7-10 5prime_partial 140 TRY7_ANOGA 1.36E-39 

TRINITY_DN209682_c5_g1_i1 CLIPs Trypsin-7-11 5prime_partial 266 TRY7_ANOGA 1.34E-29 

TRINITY_DN209701_c4_g2_i1 CLIPs Trypsin-7-12 complete 259 TRY7_ANOGA 1.08E-43 

TRINITY_DN211152_c0_g1_i3 CLIPs Trypsin-7-13 complete 254 TRY7_ANOGA 1.06E-63 

TRINITY_DN202673_c1_g2_i2 CLIPs Trypsin-7(CLIP-6) complete 260 TRY7_ANOGA 9.99E-37 

TRINITY_DN198138_c1_g1_i2 CLIPs Venom protease 5prime_partial 300 SP4_BOMPE 1.04E-42 

TRINITY_DN202245_c0_g1_i1 CLIPs Venom serine protease 34-1 5prime_partial 293 SP34_APIME 7.72E-67 

TRINITY_DN208065_c2_g1_i1 CLIPs Venom serine protease 34-2 complete 395 SP34_APIME 5.16E-74 

TRINITY_DN210801_c1_g1_i3 CLIPs Venom serine protease Bi-VSP-1 complete 378 VSP_BOMIG 1.73E-103 

TRINITY_DN206428_c4_g1_i3 CLIPs Venom serine protease Bi-VSP-2 5prime_partial 320 VSP_BOMIG 1.87E-72 

TRINITY_DN210649_c2_g1_i1 CTLs Collectin-12 internal 150 COL12_RAT 0.000000173 

TRINITY_DN210649_c5_g1_i2 CTLs C-type lectin domain family 4 member E 3prime_partial 253 MRC2_MOUSE 1.93E-09 

TRINITY_DN213404_c0_g1_i1 CTLs C-type lectin mannose-binding isoform complete 194 LECM_OXYSU 1.34E-13 

TRINITY_DN199675_c1_g1_i1 CTLs C-type mannose receptor 2 3prime_partial 975 MRC2_HUMAN 7.27E-09 
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TRINITY_DN207865_c5_g1_i3 CTLs Galactose-specific lectin nattectin complete 193 LECG_THANI 3.33E-08 

TRINITY_DN137749_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-7 5prime_partial 140 LPSBP_PERAM 1.05E-39 

TRINITY_DN143323_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-8 5prime_partial 117 LPSBP_PERAM 1.39E-33 

TRINITY_DN167970_c3_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-9 5prime_partial 140 LPSBP_PERAM 5.44E-24 

TRINITY_DN183662_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-10 complete 231 LPSBP_PERAM 8.06E-47 

TRINITY_DN186074_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-11 5prime_partial 139 LPSBP_PERAM 1.02E-33 

TRINITY_DN191904_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-12 5prime_partial 172 LPSBP_PERAM 6.15E-27 

TRINITY_DN192635_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-13 complete 226 LPSBP_PERAM 3.13E-29 

TRINITY_DN193512_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-14 5prime_partial 189 LPSBP_PERAM 1.46E-35 

TRINITY_DN199055_c0_g1_i3 CTLs Hemolymph lipopolysaccharide-binding protein-15 complete 244 LPSBP_PERAM 5.74E-49 

TRINITY_DN200685_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-16 complete 218 LPSBP_PERAM 1.45E-21 

TRINITY_DN200789_c0_g1_i2 CTLs Hemolymph lipopolysaccharide-binding protein-17 5prime_partial 243 LPSBP_PERAM 1.17E-45 

TRINITY_DN201843_c0_g1_i3 CTLs Hemolymph lipopolysaccharide-binding protein-18 complete 228 LPSBP_PERAM 1.5E-32 

TRINITY_DN203168_c1_g1_i2 CTLs Hemolymph lipopolysaccharide-binding protein-19 5prime_partial 241 LPSBP_PERAM 3.87E-46 

TRINITY_DN203647_c0_g1_i2 CTLs Hemolymph lipopolysaccharide-binding protein-20 5prime_partial 201 LPSBP_PERAM 7.04E-43 

TRINITY_DN203978_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-21 complete 226 LPSBP_PERAM 2.25E-38 

TRINITY_DN204072_c2_g4_i2 CTLs Hemolymph lipopolysaccharide-binding protein-22 5prime_partial 181 LPSBP_PERAM 2.47E-32 

TRINITY_DN204436_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-23 complete 234 LPSBP_PERAM 3.98E-37 

TRINITY_DN204569_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-24 5prime_partial 367 LPSBP_PERAM 4.12E-10 

TRINITY_DN204627_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-25 5prime_partial 255 LPSBP_PERAM 6.64E-51 

TRINITY_DN204859_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-26 internal 163 LPSBP_PERAM 1.49E-32 

TRINITY_DN204859_c1_g2_i2 CTLs Hemolymph lipopolysaccharide-binding protein-27 5prime_partial 240 LPSBP_PERAM 1.18E-43 

TRINITY_DN205179_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-28 5prime_partial 260 LPSBP_PERAM 4.67E-43 

TRINITY_DN205615_c0_g2_i4 CTLs Hemolymph lipopolysaccharide-binding protein-29 complete 294 LPSBP_PERAM 7.05E-19 

TRINITY_DN206020_c8_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-30 complete 230 LPSBP_PERAM 6.3E-57 

TRINITY_DN206615_c15_g1_i4 CTLs Hemolymph lipopolysaccharide-binding protein-31 complete 257 LPSBP_PERAM 1.15E-153 

TRINITY_DN207869_c4_g1_i3 CTLs Hemolymph lipopolysaccharide-binding protein-32 complete 235 LPSBP_PERAM 8.47E-37 

TRINITY_DN207877_c7_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-33 complete 233 LPSBP_PERAM 4.6E-53 

TRINITY_DN208497_c3_g2_i1 CTLs Hemolymph lipopolysaccharide-binding protein-34 complete 239 LPSBP_PERAM 8.64E-71 

TRINITY_DN208586_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-35 complete 223 LPSBP_PERAM 6.88E-54 
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TRINITY_DN208704_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-36 complete 232 LPSBP_PERAM 1.22E-45 

TRINITY_DN209415_c7_g1_i5 CTLs Hemolymph lipopolysaccharide-binding protein-37 complete 224 LPSBP_PERAM 4.79E-28 

TRINITY_DN210009_c2_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-38 complete 227 LPSBP_PERAM 1.95E-49 

TRINITY_DN210940_c11_g1_i3 CTLs Hemolymph lipopolysaccharide-binding protein-39 complete 167 LPSBP_PERAM 2.91E-19 

TRINITY_DN211010_c3_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-40 5prime_partial 152 LPSBP_PERAM 5.22E-24 

TRINITY_DN212295_c3_g1_i3 CTLs Hemolymph lipopolysaccharide-binding protein-41 complete 232 LPSBP_PERAM 5.11E-38 

TRINITY_DN212999_c2_g3_i1 CTLs Hemolymph lipopolysaccharide-binding protein-42 complete 236 LPSBP_PERAM 2.6E-48 

TRINITY_DN213121_c0_g3_i5 CTLs Hemolymph lipopolysaccharide-binding protein-43 5prime_partial 317 LPSBP_PERAM 1.28E-17 

TRINITY_DN213148_c7_g1_i2 CTLs Hemolymph lipopolysaccharide-binding protein-44 5prime_partial 243 LPSBP_PERAM 8.17E-50 

TRINITY_DN214096_c6_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-45 5prime_partial 135 LPSBP_PERAM 2.34E-23 

TRINITY_DN277272_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-46 5prime_partial 242 LPSBP_PERAM 3.41E-47 

TRINITY_DN209100_c1_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-1 complete 238 LPSBP_PERAM 9.94E-73 

TRINITY_DN207716_c2_g2_i1 CTLs Hemolymph lipopolysaccharide-binding protein-2 complete 240 LPSBP_PERAM 8.63E-60 

TRINITY_DN212540_c0_g1_i6 CTLs Hemolymph lipopolysaccharide-binding protein-3 5prime_partial 317 LPSBP_PERAM 6.66E-39 

TRINITY_DN205710_c2_g3_i3 CTLs Hemolymph lipopolysaccharide-binding protein-4 complete 178 LPSBP_PERAM 1.71E-18 

TRINITY_DN202299_c0_g2_i1 CTLs Hemolymph lipopolysaccharide-binding protein-5 complete 233 LPSBP_PERAM 6.16E-29 

TRINITY_DN190586_c0_g1_i1 CTLs Hemolymph lipopolysaccharide-binding protein-6 complete 184 LPSBP_PERAM 4.65E-27 

TRINITY_DN200869_c3_g1_i1 CTLs L-selectin 5prime_partial 244 LYAM1_RAT 0.000326 

TRINITY_DN201319_c0_g1_i1 CTLs Snaclec agglucetin subunit alpha-1 internal 166 SLA1_DEIAC 0.0000166 

TRINITY_DN210649_c10_g1_i1 CTLs 
Sushi, von Willebrand factor type A, EGF and pentraxin domain-
containing protein 1 

5prime_partial 1703 SVEP1_HUMAN 4.37E-13 

TRINITY_DN199108_c0_g1_i1 DEFs Defensin 5prime_partial 92 DEFI_ORYRH 1.2E-10 

TRINITY_DN200357_c0_g1_i1 DEFs Defensin-2 complete 73 DEFI_ORYRH 1.21E-10 

TRINITY_DN138632_c0_g1_i1 DEFs Holotricin-1 5prime_partial 90 DEF1_HOLDI 2.12E-10 

TRINITY_DN203850_c0_g1_i2 destabilase Lysozyme-3 5prime_partial 154 LYS_CRAGI 2.25E-09 

TRINITY_DN210429_c5_g1_i4 destabilase Lysozyme-4 5prime_partial 167 LYS_CRAGI 7.2E-09 

TRINITY_DN187110_c0_g1_i1 destabilase Lysozyme-7 5prime_partial 162 LYS_MERLU 0.00000242 

TRINITY_DN199333_c0_g2_i1 destabilase Lysozyme-8 5prime_partial 168 LYS_MERLU 7.07E-09 

TRINITY_DN205389_c7_g4_i3 destabilase Lysozyme-9 complete 148 LYS3_CRAVI 0.0000012 

TRINITY_DN210346_c2_g2_i4 destabilase Lysozyme-1 complete 156 LYS_OSTED 6.48E-12 

TRINITY_DN207842_c0_g1_i5 Dif_Toll Embryonic polarity protein dorsal complete 795 DORS_DROME 5.94E-156 
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TRINITY_DN210555_c5_g1_i5 
Domeless_JAK-
STAT 

Cytokine receptor complete 1027 DOME_DROME 5.64E-52 

TRINITY_DN210445_c4_g2_i4 DRSs Drosomycin complete 67 DMYC_DROME 7.37E-20 

TRINITY_DN207385_c5_g3_i3 Fadd_IMD Fas-associated death domain protein complete 229 FADD_DROME 1.2E-10 

TRINITY_DN166725_c0_g2_i1 FREPs Angiopoietin-related protein 1 5prime_partial 274 ANGL1_HUMAN 4.46E-49 

TRINITY_DN29572_c1_g1_i1 FREPs Protein scabrous internal 312 SCA_DROME 3.4E-69 

TRINITY_DN203196_c2_g1_i1 FREPs Techylectin-5A complete 726 TL5A_TACTR 6.55E-48 

TRINITY_DN206797_c12_g1_i1 FREPs Techylectin-5B internal 101 TL5B_TACTR 4.46E-25 

TRINITY_DN203975_c0_g1_i1 GALEs 32 kDa beta-galactoside-binding lectin-1 5prime_partial 396 LEG1_HAECO 1.08E-19 

TRINITY_DN204225_c6_g1_i1 GALEs 32 kDa beta-galactoside-binding lectin-2 5prime_partial 327 LEG1_HAECO 1.28E-40 

TRINITY_DN207109_c1_g1_i3 GALEs 32 kDa beta-galactoside-binding lectin-3 complete 509 LEG1_HAECO 1.71E-34 

TRINITY_DN203081_c1_g1_i1 GALEs Galectin-4-1 complete 301 LEG5_RAT 6.34E-29 

TRINITY_DN205412_c1_g1_i1 GALEs Galectin-4-2 complete 322 LEG4_MOUSE 4.66E-33 

TRINITY_DN201583_c0_g1_i1 GNBP Beta-1,3-glucan-binding protein 5prime_partial 363 BGBP_PENMO 2.96E-80 

TRINITY_DN204546_c3_g3_i3 GNBP Beta-1,3-glucan-binding protein complete 352 BGBP_PENMO 2.45E-77 

TRINITY_DN208082_c3_g2_i1 GNBP Beta-1,3-glucan-binding protein 5prime_partial 395 BGBP_PENMO 8.61E-111 

TRINITY_DN209559_c7_g2_i7 GNBP Beta-1,3-glucan-binding protein complete 353 BGBP_PENMO 1.5E-71 

TRINITY_DN210026_c1_g1_i1 GNBP Beta-1,3-glucan-binding protein 5prime_partial 209 BGBP_PENMO 2.12E-50 

TRINITY_DN210026_c2_g1_i3 GNBP Beta-1,3-glucan-binding protein 5prime_partial 370 BGBP_PENMO 2.51E-82 

TRINITY_DN213231_c6_g1_i4 GNBP Beta-1,3-glucan-binding protein 5prime_partial 384 BGBP_PENMO 1.33E-106 

TRINITY_DN213231_c4_g1_i1 GNBP Beta-1,3-glucan-binding protein (GNBP1) internal 183 BGBP_PENMO 2.64E-45 

TRINITY_DN209017_c1_g1_i4 GNBP Beta-1,3-glucan-binding protein 1 complete 502 BGBP_BOMMO 9.38E-121 

TRINITY_DN206442_c7_g2_i2 GPXs Phospholipid hydroperoxide glutathione peroxidase-1 complete 196 GPX4_CALJA 6.95E-60 

TRINITY_DN206811_c7_g2_i2 GPXs Phospholipid hydroperoxide glutathione peroxidase-2 complete 170 GPX4_CALJA 1.52E-56 

TRINITY_DN211448_c5_g3_i1 Hopscoth Tyrosine-protein kinase hopscotch complete 1117 JAK_DROME 2.4E-57 

TRINITY_DN208562_c1_g1_i1 HPXs Chorion peroxidase-1 internal 296 PERC_DROME 2.75E-56 

TRINITY_DN212550_c1_g1_i3 HPXs Chorion peroxidase-2 5prime_partial 986 PERO_DROME 3.95E-137 

TRINITY_DN212846_c0_g2_i1 HPXs Chorion peroxidase-3 3prime_partial 984 PERC_DROME 4.87E-114 

TRINITY_DN79403_c0_g1_i1 HPXs Chorion peroxidase-4 internal 109 PERC_DROME 7.61E-13 

TRINITY_DN211353_c4_g2_i9 HPXs Dual oxidase-1 complete 950 DUOX_DROME 2.47E-180 
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TRINITY_DN240373_c0_g1_i1 HPXs Dual oxidase-2 internal 176 DUOX_DROME 1.54E-99 

TRINITY_DN27310_c0_g1_i1 HPXs Dual oxidase-3 internal 113 DUOX_DROME 1.51E-48 

TRINITY_DN165703_c0_g1_i1 HPXs Myeloperoxidase internal 210 PERM_MOUSE 8.27E-27 

TRINITY_DN211655_c0_g1_i2 HPXs Peroxidase-1 5prime_partial 718 PERO_DROME 0 

TRINITY_DN213505_c6_g1_i3 HPXs Peroxidase-2 complete 672 PERO_DROME 1.94E-98 

TRINITY_DN177411_c0_g1_i1 HPXs Peroxidase skpo-1 5prime_partial 314 SKPO1_CAEEL 7E-37 

TRINITY_DN150155_c0_g1_i1 HPXs Peroxidasin-1 internal 127 PXDN_XENTR 6.63E-36 

TRINITY_DN200589_c0_g1_i1 HPXs Peroxidasin-2 5prime_partial 532 PXDN_XENTR 4.61E-98 

TRINITY_DN263380_c0_g1_i1 HPXs Peroxidasin-3 internal 151 PXDN_DROME 5.15E-10 

TRINITY_DN212828_c11_g2_i4 HPXs Peroxidasin homolog 5prime_partial 1362 PXDN_MOUSE 0 

TRINITY_DN151240_c0_g1_i1 HPXs Thyroid peroxidase internal 114 PERT_PIG 2.24E-25 

TRINITY_DN210057_c3_g1_i2 IAPs Death-associated inhibitor of apoptosis 1 complete 409 IAP_GVCPM 3.84E-67 

TRINITY_DN205171_c1_g1_i1 IAPs Death-associated inhibitor of apoptosis 2 complete 499 DIAP2_DROME 2.65E-73 

TRINITY_DN183978_c0_g1_i1 Imd_IMD Receptor-interacting serine/threonine-protein kinase 1-1 5prime_partial 655 RIPK1_MOUSE 0.00000406 

TRINITY_DN202436_c1_g1_i1 Imd_IMD Receptor-interacting serine/threonine-protein kinase 1-2 complete 252 RIPK1_MOUSE 9.46E-09 

TRINITY_DN210495_c4_g1_i6 Ird5_IMD Inhibitor of nuclear factor kappa-B kinase subunit alpha complete 662 IKKA_XENLA 8.54E-122 

TRINITY_DN211996_c0_g1_i5 JNK_ip_Toll C-Jun-amino-terminal kinase-interacting protein 3 complete 1273 JIP3_HUMAN 0 

TRINITY_DN204438_c0_g1_i2 Key_IMD Optineurin complete 358 OPTN_DANRE 6.59E-14 

TRINITY_DN207725_c2_g1_i1 LYSs Lysozyme-5 5prime_partial 155 LYS_GALME 3.04E-45 

TRINITY_DN208075_c4_g1_i1 LYSs Lysozyme-6 5prime_partial 153 LYS_BOMMO 9.6E-39 

TRINITY_DN210486_c4_g1_i4 LYSs Lysozyme c-1 complete 146 LYSC1_ANOGA 7.39E-41 

TRINITY_DN205079_c0_g1_i1 LYSs Lysozyme P 5prime_partial 221 LYSP_DROME 3.65E-26 

TRINITY_DN211434_c0_g1_i3 LYSs Lysozyme X complete 137 LYSX_DROME 8.69E-21 

TRINITY_DN209720_c5_g1_i2 LYSs Lysozyme-2 complete 142 LYSC1_ANOGA 1.19E-39 

TRINITY_DN196538_c0_g1_i1 MLs Epididymal secretory protein E1-1 complete 148 NPC2_PANTR 2.73E-15 

TRINITY_DN202244_c0_g2_i1 MLs Epididymal secretory protein E1-2 5prime_partial 151 NPC2_PANTR 9.99E-13 

TRINITY_DN263538_c0_g1_i1 MLs Epididymal secretory protein E1-3 complete 147 NPC2_CANLF 6.69E-13 

TRINITY_DN208537_c10_g1_i4 MLs MD-2-related lipid-recognition protein complete 160 ML1P_MANSE 1.43E-17 

TRINITY_DN169438_c1_g1_i3 MLs Protein NPC2 homolog-1 complete 102 NPC2_DROME 2.55E-24 

TRINITY_DN206261_c0_g1_i2 MLs Protein NPC2 homolog-2 complete 160 ES16_MANSE 2.37E-12 
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TRINITY_DN208822_c2_g3_i1 MLs Protein NPC2 homolog-3 complete 161 NPC2_DROME 1.1E-32 

TRINITY_DN187224_c1_g2_i1 Myd88_Toll Myeloid differentiation primary response protein MyD88 complete 410 MYD88_SALSA 2.43E-32 

TRINITY_DN208835_c1_g2_i1 Pelle_Toll Serine/threonine-protein kinase pelle complete 798 KPEL_DROME 5.65E-65 

TRINITY_DN199413_c3_g1_i2 Pellino-Toll Protein pellino 5prime_partial 455 PELI_DROME 0 

TRINITY_DN201679_c0_g1_i2 PepC54_ATG Cysteine protease ATG4B complete 373 ATG4B_DANRE 5.54E-120 

TRINITY_DN265153_c0_g1_i1 PGRPs Peptidoglycan recognition protein 5prime_partial 204 PGRP_BOMMO 1.24E-31 

TRINITY_DN265153_c0_g2_i1 PGRPs Peptidoglycan recognition protein complete 263 PGRP_BOMMO 9.29E-31 

TRINITY_DN212813_c2_g3_i4 PGRPs Peptidoglycan recognition protein 1 5prime_partial 289 PGRP1_CAMDR 3.81E-41 

TRINITY_DN183258_c0_g2_i3 PGRPs Peptidoglycan recognition protein 3 complete 257 PGRP3_HUMAN 4.48E-35 

TRINITY_DN208828_c7_g1_i1 PGRPs Peptidoglycan recognition protein 3 5prime_partial 386 PGRP3_MOUSE 7.55E-61 

TRINITY_DN206875_c0_g1_i1 PGRPs Peptidoglycan-recognition protein 2 5prime_partial 205 PGRP2_HOLDI 1.12E-55 

TRINITY_DN204473_c0_g1_i1 PGRPs Peptidoglycan-recognition protein LB complete 222 PGPLB_DROME 1.87E-48 

TRINITY_DN211097_c8_g1_i1 PGRPs Peptidoglycan-recognition protein LB 5prime_partial 262 PGPLB_DROME 4.32E-60 

TRINITY_DN206097_c5_g1_i2 PGRPs Peptidoglycan-recognition protein LF complete 256 PGPLF_DROME 1.43E-37 

TRINITY_DN208425_c4_g1_i1 PGRPs Peptidoglycan-recognition protein LF complete 246 PGPLF_DROME 1.48E-40 

TRINITY_DN172177_c0_g1_i1 PGRPs Peptidoglycan-recognition protein SB1 5prime_partial 171 PGSB1_DROME 9.04E-59 

TRINITY_DN212786_c6_g2_i3 PGRPs Peptidoglycan-recognition protein SB1 complete 140 PGSB1_DROME 8.06E-37 

TRINITY_DN206082_c6_g1_i2 PGRPs Peptidoglycan-recognition protein SC2 5prime_partial 292 PGSC2_DROME 6.07E-35 

TRINITY_DN209777_c13_g2_i1 PGRPs Peptidoglycan-recognition protein SC2 complete 205 PGSC2_DROSI 3.32E-50 

TRINITY_DN204133_c0_g1_i2 PGRPs Peptidoglycan-recognition protein SD 5prime_partial 314 PGPSD_DROME 1.87E-44 

TRINITY_DN181389_c2_g1_i1 PPOs Hemocyanin A chain 3prime_partial 184 HCYA_PANIN 2.29E-52 

TRINITY_DN214369_c3_g1_i3 PPOs Phenoloxidase 2 complete 695 PPO2_DROME 0 

TRINITY_DN212806_c6_g1_i2 RELs Nuclear factor NF-kappa-B p110 subunit complete 957 NFKB1_DROME 3.64E-91 

TRINITY_DN201036_c0_g1_i3 SCRBs Protein croquemort-1 complete 477 CRQ_DROME 3.78E-77 

TRINITY_DN204974_c10_g3_i3 SCRBs Protein croquemort-2 complete 518 CRQ_DROME 5.92E-86 

TRINITY_DN208844_c0_g1_i2 SCRBs Protein croquemort-3 complete 520 CRQ_DROME 9.34E-106 

TRINITY_DN209233_c5_g1_i1 SCRBs Protein croquemort-4 internal 286 CRQ_DROME 9.94E-43 

TRINITY_DN209233_c8_g1_i2 SCRBs Protein croquemort-5 complete 528 CRQ_DROME 4.76E-66 

TRINITY_DN209425_c4_g1_i1 SCRBs Protein croquemort-6 complete 534 CRQ_DROME 4.03E-82 

TRINITY_DN209511_c5_g1_i2 SCRBs Protein croquemort-7 complete 515 CRQ_DROME 1.14E-100 
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TRINITY_DN122913_c2_g1_i1 SCRBs Scavenger receptor class B member 1-1 internal 111 SCRB1_CRIGR 2.88E-20 

TRINITY_DN204157_c1_g1_i1 SCRBs Scavenger receptor class B member 1-2 internal 436 SCRB1_RAT 4.11E-52 

TRINITY_DN205230_c2_g1_i1 SCRBs Scavenger receptor class B member 1-3 complete 575 SCRB1_PIG 1.27E-66 

TRINITY_DN206915_c7_g1_i1 SCRBs Scavenger receptor class B member 1-4 complete 545 SCRB1_PIG 2.6E-89 

TRINITY_DN211612_c0_g1_i2 SCRBs Scavenger receptor class B member 1-5 complete 570 SCRB1_MOUSE 3.3E-69 

TRINITY_DN212784_c3_g1_i1 SCRBs Scavenger receptor class B member 1-6 5prime_partial 539 SCRB1_BOVIN 1.3E-71 

TRINITY_DN206998_c9_g1_i2 SCRBs Sensory neuron membrane protein 1-1 5prime_partial 544 SNMP1_APIME 2.98E-147 

TRINITY_DN212608_c7_g1_i7 SCRBs Sensory neuron membrane protein 1-2 5prime_partial 524 SNMP1_APIME 2.47E-141 

TRINITY_DN146135_c0_g1_i1 SCRCs MAM and LDL-receptor class A domain-containing protein 2-1 5prime_partial 420 MLRP2_ACRMI 8.52E-42 

TRINITY_DN194647_c0_g1_i1 SCRCs 
MAM and LDL-receptor class A domain-containing protein 
2(SCRC) 

5prime_partial 780 MLRP2_ACRMI 4.68E-32 

TRINITY_DN168267_c0_g1_i2 SPZs_Toll Protein spaetzle-1 5prime_partial 311 SPZ_DROME 0.000000354 

TRINITY_DN171056_c0_g1_i2 SPZs_Toll Protein spaetzle-2 complete 215 SPZ_DROME 1.43E-12 

TRINITY_DN192862_c1_g1_i1 SPZs_Toll Protein spaetzle-3 complete 200 SPZ_DROME 5.25E-17 

TRINITY_DN194130_c4_g1_i1 SPZs_Toll Protein spaetzle-4 internal 136 SPZ_DROME 0.000577 

TRINITY_DN196312_c4_g1_i1 SPZs_Toll Protein spaetzle-5 complete 249 SPZ_DROME 9.63E-22 

TRINITY_DN207008_c0_g1_i2 SPZs_Toll Protein spaetzle-6 complete 207 SPZ_DROME 1.66E-14 

TRINITY_DN27141_c0_g1_i1 SPZs_Toll Protein spaetzle-7 5prime_partial 197 SPZ_DROME 5.79E-12 

TRINITY_DN212647_c8_g1_i1 SRPNs Alaserpin 5prime_partial 418 SERA_MANSE 3.28E-46 

TRINITY_DN170074_c0_g1_i1 SRPNs Leukocyte elastase inhibitor-1 5prime_partial 401 ILEU_BOVIN 7.02E-60 

TRINITY_DN206893_c3_g3_i1 SRPNs Leukocyte elastase inhibitor-2 5prime_partial 450 ILEU_XENTR 5.54E-34 

TRINITY_DN208688_c6_g1_i5 SRPNs Leukocyte elastase inhibitor-3 complete 401 ILEU_BOVIN 1.07E-50 

TRINITY_DN210154_c3_g1_i1 SRPNs Leukocyte elastase inhibitor-4 complete 440 Y2678_METMA 3.09E-17 

TRINITY_DN211522_c5_g1_i1 SRPNs Leukocyte elastase inhibitor-5 complete 570 ILEU_BOVIN 4.92E-39 

TRINITY_DN204925_c0_g1_i1 SRPNs Leukocyte elastase inhibitor B 5prime_partial 339 ILEUB_MOUSE 2.38E-44 

TRINITY_DN201407_c0_g2_i1 SRPNs Leukocyte elastase inhibitor C-1 5prime_partial 415 ILEUC_MOUSE 3.56E-36 

TRINITY_DN206969_c8_g1_i5 SRPNs Leukocyte elastase inhibitor C-2 5prime_partial 404 ILEUC_MOUSE 8.35E-79 

TRINITY_DN208569_c16_g1_i1 SRPNs Leukocyte elastase inhibitor C-3 5prime_partial 414 ILEU_BOVIN 7.76E-63 

TRINITY_DN196029_c0_g1_i1 SRPNs Neuroserpin-1 complete 404 NEUS_HUMAN 3.53E-47 

TRINITY_DN206043_c1_g1_i2 SRPNs Neuroserpin-2 5prime_partial 426 NEUS_RAT 5.04E-27 
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TRINITY_DN207644_c13_g2_i1 SRPNs Neuroserpin-3 complete 618 NEUS_CHICK 3.56E-56 

TRINITY_DN210179_c0_g1_i2 SRPNs Serpin B11 5prime_partial 441 SPB11_MOUSE 7.84E-58 

TRINITY_DN204212_c0_g2_i1 SRPNs Serpin B3 complete 421 SPB3_HUMAN 2.15E-56 

TRINITY_DN201927_c0_g1_i1 SRPNs Serpin B4-1 complete 405 ILEU_XENTR 3.46E-50 

TRINITY_DN203015_c0_g1_i1 SRPNs Serpin B4-2 5prime_partial 587 SPB4_HUMAN 4.81E-32 

TRINITY_DN179560_c2_g1_i1 SRPNs Serpin B8-1 internal 197 SPB8_MOUSE 2.06E-13 

TRINITY_DN203799_c11_g1_i1 SRPNs Serpin B8-2 5prime_partial 418 SPB8_BOVIN 3.17E-77 

TRINITY_DN206323_c1_g1_i2 SRPNs Serpin B8-3 complete 412 SPB8_BOVIN 1.8E-46 

TRINITY_DN213132_c5_g2_i2 SRPNs Serpin B8-4 complete 403 Y2678_METMA 3.51E-47 

TRINITY_DN185998_c0_g1_i1 SRPNs Serpin B9 5prime_partial 409 SPB9_HUMAN 2.18E-54 

TRINITY_DN201023_c0_g1_i1 SRPNs Uncharacterized serpin-like protein MM_2675 5prime_partial 291 ACH2_BOMMO 2.26E-38 

TRINITY_DN205021_c0_g1_i1 
Stam_JAK-
STAT 

Signal transducing adapter molecule 1 complete 414 STAM1_HUMAN 1.36E-146 

TRINITY_DN210050_c5_g1_i1 
STAT_JAK-

STAT 
Signal transducer and activator of transcription 5A complete 813 STA5B_PIG 0 

TRINITY_DN207416_c6_g2_i1 TAB2_IMD TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 3prime_partial 109 TAB2_RAT 0.0000484 

TRINITY_DN204112_c0_g2_i1 TAK1_IMD Mitogen-activated protein kinase kinase kinase 7 complete 583 M3K7_BOVIN 4.01E-168 

TRINITY_DN212116_c6_g1_i3 TEPs Alpha-2-macroglobulin-like protein 1 complete 1771 A2ML1_HUMAN 0 

TRINITY_DN203691_c2_g1_i5 TEPs CD109 antigen-1 complete 1631 CD109_HUMAN 2.44E-127 

TRINITY_DN205654_c2_g1_i2 TEPs CD109 antigen-2 complete 1462 CD109_HUMAN 0 

TRINITY_DN206930_c2_g1_i2 TEPs CD109 antigen-3 5prime_partial 1270 CD109_HUMAN 6.21E-55 

TRINITY_DN208822_c2_g4_i2 Termicin Termicin-1 5prime_partial 81 TERN_PSEUS 0.000000012 

TRINITY_DN238294_c0_g1_i1 Termicin Termicin-2 5prime_partial 69 TERN_PSEUS 0.000158 

TRINITY_DN191714_c1_g1_i1 TLR_Toll Protein toll-1 complete 1414 TOLL_DROME 1.95E-45 

TRINITY_DN197463_c1_g1_i1 TLR_Toll Protein toll-2 complete 1414 TOLL_DROME 8.32E-41 

TRINITY_DN201305_c0_g1_i1 TLR_Toll Protein toll-3 5prime_partial 1147 TOLL_DROME 5.39E-67 

TRINITY_DN210363_c1_g1_i3 TLR_Toll Protein toll-4 3prime_partial 932 TOLL_DROME 0 

TRINITY_DN216320_c0_g1_i1 TLR_Toll Protein toll-5 5prime_partial 259 TOLL_DROME 4.3E-32 

TRINITY_DN199910_c0_g1_i1 TLR_Toll Toll-like receptor 13-1 complete 835 TLR2_CRIGR 2.42E-35 

TRINITY_DN207591_c0_g1_i2 TLR_Toll Toll-like receptor 13-2 complete 979 TLR1_HUMAN 8.55E-21 

TRINITY_DN212988_c1_g1_i1 TLR_Toll Toll-like receptor 13-3 complete 846 TLR13_MOUSE 5.35E-30 
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TRINITY_DN179468_c2_g1_i1 TLR_Toll Toll-like receptor 2-1 internal 123 TLR2_MACFA 8.05E-22 

TRINITY_DN213010_c2_g1_i8 TLR_Toll Toll-like receptor 2-2 complete 818 TLR2_HORSE 1.53E-40 

TRINITY_DN187166_c1_g1_i1 TLR_Toll Toll-like receptor 2 type-2 5prime_partial 231 TLR22_CHICK 4.22E-28 

TRINITY_DN206575_c10_g1_i1 TPXs Peroxiredoxin 1 complete 197 PRDX1_DROME 1.09E-102 

TRINITY_DN200539_c2_g1_i1 TPXs Peroxiredoxin-4 complete 248 PRDX4_MOUSE 4.7E-119 

TRINITY_DN199262_c2_g1_i1 TPXs Peroxiredoxin-6 complete 232 PRDX6_PIG 5.1E-72 

TRINITY_DN202519_c7_g1_i1 TPXs Peroxiredoxin-6 complete 220 PRDX6_PONAB 1.03E-72 

TRINITY_DN202739_c2_g1_i1 TPXs Peroxiredoxin-6 complete 221 PRDX6_CHICK 4.27E-101 

TRINITY_DN209350_c3_g1_i2 TPXs Peroxiredoxin-6 5prime_partial 234 PRDX6_CHICK 5.35E-77 

TRINITY_DN207196_c0_g1_i3 TPXs Thioredoxin-dependent peroxide reductase complete 235 PRDX3_RAT 4.74E-97 

TRINITY_DN204719_c8_g1_i1 Traf_Toll TNF receptor-associated factor 1 complete 413 TRAF1_MOUSE 8.47E-10 

TRINITY_DN191477_c0_g1_i1 Traf_Toll TNF receptor-associated factor 2 5prime_partial 583 TRAF2_HUMAN 3.25E-22 

TRINITY_DN209739_c7_g1_i1 Traf_Toll TNF receptor-associated factor 4 internal 394 TRAF4_MOUSE 7.42E-147 

TRINITY_DN209961_c8_g1_i3 Traf_Toll TNF receptor-associated factor 6 complete 383 TRAF6_BOVIN 1.21E-28 

TRINITY_DN206535_c9_g1_i1 Transferrin Melanotransferrin 5prime_partial 809 TRFM_RABIT 1.42E-124 

TRINITY_DN207471_c0_g1_i1 Transferrin Transferrin complete 762 TRF_BLADI 5.24E-59 

TRINITY_DN210772_c5_g4_i1 Transferrin Transferrin 5prime_partial 515 TRF_BLADI 0 

TRINITY_DN202454_c1_g1_i1 Tube_Toll Interleukin-1 receptor-associated kinase 4 complete 520 IRAK4_HUMAN 6.96E-62 

TRINITY_DN201921_c0_g1_i1 ULK_ATG Serine/threonine-protein kinase ULK3 complete 466 ULK3_XENLA 3.97E-144 

TRINITY_DN207690_c9_g1_i4 ULK_ATG Serine/threonine-protein kinase unc-51 complete 794 ULK1_HUMAN 1.71E-105 
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Appen ix I-G 

Enriched gene ontology terms in treatments that in BP and MF. GO analysis was performed by goseq 

script in Trinity software with a cut off of 0.05 at Over represented FDR and redundancy was reduced 

by REVIGO (Chapter I). 

Category numDEInCat numInCat Term Ontology 
Over 

represented 
FDR 

Enriched GO terms in Treatment: 

GO:0006952 28 578 Defense response BP 7.33E-14 

GO:0009607 21 497 Response to biotic stimulus BP 3.49E-10 

GO:0051707 19 417 Response to other organism BP 6.33E-10 

GO:0006955 20 510 Immune response BP 1.12E-08 

GO:0009605 27 1092 Response to external stimulus BP 2.67E-08 

GO:0050896 52 3825 Response to stimulus BP 7.92E-08 

GO:0007311 7 27 
Maternal specification of 

dorsal/ventral axis, oocyte, germ-
line encoded 

BP 1.28E-07 

GO:0002376 23 801 Immune system process BP 1.76E-07 

GO:0008063 8 41 Toll signaling pathway BP 2.03E-07 

GO:0030414 11 150 Peptidase inhibitor activity MF 7.21E-07 

GO:0004252 11 213 
Serine-type endopeptidase 

activity 
MF 2.90E-06 

GO:0061783 6 34 Peptidoglycan muralytic activity MF 4.59E-06 

GO:0017171 11 255 Serine hydrolase activity MF 2.20E-05 

GO:0016485 10 155 Protein processing BP 2.20E-05 

GO:0008233 20 1097 Peptidase activity MF 3.81E-05 

GO:0051604 10 171 Protein maturation BP 5.05E-05 

GO:0001817 10 195 Regulation of cytokine production BP 7.32E-05 

GO:0030203 8 104 
Glycosaminoglycan metabolic 

process 
BP 7.62E-05 

GO:0051704 19 970 Multi-organism process BP 1.59E-04 

GO:0031347 12 325 Regulation of defense response BP 1.82E-04 

GO:0010496 4 13 Intercellular transport BP 3.26E-04 

GO:0006508 20 1036 Proteolysis BP 6.38E-04 

GO:1901564 50 4708 
Organonitrogen compound 

metabolic process 
BP 6.50E-04 

GO:0055114 20 1085 Oxidation-reduction process BP 7.39E-04 

GO:0022829 4 18 Wide pore channel activity MF 9.07E-04 

GO:0003824 74 9583 Catalytic activity MF 9.47E-04 

GO:0046914 28 2663 Transition metal ion binding MF 0.002153901 

GO:1901888 5 52 
Regulation of cell junction 

assembly 
BP 0.002840631 

GO:0009056 26 1974 Catabolic process BP 0.003231654 

GO:0034097 7 116 Response to cytokine BP 0.003289328 

GO:0030246 9 302 Carbohydrate binding MF 0.00404917 

GO:0048583 29 2562 
Regulation of response to 

stimulus 
BP 0.006074953 

GO:0001935 4 41 Endothelial cell proliferation BP 0.00662464 
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GO:0030155 9 300 Regulation of cell adhesion BP 0.008505093 

GO:0004553 8 227 
Hydrolase activity, hydrolyzing O-

glycosyl compounds 
MF 0.010196919 

GO:1901135 15  851 
Carbohydrate derivative 

metabolic process 
BP 0.011009493 

GO:0016705 9 343 

Oxidoreductase activity, acting 
on paired donors, with 

incorporation or reduction of 
molecular oxygen 

MF 0.012133032 

GO:0005539 6 138 Glycosaminoglycan binding MF 0.012162977 

GO:0019835 3 18 Cytolysis BP 0.013956908 

GO:2000351 3 13 
Regulation of endothelial cell 

apoptotic process 
BP 0.015411537 

GO:0004040 2 4 Amidase activity MF 0.016135069 

GO:0016798 8 248 
Hydrolase activity, acting on 

glycosyl bonds 
MF 0.016768618 

GO:0016787 38 4755 Hydrolase activity MF 0.019081783 

GO:0007166 18 1221 
Cell surface receptor signaling 

pathway 
BP 0.02150251 

GO:0032963 4 56 Collagen metabolic process BP 0.02452051 

GO:0007249 3 14 
I-kappab kinase/NF-kappab 

signaling 
BP 0.027081516 

GO:0019752 15 800 
Carboxylic acid metabolic 

process 
BP 0.028989039 

GO:0005506 8 357 Iron ion binding MF 0.030760479 

GO:0020037 8 406 Heme binding MF 0.033910908 

GO:0055085 17 1200 Transmembrane transport BP 0.037414709 

GO:0046906 8 412 Tetrapyrrole binding MF 0.038234553 

GO:0043552 3 17 
Positive regulation of 

phosphatidylinositol 3-kinase 
activity 

BP 0.041060775 

GO:0042943 2 3 
D-amino acid transmembrane 

transporter activity 
MF 0.043505279 

GO:0046274 3 21 Lignin catabolic process BP 0.0458794 

GO:0052716 3 21 
Hydroquinone:oxygen 
oxidoreductase activity 

MF 0.0458794 

Enriched GO terms in Control: 

GO:0016491 59 1626 Oxidoreductase activity MF 3.99E-15 

GO:0003824 167 9563 Catalytic activity MF 9.01E-12 

GO:0005506 23 306 Iron ion binding MF 6.27E-11 

GO:0055114 44 1152 Oxidation-reduction process BP 9.71E-11 

GO:0003674 289 21156 Molecular_function MF 1.06E-10 

GO:0016705 21 325 

Oxidoreductase activity, acting 
on paired donors, with 

incorporation or reduction of 
molecular oxygen 

MF 1.28E-08 

GO:0020037 20 337 Heme binding MF 7.09E-08 

GO:0046906 20 345 Tetrapyrrole binding MF 9.96E-08 

GO:0044281 57 2266 
Small molecule metabolic 

process 
BP 1.24E-07 

GO:0030246 20 368 Carbohydrate binding MF 2.31E-07 

GO:0016798 20 392 
Hydrolase activity, acting on 

glycosyl bonds 
MF 2.92E-07 



Appendix 
(table continued from previous page) 

108   (table continued on next page) 
 

GO:0006082 39 1256 Organic acid metabolic process BP 5.79E-07 

GO:0008152 185 12740 Metabolic process BP 7.70E-07 

GO:0004497 16 248 Monooxygenase activity MF 9.99E-07 

GO:0005975 29 847 Carbohydrate metabolic process BP 1.51E-06 

GO:1901606 13 139 
Alpha-amino acid catabolic 

process 
BP 6.00E-06 

GO:0004553 17 363 
Hydrolase activity, hydrolyzing O-

glycosyl compounds 
MF 1.07E-05 

GO:1901135 33 1126 
Carbohydrate derivative 

metabolic process 
BP 1.46E-05 

GO:0008483 8 49 Transaminase activity MF 3.11E-05 

GO:0016769 8 49 
Transferase activity, transferring 

nitrogenous groups 
MF 3.11E-05 

GO:0048037 23 623 Cofactor binding MF 4.73E-05 

GO:1901071 12 181 
Glucosamine-containing 

compound metabolic process 
BP 8.09E-05 

GO:0005488 212 16517 Binding MF 1.11E-04 

GO:0006040 12 197 Amino sugar metabolic process BP 1.79E-04 

GO:0006022 14 265 Aminoglycan metabolic process BP 2.28E-04 

GO:0006629 35 1414 Lipid metabolic process BP 2.90E-04 

GO:1901605 15 305 
Alpha-amino acid metabolic 

process 
BP 6.41E-04 

GO:0032787 20 566 
Monocarboxylic acid metabolic 

process 
BP 6.61E-04 

GO:0009056 48 2326 Catabolic process BP 9.42E-04 

GO:0008061 10 160 Chitin binding MF 9.42E-04 

GO:0044255 28 1042 Cellular lipid metabolic process BP 9.42E-04 

GO:1901136 12 234 
Carbohydrate derivative catabolic 

process 
BP 0.001623593 

GO:0001871 6 51 Pattern binding MF 0.00178526 

GO:0030247 6 51 Polysaccharide binding MF 0.00178526 

GO:0044706 8 97 
Multi-multicellular organism 

process 
BP 0.00180708 

GO:0043167 127 9278 Ion binding MF 0.002078887 

GO:0000272 8 137 Polysaccharide catabolic process BP 0.002919611 

GO:0046692 6 56 Sperm competition BP 0.003248247 

GO:0006536 7 64 Glutamate metabolic process BP 0.003407849 

GO:0030170 8 96 Pyridoxal phosphate binding MF 0.003407849 

GO:0070279 8 97 Vitamin B6 binding MF 0.00345296 

GO:0022891 31 1444 
Substrate-specific 

transmembrane transporter 
activity 

MF 0.004905966 

GO:0008810 4 36 Cellulase activity MF 0.0067782 

GO:0019842 11 246 Vitamin binding MF 0.008802566 

GO:1901566 26 1223 
Organonitrogen compound 

biosynthetic process 
BP 0.009738231 

GO:0016614 15 501 
Oxidoreductase activity, acting 

on CH-OH group of donors 
MF 0.009738231 

GO:0019695 3 10 Choline metabolic process BP 0.011417138 

GO:0005215 37 1943 Transporter activity MF 0.011417138 

GO:0051384 8 124 Response to glucocorticoid BP 0.011732937 
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GO:0004609 3 8 
Phosphatidylserine 

decarboxylase activity 
MF 0.015463808 

GO:0015144 8 152 
Carbohydrate transmembrane 

transporter activity 
MF 0.018149402 

GO:0046394 13 366 Carboxylic acid biosynthetic 
process 

BP 0.018149402 

GO:0006103 5 37 2-oxoglutarate metabolic process BP 0.018633909 

GO:0050662 15 495 Coenzyme binding MF 0.019302754 

GO:0055085 28 1254 Transmembrane transport BP 0.019404858 

GO:0009636 7 111 Response to toxic substance BP 0.02439381 

GO:0071704 150 11794 Organic substance metabolic 
process 

BP 0.02439381 

GO:0045471 7 103 Response to ethanol BP 0.026388349 

GO:0044283 16 574 Small molecule biosynthetic 
process 

BP 0.027272418 

GO:0047801 3 10 L-cysteine:2-oxoglutarate 
aminotransferase activity 

MF 0.027882472 

GO:0006811 28 1327 Ion transport BP 0.027882472 

GO:0008643 8 163 Carbohydrate transport BP 0.029397212 

GO:1901564 84 5736 Organonitrogen compound 
metabolic process 

BP 0.030147324 

GO:0043434 9 187 Response to peptide hormone BP 0.032128636 

GO:0016717 4 26 Oxidoreductase activity, acting 
on paired donors, with oxidation 

of a pair of donors resulting in the 
reduction of molecular oxygen to 

two molecules of water 

MF 0.033488597 

GO:0009167 9 208 Purine ribonucleoside 
monophosphate metabolic 

process 

BP 0.033581904 

GO:0005976 8 190 Polysaccharide metabolic 
process 

BP 0.033581904 

GO:0043168 60 3848 Anion binding MF 0.033735578 

GO:0015766 6 95 Disaccharide transport BP 0.035306738 

GO:0015772 6 95 Oligosaccharide transport BP 0.035306738 

GO:0042947 6 95 Glucoside transmembrane 
transporter activity 

MF 0.035306738 

GO:0030239 5 72 Myofibril assembly BP 0.0362929 

GO:0046434 7 128 Organophosphate catabolic 
process 

BP 0.044155005 

GO:0006532 3 12 Aspartate biosynthetic process BP 0.04633753 
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Appen ix II-A 

 

Details of sample in Chapter II 
Species name Sample (castes/categories) Sample location Experimental purpose 

Blattella germanica Larvae, Adults In laboratory De novo RNAseq Assembly 

Blatta orientalis Larvae, Adults In laboratory De novo RNAseq Assembly 

Cryptocercus meridianus Larvae, Adults 
Yunshanping (27’14’N, 100’23’ , 
3.250km),Yulongxueshan, Lijiang, 

Yunnan, China 

De novo RNAseq Assembly, 
quantification of gene 

expression by RNAseq  

Cryptocercus pudacoensis Adults 
Pudacuo (27’79’N,99’55’ ,3.313km), 

Shangri-la, Diqing, Yunnan, China 
De novo RNAseq Assembly 

Mastotermes darwiniensis Larvae, Workers, Soldiers BAM De novo RNAseq Assembly 

Neotermes castaneus 
Larvae, Soldiers, False-Workers, 

Neotenics 
BAM 

De novo RNAseq Assembly, 
quantification of gene 

expression by RNAseq 

Kalotermes flavicollis 
Larvae, Soldiers, False-Workers, 

Primary Reproductive, Nymph 
BAM De novo RNAseq Assembly 

Cryptotermes brevis 
Larvae, Soldiers, False-Workers, 

Primary Reproductive, Nymph 
BAM De novo RNAseq Assembly 

Coptotermes formosanus 
Larvae, Soldiers, Workers, Neotenics, 

Nymph 
BAM De novo RNAseq Assembly 

Reticulitermes flavipes 
Larvae, Soldiers, 

Workers, Neotenics, Nymph 
BAM De novo RNAseq Assembly 

Prorhinotermes inopiinatus 
Larvae, False-Workers, Soldiers, 

Nymph 
BAM De novo RNAseq Assembly 

Macrotermes subhyalinus 
Larvae, Big Workers, Small Workers, 

Big Soldiers, Small Soldiers 
BAM De novo RNAseq Assembly 

Zootermopsis nevadasis Larvae, False-Workers, Soldiers BAM De novo RNAseq Assembly 

Pericapritermes sp. Workers, Soldiers China (N21.60213°, E101.58827°) De novo RNAseq Assembly 

Indotermes sp. Worker, Soldier China (N21.61799°, E101.58134°) De novo RNAseq Assembly 

Dicuspiditermes sp. Worker China (N21.61799°, E101.58134°) De novo RNAseq Assembly 

Globitermes sp.  Worker, Soldier, Nymph China (N21.96151°, E101.20104°) De novo RNAseq Assembly 

Bulbitermes sp. Worker, Soldier China (N21.96151°, E101.20104°) De novo RNAseq Assembly 

Promirotermes sp. Worker, Soldier 
Camarron (N03.39228°, 

E011.47251°) 
De novo RNAseq Assembly 
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Appendix II-B 

 

Information of additional genomic and transcriptomic data sets for Chapter II 

Species name SRA Accession ID Assemble program 

Blaberus atropos SRR921572 

TRINITY v2.5.1 

Eupolyphaga sinensis SRR1184454, SRR1184455 

Periplaneta americana SRR2994649, SRR2994650 

Cryptocercus wrighti SRR921587 

Cryptotermes domesticus SRR2039534 

Odontotermes formosanus SRR528715 

Prorhinotermes simplex SRR921637 

Reticulitermes banyulensis SRR5253660 

Reticulitermes flavipes 
Olonne 

SRR1325100 

Reticulitermes grassei SRR13251[02-10] 

Reticulitermes lucifugus SRR1325112, SRR1325111 

Hodotermopsis sjostedti DRR013045 

Newbler v2.7 Reticulitermes speratus DRR013046 

Nasutitermes takasagoensis DRR013047 

Zootermopsis nevadensis 
nuttingi 

Official Gene Set OGSv2.2  

Macrotermes natalensis Mnat_gene_v1.2.pep.fa  
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Appendix II-C 

 

Principle component analysis of gene expression after immune challenge in workers, soldiers, 

reproductives of Neotermes castaneus. 
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Appendix II-D 

Details on primers for quantitative PCR for Chapter II 

Name Primer Temperature (°C) Species 

Relish 
F:5'-CAGTACAAGGCAAACCCTC-3' 

57 

Neotermes 
canstaneus 

R:5'-TCATCTTCATCGTCGTCA-3' 

GNBP 
F:5'-GCTCCAGGTAACGGCTTCGA-3' 

56.5 
R:5'-ACCTTGCCAATAACTTCGT-3' 

Transferrin-1 
F:5'-CAACAACTTCGCCTTCCTC-3' 

61.5 
R:5'-TGCCCAGATCACCATTAGC -3' 

HPX 
F:5'-CATGCCGTCTTTCCTACAC-3' 

59.5 
R:5'-CTTCCGACCTTCGTTACCT-3' 

PGRP LB-1 
F:5'-TGATTCTCATGGCCGCTTC-3' 

61 
R:5'-ACATCGTAACCCGAGAGCAG-3' 

Termicin 
F:5'-GGCACTGACTTCCATAACG-3' 

56.5 
R:5'-GAGGGAGAACCTGGGCTAC-3' 

RL22 
F:5'-AACGTCCATTATGTTGTCCT-3' 

56.5 
R:5'-CAGCAACATATAAGGGCCAA-3' 

Relish 
F:5'- CTTCAGCAATGGACCTCT -3' 

56.5 

Cryptocercus 
meridianus 

R:5'- GTCGCATTCTCAAGTCAG-3' 

Termicin-1 
F:5'- CTACCATCAACGCTATCA-3' 

56.5 
R:5'- CTTGCGATGAATAATGTC-3' 

PGRP2 
F:5'- GAGCGGAAGATGGTTGTC -3' 

56.5 
R:5'- AGTTGCAGGCTGGAGTTA-3' 

PGRP-LB2 
F:5'- GATGACGAACGGAACTGG-3' 

56.5 
R:5'- GCTATTGTGACACGGGATG-3' 

ML1 
F:5'- AACCGTCAAATTAAGGCAAC -3' 

56.5 
R:5'- ACTCTATGTCCAATACCGTGA -3' 

BGBP-1 
F:5'-TAGCAGTGGGTGGAGTAAA-3' 

58 
R:5'- GAAGCCCGAGGTGAAATA-3' 

Defensin-1 
F:5'- CAACAAACGCACTCTTCA-3' 

56.5 
R:5'- ATTGCCAGCATCACTCAC -3' 

RL24 
F:5'-CCGTGATCCGTATACCGTTG-3' 

56.5 
R:5'-CCTCTTCATCAAGTGCGACGA-3' 
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Appendix II-E 

Enriched gene ontology terms in treatments that in BP and MF. GO analysis was performed by goseq 

script in Trinity software with a cut off of 0.05 at Over represented FDR and redundancy was reduced 

by REVIGO. 

Category nDIC nIC Term 
Onto
logy 

Over represented 
FDR 

Enriched GO terms in Treatment group (Reproductives, N. castaneus): 

GO:0046189 6 46 
Phenol-containing compound 

biosynthetic process 
BP 0.0005730754059 

Enriched GO terms in Treatment group (Workers, N.castaneus): 

GO:0004666       2 6 
Prostaglandin-endoperoxide synthase 

activity 
MF 0.0309841324376 

GO:0008150       19 16810 Biological_process BP 0.0309841324376 

Enriched GO terms in Treatment group (Soldiers, N. castaneus): 

GO:0003824 44 7914 Catalytic activity MF 0 

GO:0008152 47 10688 Metabolic process BP 1.90282E-05 

GO:0005488 55 14344 Binding MF 1.92225E-05 

GO:0046914 17 1679 Transition metal ion binding MF 1.92225E-05 

GO:0016787 24 3650 Hydrolase activity MF 7.11855E-05 

GO:0071704 43 10028 Organic substance metabolic process BP 0.00012424 

GO:0008509 9 340 Anion transmembrane transporter 
activity 

MF 0.00012424 

GO:0005342 7 145 Organic acid transmembrane 
transporter activity 

MF 0.000126496 

GO:0046943 7 145 Carboxylic acid transmembrane 
transporter activity 

MF 0.000126496 

GO:0043169 29 5642 Cation binding MF 0.000235537 

GO:0043900 8 283 Regulation of multi-organism process BP 0.000299331 

GO:0006952 10 577 Defense response BP 0.000299331 

GO:0008745 3 10 N-acetylmuramoyl-L-alanine amidase 
activity 

MF 0.000387795 

GO:0043167 35 7772 Ion binding MF 0.00041371 

GO:0046872 28 5600 Metal ion binding MF 0.000495519 

GO:0065007 41 9012 Biological regulation BP 0.000677044 

GO:0042834 3 13 Peptidoglycan binding MF 0.000692581 

GO:0008270 13 1316 Zinc ion binding MF 0.000692581 

GO:0032502 27 4574 Developmental process BP 0.000949345 

GO:0045087 7 264 Innate immune response BP 0.000949345 

GO:0000270 3 15 Peptidoglycan metabolic process BP 0.00096726 

GO:0015291 7 243 Secondary active transmembrane 
transporter activity 

MF 0.001119966 

GO:0006950 18 2391 Response to stress BP 0.001119966 

GO:0009987 50 13574 Cellular process BP 0.001119966 

GO:0006807 37 9003 Nitrogen compound metabolic process BP 0.001165683 

GO:0052689 6 199 Carboxylic ester hydrolase activity MF 0.00144739 

GO:0006820 8 372 Anion transport BP 0.00144739 

GO:0061783 3 26 Peptidoglycan muralytic activity MF 0.001966415 

GO:0009605 12 1127 Response to external stimulus BP 0.002135709 

GO:0022414 15 1795 Reproductive process BP 0.002900205 
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GO:0006811 11 971 Ion transport BP 0.003941574 

GO:0050896 22 3814 Response to stimulus BP 0.003941574 

GO:0016810 5 129 Hydrolase activity, acting on carbon-
nitrogen (but not peptide) bonds 

MF 0.004164143 

GO:0002831 5 132 Regulation of response to biotic 
stimulus 

BP 0.004550899 

GO:0043902 5 124 Positive regulation of multi-organism 
process 

BP 0.004613623 

GO:0097164 5 157 Ammonium ion metabolic process BP 0.005469845 

GO:0061058 2 5 Regulation of peptidoglycan 
recognition protein signaling pathway 

BP 0.005583491 

GO:0005215 12 1357 Transporter activity MF 0.0064028 

GO:0009607 8 594 Response to biotic stimulus BP 0.006658767 

GO:0016811 4 72 Hydrolase activity, acting on carbon-
nitrogen (but not peptide) bonds, in 

linear amides 

MF 0.007772816 

GO:1901615 7 378 Organic hydroxy compound metabolic 
process 

BP 0.007942822 

GO:0050794 34 7958 Regulation of cellular process BP 0.008024555 

GO:0015804 3 27 Neutral amino acid transport BP 0.008129793 

GO:0016491 10 1110 Oxidoreductase activity MF 0.008129793 

GO:0030234 9 726 Enzyme regulator activity MF 0.008129793 

GO:1901564 23 4658 Organonitrogen compound metabolic 
process 

BP 0.008419406 

GO:0022804 7 434 Active transmembrane transporter 
activity 

MF 0.010360296 

GO:0007165 17 2692 Signal transduction BP 0.011925102 

GO:0000977 6 308 RNA polymerase II regulatory region 
sequence-specific DNA binding 

MF 0.011925102 

GO:0016714 2 7 Oxidoreductase activity, acting on 
paired donors, with incorporation or 
reduction of molecular oxygen…. 

MF 0.012304929 

GO:0042943 2 8 D-amino acid transmembrane 
transporter activity 

MF 0.013087253 

GO:0051704 10 1254 Multi-organism process BP 0.013512264 

GO:0048067 3 26 Cuticle pigmentation BP 0.014471957 

GO:0007310 3 31 Oocyte dorsal/ventral axis specification BP 0.017790031 

GO:0015711 6 306 Organic anion transport BP 0.017915722 

GO:0016705 5 293 Oxidoreductase activity, acting on 
paired donors, with incorporation or 

reduction of molecular oxygen 

MF 0.017965907 

GO:0015294 4 105 Solute:cation symporter activity MF 0.017965907 

GO:0015849 5 196 Organic acid transport BP 0.018036856 

GO:0018958 4 125 Phenol-containing compound 
metabolic process 

BP 0.019488882 

GO:0042133 3 54 Neurotransmitter metabolic process BP 0.020357753 

GO:0044238 34 9560 Primary metabolic process BP 0.022287666 

GO:0008063 3 47 Toll signaling pathway BP 0.024807258 

GO:1900619 2 20 Acetate ester metabolic process BP 0.031109398 

GO:0023051 14 1908 Regulation of signaling BP 0.031480321 

GO:0010646 14 1921 Regulation of cell communication BP 0.031636838 

GO:0032101 6 384 Regulation of response to external 
stimulus 

BP 0.032274609 
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GO:0002804 2 8 Positive regulation of antifungal 
peptide production 

BP 0.034318823 

GO:0055114 8 813 Oxidation-reduction process BP 0.036321166 

GO:0042940 2 11 D-amino acid transport BP 0.036892599 

GO:2000274 2 9 Regulation of epithelial cell migration, 
open tracheal system 

BP 0.037068619 

GO:0015081 4 154 Sodium ion transmembrane 
transporter activity 

MF 0.037276238 

GO:0098772 9 964 Molecular function regulator MF 0.040099742 

GO:0016485 4 142 Protein processing BP 0.040099742 

GO:0005243 2 10 Gap junction channel activity MF 0.041556868 

GO:0004497 4 243 Monooxygenase activity MF 0.047716375 

Enriched GO terms in Treatment group (C. meridianus): 

GO:0009617 18 289 Response to bacterium BP 0.006653221 

GO:0000270 6 26 Peptidoglycan metabolic process BP 0.014135439 

GO:0040040 5 20 Thermosensory behavior BP 0.029819445 

GO:0045087 20 381 Innate immune response BP 0.029819445 

GO:0009605 48 1403 Response to external stimulus BP 0.029819445 

GO:0042416 4 9 Dopamine biosynthetic process BP 0.029819445 

GO:0009607 29 725 Response to biotic stimulus BP 0.034760363 

GO:0072348 8 57 Sulfur compound transport BP 0.034760363 

GO:0061058 4 10 Regulation of peptidoglycan 
recognition protein signaling pathway 

BP 0.039499368 

GO:0048060 6 31 Negative gravitaxis BP 0.041597768 

GO:0016714 4 6 Oxidoreductase activity, acting on 
paired donors, with incorporation or 
reduction of molecular oxygen…. 

MF 0.009466975 

GO:0061783 7 41 Peptidoglycan muralytic activity MF 0.010561336 

GO:0004611 4 20 Phosphoenolpyruvate carboxykinase 
activity 

MF 0.029819445 

GO:0004613 4 20 Phosphoenolpyruvate carboxykinase 
(GTP) activity 

MF 0.029819445 

GO:1901682 8 57 Sulfur compound transmembrane 
transporter activity 

MF 0.034760363 

GO:0008745 5 20 N-acetylmuramoyl-L-alanine amidase 
activity 

MF 0.036106415 

GO:0046943 15 223 Carboxylic acid transmembrane 
transporter activity 

MF 0.043397566 

GO:0005342 15 226 Organic acid transmembrane 
transporter activity 

MF 0.043737707 

Note: numDEInCat: number of significant differentially expressed genes in corresponding category; 

numInCat: number of total genes in corresponding category that derived from trinotate. BP: Biological 

process, MF: molecular functions.
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Appendix III-A 

 

SDS-PAGE and Liquid Chromatography-Tandem Mass Spectrometry 

100µl of the diluted secretion was mixed with 5×SDS sample buffer, boiled for 5 min at 95 °C 

and immediately put on ice. After centrifugation, 25µl of sample with buffer was loaded in 10 % 

SDS-PAGE gel and run at 110V for 3 h (Electrophoresis Power Supply EPS 301 Amersham 

Biosciences, Little Chalfont UK; Electrophoresis dock SE300 miniVE Hoefer, Inc., Holliston, 

MA USA). Following the separation, proteins were stained by Coomassie Brilliant Blue (Roti©-

Blue) for 6 h and washed with ddH2O until the bands were clear. Subsequently, the 

Coomassie-stained gel lane was cut into 20 slices and proteins were in-gel digested with 

trypsin. In brief, gel slices were washed with 50% (v/v) acetonitrile in 50 mM ammonium 

bicarbonate, shrunk by dehydration in acetonitrile, and dried in a vacuum centrifuge. The dried 

gel pieces were incubated with 50ng trypsin (sequencing grade modified, Promega) in 25µL 

of 50 mM ammonium bicarbonate at 37 °C overnight. To extract the peptides, 25 µL of 0.5% 

(v/v) trifluoroacetic acid (TFA) in acetonitrile was added and the extract was dried under 

vacuum. Peptides were reconstituted in 10μL of 0.1% (v v) TFA, 5% (v v) acetonitrile and 

6.5µL were analyzed by a reversed-phase capillary nano liquid chromatography system 

(Ultimate 3000, Thermo Scientific) connected to an Orbitrap Velos mass spectrometer 

(Thermo Scientific). The LC system was coupled to the mass spectrometer via a nanospray 

flex ion source equipped with a stainless steel emitter (Thermo Scientific). Samples were 

injected and concentrated on a trap column (PepMap100 C18, 3μm, 100 Å, 75μm i.d. × 2cm, 

Thermo Scientific) equilibrated with 0.05% TFA, 2% acetonitrile in water. After switching the 

trap column inline, LC separations were performed on a capillary column (PepMap100 C18, 

2μm, 100 Å, 75μm i.d. × 25cm, Thermo Scientific) at an eluent flow rate of 300 nL min using 

a linear gradient of 3–50% B in 50 min. Mobile phase A contained 0.1% formic acid in water, 

and mobile phase B contained 0.1% formic acid in acetonitrile. Mass spectra were acquired 

in a data-dependent mode utilizing a single MS survey scan with a resolution of 60,000 in the 

Orbitrap, and MS/MS scans of the 20 most intense precursor ions in the linear trap quadrupole. 

The MS survey range was m/z 350-1500. The dynamic exclusion time (for precursor ions) was 

set to 60 s and automatic gain control was set to 1 × 106 and 5,000 for Orbitrap-MS and LTQ-

MS/MS scans, respectively. 
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Appendix III-B 

Details of identified secretion proteins from soldier of M. darwiensis. 

Description 
Mascot 
Score 

Molecular 
Weight [Da] 

Num. of 
significant 

unique 

sequences 

Sequence 
coverage 

[%] 

emPAI Protein ID Protein Abberation E-value Ants Bees 

Maltase 2 72145 66619 16 0.86 112.74 O16099 MAL2_DROVI 0 1  

Glucose dehydrogenase [FAD- quinone] 26018 69640 36 0.6 23.58 P18172 DHGL_DROPS 0 1 1 

Apolipoprotein 4054 24153 18 0.63 21.07 PF01442.15 Apolipoprotein 0.0027   

Protein yellow 8199 50819 29 0.66 20.19 Q9BI18 YELL_DROPS 3.54E-76 1 1 

Glucosylceramidase 33167 60438 40 0.67 17.58 Q70KH2 GLCM_PIG 1.66E-132 1 1 

L-ascorbate oxidase 33498 72917 28 0.66 13.2 P14133 ASO_CUCSA 9.19E-56   

Apolipoprotein 2003 30695 17 0.46 9.05 PF01442.15 Apolipoprotein 0.000000074   

Apolipoprotein 17939 25920 14 0.39 8.44 PF01442.15 Apolipoprotein 0.066   

Leukocyte elastase inhibitor C 4768 45561 12 0.43 8.12 Q5SV42 ILEUC_MOUSE 2.99E-68 1 1 

Fasciclin-2 4601 85753 39 0.48 8.09 P22648 FAS2_SCHAM 0   

Venom allergen 3 843 21331 7 0.36 6.01 P35779 VA3_SOLRI 4.05E-46   

Glucosylceramidase 3024 60426 23 0.44 5.54 P17439 GLCM_MOUSE 1.44E-130 1 1 

Venom allergen 3 1376 27403 9 0.51 5.2 P35778 VA3_SOLIN 7.28E-61   

Regucalcin 6257 37834 14 0.21 4.86 Q2PFX5 RGN_MACFA 9.25E-66 1 1 

Multiple inositol polyphosphate phosphatase 1 3276 52017 9 0.3 4.01 Q5R890 MINP1_PONAB 1.25E-38  1 

Lazarillo protein 513 21326 8 0.52 3.75 P49291 LAZA_SCHAM 0.00000181   

Trehalase 5351 65790 20 0.4 3.63 Q8MMG9 TREA_PIMHY 0 1 1 

Polyubiquitin 637 11469 4 0.46 3.17 P23398 UBIQP_STRPU 1.69E-68  1 

Alpha-amylase 1 4687 56544 16 0.42 3.1 Q23835 AMY1_DROAN 0 1 1 

Actin- clone 403 2040 41827 3 0.35 3.06 P18603 ACT4_ARTSX 0 1  

Serpin B6 3349 45128 14 0.38 3.02 Q4R3G2 SPB6_MACFA 1.06E-53 1 1 

Glucose dehydrogenase [FAD- quinone] 3828 68117 15 0.35 2.89 P18172 DHGL_DROPS 2.99E-157 1 1 

Cathepsin L 751 38004 10 0.33 2.75 Q26636 CATL_SARPE 2.07E-168 1  

Haemolymph juvenile hormone binding protein 
(JHBP) 

241 9270 2 0.27 2.68 PF06585.8 JHBP 3.2E-17 1  
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Glutaminyl-peptide cyclotransferase 643 39910 10 0.38 2.52 Q16769 QPCT_HUMAN 6.56E-101   

Lysosomal aspartic protease 1412 41553 12 0.34 2.36 Q03168 ASPP_AEDAE 0 1  

Peroxidase 4602 76890 20 0.38 2.33 Q01603 PERO_DROME 0   

Glutathione S-transferase 1-1 154 24465 7 0.32 2.3 P30108 GSTT1_DROYA 1.96E-109 1  

14-3-3 protein zeta 889 28099 6 0.28 2.28 Q2F637 1433Z_BOMMO 9.4E-179   

Peptidyl-prolyl cis-trans isomerase FKBP14 408 28617 7 0.32 2.21 Q5R941 FKB14_PONAB 1.85E-53   

Protein FAM151B 1261 32514 7 0.29 2.18 Q6UXP7 F151B_HUMAN 1.89E-47 1  

Serpin B6 (leukocyte elastase inhibitor-like)* 1259 48043 13 0.3 2.11 P35237 SPB6_HUMAN 9.04E-80 1 1 

Histone H4 687 11374 3 0.31 1.95 Q28DR4 H4_XENTR 3.5E-67 1  

Uncharacterized serpin-like protein (serine 
protease inhibitor 88Ea-like)* 

397 46926 12 0.37 1.92 Q8PTN8 Y2678_METMA 7.19E-65 1 1 

Lysosomal aspartic protease 1280 43453 9 0.27 1.63 Q03168 ASPP_AEDAE 6.84E-48 1  

Esterase FE4 916 39074 8 0.29 1.62 P35502 ESTF_MYZPE 4.34E-31  1 

Nucleobindin-2 618 65361 10 0.23 1.62 P81117 NUCB2_MOUSE 2.62E-78   

Protein lethal(2)essential for life 287 21483 5 0.39 1.62 P82147 L2EFL_DROME 4.29E-17   

Putative ferric-chelate reductase homolog 

(putative defense protein)* 
586 17161 3 0.29 1.61 

Q8MSU3(AFZ

78849.1) 
FRRS1_DROME 

0.000000365

(6e-49) 
  

15-hydroxyprostaglandin dehydrogenase[NAD(+)] 159 27603 5 0.24 1.47 Q3T0C2 PGDH_BOVIN 1.17E-51   

Angiotensin-converting enzyme 118 23941 5 0.24 1.38 P12821 ACE_HUMAN 1.15E-09   

Histone H2A 228 14805 3 0.17 1.31 P19178 H2A_PLADU 1.36E-80 1  

Apolipoprotein 803 24966 5 0.25 1.3 PF01442.15 Apolipoprotein 0.00028   

Unkown 432 35610 3 0.11 1.27 Q8NBR0 P5I13_HUMAN 0.000797   

Peroxiredoxin 1 98 21795 4 0.2 1.15 Q9V3P0 PRDX1_DROME 1.25E-109   

Dehydrogenase/reductase SDR family member 
11 

134 27652 5 0.16 1.13 Q3ZBV9 DHR11_BOVIN 2.44E-85   

Peptidylglycine alpha-hydroxylating 
monooxygenase 

416 39101 5 0.15 1.12 O01404 PHM_DROME 1.22E-143   

Chitooligosaccharidolytic beta-N-
acetylglucosaminidase 

85 16582 3 0.17 1.11 P49010 HEXC_BOMMO 5.28E-33   

OV-16 antigen (protein D3-like)* 1292 28414 5 0.24 1.08 
P31729(XP_0

21938545.1) 
OV16_ONCVO 

1.39E-63(9e-

120) 
  

Protein NPC2 homolog 708 16879 3 0.17 1.08 Q9VQ62 NPC2_DROME 3.16E-16 1  

Retinal dehydrogenase 2 650 52324 9 0.21 1.06 Q62148 AL1A2_MOUSE 0   

Venom carboxylesterase-6 778 69679 10 0.22 0.94 B2D0J5 EST6_APIME 1.16E-107  1 
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ADP-ribosylation factor 1 58 20675 3 0.18 0.83 P61210 ARF1_LOCMI 3.55E-134   

Myophilin 95 20917 3 0.17 0.82 Q24799 MYPH_ECHGR 3.22E-53   

Histone H2B.3 205 13852 2 0.13 0.81 P35069 H2B3_TIGCA 1.28E-81 1  

Glyceraldehyde-3-phosphate dehydogenase 151 35588 5 0.18 0.8 Q4U3L0 G3P_GLOMM 0   

Multiple inositol polyphosphatase 1 356 51112 6 0.18 0.78 Q5R890 MINP1_PONAB 3.86E-50   

ATP synthase subunit alpha- mitochondrial 1229 59431 8 0.14 0.76 P35381 ATPA_DROME 0   

Aspartic protease Bla g 2 837 38523 5 0.16 0.72 P54958 ASP2_BLAGE 1.96E-89   

Histone H3.3 86 15318 2 0.1 0.71 Q6P823 H33_XENTR 4.43E-87   

Fructose-bisphosphate aldolase 209 39660 5 0.18 0.7 P07764 ALF_DROME 0   

Arginine kinase 183 39810 5 0.18 0.69 P91798 KARG_SCHAM 0   

DE-cadherin 56 15698 2 0.18 0.69 Q24298 CADE_DROME 1.07E-56   

40S ribosomal protein S14 626 16153 2 0.16 0.66 C0HKA0/1 RS14A/B_DROME 1.23E-94   

Synaptic vesicle membrane protein 185 50503 6 0.14 0.65 Q9HCJ6 VAT1L_HUMAN 5.67E-158   

Multiple inositol polyphosphate phosphatase 1 210 16679 2 0.2 0.64 O35217 MINP1_RAT 0.000244  1 

Calmodulin 75 16800 2 0.13 0.64 P62154 CALM_LOCMI 1.58E-104   

Unkown 255 25177 3 0.13 0.64      

Aquaporin AQPAn.G 133 26309 3 0.14 0.61 Q7PWV1 AQP_ANOGA 5.78E-117   

Pathogenesis-related protein 5 93 26409 3 0.21 0.6 P28493 PR5_ARATH 1.21E-66   

Superoxide dismutase [Cu-Zn] 129 18154 2 0.14 0.58 Q01137 SODC_SCHMA 1.79E-53   

Protein disulfide-isomerase 208 55509 6 0.14 0.57 P54399 PDI_DROME 0   

Lachesin 430 46390 5 0.16 0.57 Q26474 LACH_SCHAM 0   

Laccase-2 535 75994 8 0.1 0.56 Q8RYM9 LAC2_ORYSJ 3.09E-52  1 

CD109 antigen 1937 162598 15 0.13 0.55 Q6YHK3 CD109_HUMAN 0   

Serpin B11(serine protease inhibitor 77Ba-like)* 88 19100 2 0.12 0.54 Q96P15 SPB11_HUMAN 6.2E-28   

Chitin binding Peritrophin-A domain 916 29969 3 0.09 0.52 PF01607.21 CBM_14 0.0000097   

Heat shock 70 kDa protein cognate 4 1495 70845 3 0.12 0.52 Q9U639 HSP7D_MANSE 0   

Elongation factor 1-alpha 1891 50546 5 0.12 0.51 P29520 EF1A_BOMMO 0.00000162   

Unkown 77 20473 2 0.12 0.5      

Ras-like protein 3 62 20805 2 0.13 0.49 P08645 RAS3_DROME 3.93E-116   
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Beta-1-3-glucan-binding protein 2(Gram-negative 
binding protein 2, GNBP2)* 

492 42754 4 0.15 0.48 
Q8N0N3(AAZ

08505.1) 
BGBP_PENMO 

3.18E-
108(0.0) 

  

60S ribosomal protein L12 41 21969 2 0.08 0.46 P23358 RL12_RAT 3.24E-35   

Putative cysteine proteinase C(cathepsin L)* 1124 169304 15 0.13 0.45 Q9VN93 CPR1_DROME 1.1E-123   

Glutathione S-transferase 56 23479 2 0.09 0.42 O18598 GST1_BLAGE 4.05E-103   

Annexin B9 75 35840 3 0.1 0.42 P22464 ANXB9_DROME 2.14E-179   

Peptidyl-prolyl cis-trans isomerase 34 23621 2 0.07 0.42 P24367 PPIB_CHICK 1.29E-97   

40S ribosomal protein S5a 88 24284 2 0.08 0.41 Q24186 RS5A_DROME 6.94E-138   

GTP-binding nuclear protein Ran 78 24616 2 0.09 0.4 Q9VZ23 RAN_DROME 2.86E-149   

Chondroadherin 50 25408 2 0.1 0.39 O55226 CHAD_MOUSE 8.12E-22   

Pleckstrin homology domain-contain protein 26 25090 2 0.05 0.39 Q9HB20 PKHA3_HUMAN 2.03E-75   

40S ribosomal protein S3 111 26520 2 0.08 0.37 P62909 RS3_RAT 2.39E-156   

Apolipophorins 862 366654 27 0.09 0.36 Q9U943 APLP_LOCMI 0   

ATP synthase subunit beta- mitochondrial 761 56554 3 0.07 0.35 Q05825 ATPB_DROME 0   

CD9 antigen 342 28847 2 0.08 0.34 P40240 CD9_MOUSE 1.14E-43   

Lysosomal Pro-X carboxypeptidase 271 43129 3 0.12 0.34 Q2TA14 PCP_BOVIN 1.72E-149 1 1 

Phosphoglycerate mutase 2 66 28855 2 0.09 0.34 Q32KV0 PGAM2_BOVIN 7.4E-127   

Lipase 3 92 44146 3 0.07 0.33 O46108 LIP3_DROME 1.55E-116  1 

Angiotensin-converting enzyme 165 44465 3 0.14 0.33 Q10751 ACE_CHICK 8.74E-126   

Phospholipase A2 106 30214 2 0.09 0.32 Q7M4I6 PA2_BOMPE 5.36E-20 1  

Alpha-N-acetylglucosaminidase 102 47553 3 0.11 0.3 P54802 ANAG_HUMAN 4.14E-105   

Protein O-linked-mannose beta-1,2-N-

acetylglucosaminyltransferase 1 
53 47970 3 0.09 0.3 Q5RCB9 PMGT1_PONAB 1.12E-09   

Tubulin beta-1 chain 85 50185 2 0.08 0.29 O17449 TBB1_MANSE 0   

Beta-amyloid-like protein 206 82203 5 0.06 0.29 P14599 A4_DROME 4.4E-139   

Protein-tyrosine phosphatase receptor IA-2 56 33046 2 0.1 0.29 PF11548.5 Receptor_IA-2 1.2E-24   

Tropomyosin 109 32757 2 0.08 0.29 Q8T6L5 TPM_PERFU 0   

Protein 5NUC 268 65771 4 0.06 0.29 Q9XZ43 5NTD_LUTLO 7.84E-150   

Insulin-like growth factor-binding protein complex 
acid(leucine-rich repeat-containing protein 15-

like)* 
256 85833 5 0.12 0.28 

O02833(XP_0
21915787.1) 

ALS_PAPHA 2.2E-29(0.0)   

Eukaryotic initiation factor 4 249 50903 3 0.07 0.28 Q5SV42 ILEUC_MOUSE 0   
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Aldose reductase 64 35179 2 0.07 0.27 P15121 ALDR_HUMAN 2.62E-106   

Endoplasmic reticulum resident protein 44 125 34667 2 0.08 0.27 Q3T0L2 ERP44_BOVIN 6.3E-94   

Endoplasmic reticulum lectin 1 155 52861 3 0.05 0.27 Q8VEH8 ERLEC_MOUSE 2E-90   

Alpha-L-fucosidase 54 54883 3 0.06 0.26 C3YWU0 FUCO_BRAFL 0   

Cathepsin B 80 37373 2 0.09 0.25 P07688 CATB_BOVIN 6.2E-141 1  

Angiotensin-converting enzyme 114 76702 4 0.06 0.25 Q10714 ACE_DROME 0   

Angiotensin-converting enzyme 203 76339 4 0.06 0.25 Q10751 ACE_CHICK 0   

2-oxoglutarate and iron-dependent oxygenase 

domain-containing protein 3 
123 36920 2 0.09 0.25 Q5XGE0 OGFD3_XENTR 1.47E-90   

La-related protein 7 36 40427 2 0.05 0.23 Q28G87 LARP7_XENTR 1.67E-12   

Venom serine protease 34 248 43202 2 0.09 0.21 Q8MQS8 SP34_APIME 1.81E-85 1 1 

Enolase 77 47147 2 0.05 0.19 P15007 ENO_DROME 0   

26S protease regulatory subunit 42 49371 2 0.05 0.19 P48601 PRS4_DROME 0   

Succinyl-CoA ligase [ADP-forming] subunit beta, 

mitochondrial 
25 48424 2 0.03 0.19 Q9Z2I9 SUCB1_MOUSE 0   

Cuticlin-1 (Unkown)* 150 77931 3 0.04 0.18 Q03755 CUT1_CAEEL 0.000661   

Chitinase-like protein EN03 92 50796 2 0.05 0.18 Q9GV28 IDGFL_BOMMO 1.51E-144   

Unkown 44 51331 2 0.04 0.18      

Cytoplasmic Fragile-X interacting family 37 52171 2 0.03 0.17 PF05994.8 FragX_IP 3.2E-56   

Myosin heavy chain- non-muscle 276 225098 8 0.04 0.16 Q99323 MYSN_DROME 0   

Mitochondrial-processing peptidase subunit alpha 30 60355 2 0.03 0.15 Q0P5M8 MPPA_BOVIN 0   

Alkaline phosphatase 4 33 59589 2 0.04 0.15 Q24238 APH4_DROME 1.89E-154   

MAM domain-containing 

glycosylphosphatidylinositol anchor protein 

1(Unkown) 

238 94678 3 0.04 0.14 Q8NFP4 MDGA1_HUMAN 0.00000617   

Heat shock 70 kDa protein cognate 5 175 75607 2 0.03 0.12 P29845 HSP7E_DROME 0   

Heat shock protein 83 496 83422 2 0.03 0.11 Q9BLC5 HSP83_BOMMO 0   
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*:Identifications were derived from NCBI

Neuroglian 79 135908 3 0.03 0.1 P20241 NRG_DROME 0   

Aconitate hydratase- mitochondrial 197 87052 2 0.03 0.1 Q99798 ACON_HUMAN 0   

Elongation factor 2 44 94566 2 0.02 0.09 P13060 EF2_DROME 0   

Beta-mannosidase 95 101075 2 0.02 0.09 Q4FZV0 MANBA_RAT 0   

Lysosomal alpha-mannosidase 61 116266 2 0.02 0.08 Q60HE9 MA2B1_MACFA 0   

Serine/threonine-protein kinase 27 201400 2 0.01 0.04 Q5VT25 MRCKA_HUMAN 0   

Nesprin-1 32 687948 2 0 0.01 Q6ZWR6 SYNE1_MOUSE 6.61E-120   



 

 

 


