
Markov state models from short non-equilibrium simulations—Analysis and
correction of estimation bias
Feliks Nüske, Hao Wu, Jan-Hendrik Prinz, Christoph Wehmeyer, Cecilia Clementi, and Frank Noé

Citation: The Journal of Chemical Physics 146, 094104 (2017); doi: 10.1063/1.4976518
View online: http://dx.doi.org/10.1063/1.4976518
View Table of Contents: http://aip.scitation.org/toc/jcp/146/9
Published by the American Institute of Physics

Articles you may be interested in
Reconciling transition path time and rate measurements in reactions with large entropic barriers
The Journal of Chemical Physics 146, 071101071101 (2017); 10.1063/1.4977177

Identification of simple reaction coordinates from complex dynamics
The Journal of Chemical Physics 146, 044109044109 (2017); 10.1063/1.4974306

 Perspective: Dissipative particle dynamics
The Journal of Chemical Physics 146, 150901150901 (2017); 10.1063/1.4979514

Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling
The Journal of Chemical Physics 146, 094108094108 (2017); 10.1063/1.4977704

Rate constants from instanton theory via a microcanonical approach
The Journal of Chemical Physics 146, 074105074105 (2017); 10.1063/1.4976129

Beyond histograms: Efficiently estimating radial distribution functions via spectral Monte Carlo
The Journal of Chemical Physics 146, 094107094107 (2017); 10.1063/1.4977516

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/N%C3%BCske%2C+Feliks
http://aip.scitation.org/author/Wu%2C+Hao
http://aip.scitation.org/author/Prinz%2C+Jan-Hendrik
http://aip.scitation.org/author/Wehmeyer%2C+Christoph
http://aip.scitation.org/author/Clementi%2C+Cecilia
http://aip.scitation.org/author/No%C3%A9%2C+Frank
/loi/jcp
http://dx.doi.org/10.1063/1.4976518
http://aip.scitation.org/toc/jcp/146/9
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4977177
/doi/abs/10.1063/1.4974306
/doi/abs/10.1063/1.4979514
/doi/abs/10.1063/1.4977704
/doi/abs/10.1063/1.4976129
/doi/abs/10.1063/1.4977516


THE JOURNAL OF CHEMICAL PHYSICS 146, 094104 (2017)

Markov state models from short non-equilibrium simulations—Analysis
and correction of estimation bias
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Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and com-
plex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers
of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are
extremely popular because they can be used to compute stationary quantities and long-time kinetics
from ensembles of short simulations, provided that these short simulations are in “local equilibrium”
within the MSM states. However, over the last 15 years since the inception of MSMs, it has been
controversially discussed and not yet been answered how deviations from local equilibrium can be
detected, whether these deviations induce a practical bias in MSM estimation, and how to correct
for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs
from short non-equilibrium simulations, and we provide an expression for the error between unbiased
transition probabilities and the expected estimate from many short simulations. We show that the
unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in
the limit of long lag times and good discretization. Further, we exploit observable operator model
(OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the
effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the
OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system
without estimating an MSM transition matrix, which allows us to practically assess the discretiza-
tion quality of the MSM. Applications to model systems and molecular dynamics simulation data
of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in
PyEMMA of version 2.3. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976518]

I. INTRODUCTION

Ensemble approaches, where many fairly short simu-
lations are produced in parallel or on distributed computer
architectures, are widely used in order to characterize the ther-
modynamics and kinetics of large biological macromolecules.
Markov state models (MSMs)1–3 have become standard tools
for the analysis of such data sets generated by molecular
dynamics (MD) simulations.4–13 An MSM provides a sim-
plified model of the underlying Markov process, which is
continuous in both time and space, by a discrete time Markov
chain on finitely many states. These states are defined by par-
titioning the continuous state space into finitely many disjoint
sets. Time is discretized by choosing a discrete time step, called
the lag time, and the full process is replaced by a snapshot
process that only keeps track of the discrete state visited at
the discrete time steps, discarding any time information in
between and any spatial information within the discrete sets.
The quality of this approximation critically depends on the
choice of both discretization and lag time.14 One of the

a)Electronic addresses: feliks.nueske@fu-berlin.de and frank.noe@
fu-berlin.de

strengths of Markov models is that the simulations used to
construct them do not necessarily need to sample from the
global equilibrium distribution, as only conditional transition
probabilities between the states are required.4 In particular, at
least in principle, these transition probabilities can be obtained
without bias from simulations started out of local equilibrium
in each state which only run for the length of a single lag time
step. However, it is much more practical to produce simula-
tions that are longer than one lag time and estimate MSMs by
counting transitions along these trajectories. Even if the sim-
ulations are started out of local equilibrium, the distribution
deviates from local equilibrium over time until global equilib-
rium is restored. The estimation of transition probabilities is
therefore subjected to a bias.1 In order to keep the bias small,
it must be assumed that local equilibrium is approximately
restored after every time step.

The effect of the initial distribution onto the MSM quality
or even the justification of using an MSM for data analy-
sis has been controversially discussed, and this issue has not
been resolved yet. At least three ideas have been discussed
as follows:15 (1) This effect exists,1 but may be small and
can be ignored in practice. (2) We can reduce the effect of
non-equilibrium starting points by discarding the first bit of
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simulation trajectories, enough to reach local equilibrium.11

(3) We can avoid this problem by preparing local equilibrium
distributions in the starting states using biased simulations and
then shooting trajectories out of them.16–19

Here we qualify and quantify these ideas by systemati-
cally analyzing the effect of non-equilibrium starting condi-
tions onto MSM quality, and we suggest effective correction
mechanisms. Throughout the manuscript, we use the term
“non-equilibrium” to describe the problem that simulations
are started from a distribution which is not in global equi-
librium, and their simulation time is too short to reach that
global equilibrium. Note, however, that the dynamics itself is
assumed to possess a unique equilibrium distribution, and if
long enough simulations would be run, they would sample
from the equilibrium distribution. Briefly, our main results are
the following:

1. We provide an expression for the error between unbi-
ased transition probabilities and the expected estimate
from many simulations running for multiple discrete time
steps, see Sec. II. We find that there is no fundamental
advantage of starting simulations in local equilibrium.
Rather, the estimation error depends on the discretiza-
tion, the simulation length, and the lag time. In the limit
of long lag times and fine discretization, MSMs are esti-
mated without bias even when non-equilibrium starting
points are used. However, for a given discretization the
lag time required to practically achieve a small estimation
bias might be large.

2. We derive an unbiased MSM estimator that corrects
the error due to non-equilibrium starting conditions at
short lag times, by exploiting the framework of observ-
able operator models (OOMs)—see Sec. III. OOMs
are powerful finite-dimensional models that provide

unbiased estimates of stationary and kinetic properties of
stochastic processes under fairly mild assumptions, see
Refs. 20–22. Most importantly, OOMs can be estimated
from non-equilibrium simulations22 and are not limited
to a local equilibrium assumption.

3. We utilize the fact that exact relaxation time scales that
are not contaminated by the MSM projection error (i.e.,
quality of the coordinates and the clustering used) can
be estimated using the OOM framework. The difference
between the unbiased estimate and the uncorrected or
corrected MSM estimate is very insightful as it provides
an indicator of the quality of the MSM discretization.
If this difference is too large, it is suggested to rather
improve the coordinate selection or discretization used
for MSM construction and re-analyze. Note that while
OOMs offer the more general theory, they are not as easy
to interpret and their estimation from finite data is not as
stable and mature as MSM estimation.

As a technical advance, we provide a meaningful strategy
to select the model rank of an OOM which is required in order
to obtain practically useful estimates, by using a statistical
analysis of singular values of the count matrix (Sec. III D).

Sec. IV demonstrates the usefulness of the OOM frame-
work for two model systems and MD simulation data of alanine
dipeptide. We show that accurate estimates of spectral and sta-
tionary properties can be obtained from short non-equilibrium
simulations, even for short lag times or poor discretizations.
We explain how the discretization quality is revealed by the
difference between spectral estimates of the MSM and OOM.
We also show that the rank selection strategy helps to choose a
suitable model rank even for small lag times, when no apparent
time scale separation can be utilized.

As an illustration, consider the one-dimensional model
system governed by the potential shown in Fig. 1(a), see

FIG. 1. (a) One-dimensional potential function and dis-
cretization into two states. (b) The same potential with
a five-state discretization. ((c) and (d)) Estimates for the
equilibrium probability of state 1 from the direct MSM
(green) and the unbiased MSM (red), reference in black.
((e) and (f)) Estimates for the slowest relaxation time scale
t2 from a direct MSM (green), c.f. Eq. (19), the unbiased
MSM (red), c.f. Eqs. (38) and (39), and the spectral OOM
estimation (blue), Eqs. (62) and (63). The black dashed
line corresponds to the reference value.
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Sec. IV A for details. We study the estimation of a Markov
model using the two-state discretization indicated in panel (a)
of Fig. 1. For various lag times, we investigate the expected
transition matrix if 90% of the simulations are started from
local equilibrium within state 1, while the other 10% are started
from local equilibrium within state 2. Note that we do not use
any simulation data here, we only compute expected values
over an ensemble of trajectories, with the trajectory length set
to 2000 steps, which is shorter than the slowest relaxation time
scale.

For short lag times, the standard MSM provides a strongly
biased estimate of the equilibrium population of the two wells
(Fig. 1(c), green curve). For longer lag times, the MSM con-
verges towards the correct equilibrium population, but the bias
only disappears when the lag time approaches the longest
relaxation time scale of the system, so if the initial distri-
bution is far from equilibrium this can entail a significant
error at practically feasible lag times. In contrast, the cor-
rected MSM estimate proposed in this paper achieves the
correct estimate of equilibrium populations even at short lag
times (Fig. 1(c), red curve). The standard MSM relaxation time
scales are underestimated at short lag times, consistent with
previous variational results,23–25 but they can be improved by
using the unbiased MSM estimator proposed here (Fig. 1(e)).
The OOM can provide a model-free estimate of the relax-
ation time scale that is unbiased at a relatively short lag time
(Fig. 1(e), blue line). The difference between the OOM and the
corrected MSM estimate (blue versus red lines in Fig. 1(e)) is
an indicator of the MSM model error due to the state space
discretization. Please note that all MSM results in this fig-
ure can be dramatically improved if a finer clustering is used.
For example, if the five-state partitioning from Fig. 1(b) is
used instead, the estimation of stationary properties converges
much faster (Fig. 1(d)), and there is hardly a difference between
the time scales estimated by a direct and an unbiased MSM
(Fig. 1(f)).

II. ANALYSIS OF THE STATE OF THE ART: MSM
ESTIMATION FROM SIMULATIONS WITH ARBITRARY
STARTING POINTS
A. Molecular dynamics, count matrix,
and transition matrix

In this work, we consider the setting described in detail in
Ref. 1, that is, an ergodic and reversible Markov process X t on
continuous state spaceΩ, which possesses a unique stationary
distribution π. We denote by τ > 0 the lag time and by

p(x, y; τ) = P(Xτ ∈ dy|X0 = x) (1)

the conditional transition density function, that is the probabil-
ity that the process, when located at configuration x at time t,
will be found at configuration y at time t + τ. The correspond-
ing transfer operator is denoted by T(τ) and is defined by its
action on a function of state space u,

T(τ)u(y) =
∫
Ω

p(x, y; τ)
π(x)
π(y)

u(x) dx. (2)

Its eigenvalues are called

λm(τ) = exp(−τ/tm), (3)

where tm are the implied relaxation time scales. We denote
the transfer operator eigenfunctions by ψm, m = 1, . . . . In
particular, we have that ψ1 ≡ 1. If the transfer operator is of
rank M at lag time τ, the transition density can be written
as

p(x, y; τ) =
M∑

m=1

λm(τ)ψm(x) π(y)ψm(y). (4)

Note that exact equality in Eq. (4) is an assumption, but often
it is satisfied approximately for a large range of lag times
τ. Throughout the paper, we will consider decompositions
of state space into disjoint sets S1, . . . , SN , where Ω=

⋃
iSi.

The indicator function of set Si is called χi. For a simulation
of the continuous dynamics which samples positions at dis-
crete time steps, we will denote the position at the kth time
step by Xk , k = 1, . . . , K , such that K is the total number of
time steps in the simulation. We use the symbol Y as a short-
hand notation for an entire simulation. If multiple different
simulations need to be distinguished, we will denote them
by Yq, q= 1, . . . , Q, i.e., Q is the total number of available
simulations.

Most of this work is based on correlations between the
discrete sets. For a trajectory as above, we define the empirical
histograms and correlations (also called state-to-state time-
correlations) as follows:

s(i) :=
1

K − 2τ

K−2τ∑
k=1

χi(Xk), (5)

Sτ(i, j) :=
1

K − 2τ

K−2τ∑
k=1

χi(Xk)χj(Xk+τ), (6)

S2τ
r (i, j) :=

1
K − 2τ

K−2τ∑
k=1

χi(Xk)χr(Xk+τ)χj(Xk+2τ). (7)

Up to the normalization, the matrix Sτ∈ RN×N is a count matrix
because it simply counts the number of transitions from state
Si to Sj over a time window τ that have occurred in the simu-
lation, while the vector s ∈RN counts the total visits to state Si

and corresponds to the ith row sum of Sτ . For each set Sr , the
matrix S2τ

r ∈ R
N ×N is proportional to a two-step count matrix

counting subsequent transitions from state Si to Sr and on to
state Sj. At first sight, it may seem confusing that Sτ and s only
count transitions and visits up to time K−2τ, but further below,
we will use all three matrices in conjunction which requires
estimating all of them over the same part of the data. We will
continue to refer to these matrices as a count matrix, count vec-
tor, and two-step count matrix in what follows. Also note that
in the literature, the count matrix and vector are often denoted
by Cτ , c, but we will use these symbols differently in what
follows. Let us note at this point that s, Sτ , S2τ

r can be seen as
random variables that map a (stochastic) trajectory Y of dis-
crete time steps to the values given in Eqs. (5)–(7). To empha-
size this dependence, we will also write s(Y), Sτ(Y), S2τ

r (Y) if
appropriate.

We are concerned with the estimation of a transition prob-
ability matrix between the sets Si of a given discretization of
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state space. If the process is in equilibrium, the conditional
transition probabilities can be expressed as

TτEq(i, j) =
P

(
Xt ∈ Si, Xt+τ ∈ Sj

)
P(Xt ∈ Si)

(8)

=
∫Si

dx ∫Sj
dy π(x) p(x, y; τ)

∫Si
dx π(x)

(9)

=
Cτ

Eq(i, j)

πi
. (10)

Here, we have defined the equilibrium correlation between sets
Si and Sj by the nominator of Eq. (9) and denoted it by Cτ

Eq(i, j).
Also, we have adopted the usual notation πi = ∫Si

dx π(x) for
the equilibrium probabilities of the discrete states. Such a
matrix of conditional transition probabilities is called a Markov
state model (MSM) or Markov model. It can be used as a sim-
plified model for the dynamics allowing extensive analysis,
see Ref. 1.

From a long simulation Xk , k = 1, . . . , K that samples
points from the stationary density π, the matrix TτEq can be
estimated by the formula

TτEq(i, j) ≈
Sτ(i, j)

s(i)
. (11)

B. Starting from local equilibrium

In practice, producing simulation data that sample from
the global equilibrium density π is often not tractable. One of
the strengths of Markov models is the fact that the transition
matrix can also be expressed in terms of local equilibrium
densities

πSi (x) =
1
πi
χi(x)π(x). (12)

The density πSi is the normalized restriction of π to state Si.
A Markov model transition matrix can also be estimated by
preparing an ensemble of trajectories in such a way that, within
each state, the distribution of starting points equals the local
density Eq. (12). These trajectories are simulated for a very
short time, and the fraction of trajectories starting in Si and
ending up in Sj provides an estimate for the transition matrix
entry TτEq(i, j).16,26 To see this, note that in the setting just
described, the initial distribution is a convex combination ρL

of the local densities πSi
,

ρL =

N∑
i=1

aiπSi , (13)

N∑
i=1

ai = 1. (14)

Here, ai is the probability to start in state Si. Upon replacing
π by ρL in Eq. (9), it follows that

TτEq(i, j) =
∫Si

dx ∫Sj
dy ρL(x)p(x, y; τ)

∫Si
dx ρL(x)

. (15)

Only very short trajectories and knowledge of the local densi-
ties are needed for the application of this method. However,this

method suffers from three major disadvantages: first, the inter-
mediate data points of the simulations cannot be used. Second,
estimation of the local densities requires the use of biased
sampling methods, which is a significant extra effort and
entails additional difficulties. Third, changing the discretiza-
tion requires redoing the simulations, which is not acceptable
if a suitable discretization is not easy to find.

C. Multiple-step estimator

A common way to construct MSMs in practice is by con-
ducting a large set of distributed simulations Yq, q= 1, . . . , Q
of lengths that are shorter than the largest relaxation time scales
of the system but are longer than the lag time τ. For our theoret-
ical investigation, we will assume that each of these trajectories
has the same length of K stored simulation steps, but for the
estimators we will be deriving later that uniform length is not
a requirement, see Appendix C.

The simulations are started from some arbitrary initial
distribution at time k = 1. The transition probability matrix is
estimated by replacing S(i, j) and s(i) by their empirical mean
values over all simulations Yq. These are defined by the follow-
ing equations, where we include the corresponding definition
for S2τ

r for later use,

s =
1
Q

Q∑
q=1

s(Yq), (16)

S
τ
=

1
Q

Q∑
q=1

Sτ(Yq), (17)

S
2τ
r =

1
Q

Q∑
q=1

S2τ
r (Yq). (18)

In analogy to Eq. (11), the transition matrix is then estimated
by

T
τ
(i, j) =

S
τ
(i, j)

s(i)
. (19)

Additional constraints can be incorporated in order to obtain
more specific estimators than Eq. (19), such as estimators
obeying detailed balance.1,10,27

The argument from Sec. II B cannot be transferred directly
to a multiple-step estimator like Eqs. (16) and (17): Even if the
simulations are started from local equilibrium, this property is
lost after the first simulation step, and the resulting estimates
are no longer unbiased. A detailed illustration of this phe-
nomenon has been provided by Ref. 1 [Fig. 4], and we repeat
it here in Fig. 2. It can be argued that if the discretization is
chosen well enough such that the dynamics equilibrates to an
approximate local equilibrium within all states over a single
time step, the bias can be expected to be very small. This
assumption is difficult to check or quantify in practice. In
Sec. II D, we analyze the bias introduced by the multiple-
step estimator, as well as its dependence on the lag time and
simulation length.
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FIG. 2. Loss of local equilibrium property illustrated by
comparing the dynamics of the diffusion in a double-well
potential (a) and (e) at time steps 0 (b), 250 (c), 500 (d)
with the predictions of a Markov model parameterized at
lag time τ = 250 at the same times 0 (f), 250 (g), 500 (h).
Please refer to the supplementary material of Ref.1 for
details of the system. (b)–(d) show the true distribution of
the system (solid black line) and the probabilities asso-
ciated with the two discrete states left and right of the
dashed line. The numbers in (f)–(h) are the discrete state
probabilities pi(kτ), i= 1, 2, k = 0, 1, 2, predicted by the
Markov model. The solid black lines show the hypothet-
ical density pi(kτ)πSi that is inherently assumed when
estimating a Markov model by counting transitions over
multiple steps. This figure has been re-used with permis-
sion from Prinz et al., J. Chem. Phys. 134, 174105 (2011)
[Fig. 4]. Copyright 2011 American Institute of Physics.

D. Estimation error from non-equilibrium simulations

Now we study the effect of using an initial distribution
of simulation data that is not in local equilibrium when the
transitions are counted. This deviation from local equilibrium
could come either from the fact that we start trajectories in
an arbitrary initial condition, or that our trajectories exceed
the lag time τ such that an initially prepared local equilibrium
is lost for all transition counts harvested after the first one
(Sec. II C).

Let ρ denote the empirical distribution sampled by the
simulations. We need to study the error between the equilib-
rium transition matrix TτEq and the asymptotic limit of Eq. (19).

To this end, we study the asymptotic limits of S
τ
(i, j) and s(i)

in the limit of infinitely many simulations, Q → ∞, but each
having finite lengths,

Cτ
ρ(i, j) := E (Sτ(i, j)) , (20)

cρ(i) := E (s(i)) , (21)

Tτρ(i, j) :=
Cτ
ρ(i, j)

cρ(i)
. (22)

Thus, we use the symbols Cτ
ρ, cρ for the expected count matrix

and vector of total counts associated with the empirical dis-
tribution ρ. Using the spectral decomposition, Eq. (4), the
expected count matrix can be expressed in terms of the spectral
components of the dynamics,

Cτ
ρ(i, j) =

M∑
m=1

λm(τ)〈χi,ψm〉ρ〈χj,ψm〉π , (23)

〈χi,ψm〉ρ =

∫
Ω

dx χi(x)ψm(x)ρ(x), (24)

〈χi,ψm〉π =

∫
Ω

dx χi(x)ψm(x)π(x). (25)

In matrix form, Eq. (23) can be written as

Cτ
ρ = QρΛ(τ)QT

π , (26)

Qρ(i, m) = 〈χi,ψm〉ρ, (27)

Qπ(j, m) = 〈χj,ψm〉π . (28)

These matrices contain the MSM projections of the true eigen-
functions, i.e., their approximations by step functions, which
are extensively discussed in Refs. 1 and 14. Let us emphasize
that Eq. (23) also holds for arbitrary basis functions, i.e., χi

is not required to be a basis of indicator functions. Thus, it
is the most general expression for a correlation matrix from
Markovian dynamics.

Summation over j shows that

cρ(i) = 〈χi〉ρ. (29)

It follows from Eq. (23) that the spectral expansion of Cτ
Eq is

given by

Cτ
Eq(i, j) =

M∑
m=1

λm(τ)〈χi,ψm〉π〈χj,ψm〉π , (30)

using the fact that for trajectories started from global equilib-
rium we have ρ= π. Combining Eqs. (23), (29), and (30), we
obtain an expression for the estimation error Eτ := Tτρ − TτEq,
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Eτ(i, j) =
Cτ
ρ(i, j)

cρ(i)
−

Cτ
Eq(i, j)

πi
(31)

=

M∑
m=2

λm(τ)〈χj,ψm〉π

[
〈χi,ψm〉ρ

〈χi〉ρ
−
〈χi,ψm〉π

〈χi〉π

]
(32)

=

M∑
m=2

λm(τ)〈χj,ψm〉π

[
〈χi,ψm − qimψ1〉ρ

〈χi〉ρ

]
, (33)

where qim =
〈χi ,ψm〉π
〈χi〉π

, and we were able to drop the m = 1 terms
on both sides as they are equal. Inspecting this expression
leads to a number of insights that are practically important for
analyzing simulation data with MSMs:

1. MSM estimation from long trajectories: In the limit that
our trajectories are longer than the time scale of the
slowest process, the empirical distribution ρ converges
to the equilibrium distribution π, and the bias becomes
zero. This offers an explanation why MSMs built from
ultra-long simulations28,29 are quite well-behaved and
have been extensively used for benchmarking and method
validation.

2. MSM estimation from short trajectories: Even if the tra-
jectories are not long enough to reach global equilibrium,
because of Eq. (3), the bias decays multi-exponentially
with the lag time τ. This is an important insight because
MSMs are in practice constructed in the limit of long
enough lag times in which the time scale estimates con-
verge,1,5 and the above equation shows that this limit is
meaningful as it approaches an unbiased estimate.

3. Dependence of bias on the discretization error: The above
formula reflects the well-known insight that Markov
models are free of bias if the discretization perfectly
approximates the dominant eigenfunctions, meaning that
the eigenfunctions are constant on the states Si.1,5

4. Consequences for adaptive sampling: Previous adaptive
sampling approaches have suggested preparing an initial
local equilibrium distribution in order to shoot trajecto-
ries out of selected states.16 The above analysis shows
that this strategy is effective if we only count a single
transition out of the state but is ineffective when longer
trajectories are shot. In the latter case, it is simpler to

ignore the initial distribution and to reduce the effect of
bias by extending the lag time τ, see again Fig. 1 and also
the next example.

E. Example

Before proceeding, we illustrate these findings by re-
visiting the one-dimensional model system presented in the
Introduction. We study the same two different discretizations,
the two-state model from panel (a) of Fig. 3 and the five-state
discretization shown in Fig. 3(b). Again, simulations are ini-
tiated from local equilibrium in states 1 and 2 of the coarse
discretization, with a1 = 0.9, a2 = 0.1. We study the expected
estimate of the equilibrium probability of state 1, which equals
the equilibrium probability of states I and II for the finer state
definition. Panels (c) and (d) of Fig. 3 show the respective
estimates for the coarse and fine discretization as a function
of the lag time, for simulation lengths K = 1000, 2000, 5000,
10 000, 50 000. Indeed, the estimates improve if the lag time
is increased, if the simulation length is increased, or if the
discretization is improved. From the coarse partitioning exam-
ple, we conclude that relaxation to global equilibrium can be
required in order to obtain unbiased estimates from simulations
initiated out of local equilibrium.

III. CORRECTION OF ESTIMATION BIAS USING
OBSERVABLE OPERATOR MODELS

In this section, we show how to go beyond just using a
longer lag time τ and suggest correction mechanisms to obtain
the correct equilibrium transition matrix TτEq (Eqs. (8)–(10))
from an ensemble of short simulations. This can be accom-
plished regardless of the starting distribution being in global
equilibrium, in local equilibrium, or far from any equilibrium.

As discussed above, limitations of MSMs include the
assumption of Markovianity, sensitivity to projection error,
and sensitivity to the distribution of trajectory starting points.
All of these limitations can be overcome by realizing that
molecular dynamics that is observed in a chosen set of vari-
ables, reaction coordinates, or order parameters at a certain lag
time τ can be exactly described by projected Markov models

FIG. 3. ((a) and (b)) One-dimensional potential function
with two different discretizations into two states and five
states, respectively. (c) Expected estimate of the equi-
librium probability of state 1 as a function of the lag
time, for simulation lengths K = 1000, 2000, 5000, 10 000,
50 000, and using the discretization from panel (a). The
simulations are initiated in local equilibrium in both states
1 and 2 but predominantly in state 1 (a1 = 0.9, a2 = 0.1).
(d) The same for the five-state discretization from
panel (b).
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(PMMs).30 This insight allows us to employ estimators that
are not affected by the MSM limitations, such as hidden
Markov models (HMMs)30 or observable operator models
(OOMs),20–22 that operate on the discretized state space.

Here, we employ OOMs in order to get improved MSM
estimators that are not subject to the bias caused by a non-
equilibrium distribution of the trajectories used. In a nutshell,
OOMs are spectral estimators able to provide unbiased esti-
mates of stationary and dynamical quantities for dynamical
systems that can be well described by a finite number of
dynamical components. Here we only summarize a few aspects
of OOMs that are relevant to the present paper and present
an algorithm that can be used to estimate MSMs without
bias from the initial trajectory distribution. To fully under-
stand the theoretical background and derivation, please refer to
Refs. 20–22.

A. Observable operator models

Observable operator models (OOMs) provide a frame-
work that completely captures the dynamics of a stochastic
dynamical system by a finite-dimensional algebraic system if
only a finite number M of relaxation processes contribute in
Eq. (4), see Refs. 20 and 21. For molecular dynamics, this
property is achieved if we observe and model the dynamics at
a finite lag time τ. The full-state observable operator ΞΩ is an
M ×M matrix which contains the scalar products between the
eigenfunctions,

ΞΩ(m, m′) = λm(τ)
∫
Ω

dxψm(x)ψm′(x)π(x). (34)

In statistical terms, ΞΩ is the expectation value of the covari-
ance matrix between eigenfunctions. As eigenfunctions are
orthogonal with respect to the equilibrium distribution π, or
in other words, statistically uncorrelated, ΞΩ is just a diagonal
matrix of the eigenvalues,

ΞΩ = Λ. (35)

If we do not integrate over the full state spaceΩ in Eq. (34), but
only over a subset A ⊂ Ω, we can define a matrix ΞA of size
M ×M, called the set-observable operator for set A. All set-
observable operators and two vectors ω, σ ∈ RM are the key
ingredients of OOM theory. The vectors ω, σ equal the first
canonical unit vector e1, i.e.,ω =σ = e1 = (1, 0, . . . , 0)T , and
they are called information state and evaluator, respectively.
If the finite-rank assumption Eq. (4) holds, these components
form an algebraic system that allows to compute equilibrium
probabilities of finite observation sequences. Let A1, . . . , Al

be arbitrary subsets of Ω that do not need to form a partition
of the state space. If Eq. (4) is satisfied, we can compute the
probability that a trajectory in equilibrium visits set A1 at time
τ, set A2 at time 2τ, . . ., and set Al at time lτ by the following
matrix-vector product:

P(Xτ ∈ A1, X2τ ∈ A2, . . . , Xlτ ∈ Al) = ω
TΞA1 . . .ΞAlσ. (36)

The proof can be found in Ref. 21, we also repeat it in
Appendix B. Note that, in case that A1, . . . , Al form a par-
tition of state space, the probability of such an observation
sequence cannot be computed from a Markov model transi-
tion matrix between the sets A1, . . . , Al, unless the dynamics is

Markovian on these sets. This clearly distinguishes an OOM
from a Markov model: An OOM can correctly describe
arbitrary projected dynamics as long as Eq. (4) holds.

As a Markov process is determined entirely by finite
observation probabilities like Eq. (36), it follows that we can
compute several key equilibrium, kinetic, and mechanistic
quantities in an unbiased fashion if we can somehow esti-
mate the OOM components. For a fixed decomposition of state
space into sets Sr , r = 1, . . . , N as before, let us denote the
set-observable operators of sets Sr by Ξr , which implies that

ΞΩ =

N∑
r=1

Ξr . (37)

It follows from Eq. (36) that we can compute the unbiased
equilibrium correlation matrix and the stationary probabilities
by the formulas

Cτ
Eq(i, j) = ωTΞiΞjσ, (38)

πi = ω
TΞiσ. (39)

In practice we cannot directly estimate Ξr but only a similar
operator Ξ̂r . However, it follows directly from Eqs. (38) and
(39) that if an unknown similarity transform R ∈ RM×M affects
all OOM quantities via

Ξ̂r = RΞrR−1, (40)

ω̂T = ωT R−1, (41)

σ̂ = Rσ, (42)

then Eqs. (38) and (39) remain exactly valid using ω̂, Ξ̂r , σ̂.
In other words, all OOMs that can be constructed by choos-
ing some transformation matrix R form a family of equivalent
OOMs. A specific member of this family can be estimated
directly from simulation data, and thus we can use it in order
to obtain unbiased estimates of Eqs. 38 and 39 even from
a large ensemble of trajectories that do not need to sample
from global equilibrium. It has been shown in Ref. 22 that
Eqs. (47)–(50) in Sec. III B indeed provide the components of
an equivalent OOM, i.e., there is an invertible matrix R such
that Eqs. (40)–(42) are satisfied in the absence of statistical
noise.

B. Unbiased estimation of Markov state models

To construct an exact unbiased estimator, we need three
ingredients: (i) the expectation values of the empirical count
matrix Cτ

ρ, (ii) the vector of total counts cρ from Eqs. (20) and
(21), and additionally (iii) the two-step count matrices,

C2τ
ρ,r := E

(
S2τ

r

)
. (43)

As a reminder, expectation values here denote the expectation
over a trajectory ensemble sampling from the empirical (non-
equilibrium) distribution ρ. In practice, only finitely many
simulations are available, and we thus replace cρ, Cτ

ρ and C2τ
ρ,r

by count vectors and matrices s, S
τ

and S
2τ
r (Eqs. (16)–(18)),

which are asymptotically unbiased estimators. The unbiased
estimation algorithm can be summarized as follows:

1. Obtain the empirical mean s, count matrix S
τ
, and

two-step count matrices S
2τ
r from simulation data using

Eqs (16)–(18).
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2. Decompose the count matrix S
τ

by singular value decom-
position (SVD),

S
τ
= VΣWT , (44)

and compute weighted projections onto the leading M left
and right singular vectors by

F1 = VMΣ
−1/2
M , (45)

F2 =WMΣ
−1/2
M . (46)

We have used the symbols VM , WM , ΣM to denote the
restriction of these matrices to their first M columns.

3. Use F1, F2 to obtain the set-observable operators Ξ̂r and
the evaluation state vector σ̂ of an equivalent OOM via

Ξ̂r = FT
1 S

2τ
r F2, (47)

σ̂ = FT
1 s. (48)

Compute the full-state observable operator Ξ̂Ω =∑N
r=1 Ξ̂r and obtain the information state vector ω̂ as the

solution to the eigenvalue problem,

ω̂T Ξ̂Ω = ω̂
T , (49)

ω̂T σ̂ = 1. (50)

The normalization Eq. (50) can be achieved by dividing
the arbitrarily scaled solution ω̂T by ω̂T σ̂.

4. Compute the unbiased equilibrium correlation matrix and
unbiased equilibrium distribution by

Cτ
Eq(i, j) = ω̂T Ξ̂iΞ̂jσ̂, (51)

πi = ω̂
T Ξ̂iσ̂ (52)

=

N∑
j=1

Cτ
Eq(i, j) (53)

and then obtain the unbiased MSM transition matrix TτEq
either using the nonreversible estimator

TτEq(i, j) =
Cτ

Eq(i, j)

πi
, (54)

or the reversible estimator

TτEq(i, j) =
Cτ

Eq(i, j) + Cτ
Eq(j, i)∑N

j=1 Cτ
Eq(i, j) +

∑N
j=1 Cτ

Eq(j, i)
. (55)

Let us briefly comment on the central idea behind this algo-
rithm, which is the estimation of an equivalent OOM in the
third step, particularly in Eq. (47). Using the path probability
formula Eq. (36), it can be shown that the expected two-step
count matrix is given by

C2τ
ρ,r = QρΞrΛ(τ)QT

π , (56)

where the matrices Qρ, Qπ are the same as in Eqs. (27) and
(28). Thus, by the intermediate step, the set-observable opera-
tor is introduced into the decomposition of the two-step count
matrix. Now, the idea is to find two matrices F1, F2∈ R

N×M ,
such that R1 :=FT

1 Qρ and R2 :=Λ(τ)QT
πF2 are inverse to each

other, because this implies that

FT
1 C2τ

ρ,rF2 = R1ΞrR2 (57)

= RΞrR−1 (58)

is the rth component of an equivalent OOM. The properties of
SVD and the decomposition Eq. (26) guarantee that the choice
of F1, F2 in the second step above achieves this goal,

Id = FT
1 Cτ

ρF2 (59)

=
(
FT

1 Qρ

) (
Λ(τ)QT

πF2

)
(60)

= R1R2. (61)

Similar arguments can be used to justify the equations for
ω, σ. We also note that different choices of F1, F2 in step 2
are possible. For detailed explanations and proofs, please refer
to the previous publications.20–22

C. Recovery of exact relaxation time scales

A remarkable by-product of the procedure described
above is that the transformed full-state two-step count matrix
Ξ̂Ω is similar to a diagonal matrix of the system eigenval-
ues λm(τ) without any MSM projection error. This has been
shown for equilibrium data in Ref. 31 and also applies to
non-equilibrium data,21

Ξ̂Ω = RΞΩR−1 (62)

= RΛ(τ)R−1. (63)

Thus, diagonalization of Ξ̂Ω provides an estimate of the
leading system eigenvalues, and consequently also of the
relaxation rates or time scales, that is not distorted by the
fact that we coarse-grain the dynamics to a Markov chain
between coarse sets in state space. These eigenvalue and time
scale estimates are only subject to statistical error but not
to any MSM model error. It is impossible to directly build
an MSM that produces these time scales—when an MSM is
desired, the time scales can only be approximated, and they
will only be correct in the limit of long lag times and good
discretization.

However, the fact that we can get a model-free estimate of
the eigenvalues and relaxation time scales can be used to assess
the discretization quality: According to the variational princi-
ple of conformation dynamics,24 the exact system eigenvalues
provide an upper bound to the eigenvalues of the equilibrium
transition matrix TτEq. By comparing the eigenvalues of TτEq to
those from Eqs. (62) and (63), the MSM discretization error
theoretically studied in Refs. 1, 14, and 23 can be practically
quantified.

D. Selection of model rank

The above method is theoretically guaranteed to work
whenever the number of MSM states N is at least equal to
the number M of relaxation processes in Eq. (4), and the count
matrix Cτ

ρ is of rank M. In the absence of statistical noise,
the model rank M can then be determined by the number of
non-zero singular values of Cτ

ρ. For finite data, the numerical

rank of S
τ

is not necessarily equal to M, as the singular values
can be perturbed by noise. Classical matrix perturbation theory
predicts that small singular values will be particularly affected
by noise, see, e.g., Ref. 32, and also Fig. 4(a). Including noisy
and small singular values can severely affect the accuracy of
the method, most likely due to the presence of the matrix of
inverse singular values in Eqs. (45) and (46). Also, we expect
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FIG. 4. Analysis of statistical uncertainties for sin-
gular values of the count matrix. We use the one-
dimensional model system and seven-state discretization
as in Sec. IV A, the sample consists of Q = 5000 tra-
jectories of length K = 2000. (a) For each of the seven
singular values (distinguished in descending order by
the colors black, blue, cyan, green, magenta, red, and
yellow), we show the ratio of the true singular value
σr (Cτ

ρ), r = 1, . . . , 7 of the expected count matrix Cτ
ρ to

the corresponding singular value σr (S
τ

) of the empirical
count matrix S

τ
, as a function of the lag time. As the small

singular values decay quickly with the lag time, they are
dominated by the noise even for small lag times. Includ-
ing these noisy singular values would ruin the results.
(b) Ratio between mean value and uncertainty (signal-to-
noise ratio) from the bootstrapping for the seven singular
values as a function of the lag time. The thin black dashed
line indicates the cutoff we have used in applications. Only
singular values above this line are included in the estima-
tion, the number of points above this line corresponds to
the OOM model rank, see Fig. 5(h).

small singular values to have little impact on the dominant
spectral and stationary properties of the final OOM, but this
will be backed up by further theoretical investigation.

Consequently, it seems appropriate to cut off small and sta-
tistically unreliable singular values and select a smaller model
rank M̂ < M in Eqs. (45) and (46). In order to determine the
uncertainties of the singular values, we use the bootstrapping
procedure, and we discard all singular values with a signal-
to-noise ratio of less than 10. This has proven to be a useful
choice in all applications presented further below. Fig. 4(b)
illustrates this procedure for a simple model system.

E. Software, algorithmic details, and analysis
of computational effort

We close the Section III of this paper by pointing out a
few more details of practical importance. First, while it was
convenient for the theoretical analysis to assume that all tra-
jectories sample the same number of simulation steps K, this
is not required (see Appendix C). Moreover, we also argue
in Appendix C that all normalizations in Eqs. (5)–(7) and
(16)–(18) can be dropped in practice. All of the matrices

s, S
τ
, S

2τ
r used in the estimation algorithm can be replaced

by integer valued matrices that simply count the number of
visits, transitions, and two-step transitions.

Second, we have suggested using the bootstrapping pro-
cedure in order to estimate uncertainties for the singular values

of the count matrix. One way to realize this is to re-draw
trajectories with replacement from the set of all available
simulations and to re-estimate the count matrix from this
modified set of simulations. As individual simulations are
statistically independent, this procedure is theoretically jus-
tified and can also be used to estimate uncertainties of further
derived quantities, like time scales and stationary probabilities.
We used the trajectory-based bootstrapping in all examples
shown below. However, if only a small number of rather
long simulations is available, it may be more practical to
re-draw individual transitions from the set of all available tran-
sitions in the data set. Let T denote the total number of data
points, which equals T = KQ for the uniform trajectory length,
and Eq. (C1) otherwise. If the transitions were statistically
independent, one could simply re-sample T transition pairs
from the set of all N2 possible pairs, where the probability
of drawing the pair (i, j) is given by S

τ
(i, j). In fact, transi-

tions are not statistically independent. Therefore, we suggest
to replace the count matrix S

τ
by the effective count matrix

described in Ref. 33, but it should be noted that this procedure
relies on several approximations and must be improved in the
future.

Third, we present an overview of the computational cost
of each step in the estimation algorithm in Table I, assuming
that dense matrix algebra is used in every step. It is expressed
in terms of the total number of data points T, the number of
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TABLE I. Analysis of computational effort required by the OOM-based
estimation algorithm, if all operations are performed in dense matrix algebra.

Operation Cost

Count matrix estimation ∝T
Bootstrapping ∝nbTN3

SVD of S
τ

∝N3

Computation of OOM components σ̂ : MN + N2

Ξ̂ : N
(
N2M + NM2

)
ω̂ : ∝M3 + NM2

Transition matrix Tτ
Eq N

(
2M2 +M

)

MSM states N, the OOM model rank M, and the number of
bootstrapping samples nb.

The first step requires an effort which is linear in the data
size and can be performed efficiently. In most cases, we can

also assume the count matrices S
τ
, S

2τ
r to be sparse, and the

model rank M to be small. In this case, the cubic term appearing
for the calculation of Ξ̂ becomes quadratic, while the contribu-
tions of the model rank are small. The only real bottleneck is
the singular value decomposition of S

τ
, accounting for the fac-

tor N3 in the second and third steps. As we generally require all
singular values of the count matrix, this step must be performed
using dense matrix algebra, which can be time-consuming.
Future research may provide a method that only requires the
computation of the leading singular values, thus allowing for
sparse algebra to be employed.

Lastly, we note that the MSM correction method described
in Sec. III B is available as part of the PyEMMA package,34

version 2.3 or later, see http://pyemma.org.

IV. EXAMPLES

For each of the following examples, we use the trajectory-
based bootstrapping strategy to determine the OOM model
rank. Mean values and standard errors for the singular values
are estimated from nb = 10 000 re-samplings, singular values
with a signal-to-noise ratio of at least 10.0 are accepted. We
also generate error estimates for all quantities derived from
the OOM-based Markov model by trajectory bootstrapping,
using 1000 re-samplings. In addition, we compute a con-
ventional Markov model without OOM-based correction as
a comparison.

A. One-dimensional toy potential

As the first example, we study in more detail the one-
dimensional system used in the Introduction. The system
is defined by the double-well potential function shown in
Fig. 5(a). The dynamics here is a finite state space Markov
chain with 100 microstates distributed along the x-axis, where
transitions can occur between neighboring states based on a
Metropolis criterion. The system is kinetically two-state, as
the slowest relaxation time scale of the system, corresponding
to the transition process between the two wells, is t2 = 3708
steps and clearly dominates all others (Fig. 5(b)).

We investigate the estimation of a seven-state Markov
model (N = 7) using the discretization indicated by dashed

lines in Fig. 5(a). Using seven states instead of two acceler-
ates the convergence of OOM estimates. Still, the seven-state
discretization is a poor one—note that state 4 contains large
parts of the transition region as well as parts of the right min-
imum. This choice was made deliberately in order to test the
robustness of our method with respect to poor MSM cluster-
ings. We produced two different data sets, each comprising
Q = 5000 simulations. The first set contains short simula-
tions of length K = 250, while the simulations of the second
set are K = 2000 steps long. For the analysis of the smaller
data set, we can use lag times up to τ = 30, while we can go
up to τ = 200 for the larger data set. Panels (c), (e), and (g)
of Fig. 5 display the results for the short simulations, while
the corresponding results for the larger data set are shown in
panels (d), (f), and (h). All simulations were initiated from
a non-equilibrium starting distribution, where the probabil-
ities to start in each of the seven states are given by the
vector

ρ1 =
[

0.3 0.3 0.3 0 0.05 0.05 0
]

, (64)

that is, 90% of the simulations were started in the left three
states, while only 10% were initialized in the deeper mini-
mum on the right. Within each state, the actual microstate was
selected from a uniform distribution.

Figs. 5(c) and 5(d) compare estimates of stationary prob-
abilities from direct MSMs based on Eq. (19) and corrected
MSMs with the transition matrix given by Eq. (55). Due to
the non-equilibrium initial distribution, the simulations visit
the left minimum much more frequently than a simulation in
equilibrium would do. While the MSM estimates of the station-
ary distribution converge to the true equilibrium distribution at
long lag times, they are surprisingly inaccurate at short times,
where the effect of the non-equilibrium starting distribution
still has a strong effect. Even at the largest lag time τ = 200,
the bias is still visible. In contrast, the corrected MSM pro-
vides an excellent and stable estimate at lag times of 15 steps
or longer.

In Figs. 5(e) and 5(f), we compare estimates of the slowest
implied relaxation time scale t2 from three different estima-
tors: a direct Markov model based on Eq. (19), the corrected
Markov model based on Eq. (55), and the OOM-based spectral
estimation, Eqs. (62) and (63). First, we notice that the direct
and corrected MSMs provide different estimates because of
the combination of non-equilibrium starting points and the
poor discretization quality. The corrected MSM time scales
converge faster to the true time scales than the uncorrected
ones. Second, the OOM-based direct estimation of relaxation
time scales by Eq. (63) provides accurate results already at
lag time τ = 15, which is a regime where the number of rel-
evant relaxation processes cannot be easily determined by
a time scale separation, see again panel (b) of Fig. 5. The
OOM time scale estimates become very accurate for larger
lag times if more data can be used. Third, the large devia-
tion between the corrected MSM and the OOM time scales
are indicative of the poor discretization quality employed
here.

Finally, in Figs. 5(g) and 5(h) we show the model rank
selected by the bootstrapping procedure as a function of the
lag time. We can observe how our criterion based on statistical

http://pyemma.org
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FIG. 5. (a) One-dimensional potential function and dis-
cretization of the landscape into seven states. (b) Decadic
logarithm of the first nine implied time scales of the
model system. ((c) and (d)) Estimates of the stationary
probability of states 1-3 from the direct MSM (green)
and the corrected MSM (red), compared to the reference
(black dashed line). ((e) and (f)) Estimates of the slowest
relaxation time scale t2 from a direct MSM (green), the
corrected MSM (red), and the OOM-based spectral esti-
mation (blue), compared to the reference (black dashed
line). ((g) and (h)) Model rank selected by the bootstrap-
ping procedure. For all quantities derived from the OOM,
the dashed lines indicate the estimated values using the
complete data set, whereas the bullets and errorbars corre-
spond to mean and standard error from the bootstrapping
procedure. Note that the errorbars are hardly visible in
panels (d) and (f).

uncertainties helps to select an appropriate model rank for each
lag time, even when it is not obvious from the time scale plot.
As expected, the system becomes effectively of rank 2 for lag
times τ ≥ 80.

B. Molecular dynamics simulations
of alanine dipeptide

Our second example is molecular dynamics simulation
data of alanine dipeptide (Ac-A-NHMe) in explicit water.
Alanine dipeptide has been used as a model system in numer-
ous previous studies, see Refs. 25 and 35 and many others. It
is well known that its dynamics can be described by the two-
dimensional space of backbone dihedral angles φ, ψ. Fig. 6(a)
shows the equilibrium probability distribution in this space
with its three metastable minima in the upper left, central left,
and central right parts of the plane. The slow dynamics consists
of exchanges between the left and right parts (t2 ≈ 1400 ps)
and between the two minima on the left (t3 ≈ 70 ps). We
study the estimation of a Markov model using the discretiza-
tion also indicated in panel (a) of Fig. 6. It was generated
by k-means clustering of the data set described below using
N = 40 cluster centers. We produced an ensemble of roughly
11 000 very short simulations of length 20 ps each. Simulations
were initiated from eight different starting structures labelled
by the numbers 1-8 in Fig. 6(b), see Appendix A for details.

It can be seen that the resulting empirical distribution does
not even reach local equilibrium within the three metastable
regions.

Like in the previous example, we find that it is possible to
obtain precise estimates of stationary probabilities as soon as
the convergence of the OOM-based time scales is achieved. In
panel (c) of Fig. 6, we compare results for the equilibrium prob-
ability of all states in the right part of the plane, from a direct
MSM and the corrected MSM. For lag times τ ≥ 500 fs, we are
able to correct the bias introduced by strong non-equilibrium
sampling.

In panels (d) and (f) of Fig. 6, we present estimates of the
two slowest time scales t2, t3 produced by the same estimators
as before (OOM in blue, direct MSM in green, and corrected
MSM in red). Additionally, the cyan lines correspond to the
time scale estimates of an MSM using equilibrium simula-
tions and the same discretization (see Appendix A). We find
that the OOM-based spectral estimation provides accurate time
scale estimates for short lag times starting at τ = 500 fs. More-
over, we notice that for lag times as small as these, MSM time
scales are clearly lower than the true time scales, although
a decent discretization is employed. The difference between
OOM and MSM estimates indicates that an even finer dis-
cretization would be required to match the references at these
lag times. The direct estimates, the reference equilibrium time
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FIG. 6. Results for alanine dipeptide. (a) Equilibrium
distribution (logarithmic scale) in the space of backbone
dihedral angles φ, ψ and cluster centers of a forty-state k-
means discretization used to analyze the data. (b) Empir-
ical distribution (logarithmic scale) sampled by the data
initiated from eight starting structures indicated by the
numbers 1-8. (c) Equilibrium probability of all states in
the right part of the plane estimated from the direct MSM
(green) and the corrected MSM (red). Reference in black.
(d) Estimates for the slowest relaxation time scale t2 from
a direct MSM (green), the corrected MSM (red), and
the OOM-based estimation (blue). Reference values from
equilibrium simulations are displayed in black. We also
show the expected time scale estimate using the same
forty-state discretization if equilibrium data were used
(cyan line). (e) Model rank used for the OOM estima-
tion as determined by the bootstrapping. (f) The same as
(d) for the second slowest time scales t3. For all quan-
tities derived from the OOM, the dashed lines indicate
the estimated values using the complete data set, whereas
the bullets and errorbars correspond to mean and stan-
dard error from the bootstrapping procedure. Note that
the errorbars are hardly visible in panels (c) and (f).

scales, and our OOM-based estimates of equilibrium time
scales are nearly identical. Only the mean values extracted
from bootstrapping for t2 seem to be a bit low. This will be
investigated further.

Finally, the selected model ranks shown in Fig. 6(e) con-
firm that our framework can work in situations where low-rank
descriptions of the dynamics using only a few processes are
not adequate.

C. Two-dimensional model system with poor
discretization

Our final example is another finite state space Markov
chain in the two-dimensional energy landscape shown in
Fig. 7(a), defined by 40 × 40 microstates. Here we show the
behavior of different estimators in an extreme case, where the
discretization is so poor that MSM estimates fail completely.
Transitions between neighboring states are now possible in
both x- and y-directions, again based on a Metropolis cri-
terion. We study the estimation of a Markov model using a
discretization into 16 MSM states, also shown in Fig. 7(a). As
can be seen in Fig. 7(b), there are two dominant time scales:
t2 ≈ 144 000 steps and t3 ≈ 17 000 steps. The next time scale is
clearly separated from the first two, after that, there is no more
apparent time scale separation. This time, we fix the simulation
length at K = 5000 steps, i.e., the trajectories are approximately
30 times shorter than the slowest time scale. The simulations
are started from a uniform distribution over all microstates.
In panels (c)-(h) of Fig. 7, we display the results if the num-
ber of simulations is set to Q = 2000 ((c), (e), and (g)) and
Q = 10 000 ((d), (f), and (h)).

In Figs. 7(c) and 7(d), we show the estimation results
for the equilibrium probability of the states labeled 13, 14,

and 15. We expect it to be difficult to estimate this proba-
bility, as the states are blending different metastable regions
and transition regions. It can be observed that the estimation
of stationary probabilities is more sensitive to noise, see the
results for Q = 2000. This observation is not surprising, as
the stationary probabilities require accurate estimation of the
two-step count matrices Eq. (7) from the data, which can be
more difficult for rarely visited states. Still, for Q = 10 000,
a reliable estimate is achieved and the biased estimate of
the direct MSM can be corrected. Another comparison we
make is between the estimates from the corrected MSM and
those from long equilibrium simulations that use the same
number of total data points, i.e., K = 2000 · 5000= 107 for
Q = 2000 and K = 10 000 · 5000= 5 · 107 for Q = 10 000. We
show mean values and standard errors from roughly 400 long
simulations for Q = 2000, and roughly 900 simulations for
Q = 10 000. In both cases, the estimates from long equilib-
rium trajectories provide more accurate estimates. In practice,
however, one needs to strike a balance between long tra-
jectories that are more beneficial for the analysis and short
trajectories that can be more efficient for sampling and state
exploration.36–38

Again, we also compare the estimates for the slowest
time scales t2 ((e) and (f)) and t3 ((g) and (h)) from a direct
MSM, the corrected MSM, and the OOM-based spectral esti-
mation. In both cases, correct estimates of both time scales
can be obtained from the OOM, while both the direct and
corrected MSMs estimate time scales one order of magnitude
too small. This suggests that for a bad enough discretization,
correcting for the effect of the non-equilibrium starting distri-
bution will not be sufficient to achieve convergence in the time
scales. However, the poor discretization quality is revealed
by a large error between the OOM-based estimate and the
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FIG. 7. (a) Two-dimensional potential function with dis-
cretization into 16 MSM states indicated by dashed lines.
(b) Leading nine implied time scales tm of the system. ((c)
and (d)) Estimates of equilibrium probability of states 13,
14, and 15 from direct MSM (green) and the corrected
MSM (red), compared to the reference (black line) and
estimates from 400 (c) / 900 (d) different equilibrium
simulations, shown by the cyan lines. ((e) and (f)) Esti-
mates of slowest relaxation time scale t2 from a direct
MSM (green), the corrected MSM (red), and the OOM-
based spectral estimation (blue), compared to the refer-
ence (black dashed line). ((g) and (h)) The same for t3.
For all quantities derived from the OOM, the dashed lines
indicate the estimated values using the complete data set,
whereas the bullets and errorbars correspond to mean and
standard error from the bootstrapping procedure. Note
that the errorbars are hardly visible in panels (f) and (h).

corrected MSM, and this observation can be exploited in order
to improve the discretization and repeat the analysis.

V. CONCLUSIONS

We have investigated the quality of Markov state mod-
els when estimated from many simulations of short length,
initiated from non-equilibrium starting conditions. We have
derived an expression for the error between unbiased MSM
transition probabilities and the expected estimate from many
short simulations. This error is shown to depend on the sim-
ulation length, the lag time, and the state discretization. If
ultra-long trajectories are employed, i.e., trajectories that are
long compared to the slowest relaxation time scales, then the
effect of the initial distribution is negligible and no further
correction is needed. For ensembles of short trajectories, the
situation is more complex. Preparing simulation trajectories in
such a way that they emerge from a local equilibrium distri-
bution does not appear to be of much practical use: this would
only correct the first transition count of every trajectory while
the subsequent trajectory segments are still biased. The local
equilibrium will be lost for intermediate times along the tra-
jectory as the trajectory ensemble is not in global equilibrium.
In a similar sense discarding initial simulation fragments can
reduce the bias but cannot systematically remove it. In parti-
cular, since the effect of the bias disappears with the slowest

relaxation times of the system, discarding pieces of simula-
tion trajectories appears more harmful in terms of reducing
the statistics than it is useful to reduce the bias. With the stan-
dard MSM estimator, the most effective and simplest method
to reduce the bias from the initial trajectory distribution in fact
seems to be using a longer lag time or a better state space
discretization. These are already the usual objectives of MSM
construction. However, if the discretization is poor, the estima-
tion bias due to a non-equilibrium distribution can be dramatic
at practically usable lag times.

The main result of this paper is that we propose an
improved estimator of the MSM transition matrix which is
not biased by the initial distribution. This new estimator is
based on the theory of observable operator models. In contrast
to the standard MSM estimator, the corrected MSM estimator
does not only use the number of transitions observed between
pairs of states at lag time τ but also the number of transitions
at lag time 2τ. These statistics are combined to get a transition
matrix estimate at lag time τ that is unbiased by the initial tra-
jectory distribution. While it may seem that having to estimate
statistics at 2τ is a deficiency compared to standard MSM esti-
mation when only short simulation trajectories are available,
please note that the corrected MSM estimator can get signifi-
cantly better estimates at short lag times, so in practice the lag
times needed for a converged MSM will be smaller than for
the standard estimator.



094104-14 Nüske et al. J. Chem. Phys. 146, 094104 (2017)

Finally, we report a result from the OOM framework
that shows how the model-free relaxation time scales can
be computed from the same statistics used for the corrected
MSM estimator (i.e., transition matrices at lag times τ and
2τ). These estimates are only impaired by statistical error
but are not affected by systematic MSM error as no MSM
is used in the process of obtaining them. The difference
between the corrected MSM time scales and the OOM time
scales can be used in order to assess the discretization qual-
ity, as this difference goes to zero in the limit of good
discretization.

This paper addresses the long-standing controversy about
the correct use of simulation data from short non-equilibrium
simulations for MSM estimation and their effect on the
estimation of equilibrium expectations and kinetics.
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APPENDIX A: SIMULATION SETUP
OF ALANINE DIPEPTIDE

Molecular dynamics simulations of alanine dipeptide
in explicit water at temperature 300 K were generated with
ACEMD39 software using the AMBER ff-99SB-ILDN force
field40 and an integration time step of 2 fs. The peptide
was simulated inside a cubic box of volume (2.3222 nm)3

containing 651 TIP3P water molecules. The Langevin ther-
mostat was used. The electrostatics were computed every two
time steps by the particle-mesh Ewald (PME) method,41 using
real-space cutoff 0.9 nm and grid spacing 0.1 nm. All bonds
between hydrogens and heavy atoms were constrained.

We have produced 11 388 ultra short simulations of length
20 ps each, with 50 fs saving interval. The simulations were
initiated from eight different structures; their projections into
φ−ψ-space are indicated by the numbers 1-8 in Fig. 6(b). The
probabilities to start in each of these structures are given by
the vector

ρ1 =
[

0.05 0.05 0.2 0.2 0.2 0.1 0.1 0.1
]

. (A1)

These simulations were used to perform the analyses described
in Sec. IV B. Using the same setup, we produced 2363 long
runs of 1 ns simulation time each, with 1 ps saving interval. We
estimated a Markov model on the 40-state k-means discretiza-
tion at lag time τ = 100 ps using this data set, and extracted the
reference time scales and equilibrium probabilities shown as
black lines in Fig. 6. Also, we used the stationary probabilities
estimated from this model to initialize 203 short equilibrium
runs of 500 ps simulation time each, with 100 fs saving inter-
val. This data set was used to compute the equilibrium time
scales of the k-means discretization shown as cyan lines in
Figs. 6(d) and 6(f).

APPENDIX B: OOM PROBABILITY
OF OBSERVATION SEQUENCE

Here, we show the derivation of the path probability for-
mula Eq. (36), that can also be found in Ref. 21. In general,
the left-hand side of Eq. (36) can be expressed by repeated
integrals over the transition kernel,

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) =
∫
Ω

∫
A1

. . .

∫
Al

dx0 . . . dxl π(x0)p(x0, x1; τ) . . . p(xl−1, xl; τ). (B1)

Note that π appears in the first integral as we assumed that the dynamics is in equilibrium, i.e., the initial distribution equals π.
Next, we replace all transition kernels by the expansion in Eq. (4),

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) =
M∑

m0=1

M∑
m1=1

· · ·

M∑
ml−1=1

[∫
Ω

dx0 π(x0)ψm0 (x0)

]
λm0 (τ)

×

[∫
A1

dx1 ψm0 (x1)π(x1)ψm1 (x1)

]
. . . λml−1 (τ)

[∫
Al

dxl ψml−1 (xl)π(xl)

]
(B2)

=

M∑
m0=1

M∑
m1=1

· · ·

M∑
ml−1=1

δ1,m0ΞA1 (m0, m1) . . .ΞAl (ml−1, 1). (B3)

In the second equation, we have used the π-orthogonality
of the eigenfunctions ψm0 and the fact that ψ1 ≡ 1 in order
to replace the x0-integral by δ1,m0 . For the last integral, we
have also used that ψ1 ≡ 1. This is a sequence of matrix-
vector products. It remains to use δ1,m0 =ω(m0) and that
ΞAl (ml−1, 1)=

[
ΞAlσ

]
(ml−1). In matrix notation, Eq. (36)

follows:

P(Xτ ∈ A1, . . . , Xlτ ∈ Al) = ω
TΞA1 . . .ΞAlσ (B4)

Finally, note that this derivation also works if the dynam-
ics is not in equilibrium. In this case, the vector ω is
given by ω(m0) = ∫Ω dx0 ρ0(x0)ψm0 (x0), where ρ0 is the
non-equilibrium initial condition.

APPENDIX C: VARIABLE SIMULATION LENGTH

Here, we verify that the estimation algorithm from
Sec. III B can be applied to data sets comprising simulations of
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non-uniform length. We assume that for j = 1, . . . , J , there is
an ensemble of Qj simulations of length Kj + 2τ, i.e., K j tran-
sition pairs/triples will be used from each of these trajectories.
We assume that Qj → ∞ for all j, such that every sub-ensemble
samples from an empirical distribution ρj. Define the number
of data points generated by the jth ensemble as T j = QjK j and
the total number of data points by

T :=
J∑

j=1

QjKj. (C1)

Moreover, we assume that
Tj

T → αj, i.e., the fraction of data
points generated by the jth ensemble approaches a constant for
all j. Let us define the distribution

ρ =

J∑
j=1

αj ρj. (C2)

Trajectories of length Kj + 2τ are enumerated by qj and
labelled Yqj . Further, let sKj (Yqj ) be any of the estimators from
Eqs. (5)–(7), where the subscript K j indicates that K − 2τ in
Eqs. (5)–(7) must be replaced by K j. In addition, denote by
s(Yqj ) the same estimator but without the normalization. Also,
let cρj denote the corresponding correlation from Eqs. (20),
(21), and (43) with respect to the density ρj. It follows that

sT :=
1
T



Q1∑
q1=1

s(Yq1 ) + · · · +
QJ∑

qJ=1

s(YqJ )


(C3)

=
T1

T



1
T1

Q1∑
q1=1

s(Yq1 )


+ · · · +

TJ

T



1
TJ

QJ∑
qJ=1

s(YqJ )


(C4)

=
T1

T



1
Q1

Q1∑
q1=1

sK1 (Yq1 )


+ · · · +

TJ

T



1
QJ

QJ∑
qJ=1

sKJ (YqJ )


(C5)

→ α1E
(
sK1

)
+ · · · + αJE

(
sKJ

)
(C6)

= α1cρ1 + · · · + αJcρJ (C7)

= cρ. (C8)

The convergence in Eq. (C6) is convergence in probability.
Thus, if we sum up all visits/transitions/two-step transitions,
and divide by the total number of data points in the end, we
arrive at an asymptotically correct estimator of the correlations
with respect to the density ρ. As the OOM estimation algo-
rithm only relies on consistent estimators for correlations with
respect to some empirical density ρ, it can still be applied in
this setting. Finally, the normalization by 1

T can be omitted in
practice because it cancels out in Eqs. (47)-(52).

1J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera,
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2C. Schütte and M. Sarich, Metastability and Markov State Models in Molec-
ular Dynamics, Modeling, Analysis, Algorithmic Approaches, Courant Lec-
ture Notes Vol. 24 (American Mathematical Society and Courant Institute
of Mathematical Sciences, 2013).

3An Introduction to Markov State Models and Their Application to Long
Timescale Molecular Simulation, edited by G. R. Bowman, V. S. Pande,
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21H. Wu, J.-H. Prinz, and F. Noé, “Projected metastable Markov processes and
their estimation with observable operator models,” J. Chem. Phys. 143(14),
144101 (2015).
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35F. Vitalini, A. S. J. S. Mey, F. Noé, and B. G. Keller, “Dynamic properties
of force fields,” J. Chem. Phys. 142(8), 084101 (2015).

36J. Preto and C. Clementi, “Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics,” Phys. Chem. Chem. Phys.
16, 19181–19191 (2014).

37S. Doerr and G. De Fabritiis, “On-the-fly learning and sampling of lig-
and binding by high-throughput molecular simulations,” J. Chem. Theory
Comput. 10(5), 2064–2069 (2014).
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