PHYSICAL REVIEW B 93, 205130 (2016)

Noiseless manipulation of helical edge state transport by a quantum magnet
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The current through a helical edge state of a quantum spin Hall insulator may be fully transmitted through a
magnetically gapped region due to a combination of spin-transfer torque and spin pumping [Meng et al., Phys.
Rev. B 90, 205403 (2014)]. Using a scattering approach, we here argue that in such a system the current is
effectively carried by electrons with energies below the magnet-induced gap and well below the Fermi energy.
This has striking consequences, such as the absence of shot noise, an exponential suppression of thermal noise,
and an obstruction of thermal transport. For two helical edges covered by the same quantum magnet, the device

can act as a robust noiseless current splitter.

DOI: 10.1103/PhysRevB.93.205130

A time-reversal symmetry breaking magnetic field is well
known to introduce backscattering of helical edge states and
to destroy the conductance quantization of a quantum spin
Hall insulator [1-4]. More subtle is the case of the effective
magnetic field created by dynamic spinful impurities [5-9].
The reason for that is that a spin flip is necessary to reflect
an electron in a helical edge state. In the case of a small
impurity spin the magnetic impurities immediately become
fully polarized, leaving no room for anymore backscattering
of the current [5,6].

At first sight, the situation is different for a helical edge
coupled to a magnet, because for a magnet the backscattering
of a single electron in the helical edge happens without a
complete change of the magnet’s macroscopic spin polariza-
tion. Moreover, the exchange coupling to a magnet opens up
a gap in the helical-state spectrum, similar to the gap opened
by a magnetic field. Yet, as was shown recently by Meng
et al. [9], under certain conditions concerning the magnet’s
anisotropy energy, an electrical current incident on the magnet
is fully transmitted. Reference [9] invokes a combination of
spin-transfer torque and spin pumping [10-15] as the cause
of this effect. The system considered in Ref. [9] was recently
suggested as an “adiabatic quantum motor” [16].

In this paper we show that such a macroscopic magnet
coupled to the helical edge of a quantum spin Hall insulator
has very special noise and thermal transport properties, some
of which are unparalleled in the field of mesoscopic quantum
transport: Thermal transport and shot noise are essentially
absent in a two-terminal setup, and a multiterminal geometry
involving a magnet coupled to two helical edges allows a
current partitioning without shot noise. The origin of these
remarkable phenomena is that all electrons close to the
chemical potential p are reflected if w is inside the magnet-
induced gap, whereas the current is effectively carried by
electrons with energy below the gap, which may be very large
compared to both temperature and applied bias—a situation
reminiscent of the interrelation of electrons at low and high
energy in the case of the chiral anomaly [17].

We investigate the same system as in Ref. [9], including
the same conditions on the magnet’s anisotropy energy (see
below), but we use the scattering approach [18,19] to describe
transport. In addition to rederiving the results of Ref. [9] in
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a more general context, not being restricted to a magnet that
fully gaps the helical edge state, the scattering approach gives
us a unified framework for the description of charge and energy
transport and noise-related phenomena. Reflection of helical
electrons off the magnet is inelastic, changing both their spin
and energy when a bias voltage is applied, the sign of the
energy change depending on whether the electron is incident
from the source or the drain. Together, transmitted electrons
with energies below the magnet-induced gap and reflected
electrons in the helical edge form a noiseless current-carrying
state.

Model and scattering matrix. The interaction of the helical
edge state with the magnet is described by the second-
quantized Hamiltonian [9]

) . D
H= fdx Vi—ihved,o, + h()o - Mg, + S ()

Here vg is the Fermi velocity, oy, . are the Pauli matrices
acting on the spinor @X = [&T(x),tff L(x)]T of the helical edge
states, and h(x) is a function that describes the exchange
coupling between the magnetic moment M and the edge state
spin (both measured in units of /), such that h(x) = 0 for
x — £o0o. A schematic picture of the arrangement is shown
in Fig. 1(a).

We employ a macrospin approximation, i.e., the magnetic
moment M in Eq. (1) is the only collective variable describing
the dynamics of the macroscopic magnet. The last term
in Eq. (1) represents the magnetic anisotropy energy. We
take D > 0, corresponding to easy-plane anisotropy. The
Hamiltonian (1) is invariant under spin rotations in the x-y
plane, so that the z component of the total spin M, 4 o, is
conserved. This additional symmetry of the model is the key
to the absence of backscattering in the steady state (in the
absence of residual interaction effects inside the edge) [5,6,9].
We first derive this result for the mean current, and then extend
our discussion to noise and distribution functions.

Prior to considering the full many-body case it is convenient
to start with a single electron problem in the topological-
insulator edge interacting with the magnetic moment, de-
scribed by the first-quantized Hamiltonian

H = —ihvpdso, + h(x)o - M+ S DM?. )
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FIG. 1. Schematic drawing of the geometry we consider: One
helical edge (a) or both edges (b) of a two-dimensional topological
insulator (gray) exchange coupled to a magnetic insulator.
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A reflection of an electron at the topological-insulator edge
is accompanied by a unit change M, — M, =1 of the z
component of the magnetization, where the 4+ and — signs
refer to electrons incident from the left or from the right,
respectively. The Hamiltonian (2) thus decouples into sectors
in which the magnetization has the value M, for right-moving
electrons and M, + 1 for left-moving electrons. Inside such a
sector one may obtain a pure scattering problem by performing
the unitary transformation (analogous to the transformation to
the rotating frame of Refs. [9,15])

- (1 0 10
=G )G

where my =M, +iMy)/M,, with M, =
M — M)M+ 1+ M), is the operator that raises
the value of M, by unity. Using the equality m_m, = 1 and
omitting constant terms, we have (cf. [9])

i h
j |:—ihvp8x T h()M, — 7‘”};3 + M h(X)or, (4

with hw = D(M; 4 1/2) the difference of the anisotropy
energies between the states with magnetization M, and
M, + 1.1In Eq. (4) we neglected small terms ~ / in comparison
to the large term ~ 1 M. In the Hamiltonian A the z component
of the magnetization can be considered constant. The reflection
and transmission amplitudes r(e), r'(¢), t(¢), and t'(¢) for
the scattering problem (4) at energy & can then be found
using standard methods. (Primed amplitudes are for electrons
incident from the right.) In particular, for a smooth function
h(x) having a wide maximum the Hamiltonian has a gapped
region with maximal gap 2&,,,, With &gp = max, hA(x)M .
For our considerations it will be important that r(¢) — O if
IS | > ¢ gap-.

The frequency w appearing in Eq. (4) is the frequency
of rotation of the classical magnetization M around the z
axis. Note that outside the magnet region, the kinetic energies
of the left-moving and the right-moving electrons are ¢_ =
& —hw/2 and e, = ¢ + hw/2, respectively. Considering the
kinetic energies separately is important, because they appear
in the distribution function of incoming electrons [see Eq. (7)
below].

Transforming back to the original formulation, Eq. (2), the
scattering problem can be written in second-quantized form as

bi(e_) = r(e)myar(ey) +t'(e)ar(e), s

br(ey) = r'(e)m_agr(e-) + t(e)ar(e),
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where the operators bi(e),br(¢) and a1 (¢),ar(¢) annihilate an
outgoing and an incomingelectron [19] at a kinetic energy ¢,
respectively, at the left (L) and the right (R) of the magnet.

So far we have considered the problem of a single
electron scattering off the magnetic moment M. The scattering
amplitudes r(¢), r'(¢), t(¢), and ¢'(¢), as well as the energy shift
hw are functions of M,. When considering the many-particle
problem, in principle, M, is a fluctuating quantity, because
of the simultaneous scattering off the magnetic moment of
multiple electrons. However, in the limit of a macroscopic
magnetic moment M relative fluctuations of the out-of-
plane magnetization M, are small and one may evaluate the
amplitudes r(¢), r'(¢), t(¢), and ¢'(¢), as well as the energy shift
hw at the mean value (M_). With this approximation, Eq. (5)
can be applied to the many-particle system. Employing the
eigenfunctions of Eq. (4) in this mean-field way is equivalent
to the approach of Ref. [9].

Current. The charge current through the helical edge is
calculated using the expression [19]

L= 2 [ de de'[a] (e)ar (') — bl (e)bL(eN]  (6)

for the current to the left of the magnet, and a similar expression
for the current Iy to the right of the magnet. For the incoming
states one has

(al(®)ag(e)) = fu(€)s(e — Noup, 0. =LR, (7

where f,,(¢) = 1/[e®#«)/ k8T« | ] is the distribution function
for reservoir «, with chemical potential u, and temperature
T,, o = L,R. Substituting Eq. (5) and using |t(e)|*> = |t'(e)|,
we find

e
L=, / del fule-) = Ir(@)P file) — ()] fr(e-)l. (8)
When a bias voltage eV is applied across the magnet,

uL=pn+eV/2, up =p—eVv/2, 9

initially the reflections of electrons incident from the left and
from the right will not be in balance. Since each reflection
leads to a change AM, = %1, with a 4 sign for electrons
incident from the left and a — sign for electrons incident from
the right, the application of a bias leads to a finite out-of-plane
magnetization component M,. The rate of change of M, is the
difference of reflection rates for electrons incident from the
left and from the right,

. 1
(M) = Z/dglr(e)lz[fL(EJr) — fr(e-)]. (10)

Note that the integral is convergent, because r(¢) — O for
|&] > €gqp. If the two contacts are held at the same temperature,
the integrand in Eq. (10) never changes sign, and the stationary
condition (M.) = 0 may be achieved at fiw = eV only, i..,
when the integrand vanishes at all . The substitution of
Eqg. (10) into Eq. (8) then yields the stationary current (using
lr@)* + 1) = 1)
e

2
R=h=t / delfi(e) ~ fuel = V. D

This is the reflectionless current originally obtained by Meng
et al. [9], who arrive at the equality eV = hw as a direct
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FIG. 2. Schematic illustration of reflection and transmission as a
function of energy, for the special case that the exchange coupling
h(x) is a smooth function of x and the chemical potential w lies
inside the spectral gap induced by the coupling to the ferromagnet.
The vertical axis refers to the electrons’ kinetic energy, which changes
by an amount iw = eV upon reflection. Electrons carrying the actual
current are shown by red dashed lines. Although details change if the
coupling function /(x) is not smooth, the conclusion that the current is
carried effectively by electrons far away from the Fermi level remains
true as long as the chemical potential is inside the gap [20].

consequence of the transformation to a frame corotating with
the precessing magnetization.

In Fig. 2 we schematically illustrate which electrons carry
the current in the special case that the function A(x) is smooth,
so that the reflection probability [r(e))? = O(egap — le]), O
being the step function, and with chemical potential x in the
gap [20]. Since the kinetic energy for electrons incoming from
the left reservoir is e, = ¢ + hw/2, electrons incident from
the left are fully reflected if (and only if) their kinetic energy
—E&gap + AW /2 < &4 < €gap + hw/2 (i€, —Egap < & < Egap,
although we stress that it is the kinetic energy e1 = ¢ & hw/2
that matters for the distribution functions). Similarly, electrons
incident from the right are fully reflected if and only if
their kinetic energy e_ = & — hw/2 is between —&g45p — hew/2
and &gy, — hw/2. Hence, the current is carried effectively by
electrons incident from the left, with kinetic energies between
—&gap — hw/2 and —e&gy, + hw/2. These are electrons far
below the Fermi level, as shown in the figure.

Note that, while the qualitative picture described by Fig. 2
relies on the chemical potential p being inside the gap and
on the function i(x) being smooth (such that the electrons
with energies outside the gap are fully transmitted), the
conclusion (11) of a perfectly transmitted current does not rely
on these conditions. The only change in the case of a chemical
potential outside the gap is an increased relaxation time
because of the small reflection coefficient r (¢) for energies near
u [see Eq. (10)]. The reflection probability can be increased
and the relaxation time lowered by making the edge-to-magnet
coupling nonadiabatic, e.g., by engineering the function A (x)
with sharp features.

Noise. Since Eq. (11) predicts a perfect transmission of
the current, one should expect no zero-frequency shot noise.
This follows directly for the special case considered in Fig. 2,
where all the right-moving states with energies below pu;, and
all the left-moving states with energies below g are occupied,
leaving no room for any uncertainty, i.e., for noise. Figure 2

PHYSICAL REVIEW B 93, 205130 (2016)

also suggests a strong suppression of the thermal noise in the
case of the chemical potential inside the gap, since in that case
all electrons with energy near the chemical potential—i.e., all
electrons that “know” about the temperature—are reflected.

To formally calculate the noise we may use the scattering
matrix (5). The zero-frequency noise power then takes the form
(cf. Ref. [19])

2e? 2
$=2 / de©P el — file)]

+ fr(e)1 — fr(e)])
+ 1@ — 1@ fles) — frle)D).  (12)

For equal lead temperatures 7 = Tr = 71 and in the stationary
limit Aiw = eV one has fr(e_) = frL(e4+) [see Eq. (10)], so
that the last line in Eq. (12), the shot noise, vanishes. What
remains is the thermal noise, which upon using the equality
fr(e-) = fL(e), becomes

462 2
§=-- / delr(e) fe)ll — file)].  (13)

The thermal noise depends in general on the specific form of
t(¢). For a smooth /(x) one has |t(e)]*> = O(|e| — Egap), the
energy integration is easily done, and one finds

SeszT
T ¢

plus corrections that vanish in the limit |egap £ pt| > kgT. If
the function A(x) is not smooth the detailed expression for
the shot noise power changes, but not the conclusion that § is
exponentially small in min(gg,p & ). Clearly the exponential
suppression of the thermal noise indicates a departure from
the usual form Sty, = 4kgTdI/dV for two-terminal conduc-
tors [19]. For chemical potential i« well outside the gap region
the thermal noise obtained from Eq. (13) agrees with the
conventional result S = Sty,.

Distribution functions. The strong suppression of thermal
noise can also be illustrated through a calculation of the
distribution functions frout and fi o for electrons, which
have been reflected from or transmitted through the device.
One finds

frou(®) = fu@t(e )’ + frle = ho)lr(e )7,

S ~een/ kT cosh(u/kgT), (14)

s)
frou(®) = file + ho)lr(e ) + fr(@)ltE I,

where fg and fi are the distribution functions of electrons
incident from the right and left reservoirs, respectively. For
equal reservoir temperatures and in the stationary limit fw =
eV, such that fj(¢) = fr(e¢ — hw), these equations reduce to
Jroout(e) = fL(e) and fi ou(e) = fr(¢) in accordance with
Eq. (11). However, the distributions become nontrivial if the
temperatures 71, and T are different. If the chemical potential
w is inside the gap, all electrons with energy close to w are
reflected, and one finds fr out(€) = fr(e — hw), fL ou(€) =
fL(e — hw), i.e., the device transmits the charge of the incident
electrons, but not their “temperature”—the device is a thermal
insulator. An example for generic reflection and transmission
amplitudes is shown in Fig. 3.

Noiseless partitioning of the current. It is instructive to also
consider a four-terminal quantum spin Hall device with two
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FIG. 3. Illustration of distribution functions for incoming (top)
and outgoing (bottom) electrons, for the case 71./eV = 0.2, Tr /eV =
0.02, |r(e)|*> =1 — |t(e)|> = 0.8. The location of the “step” in the
distribution function for the outgoing electrons corresponds to that of

the opposite reservoir, consistent with the perfect transmission of the
incident current. For this example, the width of the step is, however,
predominantly that of the same-side reservoir, consistent with the fact
that the device acts as a “thermal insulator.”

helical edges covered by the same magnet, as in Fig. 1(b). Let
the left contact of the edge 1 be biased by a voltage V and all
other terminals be put to ground. The electrons incident from
the left contact of edge 1 initiate a precessing nonequilibrium
out-of-plane magnetization M, which in turn drives spin and
charge currents in the remaining three terminals. An illustrative
explanation of the processes taking place in the four-terminal
setup is presented in Fig. 4 (similar to Fig. 2 in the two-terminal
case). For the explicit calculation the scattering approach used
above can be carried over straightforwardly for each edge, as
there is no scattering between them. The precession frequency
w at which a steady state sets in now is given by [20]

. 1
0= (M) =, / delin©PLAuEs) — fir(e)]
L) — Pl (16)

where the labels 1 and 2 refer to the two edges and we have used
that the helicity of the edge states is opposite in the two edges.
The ability of the magnet to create/change current in each
edge state is determined by the reflection coefficient leading
to different currents /; and I, for arbitrary r; »(¢). However, in
the case of all chemical potentials inside the magnet-induced
gap with exponential accuracy one has |ri(¢)| = |r(e)| =
1, leading to I} = —I, = ¢*V/2h, independent (again with
exponential accuracy) of the possibly different temperatures
of the four contacts.

To calculate the noise power one may use Eq. (12) for each
edge separately. In the example that all chemical potentials
are inside the gap, the currents are obviously noiseless, up
to exponentially small corrections in |&g,p ; & u;|/ kT, where
Wi = (L + mir)/2 is the average chemical potential in the
edge 7 and &g44p; is the value of the gap in the same edge—a
result that can already be understood by arguing that in both
helical edges the current in Fig. 4 is carried by electrons far
below the chemical potential. The absence of noise may be
considered surprising, since, unlike in the two-terminal setup,
in the four-terminal setup the original incident current appears
to be partitioned.

FIG. 4. Noiseless partitioning of the current between the two
edges of the topological insulator (TI) covered by the same magnet.
The current is injected through the left contact of the upper edge
1 with chemical potential p;; = pir + eV. In the steady state the
magnetic moment precesses at a frequency hw = eV/2. In this
case half of the injected current is reflected back with the energies
iR +eV/2 > ¢ > pr. In the upper right contact uncompensated
right movers have energies g +eV/2 > ¢ > ur. Even though
half of the current is reflected, there is no shot noise, since every
single electron state is always either fully occupied, or fully empty.
Electrons which are physically transmitted from left to right in edge 1
(shown in red) have energies well below the Fermi energy, € & —&1gqp
(cf. Fig. 2). Electrons from the lower edge 2 also have to change their
spin and energy upon reflection. This results in the noiseless current
11 = €2V/2h = —12.

Conclusions. We considered the transport of helical edge
state electrons in proximity to a magnet with easy-plane
anisotropy compatible with the spin helicity of the edge state.
While it was known that (after transient effects) such a system
perfectly transmits an incident charge current [9], in spite of
the fact that the coupling to the magnetic insulator opens a
gap in the spectrum of the helical edge, we have shown that
the device has very special noise properties: The current is
noiseless, and thermal transport is blocked. We explain this
combination of “perfect metal” and “perfect thermal insulator”
properties in a single-particle scattering picture, in which
effectively the current is carried by electrons with energy
far below the chemical potential. In a four-terminal setup,
the same device can be used as a noiseless current splitting
device.

The authors of Ref. [9] suggest using a mesoscopic K,CuF,
easy-plane magnetic film for realization of their device. The
first experiments with two-dimensional topological insulators
used sample widths as small as <1 um [3], which is
comparable to the typical size 21 um of magnetic domains,
including those in K, CuF, [21]. For thatreason, we believe that
the same material combination can also be used, in principle,
for the four-terminal device of Fig. 1(b).

Our predictions rely strongly on the precise orientation
of the magnet’s easy-plane anisotropy. While the orientation
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chosen here is generic for a thin magnetic film [22] exchange
coupled to the spin polarized helical edge modes [23] of a
quantum spin Hall material, small deviations from the ideal
limit may still exist. These will be investigated in future work.
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