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Abstract

Quality controlled and homogenized radiosonde observations have been used to validate decadal hindcasts of
the MPI-Earth-System-Model for Europe (excl. some Eastern European countries). Simulated temperatures
have a cold bias of 1 to 4 K, increasing with height throughout the free troposphere over Europe. This implies
that the simulated troposphere is less stable than observed by the radiosondes over Europe. Simulated relative
humidity is 10 to 40 % higher than observed. Part of the humidity bias, 10 to 25 % relative humidity, is due
to the simulated lower temperature, but the remainder indicates that modelled water vapour pressure is too
high in the free troposphere above Europe. After full-field initialization with oceanic state, the atmospheric
temperature bias changes over the first couple of years, with a relaxation time of 5 years near the surface
(850 hPa) and less than 1 year near the tropopause (200 hPa). Anomaly correlations, mean-square error and
logarithmic ensemble spread score indicate small improvements in hindcasted tropospheric temperatures
over Europe when going from ocean anomaly initialisation to ocean anomaly initialisation plus full field
atmospheric initialisation, and then to full field ocean initialisation plus full field atmospheric initialisation.
In the stratosphere, these changes have little effect. For humidity, correlations and skill scores are much

poorer, and little can be said about changes over Europe due to different initializations.
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1 Introduction

Projections of future climate have been made by
many Earth-system-models, e.g. those coordinated by
the Coupled Model Intercomparison Project Phase 5
(CMIP5) (TAyLor etal.,, 2012; MEEHL etal., 2014).
Typically, the effects of model boundary conditions,
that is impacts of the expected atmospheric composi-
tion (aerosol and greenhouse gases), and natural forc-
ings have been analysed for time scales of decades to
centuries (SMITH et al., 2013; MEEHL et al., 2007). Over
the last 10 to 15 years, scientific and economic interest
has turned to shorter term, decadal, climate predictions
(PoHLMANN etal., 2009; SmiTH etal., 2007; KEENLY-
SIDE etal., 2008; MAROTZKE etal., 2016). On decadal
time-scales not only boundary conditions are impor-
tant, but also the initial atmospheric and oceanic state.
Decadal climate projections are of particular scientific
interest. If skilful enough, they could be useful for de-
cisions on administrative and political time scales, such
as infrastructure planning and adaptation to expected cli-
mate variations. An appropriate model system with good
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enough resolution in atmosphere and ocean, with realis-
tic internal variations, and careful model initialization
with observational data are key requirements for skilful
climate predictions on the decadal scale.

The German decadal climate prediction program
(MiKlip, Mittelfristige Klimaprognose) has contributed
to extensive testing and further development of the
Max-Planck-Institute Earth System Model (MPI-ESM)
(JunGgcraus etal.,, 2013; STEVENS etal.,, 2013; Ma-
ROTZKE etal., 2016). A major part of MiKlip was to in-
vestigate the impact of different initialization techniques
(PoHLMANN et al., 2013). This can be done by compar-
ing the performance of hindcasts with the actual evolu-
tion of the observed atmosphere (HAWKINS etal., 2014;
STOLZENBERGER etal., 2015). A challenge in this con-
text are systematic differences between the hindcasts
and the actual observations, i.e. bias and drift (HAWKINS
etal., 2014; EADE etal., 2014).

The aim of this paper is to analyse MiKlip hind-
casts in the free atmosphere over Europe, up to the mid-
dle stratosphere, by comparison to observational data
from homogenized radiosonde measurements (PATTAN-
TYUs-ABRAHAAM and STEINBRECHT, 2015). This allows
quantification of model biases and drifts, as well as eval-
uation of hindcast skills. The main focus is on the com-
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Table 1: Overview of the MiKlip experiments.
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Experiment Historical-LR Baseline 0-LR Baseline 1-LR Baseline 1-MR Prototype-LR
name
Resolution ocean: 1.5°, 40L; ocean: 1.5° 40L; ocean: 1.5°, 40L; ocean: 0.4°, 40L; ocean: 1.5° 40L;
atmosphere T63L47 atmosphere T63L47 atmosphere T63L47 atmosphere T63L95 atmosphere T63L47
up to 0.1 hPa up to 0.1 hPa up to 0.1 hPa up to 0.1 hPa up to 0.1 hPa
Initialisation no initialisation yearly, lagged 1-day  yearly, lagged 1-day  yearly, lagged 1-day  yearly, lagged 1-day
of atmosphere and of atmosphere and of atmosphere and of atmosphere and
ocean ocean ocean ocean
Ocean no initialisation 3D temperatures and  anomalies from anomalies from full field:
initialisation salinity anomalies ORA-S4 ORA-S4 temperature and
from MPI ocean salinity from
model forced by ORA-S4m,
NCEP reanalysis GECCO2
Atmosphere no initialisation no nudging full field: vorticity, full field: vorticity, full field: vorticity,
initialisation divergence divergence divergence

Ensemble size 15 3 (10 for every
Sth year)

Years 1850-2014 1961-2013

Abbreviation H-LR BO-LR

temperature and
pressure (log) from
ERA

10
1961-2014
B1-LR

temperature and
pressure (log) from
ERA

5

1961-2013
B1-MR

temperature and
pressure (log) from
ERA

2x15

1961-2014
Pr-LR

parison of hindcasted and observed profiles of temper-
ature and relative humidity over Europe. Among other
things, these profiles provide key information on the ver-
tical stability of the atmosphere and on severe weather
indicators. For quantitative intercomparison of predic-
tive skills of the MPI-ESM and its diverse initialisation
techniques (GODDARD et al., 2013), the Mean Square Er-
ror Skill Score (MSESS), its decomposition, and the
Logarithmic Ensemble Spread Score (LESS) (KAapOow
etal., 2015) are used. These scores are implemented in
the ‘MurCSS’ plug-in of the MiKlip central evaluation
system (ILLING etal., 2014).

The paper is organized as follows: The next section
explains the different hindcast experiments. It also de-
scribes the European radiosonde data used for valida-
tion. Section 3 is devoted to comparisons and evalua-
tion of model performance. Conclusions are presented
in Section 4.

2 Data

2.1 Design of the decadal prediction
experiments

Hindcasts in this study come from the Max-Planck-
Institute’s earth system model (MPI-ESM) (STEVENS
etal., 2013; POHLMANN etal.,, 2013; MULLER etal.,
2012). The ocean component of this coupled atmo-
sphere-ocean system is provided by the Max-Planck-
Institute ocean model (MPI-OM) (JUNGCLAUS etal.,
2013), and ECHAMS is the atmospheric component

(GIORGETTA etal., 2013). Hindcasts of the coupled
MPI-ESM model have contributed to the fifth Coupled
Model Intercomparison Project (CMIP5, DOBLAS-REYES
etal. (2013)).

Within MiKlip, different initialization techniques
were tested for both ocean and atmosphere. Table 1 pro-
vides an overview of these experiments, including the
resolution used by different parts of the earth system
model. All hindcast experiments (BO, B1, Pr) were ini-
tialized and re-started for every model-year. These re-
starts included several members, forming a new ensem-
ble for each start-year. All ensemble members contain
10 model-years of data. Baseline 0 is the MPI-ESM cou-
pled model as in CMIPS. In the baseline 0 low resolution
(BO-LR) hindcast, the ocean was initialized by nudg-
ing to 3-dimensional temperature and salinity anomaly
data from the MPI Ocean Model forced by NCEP re-
analysis (KALNAY etal., 1996). No initialisation was ap-
plied to the model atmosphere (MAROTZKE et al., 2016).
Baseline 1, low and mixed resolution runs (B1-LR
and B1-MR, respectively) used ocean anomaly initial-
isation from the Ocean Reanalysis System 4 (ORA-
S4) data set (BALMASEDA etal., 2013). In addition,
full-field initialisation was used for the atmosphere,
based on vorticity, divergence, temperature and log pres-
sure data from the European Center for Medium-range
Weather Forecasts (ECWMF) reanalyses ERA-40 (Up-
PALA etal., 2005) and ERA-Interim (DEE etal., 2011).
The “prototype” low-resolution experiment (Pr-LR) ap-
plied the same reanalysis fields as BI1-LR for atmo-
spheric initialisation, but used full-field temperature and
salinity initialisation for the ocean, based on ORA-S4
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(BALMASEDA etal., 2013) and GECCO2 data (KOHL,
2015). In this paper, however, only the Pr-LR hind-
casts with ORA-S4 initialisation were used to focus
solely on the effect of full-field initialisation. BO-LR
had 3 ensemble members (10 members every fifth start-
ing year), B1-LR had 10 members, BI-MR 5 members,
and Pr-LR 15 members with ORA-S4 initialisation (plus
15 members with GECCO?2 initialisation which were not
analysed here).

To assess the added value of initialisation, unini-
tialised (historical boundary condition) experiments
were used as well. These historical (H-LR) hindcasts use
the same model configuration as the initialised runs, but
randomly sampled initialized on the 1st of January 1850.
In all runs, historical natural forcings (earth orbit, so-
lar variability, natural tropospheric and volcanic strato-
spheric aerosol) and anthropogenic forcings (green-
house gases, ozone, anthropogenic sulfate aerosol, land-
use changes) are applied until 2015 (GIORGETTA etal.,
2013).

2.2 Homogenized radiosonde observations

Radiosonde (RS) data from operational upper-air sta-
tions serve as the reference for our validation. Since the
main goal of the MiKlip project is to provide decadal cli-
mate prediction for Central Europe, and the radiosonde
network is most dense and robust in Europe, our fo-
cus is on the European region. The RS data were col-
lected from the archive maintained by Deutscher Wet-
terdienst and from the International Geophysical Ra-
diosonde Archive (DURRE et al., 2006).

Because inhomogeneities in radiosonde time series
are a common problem, homogenization of the RS tem-
perature data was done first, both for Gemany (PATTAN-
TYUs-ABRAHAAM and STEINBRECHT, 2015), and, fol-
lowing the same methodology, for other European sta-
tions. Since our homogenization has not yet been ex-
tended to radiosondes from the former Soviet Union and
a few other Eastern European countries, these are not
part of the current validation. See Fig. 1 for the Eu-
ropean radiosonde stations used. About 50 RS stations
were selected for the validation. Selection criteria were:
1) at least 30 years of data; 2) two or more soundings per
day (day-time and night-time); 3) no multi-year gaps in
the data; 4) uniform coverage for Europe. Temperature
data were taken at 11 standard pressure levels: 850 hPa,
700 hPa, 500 hPa, 400 hPa, 300 hPa, 250 hPa, 200 hPa,
150 hPa, 100 hPa, 70 hPa, 50 hPa, and for the time pe-
riod from 1960-2013. Accuracy of the homogenized ra-
diosonde monthly mean data is better than 0.2 K in the
troposphere and better than 0.4 K in the lower strato-
sphere.

Relative humidity data from RS soundings were used
only in the lower troposphere (850, 700, 500 hPa), and
only after the mid 1990s, when radiosondes with good
humidity sensors (e.g. Vaisala RS80, RS92) became rou-
tine. Before about 1990, and at higher levels, RS hu-
midity data have large errors and uncertainties, includ-
ing instrument dependent variance and bias (ELLIOTT
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Figure 1: Radiosonde stations used for the validation.

and GAFFEN, 1991; MILOSHEVICH et al., 2004; Dar1 et al.,
2011). These low quality RS humidity records were not
used here.

For severe weather probability analyses, daily data
were used. For bias and skill score comparisons, monthly
means were used.

3 Results

3.1 Model bias

Bias is the systematic difference between model-simula-
ted and radiosonde-observed quantities at the same pres-
sure level (model minus observation). Figure 2a shows
the vertical profile of the lead-year 2 annual mean tem-
perature bias of the Pr-LR experiments for five European
regions. The inset shows how the bias profile over Ger-
many varies between the different model experiments.
Generally, the model hindcasts have a negative temper-
ature bias, i.e. hindcasted temperatures are up to 4K
lower than observed by the radiosondes. The only ex-
ception is the B1-MR experiment, which uses a higher
vertical resolution, and gives higher temperatures than
observed near the 100 hPa pressure level in the lower
stratosphere. Generally, the seasonal variation of these
biases in the troposphere is rather small and decreases
with the height (and is not shown here). Most months of
the year show similar bias, although the smallest nega-
tive biases (0.5 K warmer than in the annual mean) do
occur in April and November. In July and August the
negative model bias has a peak about 0.7 to 1 K colder
than the annual mean bias below the tropopause (not
shown).

The mean vertical bias profiles all show a similar pat-
tern (see Figure 2a): The bias between hindcasts and ob-
servations increases from around 1K near the surface
to 2 to 4K near the 200 hPa level, which is near the
tropopause. The increase of the cold bias with altitude
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Figure 2: Annual mean bias in lead year 2 of the Prototype experi-
ment (Pr-LR) over five European regions. Top: temperature, bottom:
relative humidity. Inset in the top figure shows the mean vertical bias
profile for the different experiments over Germany.

implies that the hindcasted troposphere has less verti-
cal stability than observed by the radiosondes. In the
lower stratosphere, above 200 hPa, the bias drops until
100 hPa, above which level it increases again. There are
some regional differences in the temperature bias pro-
file.

Figure 2b shows that the hindcasts overestimate rel-
ative humidity throughout the troposphere. This is the
case over most of the annual cycle (not shown). Only at
850 and 700 hPa a small seasonal variation of the hu-
midity bias is found, with an amplitude smaller than 5 %
relative humidity, and the smallest model overestimation
in June, the largest in winter. The general positive hu-
midity bias increases with height, from 5 to 15 % rela-
tive humidity near the surface to 30 to 40 % relative hu-
midity near 300 hPa. Part of the humidity bias, 10 % to
25 % relative humidity, can be explained by the 1 to 4 K
lower temperatures of the hindcasts. According to the
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Figure 3: Box-Whisker (minimum / 1st quartile / median / 3rd quar-
tile / maximum) plots of the bias profiles for lead year 2 of respec-
tive ensemble members. Top: temperature, bottom: relative humidity.
red: B1-LR, green: BI-MR, blue: Pr-LR.

Clausius-Clapeyron relation, lower temperature implies
lower water vapour saturation pressure, hence higher rel-
ative humidity (ETLING, 2002). However, the remainder
of the observed humidity bias implies that modelled wa-
ter vapour pressure is generally too high above Europe.

While Figure 2 only shows the average profiles, Fig-
ure 3 gives additional information on the range of ob-
served bias seen in lead year 2 for the different ensemble
members. Clearly, the positive humidity bias is present
in almost all cases. Negative temperature bias, however,
is present in many, but not all cases. It occurs nearly al-
ways in the upper troposphere, but near the surface and
in the stratosphere positive temperature bias occurs quite
often as well.

The considerable negative temperature bias of the
hindcasts, which also increases with height in the tropo-
sphere, indicates that the global model underestimates
atmospheric stability. Together with higher relative hu-
midities, this has substantial impact on the probability
of convective situations and severe weather events, pre-
dicted e.g. by the K-Index (GEORGE, 1960). This severe
weather index combines vertical temperature lapse rate
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Figure 4: Observed and hindcasted probability distribution of the K-index for the four seasons over Germany for lead year 2. Red line:
hindcast, black line: RS observations. Cyan vertical line: maximum threshold for no thunderstorm likely; purple line: minimum threshold

for very unstable atmosphere, thunderstorms very likely.

and moisture content of the lower troposphere. It is cal-
culated as K = T35() — T5()() + Td850 — Tdd700, where
T is temperature, T, is dew point temperature, Tyy is
dewpoint depression, and subscript values denote the
pressure level in hPa. Figure 4 compares radiosonde-
observed (black) and hindcasted (red) probability den-
sity distributions for the K-index and four seasons over
Germany.

K-index values below 15 (cyan vertical line in Fig-
ure 4) indicate a stable atmosphere, where thunder-
storms are not likely. K-index values above 35 (purple
line in Figure 4) indicate a very unstable moist atmo-
sphere with high potential for thunderstorms. Figure 4
shows clear differences between observed and hind-
casted probability density distributions of the K-index.
In all seasons, except for winter, the hindcasted prob-
ability density distributions are shifted towards higher
K-Index values, and are also narrower. Thus, the model
simulations give substantially higher probabilities for
convective and severe weather events than the radioson-
des. This is most pronounced in summer and fall,
whereas simulated and observed probability densities
agree much better in winter. Without careful, seasonally

adapted bias and drift correction the global model sim-
ulations should, therefore, not be used directly for fore-
casting the likelihood of convective and severe weather
events, e.g. thunderstorms.

3.2 Model drift

Since it is possible that model bias changes with time
after initialisation (SMITH etal., 2013), we also checked
for systematic lead year dependence.

Resulting drifts of the model’s temperature and hu-
midity bias are plotted in Figure 5 for the 500 hPa level
over Germany. Typical 1o uncertainties are shown for
the Pr-LR experiment only. In the BO-LR, BI1-LR, and
B1-MR hindcasts, the temperature bias remains constant
with lead year, i.e. model drift is small or negligible.
The Pr-LR hindcasts, however, show substantial lead-
year dependence, i.e. significant drift. The bias between
modelled and observed temperature becomes larger with
hindcast lead year, typically by —0.5 to —0.1 K per lead
year. Similar results are seen for other European regions.

The drift of the Pr-LR hindcasts is most likely a con-
sequence of the full field initialization applied to the
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Figure 5: Lead time dependence of the bias over Germany. Top:
temperature at 500 hPa, bottom: relative humidity at 700 hPa. black:
BO-LR, red: B1-LR, green: B1-MR, blue: Pr-LR. Error bars show
+1 standard deviation of the mean over ensemble members for lead
years 2 and 8 of Pr-LR. Similar standard deviations are seen for other
experiments and lead years.

ocean in this experiment (MAROTZKE et al. (2016), JUR-
GEN KROGER, personal communication), whereas the
anomaly field initialization applied to the ocean in the
B0 and B1 experiments does not seem to result in drift-
ing model bias.

The temperature drift of the Pr-LR experiment is
present at all tropospheric levels. It seems to decay
exponentially:

T() = [To - T, exp( ’) LT, 3.1)

T
where T is the temperature bias at lead year 1, 7,
is the equilibrium or asymptotic temperature bias of
the model, and 7 is the decay time coefficient of the
bias. Figure 6 shows the height dependence of decay
time 7 obtained by fitting Eq. 3.1 at several pressure
levels. In the lowermost troposphere, 7 is largest. This
is probably caused by the ocean’s large thermal inertia.
Decay time 7 decreases with height until 200 hPa. In
the stratosphere, 100 hPa and above, bias does not show
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Figure 6: Height dependence of the temperature bias decay time 7,
obtained by fitting the tropospheric Pr-LR bias time series in Fig 5
(see text). Error bars give the uncertainty of the fits. In the strato-
sphere, at levels 200 hPa and above, there is no clear decay, and
meaningful decay time constants cannot be obtained.

exponential decay, and is usually constant after the third
lead year.

For relative humidity (Figure 5 bottom), all model
experiments show a slight drift towards higher humidity,
by about 0.1 % relative humidity per lead year. Different
from temperature, the model drifts for relative humidity
appear very similar for all experiments.

3.3 Forecast accuracy and uncertainty

A major goal of verification is to quantify how well time
series from the model hindcasts correspond to the ob-
servations. High correlation between modelled and ob-
served anomaly time series, for example, is desirable
(PoHLMANN et al., 2013; MULLER et al., 2014). Anoma-
lies have the hindcasted or observed annual cycle re-
moved, respectively. This eliminates most systematic bi-
ases. Figure 7 (top) shows good anomaly correlation
between Pr-LR hindcasts and observations, both using
unhomogenized (left) and homogenized (right) RS ob-
servations. Over most of Europe, the anomaly correla-
tions exceed 0.5. Interestingly, higher anomaly correla-
tions are seen over much of Europe, when the homog-
enized RS observations are used (right). This might be
expected, because inhomogeneous RS data include ar-
tificial jumps. Since corresponding spurious jumps or
trends in the model hindcasts are unlikely, the correla-
tion between RS time series and hindcast improves for
the homogenized RS time series, as seen in Figure 7.
Another important question is, whether initializa-
tion (or model changes) improve the hindcasts, e.g. by
giving better Mean Square Error Skill Score (MSESS)
(GODDARD etal., 2013; STOLZENBERGER etal., 2015).
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After Homogenization

Figure 7: Top: Correlation between temperature anomaly times series from Pr-LR hindcasts and temperature anomaly time series from RS
observations. Left: Using raw RS observations, before homogenization. Right: Using homogenized RS observations. Bottom: Same, but
for the Mean Square Error Skill Score (MSESS, see Eq. 3.3), comparing mean square error between Pr-LR hindcasts and RS observations
against the mean square error between climatology and RS observations. All results in the Figure are for 500 hPa temperature, the period

1970 to 2000, and lead years 2 to 5. Black ’x’-s denote statistical significant results with 5 % error probability.

MSESS is based on the Mean Square Error (MSE), or
difference, between hindcasted (H(t,e)) and observed
anomalies (O(t)), where ¢ is the temporal index, and e
represents the ensemble member (MURPHY, 1988; GOD-
DARD etal., 2013). MSE describes how closely the en-
semble members reproduce the observed anomaly time
series.

MSEy = (3.2)

1 T E
E 2 D HEe) = 00,

t=1 e=1

MSESS, then, compares MSE (accuracy) of a test pre-
diction against MSE of a reference prediction (R).
R could be the climatology, an uninitialized prediction,
or another hindcast experiment:

MSEy
MSER "

A perfect hindcast H would have MSEy = 0 (MSER #
0), and therefore in MSESS(H,R,O) = 1.0. Positive
MSESS values mean that MSEy < MSEER, indicating
that the hindcast is an improvement over the reference.
The bottom panels of Figure 7 show the MSESS
comparing Pr-LR results against climatology for tem-
perature at 500 hPa in the free troposphere. On the left,

MSESS(H,R,0) =1 —

(3.3)

the hindcast results are relative to the raw RS data, on the
right the homogenized RS data are used. In both cases,
positive MSESS skill score indicate that Pr-LR hind-
casts are an improvement over the climatology. Inter-
estingly, this improvement again becomes clearer when
the better, homogenized RS data are used. In this case,
the MSESS scores are ~ 0.1 higher than for the original
inhomogeneous RS data. Both, for anomaly correlation
and MSESS, Figure 7 indicates that using the success-
fully homogenized RS data improves hindcast verifica-
tion metrics.

Ensemble spread (due to varying initial conditions)
can be used as a measure of forecast uncertainty. Based
on KELLER etal. (2008), Kapow etal. (2015) proposed
the Logarithmic Ensemble Spread Score (LESS) to
quantify skill in forecast spread.

o

A (3.4)

2
Og

LESS = In

where the average ensemble spread

T E

> g 0, (e

=1 e=1

(3.5)

Hz

~l =

o’
A
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Figure 8: LESS (top), anomaly correlation (middle) and MSESS (bottom) of historical (H), BO-LR, B1-LR, and Pr-LR hindcasts using
homogenized RS temperature observations. Period of experiment starts: 1968-2007, lead time: 2-5 years, 500 hPa pressure level. Black

‘X’-s denote statistical significant results with 5 % error probability.

is calculated using the bias (and conditional bias) cor-
rected ensemble members H,, and ensemble mean H,.
E and T are the number of ensemble members and time
steps considered. The reference spread o% is calculated
as follows:

T
o2 = ﬁ ; (A, -0 (3.6)

LESS is positive (negative) if the hindcasts overesti-
mate (underestimate) the observed variance. The opti-
mal value for LESS is 0.

Based on LESS, anomaly correlation, and MSESS,
Figure 8 compares the skills of the H-LR, BO-LR,
B1-LR and Pr-LR model experiments against each other
(MSESS), or against the RS observations (LESS and
anomaly correlation). Results are for tropospheric tem-
perature at 500 hPa over Europe, and for lead-years 2
to 5, initialized during the period 1968-2007. Simu-
lations and homogenized RS observations are interpo-
lated to a 5° x 5° grid, as suggested by GODDARD et al.
(2013). The H-LR historical runs (which do not use
data assimilation and yearly initialisation) give the high-
est anomaly correlations (see Figure 8). Anomaly cor-
relations for BO-LR are lowest, but increase again for
B1-LR and Pr-LR. This is reflected in the MSESS re-
sults (Figure 8 bottom). Despite the use of data assim-
ilation and yearly initialisation, the BO-LR hindcasts
loose skill compared to H-LR, at least over the European

region. This is somewhat disappointing. BI1-LR then
show higher skill (higher MSESS values) than BO-LR,
and Pr-LR also shows higher skill than B1-LR. Ulti-
mately this indicates that the Pr-LR full-field initialisa-
tion of atmosphere and ocean provides better hindcasts
for mid-tropospheric temperature over Europe than the
anomaly initialisations in BO-LR and B1-LR. However,
the MSESS results on the bottom right of Figure 8 show
that even the Pr-LR simulations do not fully recover the
skill lost when going from H-LR historical runs to the
initialized runs.

For forecast spread, as measured by LESS, the top
panels of Figure 8 indicate LESS values close to 0 over
most of Europe, except Southern Europe. There is hardly
any difference between the H-LR historical runs, and
B1-LR to Pr-LR hindcasts, all of which provide realistic
ensemble spread compared to the RS observations. Only
BO-LR results indicate too narrow ensemble spread as
well.

Figure 9 shows the corresponding hindcast skills for
lower stratospheric temperatures at the 100 hPa pres-
sure level. Again, high anomaly correlations, largely
above 0.6, are seen for all experiments. Different from
the troposphere, the MSESS values show substantial
improvements from the H-LR to the BO-LR experi-
ment, but no improvement or even deterioration from
BO-LR to B1-LR and from B1-LR to Pr-LR, especially
in South-Eastern Europe. Since anomaly correlations are
fairly high, largely above 0.6, this deterioration means
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Figure 9: Same as Figure 8 but for temperatures at the 100 hPa pressure level.

only a slight drop in accuracy for the Pr-LR experiment,
which still performs better than the uninitialized H-LR
simulation.

LESS (Figure 9 top) is generally negative for most
experiments, indicating that model spread for strato-
spheric temperature is generally smaller than observed
by the radiosondes. Interestingly, LESS is best in the
stratosphere for the BO-LR runs, where LESS is worst
in the troposphere (compare Figure 8).

Finally, results for 700 hPa relative humidity are pre-
sented in Figure 10. Note that for humidity only data
between 1993 and 2006 and for lead years 2-5 were
used. Compared to temperature, agreement between rel-
ative humidity hindcasts and RS data is much poorer for
all experiments. LESS shows that the observed spread
is not well captured by the hindcasts, with little differ-
ence between experiments. If we look at model accuracy
(anomaly correlation and MSESS), a large spatial vari-
ance is present, and results look a lot like noise. H-LR
performed best in parts of Western and South Eastern
Europe, poorly in N-Europe. BO-LR showed improve-
ment compared to H-LR in Central-Europe and around
the Baltic, but performed poorer in the West. B1-LR im-
plies anti-correlation over a large part of Europe. Pr-LR
gives overall smaller anti-correlation than B1-LR, but
even then positive correlation in the Iberian-Peninsula
only. Overall, simulated relative humidity anomalies do
not correlate well with the RS time series, and little can
be said about changes or improvements between the dif-
ferent hindcast experiments.

4 Conclusions

We used upper-air temperatures and humidities from
radiosonde observations to evaluate the performance
of decadal hindcasts of the MPI-Earth-System-Model
above Europe. The model simulates a colder and moister
free troposphere than observed, by 1 to 4K, and by 10
to 40 % relative humidity, respectively. Part of the hu-
midity bias, 10 to 25 % relative humidity, is due to the
lower hindcasted temperature, but the remainder indi-
cates that modelled relative humidity is too high in the
free troposphere above Europe. Generally, the cold bias
of the hindcasted temperature increases with altitude.
This means less vertical stability for the simulated tro-
posphere. Without appropriate corrections, lower verti-
cal stability and higher humidity of the simulations have
significant implications, e.g. for the forecast of severe
weather events over Europe.

The model hindcasts are initialized at the begin-
ning of each year using different combinations of ob-
served full or anomaly fields of the oceanic or atmo-
spheric state. Comparison of different initializations for
the model indicates that the atmospheric temperature
bias over Europe does not depend much on the atmo-
spheric initialization. For ocean initialization, however,
temperature bias remains constant with time for model
initialization with observed ocean anomaly fields, but
drifts over the first couple of years when the full ocean
fields are used. In this case, the time scale on which
the model atmospheric temperature bias relaxes towards
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Figure 10: Same as Figure § but for relative humidity at the 700 hPa pressure level.

its final value changes from about 5 years near the sur-
face (850 hPa) to less than 1 year near the tropopause
(200 hPa).

Using the European radiosonde temperature data as a
reference, the different model hindcasts were evaluated
on the basis of correlation of time series, mean-square
error skill score (MSESS) and logarithmic ensemble
spread score (LESS), which measure forecast error and
forecast spread. Both in the troposphere and lower
stratosphere (100 hPa), the largest effects are seen for
the change from unitialized runs (H) to ocean anomaly
initalization (BO-LR). In the troposphere, this change
leads to lower correlation and lower MSESS, whereas
in the lower stratosphere it leads to slight improvements
in MSESS and a fairly large improvement in forecast
spread (LESS). The addition of atmospheric initializa-
tion (BO to B1) and the change to full field ocean ini-
tialization (B1 to Pr) lead to small improvements in the
troposphere over Europe, i.e. slightly larger correlations
and better MSESS. In the stratosphere, these changes
have little effect on correlation but deteriorate MSESS
slightly. LESS remains similar in nearly all initialized
experiments except BO-LR, both in the troposphere and
stratosphere above Europe. For humidity, correlations
and skill scores are much poorer, and little can be said
about changes due to different initializations.

Temperature correlations above 0.5 and LESS val-
ues around O indicate that the decadal MPI-ESM fore-
casts do have predictive skills over Europe. However,
without appropriate bias and drift corrections, the model
simulations should not be used for direct forecasts. Se-

vere weather indices calculated directly from the model,
for example, would indicate substantially higher prob-
ability for convective and severe weather events than
the radiosonde observations. Better characterization of
the substantial temperature and humidity bias and drift
found in this study are one of the tasks in the next phase
of the German decadal climate prediction research pro-
gramme (MiKlip II).
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RS radiosonde

DWD Deutscher Wetterdienst

MPI Max-Planck Institute for Meteorology
MPI-OM  MPI Ocean Model

MPI-ESM MPI Earth System Model
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ECHAM6 ECmwf HAMburg: the atmospheric
component of MPI-ESM

CMIP5 Coupled Model Intercomparison Project
Phase 5

NCEP National Center for Environmental
Prediction

ECMWEF  European Center for Medium-Range
Weather Forecasts

ORA-S4  Ocean Reanalysis System 4

GECCO2 German Contribution to Estimating the
Circulation and Climate of the Ocean 2

MiKlip Mittelfristige Klimaprognose

H historical runs of the MPI-ESM

BO MPI-ESM baseline 0 hindcast experiment
B1 MPI-ESM baseline 1 hindcast experiment
Pr MPI-ESM prototype hindcast experiment
LR low resolution

MR mixed resolution

MSE mean square error

MSESS mean square error skill score

LESS logarithmic ensemble spread score
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