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Abstract

Today, different implant designs exist in the market; however, there is not a clear under-

standing of which are the best implant design parameters to achieve mechanical optimal

conditions. Therefore, the aim of this project was to investigate if the geometry of a commer-

cial short stem hip prosthesis can be further optimized to reduce stress shielding effects and

achieve better short-stemmed implant performance. To reach this aim, the potential of

machine learning techniques combined with parametric Finite Element analysis was used.

The selected implant geometrical parameters were: total stem length (L), thickness in the

lateral (R1) and medial (R2) and the distance between the implant neck and the central

stem surface (D). The results show that the total stem length was not the only parameter

playing a role in stress shielding. An optimized implant should aim for a decreased stem

length and a reduced length of the surface in contact with the bone. The two radiuses that

characterize the stem width at the distal cross-section in contact with the bone were less

influential in the reduction of stress shielding compared with the other two parameters; but

they also play a role where thinner stems present better results.

1.- Introduction

The importance of a medical treatment is reflected by the number of procedures carried out

per year in a population. Approximately, one million of hip fractures occur worldwide every

year. The rate of hip replacements increased by about 25% between 2000 and 2009 [1], and

this trend is expected to continue in the next decades due to the ageing population, improving

medical care in developing countries and decreasing average age at the first operation [2]. In

addition, children and young people, whose life expectancy largely surpasses the mean lifetime

of an implant, and therefore, they often requiring a revision surgery [2], represent a portion of

these patients.
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After total hip replacement, the presence of a rigid stem into the femur substantially alters

the mechanical conditions within the bone when compared with the healthy situation. The

inserted implant increases the flexural rigidity leading to a decrease of the mechanical stresses

and strains within the bone (stress shielding), especially, in the region farthest away from the

implant. This reduction of mechanical stresses and strains often leads to a bone resorption

response [3,4], and therefore, to loss of bone which decreases implant stability and longevity

[5] and complicates a revision surgery [6].

Hip prostheses are subject to continuous research and development with the aim to

increase their lifespan, offer a more physiologic replication of normal human anatomy and

reduce the likelihood of complications and revision surgery. This is reflected by the large vari-

ety of hip prostheses in the market. Amongst all hip implant designs, short stems were devel-

oped for the younger population. They have the advantage of being more bone conservative by

allowing, for higher neck retention and maintenance of the medial greater trochanter, a more

physiological stress transfer to the proximal femur [7]. Although they do lead to a reduction in

the amount of stress shielding, compared with a traditional hip implant [8], current designs

have not been able to completely eliminate the stress shielding effect [9].

Machine Learning Techniques (MLTs) explores the development of algorithms that can

learn from and make predictions of data. These techniques are characterized by complex algo-

rithms that can be trained to reproduce a model behaviour [10]. They have been applied suc-

cessfully to a high variety of problems and data for prediction tasks [11] in industry [12],

electronic [13], space science [14], geology [15,16] or language [17] amongst many others.

Within the medical context, these techniques have been also successfully applied to different

clinical applications, for instance; diagnosis of breast cancer or melanomas, interpreting elec-

trocardiograms, diagnosis of dementia, cardiovascular diseases or predicting prognosis and

survival rates [18–23]. The benefits of introducing MLT into medical analysis have been

proven by an increase of diagnostic accuracy, reduction of costs and human resources [24,25].

However, the potential of MLTs to optimize the design of joint implants has never been inves-

tigated before. Although shape optimization algorithms different to MLTs have been used to

assess the relationship between the stem performance and its design for long stems [26–30],

the potential to further optimize short stem implants has never been addressed. The advan-

tages of the use of MLT for the optimization of hip implants are (i) its feedback capacity [31],

(ii) the reduction of the computational costs due to its ability to generalize situations which are

not previously taught to the MLT [32] and (iii) its capacity of work in combination with differ-

ent minimization algorithms [32]. Important in all optimitation methods however, it is to

define an adequate implant design criteria; e.g. reduced stress shielding.

Within this context, the aim of this project was to investigate if the geometry of a short stem

hip prosthesis can be further optimized to reduce stress shielding effects and achieve better

short-stemmed implant performance. To reach this aim, the potential of MLTs, such as artifi-

cial neural networks (ANNs) and support vector machines (SVMs), combined with Finite Ele-

ment (FE) analysis was used. Novel optimization approaches based on finite element and

machine learning techniques open new and innovative possibilities for the design of hip

implants never explored before.

2.- Material & methods

2.1.—Source data: 3D FE parametric study

A 3D parametric study of the influence of the main hip implant geometric factors on the

mechanical strains induced within the femur was carried out. These data were then used to

feed and train a MLT that combined with an optimization algorithm allowed us to find the

MLT for the optimization of a short-stem hip implant
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optimal hip implant design. For this purpose, a 3D parametric model of an implanted femur

was development with ABAQUS v6.12 (Dassault Systemes, Vélizy-Villacoublay, France) and

FE analyses were performed using the non-linear solver.

Hip Implant geometries: 3D FE models of a short stem implant were developed to deter-

mine the influence of the prosthesis on the mechanical strains within the femur. The model is

based on an existing short stem implant which is already in the market (Nanos1 short stem,

Smith & Nephew, Germany) [33,34]. From this implant, different models were computation-

ally created using the same overall geometry but changing four of its dimensions (Fig 1): (1)

the total stem length (L), measured as the distance from the implant neck to the distal tip, (2)

and (3) the stem thickness characterize by the radius in the medial and lateral directions (R1

and R2) of the cross section that separates the part of the stem which is directly in contact with

the cortical bone and the part that is not in contact, and 4) the stem-contact-surface internal

length (D) defined as the distance between the neck and the cross section described in points

(2) and (3). This parameter was evaluated as the relative percentage value compared to the

stem total length (L).
For each one of these geometrical parameters, realistic data were investigated by varying

the total stem length (L: 75, 105, 135 or 165 mm), the radius of the lateral side cross section

(R1: 4.5, 5.5, 6.5 or 7.5 mm), the radius of the medial side cross section (R2: 2.0, 2.5, 3.0 or 3.5

mm) and the stem-contact-surface internal length (D: 10, 25, 50 or 75%). Four values for each

parameter were considered and combined which resulted in 256 different hip implant models

(44 = 256 models). The values were chosen to ensure a clinically admissible shape and taking

into account the general dimensions of the selected bone that will host the implant.

Regarding the material properties of the hip implant, titanium alloy was assigned to all

implant models and it was considered to be linear elastic, homogeneous and incompressible

material with a Young’s modulus of 110.3 GPa and a Poisson’s ratio of 0.33 [33].

Fig 1. Graphic representation of the four considered parameters. L: total stem length, measured from the

implant neck to the distal tip. D: relative distance between the neck and the cross section that separates the

part of the stem which is directly in contact with the cortical bone and the part that is not in contact. R1: radius

of the circumference in the lateral side of the cross section. R2: radius of the circumference in the medial side

of the cross section.

https://doi.org/10.1371/journal.pone.0183755.g001
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Bone geometry: A representative 3D geometry of a right femur was selected out of a larger

study of 100 patients who experienced a Total Hip Arthroplasty (THA) in our clinic [35,36]

(Fig 2). In that study, proximal bone remodelling was analysed using combined quantitative

computed tomography (QTC) and bone remodelling analysis techniques [35,36]. The study

was approved by the local ethics committee (Charité ethics board–Approval number: Z5–

22462/2–2007–036), and after providing written informed consent to participate, each of the

patients received a three joint CT scan (hip, knee, ankle) that included the entire femur, both

pre- and post-operatively. The selected bone represented a female patient with mean bone dis-

tribution. CT scans were used to segment the femur geometry using ZIBAmira 2013 [37] and

Geomagic Studio 10 (3D Systems, Rock Hill, South Carolina, U.S). The same bone geometry

was used to generate all the models. CT scans were also used to assign the mechanical proper-

ties to each element of the finite element bone model. The scans provided a pixel-by-pixel grey

value (radio density) sampling which can be used to estimate the local bone density distribu-

tion (Fig 2) [38]. Using the value of the density, the Young’s modulus for each element can be

derived using the correlation of Morgan et al. [39].

Implanted bone geometries: For each of the 256 created implant geometries, an implanted

femur model was created using the intact bone geometry (Fig 3). The biomechanical behaviour

of the implanted femur with all the different implant designs was then examined and the stress

shielding in the proximal region of the femur (Gruen zone I) investigated. The hip joint

implant was inserted according to the surgical protocol, which was supervised by our clinical

partners. The insertion procedure was the same for all generated models. In addition, for each

of the 256 implanted models, a healthy femur model was created maintaining exactly the same

mesh as in the implanted femur. This allowed the comparison of implanted and healthy bones

in terms of the strain levels in each single element. The difference in absolute maximum prin-

cipal strain between the implanted and intact models, in each element, was then used to iden-

tify the zones where the strains are shielded due to the presence of the implant. Those are the

regions where bone resorption is expected.

All the FE models were meshed with ten-nodes tetrahedral elements (C3D10) with a typical

edge length of 1.5 mm. Sensitivity analyses were performed to choose the definitive mesh size.

To ensure sufficient discretization of the FE models, the element size was decreased until con-

vergence of the predicted strains within the femur was achieved. Convergence was considered

Fig 2. Femur model: Geometry and material properties assignment.

https://doi.org/10.1371/journal.pone.0183755.g002
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when the local strains within the femur did not change more than 5% in subsequent mesh

refinement steps.

Loads and Boundary Conditions: Physiological loading conditions were obtained using

gait analysis and a validated balanced musculoskeletal model [40,41] (Fig 4). Patient-specific

muscle and joint contact forces were determined by measuring in-vivo movement in a gait

analysis laboratory [42]. The patient walked along a gait analysis track equipped with force

plates that evaluated the components of ground reaction forces. At the same time, a system of

motion-capture cameras (VICON Motion Systems Ltd., Oxford, UK) captured the position of

leg landmarks in space to study the movement of the patient lower limb. The anthropometric

data, measured directly on our patient, combined with skin markers positioned on specific

bone landmarks, allowed us to reconstruct the walking task in a local reference system. Using

Fig 3. Implanted bone geometry. Hip implant position.

https://doi.org/10.1371/journal.pone.0183755.g003

Fig 4. Physiological joint and muscle forces applied to the model and boundary conditions applied to

the model.

https://doi.org/10.1371/journal.pone.0183755.g004
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a musculoskeletal model, joint and muscle forces were then determined. The resultant hip

joint contact and muscle forces were chosen from the frame where the highest hip contact

force occurred, approximately at 45% of the walking cycle. Muscle forces were applied at a set

of nodes on the femur outer surface, corresponding to the specific location of the muscle

attachments. The contribution of every muscle as well as gravity forces were included. The hip

load was applied at the top surface of the implant such that the line of action passed through

the femur head centre. Regarding the boundary conditions, the model was constrained using

physiological joint constraints, in which rigid body motion was prevented using displacement

constraints on three nodes of the bone model mesh positioned on the lateral distal condyle

and in the hip and knee joint [7] (Fig 4). Same loads and boundary conditions were used in

each of the 256 models considered in this study, since the bone geometry and the position of

the prosthetic hip does not vary between models.

Output of the FE analysis: The stress shielding effect was evaluated as the difference

between the maximum absolute principal strains detected in corresponding mesh elements of

the implanted and intact bone models. The results were obtained by doing a simple arithmeti-

cal subtraction between the strain values detected in corresponding elements. Thereafter, the

mean shielding effect in the region of interest, named Δstimulus, was determined as the mean

value of the strain reduction within the region and was used as indicator to quantify the stem

performance. The lower this value, the more physiological the implant, i.e. the strains are more

similar in the intact and implanted bones. The results were analyzed according to the system

defined by Gruen et al. [43], which consists of dividing the femur areas around the implant in

7 regions of study. This study was focused on the Gruen Zone I, where greater stress shielding

is expected. In addition, the elements of Gruen Zone I were further divided in 12 sub-zones to

assess the local influence of the implant design on the femur strain distribution. In this way, 13

regions of each of the 256 implanted models were independently evaluated for the effect of the

hip implant presence into the bone (Fig 5).

Fig 5. Δstimulus for the Gruen Zone I and a combination of R1 = 4.5 mm and R2 = 2mm plotted on a 3D

surface. Representative plot of the 208 obtained data sets. The results were depicted using 3D surface plots

where the z-axis represents the mean reduction of the strain value in the studied zone (12 sub-zones or Gruen

Zone I) after the implantation and the other two axes describe the implant geometry, in this case, L and D. A

threshold plane in blue color is depicted at 100 μstrains [44]. This plane represents the limits of the lazy zone,

where neither resorption or formation is predicted. To include also the other two geometry parameters (the

radiuses that compose the cross-section surface), it was plotted one graph for each combination of R1 and R2

values. In total, 208 3D surface plots (13 regions x 16 combinations of R1 and R2) were depicted. These 208

plots represent the input and desired output data used to train the MLT.

https://doi.org/10.1371/journal.pone.0183755.g005
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2.2.- Implant optimization by machine learning techniques

Two different MLTs were tested to solve the optimization problem: artificial neural networks

(ANNs) and support vector machines (SVMs). Generally, SVM has greater updating capacity

than ANN, because once the model is generated and presented with a new observation, if the

model is unable to estimate correctly the value, it simply adds this observation to the support

vectors set without the need of a new training loop [10]. However, for the ANN, new training

of the whole network is needed in order to include a new observation [10,45].

Both MLTs were trained with the results obtained from the 3D FE parametric analysis. The

Δstimulus was selected as output of the MLT since periprosthetic bone remodeling is highly

associated with stress shielding. The goal of the analyses with MLTs was to find an optimized

hip implant that leads to lack of bone resorption. The combination of inputs (geometrical

parameters of the implant) and the output (strain reduction by the presence of the hip

implant), for each of the 13 areas of study (12 sub-zones + Gruen Zone I), was used to create a

data set. The training data set taught the MLT, which adapted itself by changing the weight

vectors that characterize connections inside the structure. This process was iterative and the

training task was repeated until convergence. To determine the accuracy of the technique, the

absolute relative error (RE) and the correlation coefficient (RSQ) were calculated as follows:

RE ¼ abs
ŷ � y

y

 !

ð1Þ

RSQ ¼
sxy

sx sy
ð2Þ

Where ŷ is the predicted Δstimulus, θ is the real Δstimulus, σxy is the covariance between pre-

dicted and real values, and σx and σy are the standard deviations. The RE shows the efficiency

during the training process to find correlations between inputs and outputs. Regions with RE

greater than 10% were not taken into account for the selection of the definitive optimal param-

eter values.

For the ANN technique, different networks, with different number of artificial neurons,

were built and the RE calculated to determine the optimum number of neurons in the hidden

layer. The SVM algorithm uses a kernel function that transforms the parameter input space

into a feature space of larger dimension. To increment the accuracy of the training task, it is

possible to choose the value of the kernel function parameters to get a more accurate input-

output transfer function. The parameters that can be changed are the cost rate (C), that con-

trols the tradeoff between achieving a low training error and a low RE during test testing error

to generalize the classifier to unseen data; the margin (ε), or minimum distance between the

hyperplane and the training set samples and the maximum acceptable variance (σ) for the out-

put Gaussian noise. Many different options were tested for those parameters. The combination

that returned the best performance, according to a low RE and computational speed, was cho-

sen to train each of the 13 SVMs associated to each studied region. It is also important to limit

the complexity of the network to prevent the overfitting problem, which occurs when the algo-

rithm function is adapted too well to a specific training set and returns accurate desired out-

puts only with training set data but totally inaccurate values outside. Therefore, the relative

error was evaluated during training to avoid possible overfitting. To evaluate the network

accuracy a k-fold Cross Validation process was conducted. In this process, the data set was not

totally used to train the network but was divided into 3 groups. One of them (Training Set)
was used to train the network and the values from the other two groups were used to test the

MLT for the optimization of a short-stem hip implant
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network (Test Set) and validate it (Validation Set). Then, the training process was performed k

times (k = 8 for this study) for each network structure, shuffling the elements inside each

group every time. In addition, different test set sizes were compared with the aim of investigat-

ing if the test size has an influence on the obtained errors.

Once the MLTs were built, a pattern-search minimization algorithm was used to get the

optimal geometry, exploring new values of the input parameters. Pattern search is a family of

numerical optimization methods that do not require the gradient of the problem to be opti-

mized. Hence they can be used on functions that are not continuous or differentiable, such as

the presented problem. The problem was formulated as minimization of a loss function (aver-

age difference of maximum absolute principal strain between implanted and healthy models).

The optimization algorithm minimizes the function, exploring unseen values of the selected

parameters of the hip implant geometry. The ranges of exploration for the 4 geometrical

parameters were selected a priori according to the dimensions of the bone and considering a

clinically admissible shape. These values were as follows; L (75–165) mm, D (10–90) %, R1 (4–

8), R2 (1.5–4) mm. It should be noted that if the lowest limit for each parameter would not be

fixed, probably the MLT would find null value for all parameters. The procedure is illustrated

in the flow chart of Fig 6. This process was repeated for the 13 regions of study (12 sub-zones +

Gruen Zone I).

Using the FE parametric analyses, the MLT and the search pattern algorithm, a set of opti-

mal design parameter values were calculated for each of the 13 studied bone zones. Thereafter,

a set of parameter values that characterize the optimal design for the overall study region was

chosen based the results obtained in the different regions. Finally, once the key design parame-

ter values were chosen, the performance of the selected combination of parameters was evalu-

ated in all sub-zones and extended to the other Gruen Zones to assure that the optimized

implant design reduces the stress shielding in the Gruen Zone I, but does not increase it in the

remaining Gruen Zones. For this purpose, a new FE model was created with the optimal hip

implant design to evaluate the stress shielding effect. In addition, the optimal implant geome-

try was compared with the original short-stem geometry (Nanos1 short stem, Smith &

Nephew, Germany) to quantify the improvement or worsening of the new design in each

Gruen Zone.

Fig 6. Flow chart of a typical training task using MLT. During the training, the error of the output prediction

associated to the input parameters is minimized. Once the MLT is trained, the minimization algorithm find the

best combination of design parameters to reduce the proximal stress shielding.

https://doi.org/10.1371/journal.pone.0183755.g006
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3.- Results

3.1- 3D FE parametric study

All the models analysed showed some degree of stress shielding due to implant insertion. Fig 7

shows the stress shielding produced by the insertion of the original Nanos1 implant. A reduc-

tion of the strains in the proximal lateral aspect of the bone of up to 600 μstrain was deter-

mined (Gruen Zone I). In the medial aspect of the bone, a small region was determined where

the strains in the implanted bone were higher than in the intact femur (Fig 7).

In addition, considering the Δstimulus obtained for the 256 models and for the 13 regions

of study, the Δstimulus decreases as L and D decrease. However, the geometrical parameters

R1 and R2 were not so influential in the reduction of the stress shielding, compared with the

impact of the other two parameters. In addition, the length did not have a big influence if R1

was small.

3.2- Implant optimization

For the ANN technique, the most accurate training tasks were achieved when the number of

neurons in the hidden layer were 9, 6, 20, 40, 20, 30, 40, 30, 30, 20, 8, 30 and 60 for sub-zones

from 1 to 12 and for Gruen Zone I, respectively; pointing out the complexity of the problem

for each of the studied zones. The relative errors during test using k-fold cross validation were

lower than 10% for all studied zones, except for sub-zones 10, 11 and 12 (RE of 16.72%, 21.6%

and 20.17%, respectively). For the SVM, RE during test were lower than 10% in all studied

areas, except for the sub-zones 10 and 11 with RE of 13.43% and 18.6%, respectively. For all

studied sub-zones and Gruen Zone I, test RE were lower for the SVM than for the ANN. Using

both MLTs, the correlation coefficient (RSQ) was very close to 1 (0.9998).

The pattern-search minimization algorithm followed similar trends for both the ANN and

SVM techniques, however, since lower REs were predicted in SVM compared with ANN, the

optimized parameters were chosen according to the SVM results. Moreover, for the sake of

simplicity, only the results of the SVM are shown. SVM combined with the minimization algo-

rithm led to similar optimal values for all geometric parameters in several sub-zones (3, 6, 7, 9,

12 and in the whole Gruen Zone I). The optimal parameter values for these regions were:

Fig 7. Maximum absolute principal strains at the mid-coronal cross section of the proximal part of the

femur for intact and implanted model with the Nanos® short stem.

https://doi.org/10.1371/journal.pone.0183755.g007
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L = 90 mm; D = 36%; R1 = 4 mm; R2 = 1.5 mm. Therefore, these values were taken as key

design parameters for the optimized implant design. The optimized implant design showed a

reduction in stress shielding compared with the original implant design, however some degree

of stress shielding was still present (Fig 8).

The optimized hip implant design reduced the stress shielding in all the considered sub-

zones and Gruen Zones, except for sub-zone 2 (Fig 9). However, the Δstimulus in this area was

lower than 100 μstrains, and therefore, it is included in the lazy zone. Reduction of strains up

to180 μstrains were found in the sub-zone 7 within Gruen Zone I (Fig 9). On the other hand,

the Δstimulus in sub-zone 5 decreased from 195 μstrains to 100 μstrains. Regarding the

remaining Gruen Zones, the reduction of Δstimulus using the new optimized implant design

was always positive for all Gruen zones. The reductions of strains were 130 μstrains for Gruen

Zone I, 100 μstrains for Gruen Zone II and VII and lower than 100 μstrains in the rest of the

Gruen Zones.

4.- Discussion

In this study, we investigated whether the geometry of a short stem hip implant can be further

optimized to reduce stress shielding at the proximal femur. For that purpose, Finite Element

(FE) analyses were combined with Machine Learning Techniques (MLT) and search pattern

minimization algorithms. These techniques have been previously used to solve different prob-

lems in biomechanics, such as the prediction of the proximal femoral loads based on bone

morphology [23] or the prediction of the atheroma plaque rupture [20]. However, the poten-

tial of this technique to optimize joint implants has never been investigated before. Here, we

show that the combination of these three techniques has the potential to optimize a joint

implant towards reduced stress shielding.

The combination of FE analyses, MLTs and search pattern optimization algorithms pres-

ents an important advantage in terms of computational costs. The finite element method for

the analysis of such complex models requires long computational time. However, the simula-

tion time can be significantly reduced combining finite element with machine learning tech-

niques. For the ANN and SVM, the computation training time was 6 ± 3 and 4 ± 2 min,

respectively (once the optimal parameters had been chosen by k-fold cross validation), and the

time of response when a new case is evaluated was negligible since ANN and SVM techniques

Fig 8. Comparison of the absolute maximum principal strain distribution between intact bone model

(a), the one implanted with the original stem (b) and the new design (c).

https://doi.org/10.1371/journal.pone.0183755.g008
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only evaluate a function, providing an immediate estimated response. However, the computa-

tional cost to build and simulate each finite element model is 9 ± 3 h. Moreover, MLTs allow

to explore a continuous range of values for a set of parameters, rather than a discrete one. In

addition, these algorithms determine the desired output for a set of unseen parameters, mini-

mizing the number of FE models needed to find an optimized implant design. Furthermore,

we compared the performance of both MLTs: Support Vector Machine (SVM) and Artificial

Neural Network (ANN). For both MLTs, the correlation coefficient (RSQ) was very close to 1,

pointing out that the model has been well trained. Although, it was shown that both techniques

represent a powerful tool to predict the behaviour of an implanted femur in terms of stress

shielding quantification, lower degree of accuracy was achieved with the ANN since the

obtained relative errors were greater for all studied subzones. The nature of the dataset at hand

determines which MLT works best; therefore, different MLT algorithms need to be check for

each specific application [10].

FE models were used to investigate how the strain distribution varies in the proximal region

of the femur due to changes in hip implant geometry. 256 hip implant geometries were created

based on the Nanos1 short stem implant. The total stem length (L), the stem thickness evalu-

ated at the most distal cross-section in contact with the bone (R1 in the lateral side, R2 in the

medial side) and the distance between the neck and the same cross-section (D) were selected

as main geometrical parameters of the hip implant. All implanted models were compared with

its corresponding healthy bone in to evaluate the degree of stress shielding created by each

implant design. The results obtained in the FE analyses were used to build an artificial neural

Fig 9. Δstimulus evaluated in the original and optimized stem. Comparison done between the sub-zones

of the Gruen Zone I (a) and all Gruen Zones (b).

https://doi.org/10.1371/journal.pone.0183755.g009
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network and support vector machine, comparing both machine learning techniques. The

machine learning algorithm predicts the mean of the difference of maximum absolute princi-

pal strains between the implanted and healthy models for a specific region based on a set of

input parameters. Finally, machine learning was combined with a search pattern minimization

algorithm to find a set of key input parameters that result in an implant design that produces

the minimum stress shielding.

Our results show that to optimize the implant design towards reduced stress shielding, the

tendency is to decrease its stem length (L) and to reduce the length of the surface in contact

with the bone (D). The two radiuses (R1 and R2) that characterize the stem width at the distal

cross-section in contact with the bone were less influential in the reduction of stress shielding

compared with the other two parameters; but they also play a role and thinner stems present

better results. Interestingly, the total stem length did not influence the strain distribution if R1

was small. The implant performance should be observed as a consequence, not only of the

stem length, but as a combination of the four considered parameters. Considering the results

of the SVM combined with the optimization algorithm, the chosen key design parameters for

the new optimized implant design were: L = 90 mm; D = 36%; R1 = 4 mm; R2 = 1.5. Consider-

ing that the original short stem had dimensions of (L = 92 mm, D = 60%, R1 = 4.2 mm and

R2 = 2.9 mm), it could be concluded that short stems can be designed to minimize stress

shielding by reducing the stem length (L = 90 mm), creating a contact surface cross-section

positioned proximally (D = 36%) and reducing the stem thickness (R1 = 4 mm, R2 = 1.5 mm).

The optimized implant presents a small radius compared to the original implant (R2 opti-

mized: 1.5, R2 original: 2.9). This could give the impression of a very thin implant in the opti-

mized condition; however, R1 and R2 are related to the parameter D. R1 and R2 indicate the

width of the hip implant at the section indicated by D, which in the optimized implant is

located more proximal than in the original implant. In the optimized implant, R1 and R2 at

the section located at 60% of the implant length (D of the original implant), are close to the

value of the original implant (S1 Fig). The selected optimal values obtained with the minimiza-

tion algorithm reduced the stress shielding effect for all studied sub-zones and Gruen Zones,

except for sub-zone 2. However, the Δstimulus for this zone was lower than 100 μstrains, and

therefore, remodeling is not expected (values lower than 100 μstrains belongs to the lazy zone).

On the other hand, the Δstimulus in sub-zone 5 decreased from 195 μstrains to 100 μstrains,

turning this area stable. It should be pointed out that the optimal values for the studied geo-

metrical parameters were different for each one of the analyzed zones (12 sub-zones and the

Gruen Zone I), showing that does not exist a specific combination of parameters that fulfils the

aim of minimum stress shielding for all the zones at the same time.

Only few studies have investigated implant optimization to reduce the bone remodeling sig-

nal and the influence of hip implant design parameters on stress shielding [27,46–49]. More-

over, all of them are related to long stem implants. In this study, the optimal performance was

found using a hip implant with a total length smaller than 120 mm; confirming the potential

advantages of the short stems [50]. For the parameter characterizing the implant length in con-

tact with the bone (D), optimal designs resulted in values smaller than 50%. This means that

the optimal position for the cross section that separates the stem into a part which is directly in

contact to the cortical bone and a free part is closer to the implant neck than to the distal tip. A

small value for the D parameter results in a reduction of the thickness in the distal part of the

implant, where the stem decreases its width until the distal tip. The lateral sub-zones of the

Gruen Zone I were less influenced by the shielding effect for implants with a shorter stem-con-

tact-surface internal length (D = 10%). In the medial side of Gruen Zone I, the optimal model

D parameter was estimated to be around D = 36%. In this case, the cross-section is in the

thicker part of the proximal femur, surrounded by the greater trochanter bone tissue.
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Positioning the cross-section in the thicker part of the femur could improve the stability of the

implant, which is fitted and kept in position by a large quantity of trabecular tissue. This is in

agreement with the study by Chang et al. [27], who minimized the difference between the

strain energy density of the intact femur and an implanted bone using an implant with thin

mid-stem diameter and a short stabilizing distal tip, concluding that a thin mid-stem diameter

with a short stabilizing distal tip minimizes the bone remodelling signal while maintaining sat-

isfactory stability. The D parameter is not the only one that influences stem thickness; also, the

cross-sectional area plays a role. Varying the parameters R1 and R2 is possible to modify this

cross-sectional area, however the results did not show a clear trend on how they contribute to

implant optimization. Interestingly, Tanino et al., [47] in their optimization study of a stem

using adaptive p-method, found also that the medial width of the midcross-section did not fol-

low a clear trend in its influence on the hip implant performance. In addition, the obtained

results for R1 and R2 were similar to those found when optimizing implants to reduce the

stresses in the cement layer [48,49], where a narrower optimal stem shape at the proximal side

was found. Other studies related to the optimization of hip implants include the effect of other

geometrical parameters such as the head diameter and the neck angle [51], dimensions of dif-

ferent cross sections along the whole stem [28,30,52] or presence or absence of medial collar

[53]. To the best of the authors’ knowledge, this is the first study where the potential of MLTs

for hip implant optimization was proven.

Some remaining limitations of this study need to be stated and considered. First, normal

walking was considered as the applied load to the FE model of the hip joint. However, other

demanding activities, such as stair climbing, could play an important role in the performance

of a hip implant and it should be investigated in the future. Second, a larger group of parame-

ters could be included. However, the needed models to feed the MLT exponentially increases

as the number of parameters increases. For example, the shape of the implant cross-section has

a significant effect on the maximum tension and compression generated within the bone [53].

It could be interesting to design different cross-sections, at different positions along the

implant stem, and evaluate the optimal shape for each of them [48,52]. Third, the procedure

can also be extended to a larger group of femur geometries, testing the implants with bone

models obtained from different patients. However, although absolute strain levels in another

human femur geometry may vary somewhat from those found in this study; this is expected to

have little influence on relative differences between the healthy and implanted models. Wei-

nans et al. [54] concluded that although the choice of input parameters of FE models can sub-

stantially affect stress shielding in an individual, this choice had virtually no effect on the

relative differences in femoral periprosthetic stress shielding between individuals. Fourth,

despite the hip implant position was supervised by experts of our clinic, small changes in the

hip implant position may produce slightly different strain patterns. Parameters related to sur-

gical position of the implant inside the bone could also be studied to optimize the positioning

of the stem during the THA performance. In this study, we did not proof the validity of the

findings in vivo. The next step should be to investigate if the optimized design leads to reduced

bone resorption in patients.

In conclusion, the design of short stem hip implants can be further optimized to reduce

stress shielding. Implants should be design with a small stem length (L) and a reduced length

of the surface in contact with the bone (D). Regarding, the width of the hip implant, a clear

tendency was not found. Finally, it can be concluded that the optimization approach based on

a combination of FE and MLT offers new and innovative possibilities for the design of hip

implants never explored before. These analyses can help in the design of new prosthesis and

also in the decision-making of surgeons when choosing the most adequate implant.
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