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Effect of caloric restriction on 
gut permeability, inflammation 
markers, and fecal microbiota in 
obese women
Beate Ott1,2, Thomas Skurk1,2, Ljiljana Hastreiter1, Ilias Lagkouvardos   2, Sandra Fischer2, 
Janine Büttner3, Teresa Kellerer1, Thomas Clavel2,4, Michael Rychlik5, Dirk Haller2,6 & Hans 
Hauner1,2,7

Recent findings suggest an association between obesity, loss of gut barrier function and changes 
in microbiota profiles. Our primary objective was to examine the effect of caloric restriction and 
subsequent weight reduction on gut permeability in obese women. The impact on inflammatory 
markers and fecal microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800 kcal/
day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a reduction in HOMA-IR (Homeostasis 
model assessment-insulin resistance), fasting plasma glucose and insulin, plasma leptin, and leptin 
gene expression in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW 
adiponectin) was significantly increased after VLCD. Plasma levels of high-sensitivity C-reactive protein 
(hsCRP) and lipopolysaccharide-binding protein (LBP) were significantly decreased after 28 days of 
VLCD. Using three different methods, gut paracellular permeability was decreased after VLCD. These 
changes in clinical parameters were not associated with major consistent changes in dominant bacterial 
communities in feces. In summary, a 4-week caloric restriction resulted in significant weight loss, 
improved gut barrier integrity and reduced systemic inflammation in obese women.

A chronic positive energy balance leads to obesity and low-grade inflammation. This subclinical inflammatory 
state is considered to pave the way for insulin resistance and subsequent type 2 diabetes mellitus1,2 and to promote 
cardiovascular diseases3. However, the reasons for this low-grade inflammation are poorly understood. It may, in 
part, be explained by macrophage infiltration into adipose tissue4,5. Furthermore, adipocyte hypertrophy and the 
associated dysregulated adipokine secretion profile may contribute to inflammation6. Recent studies suggested 
that increased gut permeability7 and lipopolysaccharides (LPS) translocation may also play an important role8,9. 
Some evidence exists that BMI is a major covariate of microbiome variations and that obesity is associated with 
changes in intestinal microbiota composition10–13. A disrupted gut barrier function may lead to an increased 
influx of bacterial components such as LPS9,14,15 and other complex antigens into the circulation and, thereby, 
activate immune responses8,16. It is currently speculated that increased gut permeability can be caused by micro-
bial imbalance, food composition (e.g. gluten)17,18 or high-calorie diets19,20. In contrast, weight reduction is known 
to improve metabolic disturbances and to decrease the systemic inflammatory tone21,22.

Based on the observation that obesity is associated with a chronic low-grade inflammatory state and, poten-
tially, impaired gut permeability7, the present study aimed to investigate whether caloric restriction is able to 
modulate gut permeability and, thereby, decrease markers of inflammation in human subjects. Moreover, gut 
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microbiota diversity and composition, and their possible association with gut permeability and inflammation 
was investigated.

Results
The calorie-restricted formula diet induced weight loss.  Twenty women (mean age 46.8 ± 11.5) were 
included in the study and no participant dropped out. Physical and biochemical characteristics of the participants 
before intervention, immediately after the hypocaloric diet, and 14d after intervention are shown in Table 1. 
Participants were asked to consume a formula diet (800 kcal/day) and, in addition, 200 g vegetables. Compared 
to the original caloric intake of 1,698.1 ± 592.7 kcal/day, this intervention caused a substantial energy deficit 
(P < 0.0001).

The VLCD resulted in a significant decrease in body weight (−6.9 ± 1.9 kg). This corresponded to a decrease 
in BMI (−2.5 ± 0.7 kg/m²), lean mass (−2.7 ± 1.6 kg), and total body fat mass (−4.2 ± 1.6 kg). In addition, waist 
circumference (−5.7 ± 5.5 cm) and hip circumference (−4.5 ± 3.7 cm) were significantly decreased. RMR did not 
change significantly during the 4 weeks of dietary intervention (Table 1).

During the two weeks following the intervention, participants regained on average 250 ± 1.5 g body weight 
(P = 0.47). Waist circumference (P = 0.44) and hip circumference (P = 0.64) did not change significantly during 
this post-study period. However, lean mass (P = 0.01) significantly increased and fat mass (P = 0.02) significantly 
decreased during the last two weeks.

Caloric restriction improved metabolic and inflammatory markers transiently.  Total choles-
terol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and triglyc-
erides decreased significantly following VLCD (Table 1). During the subsequent two weeks, these parameters 
increased again (P < 0.001 each). In addition, we observed a significant (P = 0.03) increase in nonesterified fatty 
acids (NEFA) during VLCD. During the subsequent two weeks, NEFA decreased significantly (P < 0.0001). 
Regarding glucose metabolism, fasting glucose (from 4.8 ± 0.7 mmol/L to 4.5 ± 0.6 mmol/L), plasma insulin 
(from 63.7 ± 44.6 pmol/L to 44.3 ± 20.6 pmol/L), and HOMA-IR index (from 2.05 ± 1.52 to 1.29 ± 0.68) were sig-
nificantly lower (P < 0.001 each) after VLCD compared to baseline. During the last two weeks of the study (after 
returning to the habitual diet), blood glucose significantly increased (P = 0.04), whereas insulin levels (P = 0.11) 
and HOMA-IR did not change significantly (P = 0.16). Post-glucose concentrations during the glucose tolerance 
test did not change significantly before and after VLCD (P = 0.16, Table 1).

before VLCD (n = 20) after VLCD (n = 20) 14d after VLCD (n = 20) p - value

t1 t2 t3 t1−t2

Weight (kg) 95.1 ± 13.4 88.2 ± 12.3 88.5 ± 12.6 <0.001

BMI (kg/m²) 34.9 ± 3.8 32.5 ± 3.5 32.6 ± 3.8 <0.001

Waist circumference (cm) 106.9 ± 10.6 101.2 ± 9.4 100.5 ± 9.3 <0.001

Hip circumference (cm) 118.5 ± 12.6 113.9 ± 10.8 114.4 ± 11.5 <0.001

Lean mass (kg) 52.7 ± 5.7 50.0 ± 5.5 50.9 ± 5.3 <0.001

Fat mass (kg) 42.5 ± 8.8 38.2 ± 7.9 37.6 ± 8.4 <0.001

RMR (kJ/day) 7,016 ± 109 6,689 ± 707 7,061 ± 716 0.07

Total cholesterol (mmol/L) 4.9 ± 1.0 4.2 ± 0.8 4.8 ± 0.9 <0.001

HDL-c (mmol/L) 1.3 ± 0.2 1.1 ± 0.2 1.3 ± 0.3 <0.001

LDL-c (mmol/L) 3.1 ± 0.9 2.6 ± 0.7 2.9 ± 0.8 <0.001

Triglycerides (mmol/L) 1.4 ± 0.7 1.1 ± 0.5 1.3 ± 0.7 0.05

LDL/HDL 2.4 ± 0.8 2.3 ± 0.7 2.2 ± 0.7 0.68

NEFA (mmol/L) 0.6 ± 0.2 0.7 ± 0.2 0.5 ± 0.2 0.03

Fasting glucose (mmol/L) 4.8 ± 0.7 4.5 ± 0.6 4.7 ± 0.6 <0.001

Glucose 120 minutes (mmol/L) 6.5 ± 2.4 6.8 ± 1.3 not assessed 0.16

Fasting insulin (pmol/L) 63.7 ± 44.6 44.3 ± 20.6 59.7 ± 62.9 <0.001

HOMA-IR 2.05 ± 1.52 1.29 ± 0.68 1.77 ± 1.82 <0.001

hsCRP (µg/L) 3.1 ± 3.7 1.7 ± 1.6 2.7 ± 2.6 <0.01

HMW Adiponectin (µg/L) 4.1 ± 2.2 4.7 ± 2.7 4.9 ± 2.8 <0.01

Leptin (µg/L) 43.8 ± 25.2 20.9 ± 16.1 25.9 ± 20.3 <0.001

RANTES (µg/L) 47.6 ± 19.3 45.6 ± 22.6 39.8 ± 24.1 0.28

MCP-1 (ng/L) 82.1 ± 32.6 84.5 ± 23.4 89.1 ± 25.5 0.5

Chemerin (µg/L) 77.6 ± 25.7 64.8 ± 20.2 75.7 ± 21.1 <0.01

LBP (µg/L) 27.3 ± 3.3 25.8 ± 3.5 28.0 ± 3.5 <0.01

Calprotectin (µg/L) 424.9 ± 560.3 342.9 ± 351.6 142.9 ± 132.9 0.85

Table 1.  Anthropometric and metabolic characteristics of study participants. Data are presented as 
mean ± standard deviation. P-value for differences between time points before and after VLCD was determined 
using paired Student’s test.
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The hypocaloric diet induced a decrease in the inflammation marker hsCRP (Table 1). HMW adiponectin 
increased and leptin decreased (P < 0.001 each) after VLCD. The chemokines regulated on activation normal T 
cell expressed and secreted (RANTES) and monocyte chemoattractant protein-1 (MCP-1) did not change signif-
icantly during the whole study. Chemerin, considered to be a marker of inflammation and to be associated with 
obesity and the metabolic syndrome23,24, showed a significant decrease after caloric restriction (P < 0.01). LBP 
levels, a marker for translocation of cell-wall components from Gram-negative bacteria, significantly decreased 
after intervention (P < 0.01) and increased again during follow-up (P < 0.0001). Fecal calprotectin did not 
decrease significantly after VLCD (P = 0.79).

Markers of paracellular gut permeability decreased during VLCD.  Table 2 summarises the results 
obtained using different approaches for measurement of gut permeability. In brief, paracellular gut permeability 
markers, including lactulose, polyethylene glycol (PEG) 1500 (PEG25, PEG30, PEG35, and PEG40), and zonulin 
were consistently decreased after caloric restriction.

Gut permeability was first measured using a mixture of four different sugars. Sucrose, used as a proxy for gas-
troduodenal permeability, significantly decreased after caloric restriction (P = 0.012). Two weeks after interven-
tion, sucrose increased significantly again (P = 0.006). In contrast, mannitol, a marker for intestinal permeability, 
did not change significantly during the 28 days of caloric restriction (P = 0.162). However, after the post- inter-
vention phase, its percental urine recovery was significantly increased (P < 0.001). Lactulose, used as a surrogate 
to monitor tight junction fitness significantly decreased during intervention (P = 0.01), while it relapsed after-
wards (P < 0.01). Also, sucralose, used as colonic permeability marker, significantly decreased during VLCD 
(P = 0.018) and increased again after caloric restriction (P = 0.019).

In addition to sugar translocation, we used PEGs translocation as an additional measure of gut permeabil-
ity. The mixture of the different molecular weights of PEG enabled size-dependent assessment of permeability 
properties of the mucosa. Translocation of PEG Mr 400 was significantly decreased after VLCD (Table 2). In the 
2-week follow-up, these low molecular weight PEGs returned back to baseline levels. All larger homologues of 
different chain lengths (PEG25, PEG30, PEG35, and PEG40) significantly decreased after caloric restriction (P < 0.01 
for each measurement), but remained stable during the subsequent two weeks. Similarly, PEG70 and PEG80 signif-
icantly decreased during the 28 days of caloric restriction and remained stable thereafter (Table 2).

Finally, zonulin was used as another marker of paracellular gut permeability25. Plasma concentration at base-
line declined significantly after the 4-week hypocaloric intervention (P < 0.01). After the subsequent two weeks, 
zonulin levels returned to baseline values (P < 0.01) (Table 2).

Effect of VLCD on adipokine expression and fat cell size.  In the whole study population, gene expres-
sion in subcutaneous adipose tissue was assessed by qPCR and showed a significant down-regulation of leptin 
after VLCD in comparison to baseline (P = 0.001). In contrast, the expression of adiponectin, MCP-1, and cluster 
of differentiation 68 (CD68) were not significantly different before and after the hypocaloric intervention (Fig. 1)

From a subsample of participants, fat cell size from para-umbilical subcutaneous adipose tissue biopsies was 
measured before and after VLCD (Fig. 1). Adipocyte size before VLCD was 70.5 ± 7.7 μm (n = 8) and decreased 
to 67.3 ± 7.1 μm (n = 8) after caloric restriction without reaching significance (P = 0.38). Mean adipocyte surface 
area before VLCD was 4,478 ± 997 μm2 and decreased to 4,020 ± 773 μm2 (n = 8, P = 0.31).

Intervention triggered individual- specific changes in fecal microbiota profiles.  After quality- 
and chimera-check, a total of 815,773 sequences clustering in 235 operational taxonomic units (OTU) were 

n

before VLCD after VLCD 14d after VLCD p – value

t1 t2 t3 t1−t2

Sucrose (urine recovery in %) 18 0.17 ± 0.12 0.10 ± 0.06 0.73 ± 0.94 0.01

Mannitol (urine recovery in %) 18 12.35 ± 5.38 9.30 ± 4.99 14.66 ± 9.16 0.17

Lactulose (urine recovery in %) 18 0.26 ± 0.18 0.15 ± 0.10 0.32 ± 0.32 0.01

Sucralose, urine recovery in % 18 1.09 ± 1.52 0.26 ± 0.48 1.30 ± 1.79 0.02

PEG9 (urine recovery in %) 20 16.8 ± 10.34 12.4 ± 7.29 16.6 ± 12.7 0.03

PEG11 (urine recovery in %) 20 16.5 ± 15.15 7.6 ± 5.57 17.3 ± 19.5 0.01

PEG13 (urine recovery in %) 20 4.2 ± 3.59 2.14 ± 1.25 4.2 ± 4.1 <0.01

PEG25 (urine recovery in %) 20 0.38 ± 0.33 0.17 ± 0.15 0.30 ± 0.28 <0.001

PEG30 (urine recovery in %) 20 0.22 ± 0.17 0.11 ± 0.08 0.15 ± 0.12 <0.001

PEG35 (urine recovery in %) 20 0.20 ± 0.18 0.08 ± 0.09 0.15 ± 0.20 <0.001

PEG40 (urine recovery in %) 20 0.24 ± 0.24 0.10 ± 0.11 0.16 ± 0.19 <0.01

PEG70 (urine recovery in %) 20 0.1 ± 0.08 0.04 ± 0.08 0.04 ± 0.06 0.02

PEG80 (urine recovery in %) 16 0.04 ± 0.05 0.02 ± 0.04 0.02 ± 0.04 0.09

Plasma Zonulin (µg/L) 20 58.4 ± 21.7 47.45 ± 11.88 54.34 ± 14.75 <0.01

Table 2.  Gut permeability parameters at three different time point. Data are presented as means ± standard 
deviation. P-value for differences between time points before and after VLCD was determined using paired 
Student’s test.
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analysed. Caloric restriction did not affect alpha-diversity (Fig. 2a). Beta-diversity analysis revealed marked 
inter-individual differences and no significantly distinct clustering according to time points (Fig. 1b). These 
data suggest that caloric restriction did not trigger consistent shifts in the overall phylogenetic makeup of fecal 
bacterial populations; microbiota profiles remained individual-specific throughout the study (Supplementary 
Fig. 2). The relative abundance of members of the phylum Proteobacteria was significantly decreased after caloric 
restriction. This decrease did not hold up after correction for multiple testing. No taxonomic groups within this 
phylum (e.g. Enterobacteriaceae) showed significant differences (Fig. 2c). Of the 235 OTUs detected, five showed 
significant differences in their relative abundances during intervention, as per explorative analysis (Fig. 2d). Three 
OTUs belonged to the family Lachnospiraceae within the phylum Firmicutes. OTU 8 (Anaerostipes hadrus, 100% 
sequence identity) and OTU 10 (Blautia sp., several hits > 97% sequence identity) showed higher relative abun-
dance after VLCD and returned to baseline values after two weeks. Relative abundances of OTU 1 (Agathobacter 
rectalis, 100% sequence identity) decreased after caloric restriction and throughout the end of the study. Two 
additional OTUs outside the Lachnospiraceae were characterised by intervention-related increase in their relative 
abundances: OTU 18 (Ruminococcus faecis, 100% sequence identity) within the Ruminococcaceae and OTU 3 
(Bifidodbacterium sp., several hits > 97% sequence identity) within the family Bifidobacteriaceae.

Discussion
The purpose of our study was to assess the effect of a standardised 4-week caloric restriction on gut permeability, 
inflammatory markers, and fecal microbiota in obese women. As expected, the VLCD resulted in a significant 
decrease in body weight and fat mass as well as improvement of fasting blood glucose, insulin, HOMA-IR and 
lipid parameters.

The primary objective was to study whether gut permeability, which is reported to be impaired in obesity7, 
can be positively affected by caloric restriction. Our findings based on a variety of methods indicate that a stand-
ardised caloric restriction resulting in moderate weight loss significantly reduced gut permeability, in particular 
paracellular translocation. These data are consistent with results of a recent Chinese study reporting decreased 
gut permeability after a 9-week intervention diet consisting of traditional Chinese foods and prebiotics (1, 000–
1,600 kcal/day)26. However, our study extends this observation by providing a more comprehensive dataset using 
a variety of methods and a precisely defined diet. It is interesting to note that improved gut barrier function was 
observed along the gastrointestinal tract, as we measured clear response for sucrose reflecting gastroduodenal 
permeability down to sucralose, which is taken up in the colon. Likewise, decreases in the translocation of PEG 
particles of various sizes reflecting paracellular permeability were measured in urine samples. Zonulin, a phys-
iological modulator of intercellular tight junctions27, was also found to decrease during caloric restriction, but 
rapidly returned to baseline levels after restoring a normal diet. In conclusion, caloric restriction induced uniform 
and consistent changes towards decreased gut permeability.

To be able to distinguish between caloric restriction and weight loss, we studied the participants after return-
ing to a balanced weight-maintaining diet for two consecutive weeks. The data suggest that most changes 
observed under the very low calorie diet disappeared, indicating that these changes were mainly due to the acute 
and marked caloric restriction rather than to the moderate decrease in body weight, as participants did not gain 
substantial weight during the two weeks of follow-up.

As expected, the plasma concentrations of the inflammation marker hsCRP were decreased after VLCD, 
which is in agreement with the literature28. We also measured circulating LBP as a surrogate marker of translo-
cation of cell wall components from Gram-negative bacteria, a term referred to as leaky gut-associated endotox-
emia9. Caloric restriction induced a rather modest decrease in LPB levels29, which is in line with the results of 
the gut permeability measurements and the possibly associated decrease in inflammatory markers. However, the 
design of the study does not allow to draw firm conclusions on the potential causal relationship between endo-
toxin translocation and systemic inflammation.

Plasma leptin levels decreased markedly, while HMW adiponectin increased after intervention. In contrast, 
levels of MCP-1 remained unchanged. One explanation could be that a mean weight loss of 7% is too small for a 
larger effect on obesity-related inflammation markers30. In addition, the changes in gene expression for selected 
markers in adipose tissue – with the exception of leptin – were modest, probably due to the limited weight loss. 

Figure 1.  (a–d) Boxplots based on cycle threshold values (CT) of adipose tissue biopsies from 18 participants 
before and after the 4-week caloric restriction. (e) For fat cell diameters, data of 8 participants were available. 
***P < 0.001.

http://2
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Despite the significant weight reduction, no significant decline in fat cell size of abdominal subcutaneous adipose 
tissue was observed. However, there a trend towards a decrease of the mean adipocyte size. Verhoef et al. showed 
that a 10% weight loss mediated a significant decline in adipocyte size31.

Figure 2.  Fecal microbiota analysis by 16 S rRNA gene amplicon analysis. (a) Diversity within samples 
(alpha-diversity) was estimated by species richness and Shannon-effective counts. (b) meta nonparametric 
multidimensional scaling plot of phylogenetic distances based on generalized UniFrac (beta-diversity). (c) 
Occurrence of members of the phylum Proteobacteria and the family Enterobacteriaceae, including significance 
before and after Benjamini-Hochberg adjustment. (d) Relative abundances of five dominant OTUs showing 
significance overtime. ***P < 0.001; **P < 0.01; *P < 0.5.
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With respect to fecal microbiota profiles, the overall bacterial phylogenetic makeup was not substantially 
affected by caloric restriction in a consistent manner across all individuals. Moreover, we did not observe changes 
in alpha-diversity, in contrast to changes in richness reported in the context host metabolic distrubances and 
nutritional intervention32,33. Decreased relative abundances of Proteobacteria were observed, in agreement with 
other reports on their occurrence in individuals with impaired metabolic health34,35. Relative abundances of the 
species Anaerostipes hadrus were increased by approximately two-fold after 28 days of caloric restriction and 
returned to baseline values after intervention. Although data in the present study are descriptive and explora-
tory, and no cause-effect relationship can be established, A. hadrus was described as a butyrate-producing bac-
terium36,37, and butyrate is usually regarded as beneficial in the context of metabolic health38,39,32. In contrast, 
median relative abundances of another butyrate-producing species, Agathobacter rectalis, were decreased from ca. 
7 to 4% after caloric restriction. Additional studies including targeted metabolite measurements will be needed to 
clarify the impact of caloric restriction on butyrate production in the gut.

The intervention was also associated with an increased occurrence of one OTU in each the Ruminococcus and 
Bifidobacterium genus, which both include degraders of complex dietary and host-derived polysaccharides40. 
Santacruz et al. also showed an increase in qPCR counts of Bifidobacterium spp. after weight loss (−6,9 kg) in 
obese adolescents following 10 weeks of caloric restriction41.

The strength of our study is the strict standardisation and the extensive phenotyping of the participants. In 
addition, an extensive array of different methods was used to characterise the impact of VLCD on gut permea-
bility: The metabolic status was assessed by an oGTT; The inflammation status was investigated by a variety of 
circulating parameters as well as gene expression in adipose tissue samples. The results were further substantiated 
by data related to the gut microbiota, which followed an individual pattern. Additional studies are needed to bet-
ter understand these heterogenous responses.

In conclusion, our data suggest that a 4-week VLCD diet triggers beneficial effects on intestinal barrier func-
tion in obese women, which rapidly disappears after returning to a normal diet. The potential causal relationship 
between changes in gut permeability and the changes observed for metabolic and inflammatory biomarkers as 
well as specific target bacteria needs to be investigated in more detail.

Participants and Methods.  The study protocol was reviewed and approved by the ethics committee of the 
Faculty of Medicine of the Technical University of Munich, Germany (approval no. 5499/12). The guidelines of 
the International Conference on Harmonization of Good Clinical Practice and the declaration of Helsinki (in the 
revised version of Seoul, South Korea 2008) was basis of the study. Written informed consent was obtained from 
all participants before inclusion into the study. The study was registered in the German Clinical Trial Register 
(DRKS00006210). The date of German Clinical Trial Register registration was 11th June 2014.

Study participants.  Twenty female participants with a BMI ≥ 30 kg/m² were recruited in October 2013 via 
advertisements in the area of Munich, Germany. The participants’ eligibility was assessed with a detailed screen-
ing questionnaire including their medical history. Exclusion criteria were: BMI < 30 kg/m², male, smoking, acute 
infections, severe diseases (e.g. cancer), treatment with oral anticoagulants or other antithrombotic medication, 
intestinal surgery in the last three months, autonomous neuropathy, or inflammatory intestinal diseases.

Intervention.  Figure 3 summarises the study design of this single arm intervention trial. In total, the study 
duration was seven weeks and was structured into three time periods. During the first period, participants were 
instructed to maintain their usual eating habits. Then, participants underwent a caloric restriction using a defined 
formula diet of 800 kcal/day for 28 days. Finally, during the two weeks following intervention, participants were 
instructed to follow a balanced diet of 1,800 kcal/day. Before, immediately after, and two weeks after the for-
mula diet intervention, clinical and biochemical parameters, gut permeability, and fecal microbiota profiles 
were assessed. Magnetic resonance imaging (MRI) of subcutaneous and visceral fat depots and a needle aspi-
ration of periumbilical subcutaneous adipose tissue was carried out before and after the 4 weeks of hypocaloric 
intervention.

Diet protocols.  The study participants were instructed to record their food consumption during the whole 
study period. The energy content and macronutrient composition of the diets were calculated using the OptiDiet 
Plus software (Version 5.1.2.046, GOE mbH, Linden, Germany).

Anthropometric measurements.  Anthropometric and clinical measurements were performed in a 
standardised manner between 8 and 9 am in the morning following an overnight fast. Body weight and com-
position were measured using the TANITA Body Composition Analyzer Type BC-418 MA III (Amsterdam, 
Netherlands). The resting metabolic rate (RMR) was measured using a canopy hood (COSMED Quark RMR, 
Fridolfing, Germany).

Blood samples and biochemical analyses.  Blood samples were collected in the fasting state. Lipid 
parameters (total cholesterol, LDL-c, HDL-c, triglycerides), liver enzymes (aspartate transaminase (AST), ala-
nine transaminase (ALT), γ-glutamyltransferase (γ-GT)), creatinine, uric acid, and fasting glucose were analysed 
by SynLab (Munich, Germany). An additional blood sample was collected, immediately centrifuged (2, 500 g 
for 10 minutes at 20 °C) and subsequently stored at −80 °C until analysis. Leptin, chemerin, hsCRP, RANTES, 
MCP-1, HMW adiponectin, and LBP (all: R&D, Wiesbaden, Germany), insulin (Dako, Glostrup, Denmark), 
and zonulin (Immundiagnostik AG, Bensheim, Germany) were assayed in plasma using commercially available 
enzyme-linked immunosorbent assays (ELISA). Fecal calprotectin was measured by ELISA (CALPROLAB™ 
Calprotectin ELISA (HRP), FROST Diagnostika GmbH, Otterstadt, Germany). All ELISAs were performed as 
described by the manufacturers. NEFA were measured using a commercial test kit (Wako Chemicals GmbH, 



www.nature.com/scientificreports/

7SCIENTIFIC Reports | 7: 11955  | DOI:10.1038/s41598-017-12109-9

Neuss, Germany). Insulin resistance was estimated using the HOMA-IR, [HOMA-IR = insulin (μU/mL) × glu-
cose (mmol/L)/22.5]42.

Oral glucose tolerance test.  Oral glucose tolerance tests (OGTT) began between 8 am and 9 am following 
a 12-hour overnight fast. After taking a baseline blood sample, volunteers received 75 g glucose in a volume of 
300 ml (AccuCheck®-O.G.T., Roche, Mannheim, Germany). After 30, 60 and 120 minutes blood was drawn and 
glucose levels were determined (HemoCue Glucose 201+, plasma-calibrated, Ängelholm, Sweden).

Gut permeability.  Gut barrier function was assessed by means of different non-invasive tests. First, the 
intestinal permeability was measured via a validated sugar absorption test and a test using PEG. Both tests were 
performed in parallel. The principle is to measure urine excretion of orally administrated substances of different 
molecular masses. The tests were done directly before intervention, after intervention, and two weeks after inter-
vention. Data are presented as percentage of ingested sugars and PEGs that were discovered in the urine, referred 
to as % urine recovery. Finally, the gut permeability marker zonulin was measured in blood via ELISA.

Sugar absorption test.  The sugar absorption test was performed as described by Norman et al.43. The sug-
ars were quantified by high-performance liquid chromatography with pulsed electrochemical detection (chroma-
tography module: 250, Dionex, Idstein, Germany)43.

Polyethylene glycol absorption test.  Participants received 100 ml of a PEG test solution containing 
1 mg of molecular mass (Mr) 400 (PEG6-PEG13; mass range: 285–678 Da), 200 mg of Mr 1500 (PEG20–PEG45; 
mass range: 899–2,000 Da), 4 g of Mr 3000 (PEG51-PEG90; mass range: 2,264–3,982 Da), and 4 g of Mr 4000 
(PEG75-PEG115: mass range: 3,322–5,084 Da) (Merck Darmstadt, Germany). Five hours after ingestion of the 
sugar test solution, the PEG test solution was drunk and urine was sampled during the following 24 hours. PEGs 
were analysed by liquid chromatography-mass spectrometry as described by Lichtenegger and Rychlik44.

Abdominal subcutaneous adipose tissue biopsy.  Abdominal subcutaneous adipose tissue specimens 
were obtained by needle aspiration before and after the formula diet. After washing in Krebs-Ringer-buffer, 
fat tissue was aliquoted into tubes containing sterilised zirkonia-glas-beads (Carl Roth, Karlsruhe, Germany), 
RLT-buffer (RNeasy Mini Kit, Qiagen, Hilden, Germany) and 1% (v/v) ß-mercaptoethanol (#M3148, 
Sigma-Aldrich, St. Louis, Missouri, USA), and then immediately frozen and stored at −80 °C. For fat histology, 
fat tissue was fixed in 4% buffered formalin (pH 7.4) for 24 h and finally embedded in paraffin and stored at room 
temperature until analysis. Determination of adipocyte size was done by using the open source cellprofiler® 
image analysis software (http://www.cellprofiler.org/).

Quantitative polymerase chain reaction.  The expression of specific target genes was assessed by using 
quantitative polymerase chain reaction (qPCR). The primer sequences used are shown in Supplemental Table 1. 
qPCR was performed using the Mastercycler® ep realplex (Eppendorf, Hamburg, Germany). Target and house-
keeping gene amplicons were detected using SYBR Green (Thermo Fisher, Scientific, Darmstadt, Germany). 
Importin 8 (IPO8) and peptidylprolyl isomerase A (PPIA) were used for normalization45,46. Each sample was 
run in duplicate, and negative controls without cDNA were included. The calculation of relative expression was 
performed by using the relative expression software tool REST© (http://rest.gene-quantification.info/)47.

Fecal samples.  Fecal samples were collected directly into sterile plastic containers (1,000 ml;VWR 
International, Munich, Germany). Participants were then asked to collect one plastic spoon at one location of 
the fecal material into a stool collection tube containing 8 ml DNA stabilization buffer (Stratec Molecular GmbH, 
Berlin, Germany). Afterwards, fecal samples were immediately frozen at −18 °C until the next visit. Participants 

Figure 3.  Study design. The scheme gives an overview of the timeline and different examinations performed. 
Abbreviations: BS, Blood sample; FB, fat biopsy; FS, fecal sample; GP, gut permeability; IC, indirect calorimetry; 
MRI, magnetic resonance imaging; NC, nutritional counseling; PE, physical examination; oGTT, oral glucose 
tolerance test; Q, questionnaire.

http://www.cellprofiler.org/
http://1
http://rest.gene-quantification.info/
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transported the frozen fecal samples by using cooling aggregates to the lab. Finally, collection tubes were imme-
diately stored at −80 °C.

High-throughput 16 S ribosomal RNA gene amplicon sequencing.  Samples were processed as 
described previously48. Briefly, cells were lysed by bead-beating and heat-treatment and the metagenomic 
DNA was purified using gDNA columns (Macherey-Nagel, Düren, Germany). Concentrations and purity were 
inspected using the NanoDrop® system (Thermo Scientific Waltham, Massachusetts, USA). The V3/V4 region of 
16 S ribosomal RNA (rRNA) genes was amplified (25 cycles) from 24 ng DNA using primers 341 F and 785 R49. 
After purification (AMPure XP system, Beckmann Coulter Biomedical GmbH) and pooling in an equimolar 
amount, the 16 S rRNA gene amplicons were sequenced in paired-end modus (PE275) using a MiSeq system 
(Illumina, Inc., San Diego, California, USA) following the manufacturer’s instructions and a final DNA concen-
tration of 10 pM and 15% (v/v) PhiX standard library.

Sequence analysis.  Raw read files were processed based on the UPARSE approach50 using IMNGS51. 
Sequences were tested for the presence of chimeras using UCHIME52 and OTUs were clustered at a threshold of 
97% sequence similarity. To avoid analysis of spurious OTUs, only those with a relative abundance > 0.5% total 
sequences in at least one sample were kept. SILVA (SILVA Incremental Aligner version 1.2.11)53 and RDP classi-
fier (set 15; 80% confidence)54 were used to assign taxonomic classification to the OTUs representative sequences. 
Specific OTUs with differential abundances between groups were further identified using EzTaxon. Phylogenetic 
relationships were examined using the generalized UniFrac procedure55. Shannon-effective counts were deter-
mined to estimate diversity within samples (alpha-diversity) as described by Jost et al.56.

Statistical analyses.  Data were analysed in the R programming environment. Anthropometric and meta-
bolic data are presented as mean ± standard deviation. P-values < 0.05 were regarded as statistically significant. 
According to data distribution, paired Student’s test was applied to assess mean differences before and after the 
formula diet. Rhea (v1.0.1-5) was used for analysis of fecal microbiota profiles57. The effect of VLCD on OTUs and 
taxonomic counts was tested using Friedman Rank Test for the analysis of a nonparametric randomized block 
design. Missing values were handled by using Skillings-Mack test. Wilcoxon Signed Rank Sum Test for matched 
pairs was applied for pairwise comparisons. The Benjamini-Hochberg method was used for adjustment after 
multiple testing. For beta-diversity analysis, generalized UniFrac distances were calculated using the package 
GUniFrac55.
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