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Unlike for systems in equilibrium, a straightforward definition of a metastable set in the non-
stationary, non-equilibrium case may only be given case-by-case—and therefore it is not directly
useful any more, in particular in cases where the slowest relaxation time scales are comparable to the
time scales at which the external field driving the system varies. We generalize the concept of metasta-
bility by relying on the theory of coherent sets. A pair of sets A and B is called coherent with respect
to the time interval [t1, t2] if (a) most of the trajectories starting in A at t1 end up in B at t2 and (b) most
of the trajectories arriving in B at t2 actually started from A at t1. Based on this definition, we can
show how to compute coherent sets and then derive finite-time non-stationary Markov state models.
We illustrate this concept and its main differences to equilibrium Markov state modeling on simple,
one-dimensional examples. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966157]

I. INTRODUCTION

Metastable molecular systems under non-equilibrium
conditions caused by external fields have attracted increasing
interest recently. For example, new experimental techniques
like atomic force microscopy or simulation studies regarding
the potential effects of electromagnetic radiation on the human
body tissue have been extensively investigated in the literature.
Specifically adapted molecular dynamics (MD) simulations
have proved particularly useful for understanding the response
of biomolecular conformations to external fields. Despite this
significance, reliable tools for the quantitative description of
non-equilibrium phenomena like the conformational dynamics
of a molecular system under external forcing are still lacking.

For MD simulations in equilibrium such specific and
reliable tools have been developed: Markov State Models
(MSMs) allow for an accurate description of the transitions
between the main conformations of the molecular system
under investigation. MSMs for equilibrium MD have been
well developed over the past decade in theory,1,2 applications
(see the recent book3 for an overview), and software
implementations.4,5 They now form a set of standard tools.
The principal idea of equilibrium MSMs is to approximate
the MD system (in continuous state or phase space) by
a reduced Markovian dynamics over a finite number of
(macro-)states (i.e., in discrete state space). These (macro-)
states represent the dominant metastable sets of the system,
i.e., sets in which typical MD trajectories stay substantially
longer than the system needs for a transition to another
such set.1,6 In equilibrium MD, these metastable sets are
the main conformations of the molecular system under
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consideration which, often enough, are given by the main
wells in its energy landscape. It has been shown that for
many (bio)molecular systems the Markovian dynamics given
by an MSM allows very close approximation of the longest
relaxation processes of the underlying molecular system under
equilibrium conditions.7,8

However, in non-equilibrium settings with time-
dependent external fields acting on the system the energy
landscape depends on time, i.e., in principle the main wells
of the energy landscape can move in time. That is, there
may no longer be time-independent metastable sets in which
the dynamics stays for long periods of time before exiting.
Instead, the potentially metastable sets will move in state
space. Generally, moving “metastable” sets cannot be anymore
considered metastable. However, the so-called coherent sets,
which have been studied for non-autonomous flow fields
in fluid dynamics9 and have been theoretically discussed
for systems described by ordinary differential equations in
Ref. 10, permit to get a meaning to the concept of metastability.
This article will generalize the concept of metastability by
utilizing coherent sets for diffusion processes in an energy
landscape. Molecular dynamics is a possible application, and
we will show how to build MSMs, for nonequilibrium MD,
based on coherent sets.

II. SETTING

We start with a diffusion process in a time-dependent
potential V : R × Rd → R,

dxt = −∇V (t,xt)dt + εdwt . (1)

Here wt is a standard Wiener process (Brownian motion),
and V (t, x) = Vint(x) + Vext(t, x) with Vint, time-independent,
which characterizes the inherent time scales of the molecular
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system, and Vext, the time-dependent external field. Here, and
in the following, bold face symbols denote random variables.
The noise intensity ε = 2β−1 is a function of the inverse
temperature β such that the dynamics would be ergodic with
respect to the stationary density µ ∝ exp(−βV ) if the energy
landscape V were independent of t. The fact that the potential
(or energy landscape) V explicitly depends on time means that
in general there is no stationary probability distribution and
no more meaning for ergodicity.

In principle, our diffusion model (1) could also be replaced
by molecular dynamics equations of motion, e.g., by a mass-
scaled Langevin equation,

dxt = ptdt,

dpt = −∇V (t,xt)dt − γptdt + ε
√
γdwt,

(1a)

but we stick to (1) for simplicity of presentation.
By a sufficiently fine discretization (i.e., partition) of the

phase space, we can approximate the Kolmogorov backward
equation associated to (1),

∂

∂t
f (t, x) = ε2

2
∆ f (t, x) − ∇xV (t, x) · ∇x f (t, x),

f (0, ·) = f0,

(2)

which describes the evolution of observables f (t, x)
= Ex0=x[ f0(xt)]. In the following, we will work in discretized
state space. The reason for this is twofold. First, this will allow
us to omit functional-analytic technicalities, which would
hinder readability and deteriorate attention from the central
points, and second, numerical computations are done in a
discretized state space anyway.11 We obtain in the discretized
state space

v̇(t) = L(t)v(t), (3)

where L(t) ∈ RN×N is the time-dependent generator. The
discretization can be made such that this matrix is a generator
indeed.12–15 The associated master equation, describing the
propagation of probability distributions over the discrete state
space, reads as

µ̇(t) = L(t)T µ(t), (4)

and approximates the Kolmogorov forward (or Fokker–
Planck) equation associated to (1),

∂

∂t
g(t, x) = ε2

2
∆g(t, x) + ∇x ·

�
V (t, x)g(t, x)�,

g(0, ·) = g0,

(5)

describing the evolution of distributions over state space. Let
the associated propagator, i.e., the evolution operator of (3), be
given by P(s, t), meaning that t → P(s, t)vs solves (3), given
the initial condition v(s) = vs. Then, of course, P(s, t)T is the
solution operator of (4). Note that, due to the time-dependence
of the dynamics, in general there will be no invariant
distribution, such that µ(t) = P(s, t)T µ(s) with µ(s) , µ(t)
in general, and the system will not be reversible. Moreover,
in general there is no generator L such that P(s, t) = e(t−s)L,
as it holds in the time-independent case.

We wish to “extend” the notion and the treatment of
metastability to this case. There is a subtle flavor to this,

since there is no guarantee that the sets, which we would
like to call metastable in this case, are fixed in time. To
set the stage, let us start by looking at two asymptotic
regimes.

III. ASYMPTOTIC REGIMES

In principle the dynamical behavior of (1) depends on
the relation between the inherent time scales of the molecular
system and the time scale on which the external fields change.
We will have to distinguish at least the following three
regimes.

A. Very slow external field

Consider the snapshot systems (note that the snapshot t
is fixed, i.e., the generator—and thus the external field—is
frozen in time, and ϑ takes the role of time),

dv
dϑ

(ϑ) = L(t)v(ϑ). (6)

If the implied time scales of these snapshot systems are much
shorter than the time scale on which the change in the external
field and the generator L(t) takes place, then the original
process (3) equilibrates before the external field can change
a lot. Hence, on the time scale ϑ metastable behavior can
be observed, where the metastable sets at time t are exactly
those corresponding to L(t). That is, the metastable sets move
but slowly compared with the slowest internal relaxation time
scales of the system. Accordingly, the system behaves in
a quasi-stationary or adiabatic manner. If µ∗(t) denote the
snapshot invariant distributions, i.e., L(t)T µ∗(t) = 0, then the
distribution µt(ϑ) of the system is drawn quickly to µ∗(t), and
stays close for a sufficiently long while to this time-dependent
equilibrium.

B. Quickly changing external field

The other extreme case, when the external field changes
so quickly that the system can barely react, is more subtle.
If the external forcing is sufficiently weak and faster than
all other internal time scales of the system, then the system
sees just a time-averaged (“blurred”) potential. However, in
general the situation is more complex and one has to be
careful regarding the amplitude of the external field: if this is
too large, the system will behave essentially as an ideal gas
in an external field, because the bonds get destroyed. Still, for
a sufficiently weak field another situation can occur when the
molecular system exhibits motion on a wide range of time
scales, where the fastest ones could be much faster than the
time scale on which the potential is changing, but the slowest
ones might still be much slower than that.

In general, this situation does not lead to any simple
solution, and should be treated as the general case. Instead, in
the specific case of a fast but periodic external forcing, as, e.g.,
discussed in Ref. 16, using the periodic form of the forcing
it is possible to build a MSM based on a quasi-stationary
approach with a time-dependent family of metastable sets.17
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C. In between extremes

If the slowest internal time scales, i.e., the expected
transition times between the main conformations, are
comparable to the time scales on which the external field
changes, and the external field is strong enough to alter the
metastable behavior, then there is an interdependence between
conformational switching and the motion of conformations
induced by the external forcing. This case has not been
studied up to now, at least not regarding MSM building, and
will be the topic of the present work.

IV. FINITE-TIME COHERENT SETS

A. Coherent pairs

We will introduce the concept of coherence for sets of
our discrete state space system described by (4). The state
space is now S = {1, . . . ,N}, where we think of each i ∈ S
as corresponding to a small subset of Rd, a “box.” This way
we may think very naturally of a stochastic process ( yt)t≥0
on S with law given by (4) as an approximation of the original
process (xt)t≥0 on Rd. This approximation is “in distribution,”
meaning that the distribution of ( yt)t≥0 approximates that
of (xt)t≥0 given by (5).

With t0 = 0 and t1 = 1, defining a time scale τ = t1 − t0,
we will consider the process ( yt)t ∈[0,1]. Of course, everything
applies for general t0, t1 as well. Let the process at time t0 = 0,
y0, be distributed according to µ0 (denoted by y0 ∼ µ0), and
let at final time y1 ∼ µ1. Then, if P B P(0,1) is the associated
propagator, we have µ1 = PT µ0.

The definition of metastability for a time-independent
system consists of finding sets A such that when starting
an ensemble of realizations of the process in A, after a
given lagtime τ = t1 − t0 the majority of these realizations
are still in A. Clearly, for time-dependent systems such
a set A may not exist. Nevertheless, there could be
a second set B, which has “size comparable to that
of A” (in a well-defined probabilistic sense to be made
precise later), such that the majority of trajectories starting
in A ends up in B. The notion of finite-time coherent
pairs formalizes this idea. It originates from transport-
based consideration of non-autonomous flow fields in fluid
dynamics.9,10,18

Definition 1 (Coherent pairs). We call a pair of
sets A,B ⊂ S coherent (on the chosen time interval [t0, t1],
and with respect to the underlying initial distribution µ0), if
both of the following conditions are satisfied:

(i) The forward condition: If the process starts at initial time
in A, then it ends up at final time with high probability
in B, i.e.,

P[ y1 ∈ B
�
y0 ∈ A] ≈ 1. (7)

(ii) The backward condition: If the process ends up at final
time in B, then it was at initial time with high probability
in A, i.e.,

P[ y0 ∈ A
�
y1 ∈ B] ≈ 1. (8)

Note the importance of the dependence on the initial
distribution µ0 (which also defines the final distribution µ1):
the same pair of sets with respect to the same dynamics on
the same time interval might be coherent or not, depending on
the initial distribution of the system.

B. Characterization of coherence

Conditions (i) and (ii) of Definition 1 can be recast as

P[ y0 ∈ A, y1 ∈ B] ≈ P[ y0 ∈ A] = µ0(A) (7∗)

and

P[ y0 ∈ A, y1 ∈ B] ≈ P[ y1 ∈ B] = µ1(B). (8∗)

To simplify the notations to be used in the following
development, we define the Euclidean and the ν-weighted
(here, ν is some probability measure on S) scalar product
of two vectors u, v by ⟨u, v⟩ B i∈S uivi, and ⟨u, v⟩ν
B


i∈S uiviνi, respectively. Further, we define the indicator
vector 1A ∈ RN of a set A ⊂ S by

1A, i B



1, i ∈ A,
0, i < A,

(9)

and the diagonal matrix Dν B diag(ν). The joint probability
can now be rewritten in different forms,

P[ y0 ∈ A, y1 ∈ B] =


i∈A, j ∈B
µ0, iPi j (10)

= ⟨1B,PTDµ01A⟩ (11)

= ⟨P1B,1A⟩µ0
= ⟨1A,P1B⟩µ0

(12)

= ⟨1B,D−1
µ1

PTDµ01A⟩µ1
. (13)

We would like to stress again that µ0 is an arbitrary measure
at time t0, and µ1 its push-forward at time t1. In particular,
they need not be the invariant distributions of the snapshot
systems, as discussed around Equation (6).

In view of (13), D−1
µ1

PTDµ0, acting from the left, can be
viewed as a forward operator (matrix) from a µ0-weighted
space into a µ1-weighted space, since it transports the
probability associated with 1A (i.e., the vector Dµ01A) from
initial time to final time, with respect to the µ1-weighted scalar
product.

Summarizing (7∗) and (8∗) with the new notation, a
coherent pair satisfies the two conditions of coherence,

⟨1A,1A⟩µ0
≈ ⟨1B,PTDµ01A⟩ ≈ ⟨1B,1B⟩µ1

. (14)

Suppose A,B are a coherent pair. Then, we show in
Appendix A that the two conditions of coherence imply

D−1
µ1

PTDµ01A ≈ 1B, (15)

where the approximate equality of to vectors is meant as “up
to small error in the norm defined by ⟨·, ·⟩µ,” where µ = µ1
in (15). In other words, if A,B is a coherent pair, then the
forward operator maps the indicator of A approximately to
the indicator of B. Note how this equation incorporates the
forward and backward conditions of coherence: all that is
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in A, goes to B, and by

D−1
µ1

PTDµ01S\A = D−1
µ1

PTDµ0(1S − 1A)
(A1)
= 1S − D−1

µ1
PTDµ01A

(15)
≈ 1S − 1B = 1S\B, (16)

what does not come from A, does not end up in B, or,
equivalently, what ends up in B, comes from A.19

The definition of coherence is based on pairs of coherent
sets. It would be desirable to find a definition involving only
one set. This requires the introduction of a backward process,
as we see below.

C. The forward-backward process

Equation (15) allows us to reduce the characterization of
coherence from a coherent pair of sets (one at initial and one
at final time) to only one set (at initial time).

Substituting (15) into the equality of (12), and using the
forward-backward condition (7∗), we obtain

⟨1A,PD−1
µ1

PTDµ01A⟩µ0
≈ µ0(A). (17)

We are going to define a forward-backward process. Then
we will see that the left-hand side of this expression is the
probability that a forward-backward process starting in A,
ends up in A.

To this end, let us consider the process (yt)t ∈[0,1] and then
define the time-reversed process (ỹt)t ∈[0,1] by the transition
probabilities (no Einstein convention is used)

P̃i j B P[ ỹ1 = j
�
ỹ0 = i] = µ0, jPj i

µ1, i
. (18)

In matrix notation, P̃ = D−1
µ1

PTDµ0. Comparing with (13),
we note that the forward operator and P̃ are given by the
same matrix. However, they are different operators. On one
hand, the forward operator transports densities with respect
to fixed distributions by multiplication from the left. On
the other hand, P̃ is a transition matrix (of the backward
process), i.e., transports measures by multiplication from
the right. The duality of forward and backward transport is
reflected in the equality of the matrix forms of these two
operators.

Now, let us define the forward-backward process (zt), by
the transition matrix

C B PP̃ = PD−1
µ1

PTDµ0. (19)

C leaves µ0 invariant, i.e., CT µ0 = Dµ0PD−1
µ1

PT µ0 = µ0.
Further, the forward-backward process is reversible with
respect to µ0, since C is self-adjoint with respect to
the µ0-weighted scalar product, ⟨Cu, v⟩µ0

= ⟨u,Cv⟩µ0
for

all u, v ∈ RN ,20 or, equivalently,

CTDµ0 = Dµ0C. (20)

C is also positive semidefinite with respect to this
scalar product, since ⟨u,Cu⟩µ0

= uTDµ0Cu = (uTDµ0PD−1/2
µ1 )

(D−1/2
µ1 PTDµ0u) ≥ 0.

Expression (17) is connected with the forward-backward
process; in fact we have

⟨1A,PD−1
µ1

PTDµ01A⟩µ0
= ⟨1A, (Dµ0PD−1

µ1
PT)Dµ01A⟩

= ⟨1A,D−1
µ0

CTDµ01A⟩µ0
. (21)

With this, analogous considerations to those made in
Appendix A show that (17) implies

D−1
µ0

CTDµ01A ≈ 1A, (22)

which is the forward-backward analogue of (15). In other
terms, the probability in the set A, i.e., Dµ01A, is left
almost invariant under transport by the forward-backward
process (zt), i.e., multiplication by CT . With (20) and (22) we
obtain

C1A ≈ 1A. (23)

When (23) is satisfied, we say that the set A is coherent.
It seems from (23) as if almost invariance under the

forward-backward process could be true without the existence
of a set B such that A builds a coherent pair with B. Fortunately,
this is not the case, and therefore (23) is equivalent to the
pair of Equations (7) and (8) defining coherence. To this end,
let us consider C as the propagator of some “long” forward
process on the time interval [0,2]. (This process is superficial,
and we think of it as “unfolding” the forward-backward time-
loop, which has length 2, to the interval [0,2].) In fact, if we
consider C = PP̃, the propagator of the “long” process, then P
acts as propagator on [0,1], and P̃ as propagator on [1,2].
Comparing (22) with (15), we see that (23) means that the
pair A, A is coherent for the “long” forward process (with
propagator C). Now, by Theorem 1 from Appendix B we find
at time t = 1 a set B with µ1(B) = µ0(A) such that (15) holds,
and A,B are a coherent pair for our original process.

This notion of coherence allows for the extension of the
concept of metastability to non-stationary systems. To do that,
we need first to establish the result that if A is coherent for
a time τ then it is also coherent for any τ′ ≤ τ (monotony
of coherence, see Appendix B). Even then, the time scale τ
will play a double role: on one hand it is the length of a time
window on which we have coherence, on the other hand it is
now a time scale for which these sets stay coherent. However,
beyond τ the coherence will be, in general, lost, and only a
new search can tell us if there are again metastabilities. In any
event, we can now give the following definition.

Definition 2 (Metastability for non-stationary systems).
Given a time scale τ, a set A ⊂ S is called metastable in
the time range [t0, t0 + τ/2], if A is coherent on the time
interval [t0, t0 + τ].

Note, metastability now is not just the property of
the set A at the time t0, but involves the family of
sets, (At)t ∈[t0, t0+τ/2], such that At, At′ are coherent pairs for
every t0 ≤ t < t ′ ≤ t0 + τ/2, and every At from this family
stays coherent for at least a time τ/2. In other words,
metastability is not an instantaneous property. However,
coherence on a time interval of length τ is needed to define
metastability on a time window of length τ/2.
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Remark 1. It is important to stress that coherence is
always defined with respect to a time interval of a given length
(the time scale) τ, and thus, by increasing the time scale, we
may lose coherent sets. As it is in equilibrium molecular
dynamics, one is faced with a hierarchy of metastable sets,
and has to decide which to include and which to exclude
in a reduced description of the system—e.g., based on
a quantitative metastability identifier, like the “coherence
ratio” (7) and (8); cf. also the discussion around (B7) in
Appendix B.

D. Perturbed invariance and identification

Now, we are interested to identify not just one metastable
set but to partition the whole state space into metastable sets.
Our intention is to try to construct—as done by MSM—an
essentially rigorous coarse-grained dynamics. We restrict our
attention to the case where the whole state space S (still the
discrete one introduced in Section IV A) can be partitioned
into coherent sets.

By our definition, given a coherent set A, also the
complement S \ A is coherent. We are interested in the finest
possible partition that is still coherent. This necessitates that
the partition is disjoint. Otherwise, by refining the partition
via taking intersections of non-disjoint partition elements, we
arrive at an equally coherent, finer partition. Condition (I2)
below is due to this.

Let us assume that P has n perfectly coherent sets Ak,
k = 1, . . . ,n, on some given fixed time interval. That means,

(I1) the forward-backward process returns to Ak with prob-
ability one, provided it started there, i.e.,


j ∈Ak

Ci j = 1
for every i ∈ Ak.

Furthermore,

(I2) we assume that no finer decomposition into perfectly
coherent sets is possible.

Then, it can be seen easily that these conditions (I1) and (I2)
imply that

• the Ak constitute a disjoint partition of the state space,
i.e., ∪· n

k=1Ak = S (where ∪· means that the sets we build
union of are disjoint);

• there are sets Bk, k = 1, . . . ,n, such that the Ak,Bk

build perfectly coherent pairs of the forward process,
i.e., if and only if the forward process starts in Ak, it will
end up with probability one in the corresponding Bk at
final time;21

• C from (19) is a block-diagonal matrix with blocks
according to the Ak, meaning that Ci j = 0 whenever i
∈ Ak, j < Ak for any k;22 and

• all the diagonal blocks of C are irreducible (reducibility
of a block would contradict (I2)).

Thus, C has an n-fold (degenerate) eigenvalue λ = 1. The
corresponding right eigenvectors can be chosen as uk = 1Ak

,
and left eigenvectors as vk = Dµ01Ak

, where µ0 is an invariant
measure of C (since C is reducible, µ0 is not unique, in fact,
it can be any linear combination of the invariant measures of
the single blocks).

Standard perturbation arguments for self-adjoint matrices
(Chapter II, Secs. 6.2 and 6.3 in Ref. 23) show that if C
satisfies conditions (I1) and (I2), just up to an ϵ error, and is
an irreducible matrix, then λ1 = 1 is a single eigenvalue of C
with right and left eigenvectors u1 = 1, v1 = Dµ01 (now, µ0
is unique due to irreducibility), and there are n − 1 real
eigenvalues satisfying 1 − λk = O(ϵ), k = 2, . . . ,n. Moreover,
also the subspace

span(u1, . . . ,un) ≈ span(1A1, . . . ,1An), (24)

up to an error of order ϵ , i.e., the uk can be expressed up
to an error ϵ as linear combinations of the 1Ak

. Hence,
for sufficiently small ϵ , the right eigenvectors uk are linear
combinations of “almost indicator vectors,” which allows
for the algorithmic identification of coherent sets:24 for any
fixed k = 1, . . . ,n, we can find scalar constants ck,1, . . . ,ck,n
such that, by components, u1, i ≈ ck,1, . . . ,un, i ≈ ck,n for
all i ∈ Ak.

Remark 2 (Metastability for time-dependent and time-
independent dynamics). Having characterized the relationship
between metastability and spectral analysis, we can now point
out the difference (or not) between the time-independent
and time-dependent case. The latter requires the concept of
coherence and is based on the spectral analysis of the matrix C.
The former, instead, can be performed by simply referring to
the spectral analysis of the matrix P. If the matrix P is
time-reversible (i.e., satisfies detailed balance with invariant
distribution µ0), P and C share the same eigenvectors (because
then, by reversibility, P̃ = P, and thus C = P2), so that also
in the time-dependent case one could study metastability by
spectral analysis of P.1 However, for the non-reversible case,
this is not true any more.

Remark 3. It could be inconvenient to elaborate the
concept of coherence for the definition of metastability by
using “crisp” sets (and so the associated concept of “crisp”
macrostate). Alternatively, see Appendix C, one can develop
the same idea using the formalism of fuzzy macrostates.

V. TOWARDS MARKOV STATE MODELS

Markov state models (MSMs)1 as referred to in
equilibrium molecular dynamics are Markov chains with a
very small state space, designed to capture the dominant
time scales of the original system. Note that if the system is
stationary, then its propagator P(s, t) only depends on (t − s),
i.e., P(s, t) = e(t−s)L with a time-independent generator L,
and hence its eigenvalues κk = e(t−s)Λk are exponentially
decaying in (t − s), with rates (eigenvalues of L) Λk < 0,
k ≥ 2. The implied time scales of the system are then
the inverse rates, |Λk |−1. The rates closest to zero are of
the largest interest. A MSM is a (τ-dependent) stochastic
matrix P̂ ∈ Rn×n, n ≪ N , such that the eigenvalues of P̂,
κ̂k, approximate the dominant ones of P(s, s + τ); in other
words κ̂k ≈ eτΛk, k = 1, . . . ,n.

The “physical” connection to the original process is
that one associates the states of the MSM with metastable
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sets of the original process. More precisely, we have the
coarse-grained state space Ŝ = {1, . . . ,n}, such that the
original state space S is partitioned into the sets Ak,
i.e., S = ∪· n

k=1Ak= ∪· k ∈ŜAk. Further, we have a coarse-graining
function ϕ : S → Ŝ such that ϕ(i) = k if i ∈ Ak.

Our intention is to extend this concept to the scenario
where metastable sets can only be understood in the sense
of Definition 2, i.e., in form of coherent sets. Since we only
use information about the system from a finite time-interval,
we cannot have a MSM in the “classical” way, where one is
able to infer something about the system for large τ. We are
only able to infer statistical properties which show up on a
time-scale τ′ ≤ τ/2.

Let us carry out the modeling for n coherent pairs, Ak,Bk,
k = 1, . . . ,n. As already mentioned in Section IV, we restrict
our attention to the case where the coherent sets constitute a
full partition of the state space, namely,∪· n

k=1Ak = S = ∪· n
k=1Bk.

In practice, it might not be feasible to satisfy this condition
(e.g., because there are large parts of the state space that
are assigned negligible measure, and which do not belong to
any coherent set), however, one is interested in an “almost
complete partition in measure,” such that µ0( Ak) ≈ 1
≈ µ1( Bk). We will discuss below the consequences of this.

Given an initial time t0, and a time scale τ, yielding
the terminal time t1 = t0 + τ, we can define a (one-step)
non-stationary MSM.

Definition 3 (Non-stationary MSM). We call the Ŝ-valued
one-step process (ŷt0, ŷt1), where Ŝ = {1, . . . ,n}, a MSM of
the original process yt, if

(i) µ̂0, i B P[ ŷt0 = i] = P[ yt0 ∈ Ai], for i ∈ Ŝ and
(ii) the propagator of ŷt, the matrix P̂ ∈ Rn×n, satisfies

P̂i j B P[ ŷt1 = j
�
ŷt0 = i] = P[ yt1 ∈ Bj

�
yt0 ∈ Ai]. (25)

Thus, while P denotes the transition matrix on microstates
(the states of the original state space), entries of P̂ are
the transition probabilities between the macrostates (i.e., the
coherent sets). A few remarks are in order:

• Any one state i ∈ Ŝ at different times may correspond
to a different set in phase space. For instance, ŷt0
= i corresponds to yt0 ∈ Ai, but ŷt1 = i corresponds
to yt1 ∈ Bi. Thus, in our two-time scenario, rows of P̂
correspond to sets at initial time, and columns of P̂
correspond to sets at final time.

• We have from (25) and (12) that

P̂i j =
⟨P1B j

,1Ai
⟩µ0

⟨1Ai
,1Ai

⟩µ0

. (26)

• Moreover, µ̂1 B P̂T µ̂0 componentwise is µ̂1, j
= µ1(Bj), since we have by µ̂0, j = P[ yt0 ∈ Aj]
= ⟨1Ai

,1Ai
⟩µ0

and (26) that

µ̂1, j =

n
i=1

µ̂0, iP̂i j =

n
i=1

⟨P1B j
,1Ai

⟩µ0

= ⟨P1B j
,1⟩µ0

= ⟨1B j
, PT µ0
=µ1

⟩ = µ1(Bj). (27)

Hence, ŷt is indeed a coarse-grained dynamics of the
original process.

In equilibrium MSM-building, a MSM corresponding
to a full partition (what we assume to have here)
allows to identify the MSM propagator P̂ as a (Galerkin)
projection of P onto the space spanned by the indicator
functions 1Ak

; for a comprehensive treatment see Theorem 5.5
in Ref. 1.

In our non-stationary case, we have

P̂i j
(26)
=

⟨P1B j
,1Ai

⟩µ0

⟨1Ai
,1Ai

⟩µ0

(13)
=

⟨1B j
,D−1

µ1
PTDµ01Ai

⟩µ1

⟨1Ai
,1Ai

⟩µ0

. (28)

This shows that a non-stationary MSM is in fact a
projection of the transition matrix onto the basis func-
tions 1Ak

, k = 1, . . . ,n, with respect to the test func-
tions 1Bk

, k = 1, . . . ,n. Thus, the set of test and basis
functions do not coincide, and (26) describes a generalized
Galerkin projection, a so-called Petrov–Galerkin projec-
tion.

Remark 4 (Coarse-graining without coherent sets). The
literature on Markov state models, and, more generally,
the literature on kinetic lumping schemes offer several
techniques for finding a coarse-grained transition matrix
analogous to P̂ above, cf. Refs. 24–26. These techniques
are not built on the theory of coherent sets, and whether
and how they can be applied to the kind of non-
equilibrium systems discussed herein is still unknown and
seems hardly possible. However, they will be useful to
further coarse-grain our matrix P̂ if the set decomposition
underlying P̂ has been chosen too fine and a coarser version is
desired. Yet a different approach27 does not coarse grain
the dynamics in its state space, but in the space of its
cycles.

Remark 5 (Coarse-grained master equation). Since the
original process is given by the time-continuous master
equation (3), it would be desirable to have a coarse-grained,
MSM master equation

˙̂µ(t) = L̂(t)T µ̂(t), t ∈ [t0, t1]. (29)

Naively, L̂(t) could be found by setting up P̂ = P̂(t, t ′)
for all times t, t ′ ∈ [t0, t1], and differentiating P̂(t, t ′) with
respect to t ′ at t ′ = t to obtain L̂(t). By (26), we
see that P̂(t, t ′) depends on t ′ through P, 1A, and 1B.
Now, 1A = 1A(t, t ′), 1B = 1B(t, t ′) are indicator vectors for
every t ′, thus they cannot be changing continuously in t ′,
unless they are constant in time. Thus, their derivative
with respect to t ′ does not exist in general (note that
this problem is just as severe in a continuous state
space as in a discrete one). To go around this problem
one can relax the requirement for crisp coherent sets,
and crisp indicator vectors, and approximate the coherent
sets by so-called fuzzy membership or affiliation vectors,
which take values between 0 and 1, instead of only 0
or 1. A theoretical framework for coherence of fuzzy
macrostates is given in Appendix C. We leave to elaborate
on the derivation of the master equation (29) to future
work.
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VI. EXAMPLES

A. Shifting potential

As our first example, we consider a one-dimensional
double-well potential shifting to the right as time passes,

V1(t, x) = ((x − t)2 − 1)2. (30)

We choose the time window [t0, t1] = [0,3], and restrict
ourselves to the state space X = [−2,5]. Figure 1 depicts
the potential V1 at initial and final times.

We consider the diffusion process (1) with ε = 0.3. Note
that the temporal change rate of the potential is chosen to
approximately match the time scale of the (slow) dynamics,
such that we can encounter coherent sets, and that we are
truly situated between the two asymptotic regimes described
in Section III.

As a rule of thumb, this will be the case whenever the
metastable time scale τ of any of the snapshot systems (if
we would freeze the movement of the potential, and run the
process in this stationary situation) match with the time scale
of the (relative) change of V in time, say, ∥ 1

V
d
dt

V ∥ = O(τ−1)
for every t ∈ [t0, t1], where ∥ · ∥ is some norm for functions
on X .

To proceed, we discretize the continuous state space [−2,5]
into N = 256 uniform subintervals, i.e., S = {1, . . . ,256}.
The fineness of the discretization is chosen such that
further refinement essentially does not alter the results
on the level of accuracy we consider. The discrete
generators L(t) ∈ RN×N are obtained by discretizating13–15

the continuous Fokker–Planck equation (5). This yields the
propagator P = P(0,3) by solving

d
dt

P(s, t) = L(t)P(s, t), P(s, s) = I, (31)

on the chosen time interval, hence obtaining the evolution
operator which solves (4). The computation has been done
in Matlab with a standard solver. We take the uniform
distribution µ0 = N−11 as the initial distribution, and compute
the final distribution µ1 = PT µ0. Both are shown in Figure 2.

Note that the distribution at final time is concentrated
in the wells at that time, but their peaks’ positions do not

FIG. 1. Potential V1 at initial time t0= 0 (solid line), and at final time t1= 3
(dashed line). The potential shifts with constant speed to the right.

FIG. 2. Distributions µ0 at initial time t0= 0 (solid line), and µ1 at final
time t1= 3 (dashed line).

coincide with the well minima; they are a bit more to the
left. This is explained by the movement of the potential
wells: they move with comparable speed to the dynamical
motion of trajectories, hence the distribution has to “catch
up” with their motion. Also, although the wells are equally
deep, µ1 gives more weight to the right well. This is due to the
initial configuration: the potential barrier at initial time was
at position x = 0, hence there was more “mass” right to the
barrier (recall the non-symmetry of the state space [−2,5] with
respect to 0, and, especially, that µ0 is chosen as a uniform
distribution, and not as a Boltzmann–Gibbs measure). After
starting the process each potential well “collects” the part of
the distribution which started on its side of the barrier, and
this is then slowly equilibrated by diffusion. This is reflected
by µ1.

Next, we compute a non-stationary MSM based on
coherent sets, as described in the theoretical part of this paper.
Recall that in Section IV D we identify coherent sets that are
slightly perturbed versions of perfectly coherent sets. We use
(Lipschitz) continuity of the eigenvalues and corresponding
eigenspaces of the forward-backward transition matrix C
in the perturbation parameter ϵ . The noise level ε from the
examples we show here can be identified with the perturbation
parameter ϵ ; however, note that the concept is not restricted
to cases where ϵ has a direct relation to a process parameter.
All we assume is that the transition matrix P of the perturbed
process is such that there is some transition matrix P0, in some
sense close to P, which admits perfectly coherent sets. The P0
does not have to be unique, or let alone have any physical
meaning or connection to our system. Bearing this in mind, it
can nevertheless support the understanding to consider a case
where a physical connection is present. Thus, we discuss this
briefly.

If ε = 0, the stochastic process (1) reduces to a
deterministic gradient flow, and the saddle of the potential
at x = 0 divides28 the state space into two perfectly coherent
sets A1 = [−2,0] and A2 = S \ A1 = (0,5] (at time t = 0). They
can be identified from the two-dimensional eigenspace of C
at the eigenvalue λ = 1 (which has multiplicity 2). Recall
that then the corresponding eigenvectors u1,u2 (we take an
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arbitrary basis of the two-dimensional eigenspace) are exact
linear combinations of the indicator vectors 1A1,1A2, i.e., there
are constant scalars c1,1,c2,1,c1,2,c2,2 such that u1 = c1,11A1
+ c2,11A2 and u2 = c1,21A1 + c2,21A2 (due to discretization of
the continuous process, these crisp identities may only hold
up to a negligible error). Hence, the components of both u1
and u2 take only two values, respectively, which can easily be
determined and used to identify 1A1 and 1A2.

Now, the solution of the problem relies on the assumption
that the perturbation is sufficiently small, such that we can
carry out the identification of the coherent sets as just
described, now approximately. To this end we consider the
eigenspectrum (computed by the Matlab routine eigs, which
uses a Lánczos-type algorithm) of the forward-backward
transition matrix C = PD−1

µ1
PTDµ0; the first few eigenvalues

are given by

λ1 = 1.000, λ2 = 0.871, λ3 = 3.24 · 10−6.

Viewing this as perturbation of the perfectly invariant case, the
theory in Section IV D tells us to expect as many eigenvalues
close or equal to one, as many coherent sets we have; in this
case two. We note the large spectral gap after the second
dominant eigenvalue, thus we expect to find two coherent
pairs A1,B1 and A2,B2 (which are “close” to the pairs from
the unperturbed case), where A2 = S \ A1 and B2 = S \ B1.
Recalling the perturbation argument (24), we expect the
two dominant eigenvectors of C, namely, u1 and u2, to be
approximate linear combinations of 1A1 and 1A2. That is,
there are scalars c1,1,c1,2,c2,1,c2,2 such that

u1 ≈ c1,11A1 + c2,11A2, u2 ≈ c1,21A1 + c2,21A2. (32)

This should provide 1A1,1A2. However, (32) is merely
an approximate identity, hence we can identify 1A1,1A2
also only approximately. Since λ1 = 1, we have u1 = 1,
hence c1,1 = c2,1 = 1. Thus, we get by inverting (32) that

IA1 B −
c2,2

c1,2 − c2,2
u1 +

1
c1,2 − c2,2

u2,

IA2 B −
c1,2

c2,2 − c1,2
u1 +

1
c2,2 − c1,2

u2,

(33)

so that

IA1 ≈ 1A1, IA2 ≈ 1A2. (34)

Given we know the form of u2 from (32) we can infer that
its components form two groups of values, one concentrated
around c1,2 and the other concentrated around c2,2. Hence,
any element of the particular group should be a good approx-
imation to the corresponding ci, j, and for simplicity we set c1,2
=maxi∈S u2, i and c2,2 = mini∈S u2, i. Now that we have c1,2,c2,2,
Equation (33) gives us IA1, IA2, approximations to 1A1 and 1A2,
respectively.

Further, D−1
µ1

PTDµ0uk, k = 1,2, should be approximate
linear combinations of 1B1 and 1B2. Now, since u1 = 1, it
is sufficient to consider u2. Figure 3 (left) shows u2 and its
push-forward, D−1

µ1
PTDµ0u2.

Both the eigenvector u2 and its push-forward are
approximate step functions. In fact, the smaller the diffusivity
constant ε is, the closer these objects get to being step
functions. This suggests to take A1 ≈ [−2,0], A2 ≈ (0,5],
and B1 ≈ [−2,2], B2 ≈ (2,5]. Comparing these sets with
the position of the potential barrier at initial and final
times, the initial separation is aligned with the barrier
at x = 0 for t0 = 0, but one might have expected B1
and B2 to be separated by x = 3 (as the metastable sets
of V (t1) are also separated by this point, cf. Figure 3,
right). The reason, just as in Figure 2, lies in the non-
negligible shift speed of the potential: due to this, it is
more likely to find the system in the left half of the
respective potential well than in the right half. If we
would slow down the potential shift, say, it would shift
the same amount, but uniformly on the time interval,
e.g., [t0, t1] = [0,30], the boundary of the coherent sets would
align with the positions of the potential barrier at the respective
times.

Instead of relying on our visual identification of coherent
sets, we approximate the 1Ai

and 1Bi
, i = 1,2, by IAi

from (33) and their push-forwards IBi
B D−1

µ1
PTDµ0IAi

. A
more sophisticated way of extracting the sets of interest from
spectral analysis, especially for more than two sets, can be
found, e.g., in Ref. 24. The focus of this work is however

FIG. 3. Left: Second eigenvector u2 of C , showing coherent sets at initial time (solid line), and D−1
µ1
PTDµ0u2, showing coherent sets at final time (dashed line).

The thin horizontal line indicates the value zero. Right: second eigenvector of L(t1), showing metastable sets of the time-independent dynamics corresponding
to V (t1). Note that these do not coincide with the coherent sets at final time.
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FIG. 4. Left: Potential V2 at times t = 0,1,5,10, shown by solid, dotted, dashed-dotted, and dashed lines, respectively. The middle and the right wells merge (the
barrier between them vanishes), while the barrier separating the left well from the others rises. Right: initial (solid) and final (dashed) distributions, µ0 and µ1,
respectively.

conceptual, thus we will use this simplified construction of
the indicators.

Finally, the MSM transition matrix P̂ is computed by (26),
by substituting IAi

, IBi
from (33) instead of 1Ai

,1Bi
, which

yields

P̂ = *
,

0.9683 0.0150
0.0295 0.9599

+
-
.

Considering P̂ tells us that A1, the left well, is more coherent
than the right well, and there is more probability flowing from
the right well to the left. This can readily be seen from the
distribution of probability in the coherent sets at initial and
final times, since µ0(A1)

µ0(A2) ≈
2
5 , and µ1(B1)

µ1(B2) ≈
1
2 .

Note that P̂ is only approximately stochastic. This is due
to the fact that (i) our approximate indicators IA1, IA2, IB1, and
IB2 as obtained from (33) both at initial and final time do not
form a partition of unity, and (ii) the system is not closed, and
trajectories are lost at the state space boundaries.

B. Merging potential wells

In the equilibrium case one can (vaguely) identify one
potential well with one metastable set. Our next example
shows that in the time-variant case this intuition does not have
to hold even in the simplest examples.

Let us consider the time-dependent potential

V2(t, x) = 5
(
(x + 1)

(
x − t

2τ

) (
x − 1 +

t
2τ

))2
(35)

on the time interval [t0, t1] = [0, τ] for τ = 10, and state
space [−2,2]. It is depicted in Figure 4 (left) at different
times.

To repeat the analysis from our previous example, we
proceed identically, also by choosing the same parameters ε
= 0.3, N = 256. Again, the initial distribution is chosen to
be uniform. Figure 4 (right) shows the initial and final
distributions.

What is going to be a coherent pair now? Clearly, the left
well stays coherent. However, is the middle well at initial time
with the right well at final time coherent? Or is it the right
well at initial time and the right one at final time?

Since our analysis is analogous to that in the previous
example, we will not repeat it step-by-step, but show directly
the second eigenvector of the forward-backward transition
matrix C in Figure 5, which has dominant spectrum,

λ1 = 1.0000, λ2 = 0.9614, λ3 = 1.3138 · 10−6.

The eigenvalues tell us that there are only two coherent
pairs. The second eigenvector shows which sets form these
coherent pairs. The first coherent pair is not a surprise: A1
≈ B1 ≈ [−2,−0.5]. Regarding the other pair(s), neither of our
guesses from above was right. The other coherent pair has
to involve both the middle and right wells at initial time,
i.e., A2 ≈ B2 ≈ (−0.5,2]. Neither the middle nor the right well
at initial time can alone be coherent. This is in line with the
forward-backward characterization: the initial set of a coherent
pair has to be metastable under the forward-backward process.
Now, the forward process starting in the two rightmost wells
at initial time ends up in the large right well at final time,
then starting a backward process from there will lead with
essentially equal probabilities to one of the two rightmost
wells at initial time. Hence, their union has to form the
coherent set A2.

FIG. 5. Second eigenvector u2 of C , showing coherent sets at initial time
(solid line), and D−1

µ1
PTDµ0u2, showing coherent sets at final time (dashed

line). The thin horizontal line indicates the value zero.
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VII. CONCLUSION

We have shown that the theory of coherent sets allows
us to extend the concept of metastability and that of Markov
state models (MSMs) from stationary reversible processes
to those which are non-stationary (and, hence, in general
also non-reversible). If the process under consideration is
stationary and reversible, our construction reduces to the
standard identification of metastability and spectral theory
based MSM analysis (Remark 2). The presented examples
show that the intuition and tools taken from the stationary case
can fail to understand and describe the essential dynamical
properties for non-stationary processes (Figure 3), whereas
our approach is capable of doing so.

We consider this work as a possible conceptual foundation
for building MSMs of non-stationary processes. In order
to achieve this goal, there are more features that have to
be incorporated, which make MSMs a practicable tool. For
instance, is there an “optimal” choice for the time scale τ,
which yields the “best” MSMs? Are there conditions on the
non-stationary forcing (e.g., periodicity in time), which allow
for inferring the desired information about the system for
arbitrary times, just by setting up one MSM for one single
time τ? Also, equilibrium MSMs are often built with respect
to metastable sets which do not build a full partition of
state space (so-called “core set MSMs”), and this shall be
carried over to the non-stationary case as well. There are also
behaviors not present in stationary reversible systems, which
one would possibly like to capture in MSMs for non-stationary
systems, such as cyclicity. Considering the minimal (discrete
time) example

P =
*...
,

0 1 0
0 0 1
1 0 0

+///
-

,

every state turns out to be perfectly coherent for every time
interval, but an analysis based on finite time coherent sets
does not explicitly indicate that a cycle of period 3 is present
(unless we are lucky enough to consider the system on a time
interval of length 3). Last, it has to be investigated whether for
a forced system of physical interest the concept of coherent
sets can still remain useful to define metastability and build
MSMs. These issues will be addressed elsewhere.
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APPENDIX A: FUNCTIONAL CHARACTERIZATION
OF FINITE-TIME COHERENT PAIRS

In this appendix we derive Equation (15).
Note that both D−1

µ1
PTDµ0 and P

• are positive operators (an operator Q is positive,
if Qv ≥ 0 for every v ≥ 0, and here and in the following

the inequality is meant componentwise; positivity
directly implies monotony: if v ≤ w, then Qv ≤ Qw
follows) and

• leave 1 invariant, i.e.,

D−1
µ1

PTDµ01 = 1 and P1 = 1, (A1)

where the former equation follows from µ1 = PT µ0,
which can be rewritten as (Dµ11) = PT(Dµ01), and the
latter one follows from P being a stochastic transition
matrix.

Additionally, we have ⟨1A,1A⟩µ0
= µ0(A), and ⟨1B,1B⟩µ1

= µ1(B). Recall (7∗), (8∗), and (11), yielding the forward-
backward condition

⟨1A,1A⟩µ0
≈ ⟨1B,PTDµ01A⟩ ≈ ⟨1B,1B⟩µ1

. (A2)

With A,B a coherent pair, the forward-backward condi-
tion (A2) gives with (13) that

⟨1B,D−1
µ1

PTDµ01A⟩µ1
≈ ⟨1B,1B⟩µ1

. (A3)

Monotony of D−1
µ1

PTDµ0 with 1A ≤ 1, and the invariance of 1
imply that D−1

µ1
PTDµ01A ≤ D−1

µ1
PTDµ01 = 1, thus, together

with (A3) we get that (D−1
µ1

PTDµ01A)i ≈ 1 for i ∈ B. This is
merely a condition for the subset of components i ∈ B. It
remains to show that (D−1

µ1
PTDµ01A)i ≈ 0 for i ∈ S \ B. This

we can achieve by estimating the “total probability” that ends
up in S \ B. We have that

⟨1,D−1
µ1

PTDµ01A⟩µ1
≈ ⟨1B,1B⟩µ1

. (A4)

In fact,

⟨1,D−1
µ1

PTDµ01A⟩µ1
= ⟨P1,Dµ01A⟩ = ⟨1,Dµ01A⟩
= ⟨1A,1A⟩µ0

≈ ⟨1B,1B⟩µ1
, (A5)

where the first equality follows by changing from a weighted
scalar product to a nonweighted one, and the second from
the invariance of 1 under P. Now, with (D−1

µ1
PTDµ01A)i ≈ 1

for i ∈ B, and with 1 = 1B + 1S\B, we have for the left-hand
side of (A4) that

⟨1,D−1
µ1

PTDµ01A⟩µ1
= ⟨1B,D−1

µ1
PTDµ01A⟩µ1

+ ⟨1S\B,D−1
µ1

PTDµ01A⟩µ1
(A6)

≈ ⟨1B,1B⟩µ1

+ ⟨1S\B,D−1
µ1

PTDµ01A⟩µ1
. (A7)

Together with (A4) we obtain ⟨1S\B,D−1
µ1

PTDµ01A⟩µ1
≈ 0,

and with D−1
µ1

PTDµ01A ≥ 0, that (D−1
µ1

PTDµ01A)i ≈ 0 for i
∈ S \ B. In summary, we have shown (15).

APPENDIX B: TEMPORAL MONOTONY
OF COHERENCE

We would like to show that if A,B constitute a coherent
pair on [t0, t1], then for all t ∈ (t0, t1) there is an E ⊂ S, such
that A,E are a coherent pair on [t0, t], with coherence not
smaller than that of A,B. To get an idea for the problem, we
start with a specific case.

Lemma 1. If A,B constitute a perfectly coherent pair
on [t0, t1], i.e., µ0(A) = µ1(B), and

P[ yt1 ∈ B | yt0 ∈ A] = 1 = P[ yt0 ∈ A | yt1 ∈ B], (B1)
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then for all t ∈ (t0, t1) there is an E ⊂ S, such that A,E are a
perfectly coherent pair on [t0, t].

Proof. Fix t ∈ (t0, t1), and let µt denote the distribution
of the process at time t. To start, note that the following two
statements are equivalent:

(a) There is no set E ⊂ S satisfying µt(E) = µ0(A) with

P[ yt ∈ E | yt0 ∈ A] = 1 = P[ yt0 ∈ A | yt ∈ E]. (B2)

(b) There is an i ∈ S such that

P[ yt = i | yt0 ∈ A] > 0 and P[ yt = i | yt0 < A] > 0.
(B3)

To see this, note that if (b) is true, then i < E has to hold,
because P[ yt = i | yt0 < A] > 0. However, also i < S \ E has
to hold, because P[ yt = i | yt0 ∈ A] > 0, hence (a) follows. If
(b) is false, then for every i ∈ S either P[ yt = i | yt0 ∈ A] = 0
or P[ yt = i | yt0 < A] = 0. Thus,

E = {i ∈ S | P[ yt = i | yt0 < A] = 0} (B4)

would be a set perfectly coherent with A, because P[ yt
∈ S \ E | y0 ∈ A] = 0 follows from P[ yt = i | yt0 ∈ A] = 0 for
every i < E. We have by perfect coherence also µt(E) = µ0(A),
falsifying (a).

To show the claim of the lemma, we assume that (a)
holds, and show that this leads to a contradiction. Let i ∈ S be
the state from (b). Then we have two cases to consider for the
conditional probability P[ yt1 ∈ B | yt = i]:
(1) If P[ yt1 ∈ B | yt = i] > 0, then

P[ yt1 ∈ B | yt0 < A] ≥ P[ yt1 ∈ B | yt = i]
· P[ yt = i | yt0 < A] > 0, (B5)

contradicting the perfect coherence of the pair A,B.
(2) If P[ yt1 ∈ B | yt = i] = 0, then

P[ yt1 < B | yt0 ∈ A] ≥ P[ yt1 < B | yt = i]
· P[ yt = i | yt0 ∈ A] > 0, (B6)

contradicting the perfect coherence of the pair A,B. �

For the general claim, where the coherent pair is not
perfectly coherent, we need a quantifier for coherence. Let us
assume from now on that µ0(A) = µ1(B), then we have

P[ yt1 ∈ B | yt0 ∈ A] = P[ yt1 ∈ B, yt0 ∈ A]
µ0(A)

=
P[ yt1 ∈ B, yt0 ∈ A]

µ1(B)
= P[ yt0 ∈ A | yt1 ∈ B]. (B7)

Thus, both the “forward” probability (we will also call it the
forward rate) from (7) and the “backward” probability from (8)
identically quantify coherence: this quantity is between 0
and 1, and it is equal to 1 if and only if we have perfect
coherence.

We are going to show that the forward rate is
monotonically decreasing in time, i.e., that for every
time t ∈ (t0, t1) there is a set E, with µt(E) = µ0(A), such
that the forward rate from A to E is at least the forward rate

from A to B. We shall do this in a constructive manner: if
we want to find the set E at time t which is most coherent
with A, we have to collect those states i ∈ S for which it is
the most likely that the process being in i at time t came
from A. To this end we will look at the ratios ai

ηi
, where ai

denotes the probability that the process is in i at time t, given
it started in A at time t0, i.e., ai = P[ yt = i | yt0 ∈ A], and ηi
is the probability that the process is in i at time t (i.e., η is
the distribution of yt, i.e., ηi = P[ yt = i]). We will construct E
by adding those states i ∈ S to it for which ai

ηi
is largest,

until µt(E) = µ0(A). More precisely, let i1, i2, . . . , iN ∈ S be
an ordering of the states (i.e., iα , iβ if α , β) such that

ai1

ηi1
≥

ai2

ηi2
≥ · · · ≥

aiN

ηiN
, (B8)

and let E = {i1, i2, . . . , ik∗} be a set, where k∗ is chosen such
that29

k∗
k=1

ηik = µ0(A), (B9)

then we can show the following.

Theorem 1. Let µ0(A) = µ1(B), and t ∈ (t0, t1). Then,
assuming the existence of a k∗ such that (B9) holds, the
set E ⊂ S defined above is such that µt(E) = µ0(A), and

P[ yt1 ∈ B | yt0 ∈ A] ≤ P[ yt ∈ E | yt0 ∈ A]. (B10)

Proof. Note that by conservation of total probability we
have

P[ yt1 ∈ B | yt0 ∈ A] =

j ∈S
P[ yt1 ∈ B | yt = j]                                  

=b j

· P[ yt = j | yt0 ∈ A]                                  
=a j

. (B11)

Additionally to a j = P[ yt = j | yt0 ∈ A], η j = P[ yt = j] = µt, j,
already defined, we define bj = P[ yt1 ∈ B | yt = j] as in (B11).
We see that

j ∈S
η jbj =


j ∈S
P[ yt = j] · P[ yt1 ∈ B | yt = j]

= P[ yt1 ∈ B] = µ1(B) = µ0(A). (B12)

Our objective is to prove that E ⊂ S, defined above (B9), with
j ∈E

η j = µ0(A) =

j ∈S

η jbj, (B13)

satisfies


j ∈S a jbj ≤


j ∈E a j, which is equivalent to (B10).
To this end, note first that if E satisfies (B13), then

j ∈E
η j(1 − bj) =


j ∈E

η j −

j ∈E

η jbj

(B13)
=

j ∈S

η jbj −

j ∈E

η jbj =

j<E

η jbj . (B14)

This equation can be read as the probability that the
process starts in E at time t and goes to S \ B (left-hand
side) is being equal to the probability that the process starts
in S \ E at time t and goes to B (right-hand side). The idea of
the proof is now to use E, and show that the probability that
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comes from A, through E, going to S \ B is greater than the
probability coming from A, through S \ E, going to B. This
will imply that A is more coherent with E than with B.

Elementary manipulation yields for an arbitrary E ⊂ S,
j ∈S

a jbj =

j ∈E

a jbj +

j<E

a jbj (B15)

=

j ∈E

a j −

j ∈E

a j(1 − bj)                      
=pout

+

j<E

a jbj      
=pin

, (B16)

where we can see that pout = P[ yt1 < B, yt ∈ E | yt0 ∈ A],
and pin = P[ yt1 ∈ B, yt < E | yt0 ∈ A]. Now, invoking (B8)
and (B9), and the set E = {i1, i2, . . . , ik∗}, we can guarantee
that there is some c > 0 such that

a j

η j
≥ c for j ∈ E and

a j

η j
≤ c for j < E, (B17)

with µt(E) = µ0(A). Thus, we have in (B16),

pin =

j<E

a j

η j
η jbj ≤ c


j<E

η jbj
(B14)
= c


j ∈E

η j(1 − bj)

≤

j ∈E

a j

η j
η j(1 − bj) = pout. (B18)

This means that pin ≤ pout, thus, substituting into (B16) gives

P[ yt1 ∈ B | yt0 ∈ A] =

j ∈S

a jbj ≤

j ∈E

a j

= P[ yt ∈ E | yt0 ∈ A]. (B19)

This was to show. �

Remark 6 (The knapsack problem). The construction of
the set E is strongly related to the solution of the knapsack
problem from mathematical optimization,

maximize

j ∈E

a j w.r.t. E ⊂ S, subject to


j ∈E

η j =

j ∈S

η jbj = const.
(B20)

Viewing the a j as rewards and the η j as costs, the optimization
problem is to maximize the reward by choosing items j
from S, given the allowed total cost of these items is given
by a constant


j ∈S η jbj. It can be shown that assuming the

existence of k∗ in (B9) basically guarantees that the greedy
strategy (i.e., choose the items with the highest reward-to-
cost ratio a j/η j first) for solving (B20) is optimal. Then,
Theorem 1 states that the optimal value of this problem is
greater or equal


j ∈S a jbj, cf. (B19).

APPENDIX C: FORMULATION IN TERMS
OF FUZZY MACROSTATES

So far, the affiliation of the respective states to a set A
has been indicated by the vector 1A, such that 1A, j ∈ {0,1}.
Now, let f A ∈ [0,1]N be an affiliation vector, f A, j ∈ [0,1]
indicating to which extent j ∈ S belongs to a macrostate A.
Note that thus A in general ceases to have the interpretation of
a crisp set, although it can be thought of probabilistically: any

state j ∈ S belongs to the macrostate A with probability f A, j,
so that

P[ yt0 ∈ A] =

j ∈S

µ0, j f A, j = ⟨1, f A⟩µ0
, (C1)

where we vaguely abuse the notation yt0 ∈ A, meaning that yt0
contributes to the macrostate A.

Let thus µ0,A B ⟨1, f A⟩µ0
denote the total probability in

macrostate A. Let us analogously define a macrostate B at final
time, fB, such that µ1,B = ⟨1, fB⟩µ1

= µ0,A. Hence, the two
macrostates carry the same probability. In analogy with (13),
the joint probability of being in macrostate A at initial time
and in macrostate B at final time can be expressed by

P[ yt0 ∈ A, yt1 ∈ B] =

i, j ∈S

µ0, i f A, iPi j fB, j = ⟨P fB, Dµ0 f A⟩

= ⟨ fB, D−1
µ1

PTDµ0 f A⟩µ1
. (C2)

We are ready to state the monotony result for coherence of
fuzzy macrostates.

Theorem 2. Let A,B be fuzzy macrostates defined by
the affiliation vectors f A, fB, such that µ0,A = µ1,B. Then,
for any fixed t ∈ (t0, t1), the vector fE B Pt,1 fB, where Pt,1
is the propagator from t to t1, is an affiliation vector,
and thus defines a macrostate E. Further, this macrostate
satisfies µt,E = µ0,A, and

P[ yt1 ∈ B | yt0 ∈ A] = P[ yt ∈ E | yt0 ∈ A]. (C3)

Proof. We start by showing that fE is an affiliation vector
(i.e., fE, i ∈ [0,1] for all i ∈ S) with ⟨1, fE⟩µt

= µ0,A = µ1,B.
To this end, we have, componentwise, Pt,1 fB ≥ 0,

because fB ≥ 0 and Pt,1 is a stochastic matrix. Further,

(Pt,1 fB)i =

j ∈S

(Pt,1)i j fB, j ≤ max
i∈S

| fB, i |

j ∈S

(Pt,1)i j            
=1

≤ 1. (C4)

Last, we have

⟨1, fE⟩µt
= ⟨1,Pt,1 fB⟩µt

= ⟨µt,Pt,1 fB⟩ = ⟨PT
t,1µt
=µ1

, fB⟩

= ⟨1, fB⟩µ1
= µ1,B = µ0,A. (C5)

In summary, fE defines a macrostate with µt,E = µ0,A.
Note that by the Markov property, we have P = P0, tPt,1,

where P0, t is the propagator from t0 to t, and we have
by elementary manipulations, and re-weighting of the scalar
products,

P[ yt0 ∈ A, yt1 ∈ B] = ⟨ fB, D−1
µ1

PTDµ0 f A⟩µ1

= ⟨ fB, D−1
µ1

PT
t,1PT

0, tDµ0 f A⟩µ1

= ⟨ fB, PT
t,1PT

0, tDµ0 f A⟩
= ⟨Pt,1 fB, D−1

µt
PT

0, tDµ0 f A⟩µt

= ⟨ fE, D−1
µt

PT
0, tDµ0 f A⟩µt

= P[ yt0 ∈ A, yt ∈ E]. (C6)

Thus, dividing by µ0,A, (C3) follows. �

Theorem 2 shows that, as time progresses, the level
of maximal coherence can only decrease. In fact, we have
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demonstrated that there certainly exists a macrostate E at any
intermediate time t, which has the same level of coherence
as A and B.
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