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Abstract
The multi-period multinomial Probit model (MMPM) is seen as a

flexible tool to explain individual choices among several alternatives
over time. There are two versions of this model: a) for each individual
the covariates for all alternatives are known and b) for each individual
only the parameters of the alternative which was chosen is known. The
main difficulty with the MMPM was the calculation of the probabil-
ity for the individual sequence of chosen alternatives, which requires
the computation of the integral over a high dimensional multivariate
Normal density. This remedy was removed by the Smooth Recursive
Conditional (SRC) simulator. Several simulation studies have investi-
gated the stability of the MMPM estimates with special emphasis to
the number of replications of the SRC routine. In contrast to these
studies, which use the case of alternative specific covariates, we use
the case of the individual specific covariates.

We conclude that the MMPM with individual specific covariates
is only weakly identified, generalizing Keane’s (1992) result for the
one period case. As a consequence the maximization of the simu-
lated likelihood often converges to a singular covariance structure so
that the SRC-routine stops iterating. This feature cannot be avoided
by increasing the number of replications in the SRC-routine. The
percentage of these failures rapidly increases with the number of al-
ternatives.
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1 Introduction

In panel surveys on individual behaviour one is interested to explain how
covariates explain the individual choice among a set of alternatives. The set
of alternatives may be given by preference for a political party, the choice of
living arrangements, the brand choice of consumers or the choice of traffic
mode. We have two types of covariates: alternative specific covariates and
individual specific covariates. For example, we may know the fairs and the
duration for a trip to work for different traffic means. Here we have one
coefficient for the whole set of variables for all alternatives, for example one
coefficient for trip duration.

Individual specific covariates like income induce for each alternative a spe-
cific coefficient, for example the impact of income for the preference of party
A, party B or party C. Unless a survey is especially designed for a certain
purpose, like a panel on travel behaviour, the covariates for the alternatives
which are not chosen remain unknown. For example, we know only the travel
duration of the means chosen. Therefore we can only estimate the impact of
travel duration by a special coefficient for car, bike or public transport. In
panel surveys with general scope we will have almost always only individual
specific covariates.

In the statistical analysis both cases are treated quite similar: the co-
variates enter a linear model for utility which is augmented by a stochastic
component and the alternative with the maximum utility is chosen, see for
example Manski/McFadden (1981), Börsch-Supan (1987), McFadden (1976).
If we choose the multivariate Normal distribution for the stochastic com-
ponent, we obtain the multiperiod multinominal Probit model (MMPM).
Although this model class is very flexible it has not been used in empiri-
cal work because the likelihood involves multiple integrals over the normal
distribution. This is a purely numerical problem, for which an efficient sim-
ulation based routine has been developed, the Geweke- Hajivassiliou-Keane
(GHK) or the Smooth-Recursive-Conditioning (SRC) simulator, see Hajivas-
siliou/McFadden (1990), Börsch-Supan/Hajivassiliou (1993), Börsch-Supan
(1994) or Keane (1994). If we maximize the SRC simulator approximation
of the likelihood instead of the true likelihood we end up with the Simu-
lated Maximum Likelihood Method (SMLM). Thus numerical feasibility is
achieved now. Asymptotic results on the number of replications of the SRC
are given by Hajivassiliou et al. (1996). Most examples deal with the case
of two alternatives observed over some panel waves, the panel Probit model,
see for example Keane (1994), Lee (1995, 1997), Inkmann (2000). Only very
few authors used the model in the multi-alternative case, see for example
Geweke et al. (1997), Kaltenborn (1997).
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The starting point of this paper is the distinction between models with in-
dividual covariates and models with alternative specific covariates. Ziegler/Ey-
mann (2001) use only models that are entirely based on alternative specific
covariates. On the other hand, there is a result by Keane (1992), which seems
not been widely known. Keane states that the estimation of the one period
multinominal Probit model with only individual covariates and sufficient re-
strictions for formal identification is extremely unstable unless further model
restrictions were made.

In this paper we will investigate this problem in a panel context. We
use restrictions on the inter-temporal covariances of the random utility term
that have an easy interpretation as conditional independence. Furthermore
we restrict the parameters to be time-homogeneous. However, we did not
impose additional restrictions on the contemporaneous covariance parameters
between the altenatives. The question arises whether these restriction are
sufficient to stabilize the likelihood maximization. Our analysis bases on a
series of simulation experiments. The parameters of the simulation design
were derived from empirical data on political party preference in the German
socio-economic panel (GSOEP), see Kaltenborn (1997). With these empirical
data there occurred severe numerical problems in the maximization of the
simulated likelihood.

The article is organized as follows: section 2 sketches the MMPM and its
likelihood. The formal identification restrictions and the conditional inde-
pendence restrictions follow in section 2. The SRC simulator for the approx-
imation of likelihood is displayed in section 4. In section 5 we introduce our
simulation design. The results of the simulation runs are displayed in section
6. Section 7 concludes.

2 The multiperiod multinominal Probit model

Each individual n out of a sample of N persons has the opportunity at time
t to make a choice i out of I alternatives. Let ui,n,t be the utility of choice i
of individual n at time t. The standard linear utility model is:

uint = X
′
ntβi + Z

′
intγ + εint i = 1, ..., I; n = 1, ..., N ; t = 1, ..., T(1)

Here Xnt is the (K × 1) vector of the individual specific covariates while
Zint is the (L × 1) vector of the alternative specific covariates. βi is the
(K × 1) parameter vector for the explanation of the deterministic effect of
Xnt on utility for alternative i. γ is the (L × 1) parameter vector for the
alternative specific covariates.

3



The εint are the stochastic utility components. We may stack the εint for
each n and t to an (I × 1) vector εnt, which may be stacked again for each
n into a (IT × 1) vector εn. It is assumed that the εn are independent and
identical distributed following a I×T multivariate Normal distribution with
mean 0 and covariance matrix Σ. We put our emphasis on models with only
the term X

′
ntβi, which is also called a discrete choice model.

The utility uint in (1) cannot be observed. For each individual n we
observe a sequence of selected alternatives sn = (in1, ..., inT ) from period 1 to
period T. This selection sequence may be also characterized by the decision
indicator variables:

Dint =

{
1 if i = int

0 if i 6= int

Utility maximization implies that for each person n and period t the alter-
native with the maximum utility uint is chosen. This gives:

P(Dint = 1) = P(uint > ujnt ∀j 6= i)(2)

= P(X ′
ntβi + εint > X ′

ntβj + εjnt ∀j 6= i)

= P(X ′
ntβi −X ′

ntβj > εjnt − εint ∀j 6= i)

In order to ease the notation we use the shorthand w
(i)
jnt = X ′

ntβi −X ′
ntβj

and η
(i)
jnt = εjnt − εint. By

η
(i)
nt =

(
η

(i)
1nt, . . . , [η

(i)
int], . . . , η

(i)
Int

)′

w
(i)
nt =

(
w

(i)
1nt . . . , [w

(i)
int], . . . , w

(i)
Int

)′

we denote the vectors of the corresponding elements where the element in
brackets is omitted.

Thus in the one period case we have:

P(Dint = 1) = P
(
η

(i)
jnt < w

(i)
jnt ∀j 6= i

)
(3)

= F
η
(i)
nt

(
w

(i)
nt

)

where F
η
(i)
nt

is the cumulative distribution function of η
(i)
nt .

Thus the computation of P (Dint = 1) involves the evaluation of a (I − 1)

dimensional integral over the density function of w
(i)
nt . For the computation
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of the likelihood function we need the probability for the whole sequence sn

of selected alternatives:

Pn,sn = P(Din1,n,1 = 1, Din2,n,2 = 1, . . . , DinT ,n,T = 1)

= P(uint,n,t > ujnt ∀t,∀j 6= int)

= P(X ′
ntβint −X ′

ntβj > εjnt − εint,n,t ∀t, ∀j 6= int)(4)

For the T × (I − 1) vector

ηn =
(
{η(in1)

n1 }′, . . . , {η(inT )
nT }′

)′

with the corresponding cumulative function Fηn we have:

Pn,sn = Fηn(w
(in1)
n1 , . . . ,w

(inT )
nT )(5)

Therefore the loglikelihood l is given by:

l =
N∑

n=1

ln Fηn

(
w

(in1)
n1 , . . . ,w

(inT )
nT

)
(6)

3 Identification of parameters

The MMPM is formulated by the slope vectors βi (i = 1, . . . , I) and by
the T × I elements of the covariance matrix Σ. We have to distinguish
restrictions to reach a formal identification of the model (see Bunch 1991)
and restrictions which imply a certain interpretation of the model parameters.
It is an inherent feature of the utility maximization model that:

1. only contemporaneous differences of the utilities are relevant

2. only the sign of these differences are relevant.

A standard identification rule with respect to 1) is to use a reference
choice, say alternative I as the zero of the utility scale. For that reason we
have βI = 0 and Cov(εJnt, εint) = 0 and V ar(εInt) = 1 for all i 6= I and all
n and t, see for example Keane (1992). The observation of only the sign of
the utility differences is resolved by one free positive scale parameter, which
can be fixed to achieve formal identification. Thus the most general formally
identified MMPM has 1/2[(I − 1)T ][(I − 1)T +1]− 1 free parameters for the
covariance matrix Σ of the εint.

As Keane (1992) demonstrated for the one period case with T = 1 and
I = 3 there is a remarkable tradeoff between the estimation of the slope
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parameters and the covariance parameters if there are no further restric-
tions of Σ. This instability resulted in severe numerical problems during the
likelihood maximization1:

• the Hessian was not invertable

• the algorithm did stop after the first iteration at different starting
points that were obtained by restricting one covariance parameter at a
fixed value

• there were very high covariances for the estimates obtained.

Usually one has only unspecific ideas about the contemporaneous covari-
ances Cov(εint, εjnt) hence one would like to leave this part of the MMPM,
apart from formal identification, unrestricted. However, in the multi-period
case one can define restrictions with respect for intertemporal covariances
and/or with respect to time homogenity. Hence one may hope to overcome
the numerical instability of the MMPM estimates by using some adequate set
of the above restrictions without imposing restriction on the contemporane-
ous covariances where no intuitive ideas exist in general. Kaltenberg (1997)
used a conditional independence model:

εins ⊥ εjnt | εint j 6= i, s 6= t(7)

Conditional independence means that εjnt is influenced by εins only by the
contemporaneous value εint of εins. For example, in the context of political
party preference, where Kaltenberg (1997) introduced his model, conditional
independence means: the impact of unexplained preference for party i at
time s on preference for party j at time t is transmitted through the contem-
poraneous preference for party i at time t. In the context of political party
preference this is a reasonable model.

Under the Normal distribution the conditional independence reduces to:

Cov(εins, εjnt | εint) = 0 j 6= i, s 6= t(8)

The above condition is equivalent under Normality with:

Cov(εins, εjnt) =
Cov(εint, εjnt) Cov(εins, εint)

V ar(εint)
(9)

see Tong (1990).

1For the integration Keane did not use the simulation approach described below but
numerical integration.
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We introduce the following shorthand notation: σ
(t)
ij = Cov(εint, εjnt) for

the contemporaneous covariances at time t and σ
(i)
st = Cov(εins, εint) for the

intertemporal covariances for alternative i. With this shorthand (9) reads as:

Cov(εins, εjnt) =
σ

(t)
ij σ

(i)
st

σ
(t)
ii

(10)

In the case of temporal homogenity, i.e. σ
(t)
ij = σij, and uniformity of

intertemporal stability across alternatives (10) reduces to:

Cov(εins, εjnt) = σijρst(11)

where ρst is the intertemporal correlation between the alternatives.
This model is different from the model that Ziegler/Eymann (2001) use

for their simulation study. They use a decomposition of εint into a constant in-
dividual preference for alternative i, αin, and a time dependent term νint that
follows an autoregressive first order process. It is apparent that the additive
time-independent component αin does not fit the multiplicative conditional
independence scheme of equation (10). However, if the time-independent
component is skipped and for the remaining term an autoregressive model is
used, the Ziegler/Eymann model fits well into the conditional independence
approach and we obtain:

ρ
(i)
st = ρ

|s−t|
i

where ρi is the serial correlation for alternative (i = 1, ..., I).
The model restrictions have to fulfill the identification restrictions. In gen-

eral this may be a cumbersome work. However, in the conditional indepen-
dence model of equation (11) we may simply restrict σiI = 0 (i = 1, ..., I−1)
and use σII = 1. For scale identification we have to restrict one further ele-
ment of the diagonal.

4 The SRC simulator

Even for a small number of alternatives, for example I = 4, and a reasonable
choice of panel waves, for example T = 3, one has to compute a (4−1)×3 =
9 dimensional integral over the multivariate Normal distribution, which is
infeasible by numerical integration. For this reason Monte-Carlo integration
methods have been developed. These methods approximate the value of

Q =
∫

g(x)φ(x)dx
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where φ(x) is the joint density of a multivariate Normal density and g(x) is
an indicator of the multivariate integration interval. In the present case φ
is the joint density of ηn = (ε1n1 − εin1n1, . . . , εInT − εinT nT ) and g(x) is the
indicator function of A = (−∞, X ′

n1(βin1 −β1)]× . . .× (−∞, X ′
nT (βinT

−βI)]
The simplest method to simulate the value Q is to draw random vectors x
according to the density φ and to count the relative frequency of random
vectors falling into A. This is the so-called Frequency simulator, see Ler-
man/Manski (1981). The Frequency simulator has two drawbacks: a) it is
inefficient for the computation of small probabilities and b) it is not smooth
in the parameters β1, ..., βI .

The Smooth Recursive Conditioning (SRC) simulator prevents these draw-
backs: it is an Importance simulator, that generate its random vectors in such
a manner that many of them fall into region A, see Ripley (1987), Hajivas-
siliou et al. (1992,1996) or Stern (1992) for Importance simulators. And
the SRC simulator is smooth in the parameters of the MMPM. Hence, the
simulated integrals may be used instead of the exact integral in the Max-
imum Likelihood estimation of the MMPM. This generates the Simulated
Maximum Likelihood Method (SMLM).

The SRC simulator is also called GHK simulator, named after Geweke,
Hajivassiliou and Keane who independently developed this simulator, see
Geweke (1991), Hajivassiliou/Mc Fadden (1990) and Keane (1990). A com-
parison of the SRC simulator with other simulators can be found in Hajivas-
siliou et al. (1992,1996), Börsch-Supan (1994) Börsch-Supan/Hajivassiliou
(1993) and Kaltenborn (1997). One feature of the attractiveness of the SRC
simulator is its ability to approximate the corresponding probabilities even
with a small number of replications R. As a role of thumb R may be taken
proportional to the number of dimensions of the multivariate normal distri-
bution, see Börsch-Supan (1994).

The construction of the SRC simulator bases entirely on the Cholesky
decomposition of the covariance matrix Ω = Ω(sn) of η = ηn. For the
simulation of the probability P (a ≤ η ≤ b) the SRC routine proceeds as
follows. Let υ ∼ N(0, I). If µ is the expected value of η and if Γ, with
ΓΓ′ = Ω, is the Cholesky decomposition of the variance of η, we have:

η − µ = Γυ ∼ N(0,ΓΓ′)

Then the event a ≤ η ≤ b is equivalent to:

a∗ ≤ Γυ ≤ b∗ with a− µ = a∗, b− µ = b∗
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=̂




a∗1
a∗2
...

a∗J



≤




γ
11 0 · · · 0

γ
21

γ
22 · · · 0

...
...

...
γ

J1
γ

J2 · · · γ
JJ







υ1

υ2
...

υJ



≤




b∗1
b∗2
...
b∗J




(12)

where J = (I − 1)T is the dimension of η. If we solve the i−th row of the
above equation system for υi we get for i > 1:

ci ≤ υi ≤ di with ci =
a∗i −

∑i−1
j=1

γ
ijυj

γ
ii

and

di =
b∗i −

∑i−1
j=1

γ
ijυj

γ
ii

For i > 1 the interval boundaries depend on the υ-values of the preceding
rows. For i = 1 we have c1 = a∗1/γ11 and d1 = b∗1/γ11. The joint probability
Q is obtained by the following factorization:

Q = P (c1 ≤ υ1 ≤ d1)(13)

×P (c2 ≤ υ2 ≤ d2 | c1 ≤ υ1 ≤ d1)

× ...

×P (cJ ≤ υJ ≤ dJ | c1 ≤ υ1 ≤ d1, . . . , cJ−1 ≤ υJ−1 ≤ dJ−1)

= Υ1Υ2(υ1) · · ·ΥJ(υ1, . . . , υJ−1)

with

Υi(υ1, . . . , υi−1) = Φ

(
b∗i −

∑i−1
j=1

γ
ijυj

γ
ii

)
− Φ

(
a∗i −

∑i−1
j=1

γ
ijυj

γ
ii

)
, i > 1

Υ1 = Φ

(
b1

γ
11

)
− Φ

(
a1

γ
11

)

and Φ for the cumulative of the standard Normal distribution.
If we denote the truncated Normal distribution with bounds a < b by

N(µ, σ2, a, b), the SRC simulator with R replications is given by:

Ξsrc =
1

R

R∑

r=1

I∏

i=1

Υi(ξ1r · · · ξi−1,r) =
1

R

R∑

r=1

I∏

i=1

(Φ(dir)− Φ(cir))
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where ξjr ∈ N(0, 1, cjr, djr) with:

cir =
a∗i −

∑i−1
j=1

γ
ijξjr

γ
ii

and dir =
b∗i −

∑i−1
j=1

γ
ijξjr

γ
ii

For each r the ξir have to be generated recursively from the preceding
ξjr for the alternatives with j < i. Although Ξsrc is unbiased for Pn,sn ,
the simulated loglikelihood where Pn,sn is replaced by Ξsrc, is not unbiased
because of the nonlinear logarithm transformation.

The parameters of the MMPM enter not only the boundaries of the trun-
cated Normal distribution but also the Cholesky decomposition. During the
maximization of the simulated likelihood all trial values for new parameters
have to deliver a positive definite Ω-matrix for all persons, otherwise the
Cholesky decomposition cannot be performed and in consequence the simu-
lated likelihood cannot be computed. In the Appendix we list the numerical
problems we encountered and our strategies to overcome them.

5 The design of the simulation experiments

The motivation of these simulation experiments arose from an empirical anal-
ysis of political party preferences with data from the German socio-economic
panel (GSOEP), see Kaltenborn (1997). We encountered severe numerical
problems even with such a restrictive model for the intertemporal correla-
tion like ρt,s = ρ|t−s|, i.e. a simple serial correlation without differences with
respect to alternatives. However, the contemporaneous covariances σij were
not restricted. We used only two metric covariates (age and income) for a
model with 4 alternatives and two panel waves with about N = 4000 individ-
uals. Despite R = 500 replications the obtained solution for the ML estimate
for the Σ-matrix was quasi degenerate. Neither different starting values nor
different sets of random numbers did remove the problem. It was not possi-
ble to find a global maximum within the range of non-degenerate covariance
matrices, with the consequence that the SRC routine was not able to cal-
culate the likelihood function. The only exceptions were models where we
restricted the ρ-parameter. For ρ = 0 and ρ = 0.5 the SRC-routine reached
convergence. However, for ρ = 0.85 the same numerical problem occurred
again. In order to check also the algorithmic accuracy of our SRC-simulation
module we did run the following simulation experiments2.

2The results of the simulation runs indicated no apparent programming error for the
cases with no convergence problems as appropriate estimates were obtained. Due to the
bias of the SRC-routine one cannot expect that the true values are met in the mean.
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Simulation studies have been presented so far only for the multiperiod
Probit model with only two alternatives, see for example Keane (1994), Lee
(1995,1997), Hyslop (1999) and Inkmann (2000). The multiperiod multino-
mial model was investigated so far only for the case of models with alternative
specific covariates, see Ziegler/Eymann (2001).

The emphasis of our simulation design is the stability of the SRC-simulator,
i.e. whether the routine converges at all. Furthermore, the extra variance
induced by the random character of the simulated likelihood and the extra
bias with respect to the ML solution are of interest3. As the ML solution is
infeasible in this case we have to use a non-standard simulation design.

Let θ represent the parameter vector of the MMPM that is used for
the simulation of the data. For each set of simulated data there exists an
infeasible ML estimate θ̂ML. In order to approximate θ̂ML the SRC-routine
is used which bases itself on a random sample. The estimation result θ̂SRC

will be in general different from θ̂ML and depends on the random likelihood.
If we use different θ̂SRC estimates for the same data and calculate their

variance, this is a reasonable estimate of the additional variance σ2
SRC due to

the randomness of the SRC routine. On the other hand, if we keep the SRC
random numbers fixed and vary the data, the corresponding variance σ2

Data

reflects the statistical precision of θ̂ML.
In order to estimate the bias due to the SRC-routine we cannot compare

θ̂SRC with θ̂ML. However, if we use for each SRC-random sample also a new
data set, the mean of the θ̂ML will be near4 θ. Therefore θ̂SRC − θ may be
taken as an approximation for the simulation bias.

The covariates different from the constant were taken as multivariate
normal. In order to mimic the empirical data from Kaltenberg (1997) we used
high correlations (ρ = 0.85) between these variables and also with respect to
time. The variances we normed to 1. The choice of the MMPM parameters
was taken similar to those obtained in the empirical example of Kaltenborn
(1997). However, the values were modified somehow to keep them distant
from a singularity of the covariance matrix.

6 The results of the simulation experiments

Table 1 displays the results for the variance terms σData and σSRC . There were
I = 3 alternatives and T = 2 waves. The covariates contained the constant

3In non-linear models like the MMPM the ML estimate is in general not unbiased for
a fixed number of observations.

4If the number of observations is reasonably high the asymptotic unbiasedness of the
ML estimates applies.
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and one Normal distributed metric variable. The slope coefficients for the
metric variable were taken as β21 = 0.198 and β22 = −3.785. Thus negative
values of this variable strongly favor the choice of the second alternative.
The covariance between the unobserved utilities for alternative 1 and 2 was
taken as σ12 = −0.7. As all variances were taken to be 1 the covariances
represent correlations5. The temporal stability of the unobserved utilities
was set quite high (ρ = 0.85). This may be seen as typical for individual
habits, like political party preference.

The row ”Fail” reports the percentage of simulations, which end up in
a degenerate covariance matrix6. Due to time restrictions the number of
simulation runs, reported in row ”Sim”, was only moderate. If the number
of observations N is large for this simple model, like N = 2000, degenerate
cases did not occur. However, for a lower sample size, N=500, degenerate
solutions occur in a reasonable number of cases. Interestingly the number
of these cases increases with the number of replications R, a fact that will
be discussed later. It happened that once an estimation failed for a new
data set then almost all other SRC-estimates failed for the same data set.
This behaviour suggests that the poor convergence behavior is due to the
underlying data set and does not depend on the randomness of the SRC-
simulator.

The additional variance σSRC that is due to the simulation of the likeli-
hood is substantial in the case of a low number of replications as R = 10.
Therefore the asymptotic covariance expression derived from the Hessian will
grossly under-estimate the variability of the SRC-estimates. If we increase R
or N the additional variance decreases in a 1/R or 1/N fashion, as expected
from asymptotic results, see Lee (1995).

The bias of the simulated ML estimation is displayed in table 2. For
R = 10 and N = 500 the bias amounts 10 to 25 percent of the true value.
If R is increased to 100, the bias decreases substantially. However, if we
increase instead the number of the observations from N = 500 to N = 2000
the bias remains almost constant. σ2

total gives the total variance with respect
to the two sources: data generation and likelihood simulation. It is roughly
identical with σ2

Data+σ2
SRC . In this experiment for each simulation run a new

data set and a new set of random numbers for the SRC-routine is generated.

5The necessary identification restrictions request only two of these variances to be set
to a fixed value. So there remains one free variance parameter, that could be estimated.
However, in order to reduce the numerical problems with the positivity restrictions this
parameter was regarded as known.

6However, the results of these simulation runs were taken into account for the compu-
tation of the variance terms. In the cases the value of the last iteration before singularity
was reached was used.
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Table 1: The additional variance of the SRC-routine. Number of alternatives
I = 3, Number of covariates K = 2, Number of waves T = 2

R 10 100 10
N 500 500 2000
Sims 150 50 100
Fail 10% 18% 0%

θ σdata σSRC σdata σSRC σdata σSRC

beta11 -0.637 0.128 0.066 0.110 0.029 0.057 0.035
beta12 0.103 0.105 0.037 0.115 0.017 0.048 0.020
beta21 0.198 0.151 0.050 0.107 0.021 0.054 0.028
beta22 -3.785 0.221 0.096 0.275 0.036 0.139 0.046
rho 0.850 0.039 0.022 0.039 0.005 0.019 0.011
sig21 -0.700 0.210 0.162 0.221 0.073 0.146 0.093

Hence the simulation runs are independent from each other and the standard
deviation of the mean is computed by dividing σtotal by

√
100 = 10. The last

row of Table 2 gives the p-value of a test whether the bias is different from
zero. This hypothesis is to be rejected for a moderate replication size as
R = 10. Only for R = 100 the significance of the bias disappears for three
out of six parameters. Also in Table 2 the number of fails increases with R
and decreases with N .

In the next tables we increase the number of alternatives and covariates.
In Table 3 we display the simulation results for I = 4 alternatives and K =
3 covariates. Due to the increased complexity of the model we used an
increased number of observations, N = 2000. However, as the calculations
for one simulation run are very time consuming the number of simulations
runs was only 40 for R = 10 and 13 for R = 100. For this large sample size
there occurred no degenerated cases, like in the previous Tables 1 and 2 for
N = 2000. Also the size of the bias remained approximately at the same
level.

For I = 5 alternatives and K = 4 covariates there appeared massive
numerical problems. In order to obtain at least some convergent cases all
correlations terms in the Σ-matrix of the underlying model were set to zero.
Still 3 out of 10 simulation runs ended with a degenerate covariance matrix.
The average bias seems to be of the same magnitude as in the preceding
simulation experiments.

The basic result of Keane (1992) for the one period multinomial Probit
model was the trade–off between the slope parameters and the covariance
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Table 2: The bias of the SRC-routine. Number of alternatives I = 3, Number
of covariates K = 2, Number of waves T = 2

R 10 100
N 500 500
Sims 100 100
Fail 8% 26%

θ mean σtotal ‖bias‖ p-val mean σtotal ‖bias‖ p-val
beta11 -0.637 -0.548 0.140 0.089 0.000 -0.606 0.152 0.031 0.046
beta12 0.103 0.130 0.124 0.027 0.031 0.119 0.120 0.017 0.168
beta21 0.198 0.145 0.144 0.052 0.000 0.161 0.142 0.036 0.012
beta22 -3.785 -3.669 0.309 0.117 0.000 -3.804 0.277 0.018 0.511
rho 0.850 0.786 0.042 0.064 0.000 0.845 0.038 0.005 0.216
sig21 -0.700 -0.527 0.297 0.173 0.000 -0.619 0.323 0.081 0.013

R 10
N 2000
Sims 100
Fail 0%

θ mean σtotal ‖bias‖ p-val
beta11 -0.637 -0.539 0.084 0.098 0.000
beta12 0.103 0.146 0.059 0.043 0.000
beta21 0.198 0.146 0.072 0.051 0.000
beta22 -3.785 -3.615 0.141 0.171 0.000
rho 0.850 0.788 0.021 0.062 0.000
sig21 -0.700 -0.502 0.156 0.198 0.000
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Table 3: The bias of the SRC-routine. Number of alternatives I = 4, Number
of covariates K = 3, Number of waves T = 2

R 10 100
N 2000 2000
Sims 40 13
Fail 0% 0%

θ mean σtotal ‖bias‖ p-val mean σtotal ‖bias‖ p-val
beta11 -0.637 -0.485 0.142 0.152 0.000 -0.564 0.159 0.073 0.124
beta12 0.103 0.249 0.117 0.146 0.000 0.165 0.095 0.062 0.035
beta13 0.048 0.156 0.123 0.109 0.000 0.102 0.114 0.055 0.108
beta21 0.198 0.022 0.155 0.176 0.000 0.131 0.185 0.067 0.214
beta22 -3.785 -3.440 0.239 0.345 0.000 -3.684 0.200 0.102 0.090
beta23 0.084 -0.145 0.241 0.229 0.000 0.064 0.224 0.020 0.758
beta31 -0.878 -0.799 0.175 0.079 0.007 -0.859 0.191 0.019 0.721
beta32 0.363 0.080 0.243 0.283 0.000 0.264 0.111 0.099 0.007
beta33 -3.732 -3.436 0.267 0.296 0.000 -3.725 0.291 0.007 0.929
rho 0.700 0.612 0.033 0.088 0.000 0.687 0.024 0.013 0.076
sig21 -0.500 -0.088 0.190 0.412 0.000 -0.301 0.168 0.199 0.001
sig31 0.200 0.199 0.157 0.001 0.959 0.189 0.229 0.011 0.871
sig32 0.100 0.339 0.174 0.239 0.000 0.143 0.129 0.043 0.256
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Table 4: The bias of the SRC-routine. Number of alternatives I = 5, Number
of covariates K = 3, Number of waves T = 2

R 100
N 2000
Sims 10
Fail 30%

θ mean σtotal ‖bias‖ p-val
beta11 -0.637 -0.662 0.171 0.025 0.656
beta12 0.103 0.126 0.094 0.024 0.440
beta13 0.048 0.039 0.124 0.008 0.834
beta14 -1.594 -1.374 0.233 0.220 0.014
beta21 0.198 0.246 0.210 0.049 0.478
beta22 -3.785 -3.808 0.240 0.023 0.771
beta23 0.084 0.054 0.177 0.030 0.601
beta24 0.481 0.432 0.185 0.050 0.415
beta31 -0.878 -0.718 0.223 0.160 0.047
beta32 0.363 0.371 0.234 0.008 0.920
beta33 -3.732 -3.721 0.246 0.011 0.892
beta34 0.047 -0.003 0.174 0.049 0.391
rho 0.000 -0.001 0.065 0.001 0.969
sig21 0.000 -0.074 0.205 0.074 0.278
sig31 0.000 -0.067 0.357 0.067 0.565
sig32 0.000 0.003 0.151 0.003 0.943
sig41 0.000 0.366 0.441 0.366 0.025
sig42 0.000 0.031 0.165 0.031 0.569
sig43 0.000 -0.029 0.180 0.029 0.617
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parameters that resulted in extremely unstable ML estimates of the model.
However, Keane did not use the SRC-routine but numerical integration for
the evaluation of the integrals over the bivariate Normal distribution. In the
two-period model of our analysis we used a restrictive model for the con-
temporaneous and the intertemporal covariance terms. This stabilizes the
model estimates to some degree. However, there still remains some trade-off
between the covariate estimates: if we restrict the serial correlation between
the unobserved utilities to zero this is compensated by high contemporaneous
correlations between all alternatives, see Kaltenborn (1997) for an empirical
example with data for political party preferences. This means that the like-
lihood function is flat along these trade-off parameter values. The MMPM
itself does not assure that the covariance matrix of the random utilities is
non-degenerate per se. However, the positive definiteness of the covariance
matrix is a necessary prerequisite of the SRC-routine to evaluate the likeli-
hood.

The SRC-routine uses a random approximation of the likelihood func-
tion. The lower R the more imprecise is the approximation of the likelihood
function. As the approximation depends on random numbers the system-
atic dependencies of the parameters will be obscured. The higher we take R
the smaller will be the random approximation error and the more apparent
become the systematic parameter dependencies. For this reason one should
expect that the percentage of degenerate cases increases with R, what is
confirmed by the simulation experiments.

If we increase the number of alternatives to I = 5 or I = 6 the degenerate
cases of the SRC-routine become a severe problem. The bias displayed in
Table 4 is not larger than for smaller values of I. However, the variance –
especially for parameter σ41 in Table 4 – becomes larger. So there will be
cases where the estimated correlation between ε1nt and ε4nt is near 1. The
resulting Σ-matrix is degenerate in this case.

7 Conclusions

The identification of the MMPM yields quite different results for models
with alternative specific covariates and models with individual specific co-
variates. In the one period case Ziegler/Eymann (2001) state for the alter-
native specific case a high stability of the SRC-routine and a low bias even
for moderate values of N (=1000, 2000) and R (=10,50). For the individual
specific model Keane (1994) reported that the unrestricted covariance model
is ”quasi unidentified”.

More panel waves offer the possibility to stabilize the estimation of the
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MMPM with individual specific covariates by setting restrictions with re-
spect to the intertemporal covariances and with respect to homogenity of
the contemporaneous covariances across periods. We used a model derived
from conditional independence which stabilizes the estimation of the MMPM
to some extent. For high sample sizes like N = 2000 we encountered no nu-
merical problems for models with only two periods and I ≤ 4 alternatives.
However, we observed substantial biases of the SRC-routine for small values
of R = 10 which are reduced by increasing R to 100. This finding is differ-
ent from the results of Ziegler/Eymann for the alternative specific MMPM
with I = 3, 4. Even for small values of N = 250, 500 and R = 10, 50 there
occurred no convergence problems and only small biases.

In contrast to the alternative specific case, there appeared numerical prob-
lems for smaller sample size like N = 500. In about 10 to 20 percent of the
cases the SRC-routine converged to a degenerate covariance structure that
stops the SRC-routine. There is a relationship between R and the percent-
age where the SRC-routine fails: for a given set of data the percentage of
fails increases with R. This indicates that the convergence to a degenerate
solution is a matter of insufficient model identification and not a matter of
lacking accuracy of the simulated likelihood. This finding is also supported
by the fact that a different random number choice for the SRC-routine for
the same data does not remove the converge problems. Thus the problem of
insufficient model identification cannot be solved by using high values for R.

If we increase the number of alternatives to I = 5, 6 the convergence
problems become the main pattern even for large sample sizes like N = 2000.
This happens also for data that come from a data generating process with
no serial and no contemporaneous dependencies in the random utilities. the
fact that an increase of the number of alternatives and/or the number of
panel waves reduces the numerical stability of the MMPM is also reported
for the case of alternative specific covariates, see Ziegler/Eymann (2001).
However, for models with only individual specific covariates the instability is
considerably more pronounced.

The source of the insufficient model identification are trade-offs between
the contemporaneous covariances and the parameters for the serial corre-
lation of the random utilities. Similar trade–offs were also obtained for the
MMPM with only alternative specific covariates, see Ziegler/Eymann (2001).
Even in those cases, where we have a data set without convergence problems
in the likelihood maximization, there are two caveats for the obtained es-
timates. First,for small R the extra-variance due to the randomization of
the likelihood function may be substantial in relationship to the standard
asymptotic variance expressions. If we ignore this additional variance term
we will over-estimate the precision of our estimates. However, this effect may
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be reduced. by increasing the number of replications R.
A more serious problem is the potential bias for the slope parameters of

the covariates. This problem is closely linked to the identification problem.
In order to stabilize the estimates of the MMPM we have to restrict some pa-
rameters of the covariance matrix. It is an unpleasant feature of the MMPM
that these restrictions effect also the estimation of the slope parameters. This
was the result of Keane’s (1994) analysis of the one period model. If we re-
strict the serial correlation parameters in a multiperiod model to different
fixed values, we obtain quite different results for the slope parameters for
political party preference, see Kaltenborn (1997). However, also in the case
of models with alternative specific covariates Ziegler/Eymann (2001) report
in their conclusions serious biases of the slope parameters if the covariance
structure is mis-specified.

Thus we conclude that the MMPM with individual specific covariates is
only weakly identified even in the presence of restrictive assumptions on the
intertemporal error structure. Additionally, there appear numerical prob-
lems that force the SRC-routine to stop the likelihood maximization. These
problems cannot be solved by increasing the number of replications in the
SRC-routine.

Appendix

There are a number of numerical problems that have to be solved to run the
SRC-routine which will be described in this appendix.

Random number generation

It is essential for the SRC-algorithm that the random numbers for the sim-
ulation of the Pn,sn are kept constant during the likelihood maximization.
Otherwise the simulated likelihood would not be smooth in the parameters.
This can be achieved by starting the random number generator for each
evaluation with the same seed value.

Due to the recursive nature of the SRC-algorithm it is necessary to use
a random number generator with a long period and no systematic struc-
tures even in high dimensional spaces, see Ripley (1987, Chapter 3). For
our simulation experiments we used the random number generator7 of Mat-
sumoto/Nishimura (1998) with an extreme long period.

7Code and information available at http://www.math.keio.ac.jp/matsumoto/emt.html
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Computation of the likelihood derivatives

The analytical computation of the simulated likelihood is tedious as the
model parameters enter the Cholesky decomposition. However, the ana-
lytical computation of the gradient is still feasible, see Kaltenborn (1997). If
the gradient is computed numerically – in order to check the algebraic cor-
rectness of the analytical solution – we have to face the fact that due to the
recursive scheme the numerical accuracy of the numerical gradient is only 5
to 7 digits. This is not enough to compute the second derivative numerically.
So one should either use the analytical gradient and compute numerically the
second derivative matrix from the analytical gradient or one should compute
the Hessian matrix from the outer product of the gradient.

Choice of the maximization strategy

Because of the poor identification of the model parameters there are combina-
tions of parameters with a flat profile of the corresponding likelihood values.
Besides there are positivity and full rank constrains for the resulting covari-
ance matrix. For such profiles the Newton-Raphson algorithm often fails to
find the maximum. An alternative is to use a stepwise search technique along
the gradient by the BFGS algorithm or the Fletcher-Reeves algorithm, see
Press et al. (1992). These strategies avoid the computation of the second
derivative and are therefore rather fast. They are known to be quite robust
against the above maximization problems. Even more robust and stable but
slower are Downhill-Simplex methods that do not use the gradient, see Press
et al. (1992). In our simulation experiments we used a combination that
switches between the Fletcher–Reeves and the Downhill–Simplex algorithm.

During the maximization we have to cope with situations where the
Cholesky decomposition does not exist for the present parameter. Note that
the MMPM does not exclude such parameters and the gradient may also be
different from zero. In these situations we did step somewhat back along
the gradient and used the conjugate gradient to reach a parameter region
somewhat distant from the degenerate solutions. This procedure is repeated
if the new parameter is also degenerate. After three unsuccessful trials the
routine stops and returns the last valid parameter value. We made the ex-
perience that this routine is helpful to restart the optimization process but
after a few iterations almost all experiments returned to a final degenerate
solution. This indicates that the degenerate solution is not a matter of a
poor optimization routine.
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