

An Architecture and Execution Environment for
Component Integration Rules

*

Ying Jin, Susan D. Urban, and Suzanne W. Dietrich

Arizona State University

Department of Computer Science

Tempe, AZ 85287-5406, USA

{yingjin | s.urban | dietrich}@asu.edu

Abstract

The Integration Rules (IRules) project at Arizona State University

(http://www.eas.asu.edu/~irules) is developing a declarative event-based approach to

component integration. Integration rules are based on the concept of active database rules,

providing an active approach for specifying event-driven activity in a distributed

environment. The IRules project consists of a knowledge model that specifies the IRules

Definition Language and an execution model that supports integration rule execution.

This research focuses on the execution model and the architectural design parts of the

IRules project. The main objective of this research is to develop a distributed execution

environment for using integration rules in the integration of black-box components. In

particular, this research will investigate the design of an architecture that supports the

IRules semantic framework, the development of an execution model for rule and

transaction processing, and the design of a rule processing algorithm for coordinating the

execution of integration rules. This research will combine the distributed computing

framework of Jini, the asynchronous event notification mechanism of the Java Message

Service (JMS), and the distributed blocking access functionality of JavaSpaces to support

active rule processing in a distributed environment. The limitations of the underlying

Enterprise JavaBeans (EJB) component model pose transaction processing challenges for

the integration process. This research will develop a suitable transaction model and

processing logic to overcome the limitations of the underlying EJB component model.

Furthermore, the architectural design will allow an easy extension of the system to

accommodate other component models. This research is expected to contribute to nested

rule and transaction processing for active rules that have not been previously addressed in

distributed rule processing environments. The development of the IRules execution

environment will also contribute to the use of distributed rule-based techniques for event-

driven component integration.

1 Introduction

The development of advanced distributed applications often requires the

interconnection of many different data and software services. These services can

be found among distributed sources within one company, as well as between

companies for enterprise applications such as electronic commerce. To facilitate

the integration process, software component technology is often used as a means
for distributed sources to advertise services that can be accessed from remote

locations. A software component is a unit of software composition with specified

interfaces and explicit context dependencies [Szyperski96]. Components

*
 This research was supported by NSF Grant No. IIS-9978217

providing services typically publish their well-defined interfaces to allow access

to relevant operations. Inherently, most components for commercial usage are

black-box components that do not allow outside modification.

Standards organization and research groups have proposed component models to

support distributed software integration. Examples include the Common Object

Request Broker Architecture (CORBA) component model [OMG98], COM+

[Microsoft00], and Enterprise JavaBeans (EJB) [EJB01] component model of the

J2EE development framework. Although the existing standards facilitate the

integration process, their use still require an integrator’s low-level knowledge of

programming and transaction processing, where traditional integration solutions

are hard-coded such as the work in [Xia98]. Hard-coded solutions can cause

costly changes when applications evolve or when venders modify component

interfaces. This difficulty with hard-coded integration solutions motivates the

need for better approaches to build a more supportive environment to ease

component integration.

The Integration Rules (IRules) project at Arizona State University is developing a

declarative event-based approach to component integration. Integration rules are

based on the concept of active database rules, providing an active approach for

specifying event-driven activity in a distributed environment. An active rule

typically consists of three parts: an event, a condition, and an action [Paton99]. An

event causes a rule to be triggered. The condition is a query over a database that is

checked when the rule is triggered. If the condition evaluation returns true, the

action can be executed to modify data, retrieve data, or perform application

procedures.

There are two major aspects to the development and use of integration rules

within the IRules project. The first aspect involves the development of the

semantic and language framework for the use of integration rules in the

specification of event-based application. The second aspect involves the

development of an execution environment for integration rules. In the context of

the IRules project, this research is focused on the second aspect. In particular, the

main objective of this research is to develop a distributed architecture and rule

processor for using integration rules in the integration of black-box components.

2 Research Questions

This research is specifically working on component integration with well-defined

interfaces based on the EJB component model. The integration of black-box

components introduces several challenges to the development of a rule and

transaction processing framework for integration rules. First of all, black-box

components can’t be modified and they are not aware of their participation in the

integration framework. As a result, black-box components alone do not provide

the necessary behavior for participating in more global rule and transaction

processing activities. Furthermore, the EJB component model has its own notion

of transactional behavior, which is beyond the control of external environments

such as IRules. Therefore, suitable transaction control logic needs to be designed

at the global level to overcome the restrictions of the underlying EJB component

model. Active rules can also trigger other active rules, thus forming a nested

structure. Since the nesting of rules and their transaction control in a distributed

environment may span across different locations, distributed rule processing is

more difficult than that of centralized active rule environments. Other distributed

projects have been limited to the flat form of transaction control. In contrast, this

research will investigate designs to support nested active rule processing in a

distributed environment. Given the challenges outlined above, the development of

the integration rule processor for the IRules environment will involve 1) designing

the architectural components to support the IRules execution framework, 2)

designing the execution model including coupling models for integration rules,

and 3) developing the rule processing algorithms for coordinating the execution of

integration rules with distributed events and transactions.

3 Related Work

This section reviews different fields of work related to the proposed research.

• Active Database System
The IRules project is based on the concept of active database systems. Active

database systems extend traditional databases by supporting mechanisms to

automatically monitor and react to events that are taking place either inside or

outside of the database system itself [Paton99]. An active database includes a

knowledge model and an execution model. A common approach for knowledge

model is by using Event-Condition-Action (ECA) rules. The execution model of

an active rule determines how a set of rules behaves at runtime. The rule

execution model defines issues for the execution of rules such as coupling modes,

transition granularity, net-effect policy, scheduling, priorities, and error handling

[Paton99].

• Event-based Architecture for Component Integration

The event-based approach to component integration is a technique that uses event

notification for component interoperation. The Event-Based Integration (EBI)

framework [Barrett96] is a high-level reference model that outlines architectural

concepts for interconnection through events. The CORBA-based Event

Architecture (COBEA) [Ma98] is another general event-driven architecture.

Although the event-based approach provides reactive functionality to integration,

it does not address how to specify events and how to respond to events

declaratively as in the active rule approach discussed in the next subsection.

• Distributed Active Systems
Most of the existing integration projects using ECA rules are based on the

CORBA specification. In [Chakravarthy98], ECA rules are used to solve

distributed communication for the components that describe interfaces in OMG

IDL. The specification, detection, and management of composite events are the

focus. The C
2
offein project [Koschel98a] is a CORBA-based distributed

information system. The underlying data sources, such as relational databases, are

wrapped to enable read access in CORBA environment. The FRAMBOISE

(FRAMework using oBject OrIented technology for Supplying active

mEchanisms) project [Fritschi98] is a construction system that provides services

for definition and execution of active database mechanisms on top of a passive

DBMS in heterogeneous, distributed environments. In [Cilia01], active rules are

used to glue existing applications in a distributed environment by using the

publish/subscribe mechanism of X
2
TS [Liebig00] that is based on CORBA

Notification Service.

Most of the above distributed rule projects have all been based on the use of the

CORBA standard. The proposed research is different from these projects in

several ways. First of all, the IRules project is based on the EJB component model

that provides a more enterprise-level approach to integration rather than the use of

basic CORBA objects. Second of all, this research is using Jini connection

technology [Edwards99] as the primary mean for distributed object computing.

Since no existing research project has addressed a rule processing solution based

on Jini, this research requires a new look at rule processing architectures and

algorithms developed around the use of Jini services.

4 Overview of The IRules Project

The IRules Definition Language (IRDL) provides the semantic base for

component integration within the IRules Project. The IRDL consists of four sub-

languages: the Component Definition Language (CDL) for defining IRules

components, the IRules Scripting Language (ISL) for describing application

transactions, the Event Definition Language (EDL) for defining events, and the

Integration Rule Language (IRL) for defining active rules.

The IRules project is based on the EJB component model, assuming the purchased

black-box components are EJBs. An investment application is used as the

motivating example, which consists of four different containers with purchased

software components: a Portfolio container, a Pending Order container, a Stock

container, and a User container. IRules adds a semantic layer, known as the IRules

wrapper, on top of purchased EJB components. IRules wrappers provide

additional functionality to black-box components, such as defining external

relationships, specifying extents, derived attributes, and stored attributes for each

component, as well as describing the events generated before and after method

calls of components. The specification of this functionality is expressed using the

CDL sub-language of IRDL together with the EDL sub-language for specifying

events. Wrappers are generated by the compilation of CDL.

IRL is the rule sub-language of IRDL. An example of IRL is presented in Figure

1, where an integration rule is expressed based on component definitions and

relationships in CDL. IRL is based on the traditional ECA rule format in active

database systems. But integration rules are different from active database rules in

that the condition is in an OQL-like query expressed over distributed components.

The action part can be presented either as a method or as an ISL transaction. ISL

is based on the JACL scripting language, providing integrators the functionality to

describe well-defined sequences of processing logic of an application transaction.

In this rule example, the event is signaled after creating a new instance of a

pendingOrder EJB. The condition part will check whether certain market
conditions are met, using component states and the externalized relationships. The

action part executes the sellStockOnNewPO application transaction to perform the
functionality of selling stocks.

create rule newStockSellPendingOrder
event
afterCreatePendingOrder(pnId,portfolioId,stockId,numOfShares,desiredPrice,action,actUpon,orderedBy)
condition immediate
 when action = "sell"
 define stockAndPendingOrder as
 select struct (stk: s, newPo: pn)
 from s in stocks, pn in pendingOrders
 where pn.id=pnId and pn.actUpon=s and desiredPrice<=s.price and pn.status="waiting"
action immediate
 from sp in stockAndPendingOrder
 do sellStockOnNewPO(stockId, sp.stk.price, portfolioId, numOfShares, sp.newPo)

Figure 1 An IRL Example

The IRules language framework for CDL and EDL are being developed by the
work of [Kambhampati01, Patil01] within the IRules group. The research

presented in this paper is developing an environment for executing IRL rules and

ISL application transactions over distributed EJB components within the context

of the IRules language framework.

5 Proposed Approach and Methodology

This section discusses the approach and methodology for the proposed research

objectives. The global objective of this research is to develop a generalized

processing environment for the execution of integration rules and application

transactions within the semantic framework of the IRules component integration

domain. To achieve this global objective, the following specific objectives will be

investigated: 1) Design a distributed architecture for the execution of IRL rules

and ISL transactions, 2) Develop an execution model for IRL, 3) Design and

implement execution algorithms for the execution of IRL in the distributed

environments, and 4) Evaluate the functionality of the IRules system.

5.1 A Distributed Architecture for the IRules Environment

The IRules research group has selected Jini Connection technology as the primary

distributed computing framework for the IRules environment. According to the

results of an initial IRules investigation of the major distributed computing

techniques by [Saxena00], Jini provides more flexibility than CORBA for custom

development of transaction control.

Figure 2 presents the proposed Jini architecture design with a high level

representation of the interfaces among the different components forming the

IRules environment. In the proposed environment, the object manager, the rule

manager, and the event handler will be modeled as Jini Services. This research

will combine the distributed computing framework of Jini, the asynchronous

event notification mechanism of JMS [JMS01], and the distributed blocking

access functionality of JavaSpaces together to support active rule processing in a

distributed environment. The research issues for architecture design involve:

• Metadata Management
The metadata stores the semantic descriptions of the supported environment

captured as an IRDL Schema, which is populated by the compilation of IRDL

[Kambhampati01, Patil01]. This aspect of the research involves the design of

the metadata interface based on the needs of the architectural components

involved in the execution of rules and transactions.

Figure 2 IRules Architecture

• Event Detector and Event Handler
Allocated among several architectural components, event detectors can signal

events through JMS to the event handler [Kambhampati01]. There are two

possible types of the interaction between the event handler and the rule

manger: push and pull. This aspect of the research is focused on designing the

interaction that must occur between the event handler and the rule manager.

• Rule Manager
The rule manager is responsible for processing rules upon the occurrence of

events and for the processing application transactions upon user requests from

the request server. The rule manager will contact the metadata, the transaction

manager, and the object manager at run time to process rules according the

IRules active rule processing algorithm.

• Transaction Manager
The transaction manager is responsible for transaction control during active

rule processing. The transaction manager must ensure that the processing of

application transactions and active rules within IRules is within the

appropriate transaction context.

• Object Manager
Research issues are involved with developing the abstraction capability of the

object manager and the interface of the object manager with the rest of the

system. The abstraction provided by the object manager allows application

transactions and rules to be described without details of remote invocation on

components. By isolating component access details from other architectural

components, the IRules system will more easily accommodate additional

component models in the future, such as COM+, where a separate object

manager can be constructed for access to different component models.

5.2 Execution Model for Integration Rules

The development of the execution model will focus on the design of coupling

modes, the semantics of rule processing with coupling modes, and the transaction

model for the support of rule execution.

• Coupling Modes
The coupling modes of active rules allow rule definers to specify how to

execute active rules at run time. This research will investigate four types of

coupling modes for integration rules: immediate synchronous, immediate

asynchronous, deferred, and decoupled.

The execution logic of the immediate synchronous mode and the deferred

mode is the same as that typically found in traditional active databases. The

immediate asynchronous mode is a new coupling mode that is being defined

as part of this research. An immediate asynchronous rule, for example, will be

evaluated immediately, but the transaction that raised the event will not be

suspended. The evaluation of rules and the execution of the current transaction

are therefore concurrent, thus achieving better performance over the

synchronous mode for distributed execution.

The challenge of this part of the proposed research is in defining the

operational semantics of the asynchronous mode, as well as in defining the

execution of the decoupled mode. Furthermore, an integration rule can be

triggered before or after an event happened. The development of all coupling

modes together with before and after modifiers needs to be coordinated with

the development of the transaction processing model.

• Transaction Model
Both Jini and EJB have their own transaction model. The transaction model of

EJBs can be controlled by JTA (Java Transaction API) [JTA01]. The standard

of J2EE specifies that the J2EE transaction manager that control JTA

transactions does not support nested transactions. Although the Jini

specification supports nested transactions, there is no existing implementation

for nested transactions. On the other hand, active rule processing is inherently

nested - the action of a rule may act as an event to trigger new rules, forming a

nested structure. Furthermore, Jini transactions and JTA are incompatible.

Rather than re-implementing the existing Jini transaction manager and

controlling the context switch between JTA and the Jini Transaction, this

research will develop its own transaction infrastructure for flexible control of

active rule processing.

Another research issue with respect to transaction processing is to design a

transaction model that is appropriate for the nested execution of rules over

EJB components. In the transaction control of traditional databases, when to

release locks and when to update permanent storage can be fully controlled by

the transaction manager of the database. But it is not possible to control

black-box EJBs in such a manner. Entity beans must be accessed with a

container managed transaction, where the transaction for method invocation

of an entity bean is totally controlled by the EJB container. With no notion of

the parent-child hierarchy of the outside transaction semantic, the container is

independently determining when to retrieve and update the database. Among

the transaction models for transaction nesting, the flexible transaction model is

more suitable for integration rules since it allows unilateral commit of

subtransactions. This research will develop techniques for the use of the

flexible transaction model to support the nested execution of integration rules.

In the scope of this research, we assume a failure semantics where individual

rules might abort without affecting the triggering transaction, which is one of

the typical failure semantics in active systems [Paton99].

5.3 Active Rule Execution Algorithm

The active rule execution algorithm is a suit of methods that together form the

circuit through which active rules are processed. The proposed active rule

execution algorithm is based on the algorithm of the ADOOD RANCH project

[Abdellatif99], using cycles to control the nested execution of active rules. This

research will re-design the rule execution algorithm for a distributed environment,

fully supporting the proposed coupling modes and transaction processing model.

Another aspect of rule execution is rule scheduling. When a set of rules is

triggered, they can execute concurrently to achieve better performance in a

distributed environment. However, the concurrent execution of two conflicting

rules can cause non-deterministic results. A scheduling algorithm will be designed

in this research to allow concurrent execution deterministically. The algorithm

will use the triggering and conflict relationships between active rules to

coordinate the order of rule execution.

5.4 Evaluation of the Work

The evaluation will focus on the practicality and functionality of the proposed

methodologies and techniques, compared to other similar research projects in four

aspects: data and software sources of the distributed environments, semantic

support, rule processing, and transaction processing. The evaluation of the work

will also involve an assessment of the Jini architecture, addressing the advantages

and disadvantages of the architecture, and identifying improvements that should

be addressed in future versions of the IRules environment. The evaluation will

experiment with different loads for the arrivals of events for observation of rule

processing throughput to identify potential bottlenecks. This experiment will be

used to propose future enhancements to the architectural design of the IRules

environment.

6 Preliminary Ideas and Current Results

To date, this research has identified the necessary architectural components and

specified the interfaces for interaction among the architectural components. The

basic functionality of the architectural components has been designed and

demonstrated by a centralized prototype implementation. Current activities are

focused on implementing the architectural components using Jini Connection

techniques.

The research has so far specified the definition of four types of coupling modes

and the constraints of using different coupling modes between different parts of an

active rule. The active rule execution algorithm has also been designed to regulate

the rule execution to support the specified coupling modes. Current activities are

focused on designing the rule scheduling algorithm and interfacing the rule

manager with the IRules event handler for several different types of events that

are supported by the IRules environment.

7 Summary of Expected Contribution

This research will contribute to the current efforts towards integrating distributed

black-box components. The expected contributions of this research include the

following:

• The design and implementation of a new distributed architecture for
component integration by using active rules based on the Jini computing

framework over the EJB component model.

• The definition of the operational semantics of the immediate asynchronous
coupling mode for distributed integration rules. This new coupling mode is

especially designed for a distributed environment to enhance performance by

the concurrent execution of a transaction and its triggered rules.

• The development of the active rule execution algorithm, supporting rule
nesting in a distributed environment that has not been addressed by in other

distributed active rule system.

• The design of a new active rule scheduling algorithm allowing concurrent rule
execution deterministically in a distributed environment.

• Demonstration of the use of distributed rule-based techniques for event-driven

component integration as compared to traditional hard-coded solutions.

References

[Abdellatif99] T. Abdellatif, An Architecture for Active Database Systems

Supporting Static and Dynamic Analysis of Active Rules Through Evolving

Database States, Ph.D. Dissertation, Arizona State University, Department of

Computer Science and Engineering, Fall 1999.

[Barrett96] D. J. Barrett, L. A. Clarke, and P. L. Tarr, "A Framework for Event-

Based Software Integration,” ACM Transactions on Software Engineering and

Methodology, vol. 5, no. 4, October 1996, pp. 378-421.

[Cilia01] M. Cilia, C. Bornhovd, and A. Buchmann, “Moving Active

Functionality from Centralized to Open Distributed Heterogeneous

Environments,” Proceedings of 9
th

 International Conference on Cooperative

Information Systems (CoopIS’01), Trento, Italy, September 2001, pp. 195-210.

[Chakravarthy98] S. Chakravarthy, and R. Le, "ECA Rule Support for Distributed

Heterogeneous Environments," International Conference on Data
Engineering 1998, pp. 601.

[Edwards99] W. K. Edwards, Core Jini, Prentice-Hall PTR, Second Edition, 2000

[EJB01] Enterprise JavaBeans Specification 2.0, Proposed Final Draft 2, 19 April

2001.

[Fritschi98] H. Fritschi, S. Gatziu, K. and R. Dittrich, “FRAMBOISE – an

Approach to Framework-Based Active Database Management System

Construction,” Proceedings of the 7
th

 ACM International Conference on

Information and Knowledge management, Nov. 1998, pp. 364-370.

[JMS01] Java Message Service Tutorial 1.3 Beta Release, January 2001,

Http://java.sun.com/products/jms/tutorial/html/jmsTOC.fm.html.

[JTA01] Java Transaction API (JTA) 1.0.1 Specification,

http://java.sun.com/products/jta/.

[Kambhampati01] S. Kambhampati, An Event Service for a Rule-Based Approach

to Component Integration, M.S. Thesis Proposal, Arizona State University,

Department of Computer Science and Engineering, 2001.

[Koschel98] A. Koschel, and R. Kramer, "Configurable Event Triggered Services

for CORBA-based Systems," Proceedings of 2nd International Enterprise

Distributed Object Computing Workshop (EDOC'98), San Diego, California,

November 1998, pp. 306-318.

[Liebig00] C. Liebig, M. Malva, A. Buchmann, “Integrating Notfications and

Transactions: Concepts and X2TS Prototype,” Proceedings of the 2
nd

International Workshop on Engineering Distributed Objects, University of

California, Davis, USA, Nov. 2-3, 2000, pp.194-214.

[Ma98] C. Ma, and J. Bacon, "COBEA: A CORBA-Based Event Architecture,"

Proceedings of USENIX COOTS'98, Santa Fe, New Mexico, USA, April

1998, pp. 117-131.

[Microsoft00] Microsoft Corporation, COM+,

http://www.microsoft.com/com/tech/complus.asp, December 2001.

[OMG98] Object Management Group: The Common Object Request Broker,

Architecture and Specification, Revision 2.3, December 1998.

[Patil01] R. H. Patil, The Development of a Framework Supporting an Active

Approach to Component Based Software Integration, M.S. Thesis Proposal,

Arizona State University, Department of Computer Science and Engineering,

2001.

[Paton99] N. W. Paton, O. Diaz, “Active Database Systems,” ACM Computing

Surveys, Vol. 31, No. 1, March 1999, pp. 3-27.
[Saxena00] A. Saxena, An Evaluation of Distributed Architectures for the

Integration of Black Box Software Component, M.S. Thesis, Arizona State

University, Department of Computer Science and Engineering, Fall 2000

[Szyperski96] C. Szyperski, and C. Pfister, Workshop on Component-Oriented

Programming, Summery, In M. Muhlhauser (ed.) Special Issues in Object-

Oriented Programming – ECOOP96 Workshop Reader, Springer-Verlag,

1996.

[Xia98] B. Xia, Object-Oriented Distributed Software Component Development

and Integration in Common Object Environments, Ph.D. Thesis, Department

of Computer Science and Engineering, Arizona State University, 1998.

