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Abstract

This report describes recent advances in the area of
the recognition of on-line handwritten mathematical
notation. We describe architectures, symbol classi-
fication methods, and techniques for the structural
analysis of mathematical expressions. We also survey
applications specialized for mathematical notation.

1 Introduction

Interest on developing pen-computing applications
has been growing steadily during the last years, due
to, among other factors, the introduction of devices
such as personal digital assistants (PDAs) or Tablet
PCs. The main characteristic of such devices is that
they use the stylus as input tool, being a “natural”
substitute for keyboards ans mouse, see Fig. 1.

The data generated by users writing with a stylus
on an electronic device is known as digital ink, and
the process of writing is called on-line handwriting.
The minimal unit which forms digital ink are strokes,
which are sequences of points generated between pen-
down and pen-up events, at regular time intervals.

The main objective in pen-computing is not only
handling digital ink “as is” but also its conversion
into another data structure that can be automatically
processed by computers. The elemental data struc-
tures are alphanumeric characters, since PDAs were
originally developed to be personal organizers with
a calendar or an address book. Most PDAs use the

∗A revised and extended version of this report is under
preparation for submission to a journal. We welcome any com-
ments and suggestions to improve this work.

Figure 1: Pen-based devices.

stroke alphabet Graffiti [39] as the standard method
for symbol recognition. The alphabet consists of a
set of pre-defined stroke combinations that allow the
recognition of letters and numbers, see Fig. 2.

The development of pen-based systems and appli-
cations increased when Microsoft released the Tablet
PC version of the Windows operating system. It pro-
vides a Software Development Kit (SDK) for process-
ing, storing, and recognizing digital ink. These li-
braries are specialized towards the recognition of let-
ters and words of western languages and East Asian
languages, allowing a more natural writing when
compared with Graffiti. One of its most attractive
characteristics is that the recognizers are integrated
natively in the operating system.

Even though pen-based mathematics has a po-
tential application in scientific document process-
ing, human-computer interaction and mathemati-
cal knowledge management, the methods mentioned
above are only capable to recognize plain text, but
no complex handwritten mathematics.
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Figure 2: The Graffiti alphabet.

Figure 3: Maple’s recognition system.

Fortunately, pen-based mathematics has gained at-
tention by the computer science community over the
last years. An example of this increasing interest is
the development of the symbol recognition tool for
the computer algebra system Maple 10. Its pen-based
interface allows the recognition of isolated mathemat-
ical symbols that are not available in the keyboard,
see Fig. 3.

This report describes the advances in the area
of pen-based mathematics and on-line mathemati-
cal recognition that have during recent years. It is
organized as follows. Section 2 describes the main
characteristics which distinguishes the recognition of
on-line mathematics, as well as architectures for the
recognition of mathematical notation. Section 3 de-
scribes briefly the symbol recognition task. We give
an overview of the most important techniques for
structural analysis in Sec. 4. Recent work on user in-
terfaces for on-line handwriting is described in Sec. 5.

2 Recognizing mathematical
notation

In comparison with plain handwritten text, recog-
nition of on-line handwritten mathematics requires
more elaborated symbol classifiers because mathe-
matical notation uses a big set of characters including
Latin letters, Greek letters and mathematical sym-
bols. Other difficulty relies also on the analysis of
the intrinsic two-dimensional layout encountered in
formulas, arrays of symbols and diagrams, which re-
quires a different treatment in comparison with hand-
written plain text. These and other relevant char-
acteristics of mathematical notation are enumerated
below, as suggested by Blostein [6], and Chan and
Yeung [9].

2.1 Characteristics of Mathematical
Notation

2.1.1 Definition of mathematical notation

Mathematical notation is a specialized two-dimensio-
nal notation which helps to communicate mathemat-
ics and to visualize concepts and ideas. Although
mathematical notation is a language used in many ar-
eas of science, no formal definition in terms of syntax
and semantics as a two-dimensional language exists.
Actually, this notation is not completely standardized
and many dialects are used by scientists. Some au-
thors try to describe mathematical notation for solv-
ing problems of typesetting [23] and for automatic
processing of mathematical notation [29].

2.1.2 Scope of recognition systems

We have to consider which kind of mathematical ex-
pressions we will recognize. Researchers normally re-
strict themselves in the recognition of a subset of
mathematical notation, for example notation for a
particular area of mathematics, notation needed only
for high-school mathematics, etc. In addition, such
restrictions also depend on the purpose of the recog-
nition system: recognition of typeset scientific text,
an input model for computer algebra systems, etc.

2.1.3 Grouping of basic symbols

When we read an expression, we group single symbols
to construct more complex objects, which plays an
important role in the interpretation of formulas. For
example, the digits ‘3’, ‘8’, and ‘1’ have their own
meaning as such, but if they are of the same size and
lie in the same line, they can represent the integer
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value ‘381’. By varying size and location they can
also represent ‘381’ or ‘381’. Similarly, we can group
some letters to represent function names, like ‘log’ or
‘sin’.

2.1.4 Explicit and implicit operators

Variation of size and location can also represent
grouping criteria through mathematical relations be-
tween symbols. In mathematical notation, we find
explicit and implicit relations between symbols. Sub-
scripts, superscripts and tabular structures are de-
scribed only by the location of operands; in contrast,
addition, subtraction, and division use explicit oper-
ator symbols. For example, in the expression ‘a + b’
the explicit relation ‘addition’ between ‘a’ and ‘b’ is
given by the symbol ‘+’. An example of an implicit
relation would be in the expression ‘x2’. In this case
the expression represents the relation ‘pow’ between
‘x’ and ‘2’, a variation in the location results in a very
different relation, for example ‘x2’, representing the
relation ‘subscript’.

2.1.5 Ambiguity in the role of symbols

We illustrate this characteristic by giving some ex-
amples. The horizontal bar can represent the minus
sign and also the fraction bar. A dot can represent
multiplication or the decimal point. The Greek let-
ter sigma ‘Σ’ can also represent the operator sum.
When grouping the symbols ‘dy’, they can represent
the product of ‘d’ and ‘y’ as in ‘cx+ dy’ or the differ-
ential operator when used in ‘

∫
cos(y)dy’.

2.1.6 Irregular writing

Irregular handwriting aggravates ambiguities de-
scribed before and makes it harder to group symbols
and to distinguish relations among them. It results in
layout problems affecting the recognition of the whole
expression. A cause of this is due to unexperienced
users, because they normally take excessive freedom
with the location and alignment of handwritten sym-
bols. Other kinds of irregular writing arise during the
correction, deletion, and insertion of symbols. For
example, suppose an expression was entered by the
user and he decided to write some super-indices or
sub-indices, but there was not enough space avail-
able for this correction. Something like this could
generate a very complex expression, which could not
be recognized even by humans.

Figure 5: A typical on-line document.

2.2 Architectures and frameworks

This sections describes three architectures which are
important for the development of pen-based math-
ematics. From our point of view, they offer solu-
tions for the same problem which can be considered
as mutually complementary. The architectures con-
sider three core building blocks for pen-based math-
ematical system: recognition, development, and user-
system interaction.

2.2.1 Recognition

Most of the working systems and prototype programs
for the recognition of pen-mathematics follow, in
essence, the steps proposed by Lee and Wang [36].
Although his system is specialized for off-line math-
ematical equations, i.e. expressions in scanned doc-
uments, almost all of the procedures can be used as
well for the recognition of pen-based mathematics.
We have only to substitute the “Optical Scanning”
step for a “Ink Input” step in the flow diagram shown
in Fig. 4.

The recognition of mathematical notation begins
by considering how the data is presented. Optical
scanning or ink input follows digitalization step that
transforms the given expression into a static (off-line)
or dynamic (on-line) representation. In the segmen-
tation step, mathematical expressions are extracted
and isolated from text lines [36, 26]. When dealing
with on-line data, it is normally supposed that the
data only contain mathematical expressions. How-
ever, it is not always the case, because modern on-
line documents are also formed by a mix of plain text,
graphics and mathematics, see Fig. 5

3



Figure 4: Digram flow for the recognition of mathematical expressions in off-line documents.

Once the document is segmented, the next step is
symbol recognition. In this step, the label of sym-
bols is established by means of a classifier. During
the expression formation step, the structure of the
recognized symbols is analyzed to form a hierarchical
structure that represents a mathematical expression.

In the last step, the internal hierarchical structure
is processed and interpreted to obtain a final result.
This result can be a character string which represents
the expression in LATEX, another structure used by a
computer algebra system, or an image representing
the plot of a function given by the expression, among
others.

Their procedural framework can be divided in three
main modules:

1. Document Segmentation.

2. Symbol Recognition.

3. Structural Analysis.

Differences between recognition systems found in the

literature are generated by variations and improve-
ments of these modules.

2.2.2 Development

Most of the systems created for the recognition of
mathematical notation have for objective the conver-
sion of the handwritten expression into a data struc-
ture, which can be used mainly by a text editor or
for some computer algebra system. Ideally, such a
general system should be used for a wide range of
applications such as the elaboration of mathemat-
ical databases, text processing, symbolic computa-
tion, elaboration of mathematical diagrams, etc. It
should also be easily extended and provide a practical
GUI.

Smirnova and Watt [54] propose an architectural
framework for pen-based mathematics from the per-
spective of software engineering. Their target deploy-
ment is for document processing and mathematical
computing. Their objective is to define a platform-
independent pen-based framework for mathematical

4



Figure 6: Framework components for mathematical
notation.

entry, edition and calculation. These objectives lead
them to define two portability criteria for the frame-
work. Longitudinal portability is the software life and
usability given a platform, and lateral portability is
the software life across platforms.

They refer to the Microsoft’s Tablet PC SDK as an
example for longitudinal portability: this API evolve
with the time having a direct impact for the devel-
opment of the framework. Thus, they suggest two
main components of their framework that have to re-
main the same along longitudinal evolution: a) high
level manipulation of mathematical objects and b)
low level analysis of digital ink, see Fig. 6.

An abstract layer with platform-specific wrappers
allows the lateral portability of the software. The
wrappers access natively resources and recognition
engines already contained in the platform (Palm
Graffiti or Microsoft Tablet PC, for example). The
components of their framework which shall vary, de-
pending of the platform, are 1) basic software to col-
lect digital ink, 2) low level processing module to
interconnect the components (a) and (b) mentioned
above, and 3) use of the framework in some hosting
application. Figure 7 illustrates the complete archi-
tecture that includes recognition modules.

2.2.3 User-System Interaction

LaViola [33] proposed a new paradigm for gestural
interaction in pen-based mathematics. He consider
pen-based mathematical documents to be constituted
from mathematical expressions and supporting dia-
grams. His work concentrates in the development of
a gestural user interface, which allows a seamless in-
teraction between these document constituting parts
by generating actions from gestures. Figure 8 shows
the architecture he proposed.

The most relevant from this architecture are the
User Interface and Sketch Preparation modules. The
User Interface Module has a Gesture analyzer compo-
nent which decides whether the last written strokes

should be interpreted as a gesture. If it is decided
so, the corresponding action generates a connection
with others modules. In the other case, the ink data
is stored by the Data Entry component. The Cor-
rection UI allows the user to correct the recognized
mathematical expression at the symbol level or at the
parsing level.

The Sketch Preparation module has an Associa-
tion Inference module, which associate label draw-
ing elements with written mathematical expressions.
These labels describe some property of supporting
diagrams, such as its location expressed as Cartesian
coordinates that are modifiable by means of the writ-
ten expressions. After the analysis of the expression
by the Math Code Generation module, the diagram
can be animated. The Drawing Rectification mod-
ule works in a similar way as association, but it is
used to correct diagram parameters such as angles,
lengths and location. As an example for rectification,
imagine that a user draws a triangle to illustrate the
Pytagora’s Theorem, whose cathetus are not orthog-
onal. This can be corrected by labeling the angle with
a variable a to the angle, writing a formula a = 90 and
using the corresponding gesture which activates the
rectification module to correct the drawing. The Di-
mension analysis component us used to calculate local
coordinates systems of suporting diagrams, which are
useful to generate animations in the ink document.

3 Symbol Recognition

3.1 Segmentation

Segmentation is the process of decomposing, group-
ing, or isolating the data into classifiable units which
represent single symbols or words. In the case of on-
line documents, the segmentation problem consists of
properly classifying strokes as text, graphics.

An example of a simple heuristic-based segmenta-
tion is the method used by Mandler [40]. He asso-
ciates the input strokes with a predetermined thick-
ness by dilating them with a rectangle. With this
criterion, two strokes belong to the same symbol if
their dilated versions intersect.

Sometimes, segmentation methods use the infor-
mation given by the classifier. Winkler et al. [30, 65]
generate a symbol hypothesis net from the given
strokes. The hypothesis net generates all possible
combinations of strokes in order to handle ambigu-
ity during symbol grouping. The different combina-
tions of strokes in the net, which represent poten-
tial symbols, are classified using a Hidden Markov
Model (HMM). The probabilistic output of the classi-
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Figure 7: The complete architecture for pen-based mathematics.

fier serves to associate a likelihood value to each com-
bination of strokes, and the one with the highest like-
lihood value is selected as the final segmentation re-
sult. This method is sensitive to the order the strokes
are written. If they are not written from left to right
and upside-down, segmentation and classification de-
teriorate dramatically. Examples of classifier-based
segmentation are used by some of the systems we de-
scribe in Sect. 5.

Shilman et al. [51] present a method for the seg-
mentation of digital ink based on a neighborhood
graph and symbol classification. Strokes are regarded
as nodes of a graph, where stroke are connected with
an edge when they are “close” to each other. Once
the graph is constructed, it is segmented into its con-
nected components with a number of nodes up to a
previously selected number k. Each connected com-
ponent is regarded as an isolated symbol, which is
classified using a previously trained model. A nega-
tive log likelihood cost is assigned to every partition
based on the classification results. Finally, dynamic
programming is used to efficiently find the optimal
stroke partition. The main advantage of this method
is that it is insensible to stroke order.

Ao et al. [2] present a framework based also in a
neighborhood graph to find structures in digital ink
documents. Their method is aimed to find baselines
structures and to segment the document into textual
and graphical parts. The main steps in their method
are patches creation, baseline extraction, separation
into text and graph, and word segmentation. The
patches are the node subsets which are obtained by
eliminating long edges from the neighborhood graph.
They are grouped into text baselines my maximiz-
ing their line strength. The line strength is based
on edge lengths (closely positioned), angle differences
(linearly positioned) and sizes of neighboring blocks
(comparable size). The classification of patches as
text of graph is based in the supposition that graphi-
cal parts do not present a “reasonable” layout struc-
ture. The structure can be quantified by considering
width, height, stroke count, and density features on
the patch and their neighboring patches. This fea-
tures are used to train a binary classifier which serves
as model for the text/graph segmentation. Similar
methods to find text baselines and to classify digital
ink as text or graph can be found in [12, 25, 52, 5, 67]
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Figure 8: Architecture for mathematical sketching.

3.2 Preprocessing

Preprocessing is necessary to eliminate noise, to re-
duce the amount of information, and to normalize
handwriting [59, 19].

An example of preprocessing to eliminate noise is
simply the application of a Gaussian filter to a hand-
written stroke. In this case, processed points in the
stroke are the result of a weighted average of itself and
its neighbors. Dehooking, point clustering, filtering,
and stroke connection are useful preprocessing proce-
dures to eliminate unnecessary information from the
stroke. Examples of normalization for on-line data
are scaling, slant correction, and equidistant resam-
pling.

3.3 Feature Extraction

Feature extraction means deriving measures and
characteristics from the raw data which are useful in
making predictions. It is common that feature extrac-
tion methods are based on invariance, reconstruction,
and expected distortions.

Features may be local or global. The source of infor-
mation of on-line data are points and strokes. When
we talk about local features, we refer to character-
istics of a specific point in strokes derived from its
neighboring points. Global features normally refer
to topological (morphological) characteristics of the
stroke based on the trajectory it describes.

The first local feature we consider are the coordi-
nates of a point. They serve, for example, to derive
important local characteristics, like curvature or di-
rection. Points having a high curvature are important

to decompose strokes in static elements. This decom-
position is a structural description of the underlying
shape of strokes [19].

Global features normally serve to obtain a cate-
gorical (not numerical) classification of strokes. For
example, the ratio of the distance between a stroke’s
end points and its length is a global feature, which
serves to determine if the stroke is closed or open,
when comparing this ratio against a predetermined
threshold. Similarly, when considering a symbol
formed by two strokes, we can say that they cross
or does not cross, or only touch. This kind of in-
formation serves to construct a decision tree which
reduces the given data into a small set used in a later
analysis using more complex features [59].

3.4 Symbol Classification

Symbol classification means the use of a certain
method to obtain the symbol’s label. Actually, we
can potentially use any of the great number of exist-
ing classification methods to such purpose. In this
section we review some of such methods which were
specially developed for symbol classification. Other
interesting results for classification of isolated sym-
bols is [46].

3.4.1 Similarity Measures.

Similarity measures for strokes allow the use of
distance-based classifiers. Generally, unknown sym-
bols are matched against stored references (proto-
types), and the label corresponding to the unknown
symbol is the same as that of the symbol which best
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matches it. Similarity measures are normally defined
at stroke (curve) level.

Tappert [58] uses elastic matching as a similarity
measure. The procedure to calculate it is based on
the alignment of points which constitute the stroke
using the dynamic time warping (DTW) algorithm.
The optimal matching corresponds to the minimum
sum of matching costs, which are normally the dis-
tance between strokes’ points obtained by dynamic
programming. This algorithm allows the comparison
of strokes having a different number of points. In this
case, the feature-extraction step can be skipped.

Li and Yeung [37] also use time warping to calcu-
late similarities between strokes. Their method con-
verts strokes into a character string. The string de-
scribes the stroke as a sequence of eight directions.
They find the distance between two string sequences
by calculating costs of three string transformations,
namely compression, expansion, and substitution.

Schwenk [50] proposes a similarity measure based
on constrained tangent distance. The distance is
locally invariant under the following local transfor-
mations: translation, scale, axis deformation, rota-
tion, diagonal deformation, and slope transformation.
This method tries to incorporate knowledge about ge-
ometrical variations of handwriting.

Other similarity measures for curves which can be
useful for on-line symbol classification can be found
in [61].

3.4.2 Structural Methods.

Structural methods are based on the assumption that
handwriting is made up of some elementary or primi-
tive shapes, also known as allographs. They describe
the morphological characteristics of strokes. For ex-
ample the symbol ‘6’ can be describes through two
primitives: a descending curve and a loop.

Parizeau and Plamondon [45] construct a set of
basic allographs using a fuzzy syntactic approach to
model handwriting. For example, a primitive can be
of type ‘c’ or ‘ci’, which corresponds to stroke seg-
ments with a shape similar to the letter ‘c’ where the
‘i’ indicates “inversion”, i.e. a horizontal or vertical
reflection of the shape. In this way, they consider
twenty allographs, which correspond to i-shapes, c-
shapes, t-crossings, loops, etc. A symbol is coded us-
ing a grammar formalism as a sequence of these prim-
itives and the similarity between symbols is measured
by using a sequence distance. Similar approaches are
used in [7, 48, 66].

3.4.3 Neural Network and Statistical Mod-
els.

Guyon et al. [22] developed a neural network system
for the recognition, based on so-called time delay neu-
ral networks. The system integrates recognition and
segmentation in the same neural network architec-
ture. The network is used to estimate a posteriori
probabilities for characters in a word. One of the
layers of the network converts the temporal infor-
mation, point position, curvature, and direction in
a two-dimensional image representation. Similar ap-
proaches are used in [38], which have been specially
developed for the recognition of on-line handwritten
words.

One of the most recent statistical approaches used
for on-line recognition are Hidden Markov Models
(HMM). They use dynamic programming to find the
optimal alignment which performs character segmen-
tation and recognition simultaneously. Bellegarda [4]
uses local features, point positions and curvature,
to feed a simple two-state HMM. Sin and Kim [53]
also uses a HMM to model inter-letter relations, also
known as ligatures. They train a HMM for each letter
and ligature type. Schenkel et al. [49] uses a hybrid
neural-network-HMM system for on-line word recog-
nition.

Shwenk [50] uses an auto-encoder neural network
to construct a model for each symbol class. This
auto-encoder network actually describes each sym-
bol class by finding the principal components that
describe the class population. New symbols are fed
into each network and projected to a hyperplane gen-
erated by the principal components. The tangent dis-
tance between the encoded (projected) vector and the
original one is calculated. The class label assigned to
the new vector corresponds to the one where the min-
imum distance is reached.

Bahlman et al. [3] combine dynamic time (DTW)
warping and support vector machines (SVM) to clas-
sify isolated symbols. They use a Gaussian kernel
to train the SVM-classifier and substitute the vec-
tor metric in the exponential argument of the kernel
with the DTW distance. Theoretically, this substi-
tution can lead to some numerical problems, because
the DTW distance is not a metric, a strong assump-
tion within the SVM approach to construct a kernel
function. However, it was shown experimentally that
only in an small set of training examples this assump-
tion is not fulfilled, an issue that could be avoided by
not considering that set.

Cho and Kim [14, 13] classify isolated symbols
by modeling strokes internal relationships within a
Bayesian network framework.

8



3.4.4 Clustering Methods.

Some of the above recognition approaches were devel-
oped in a user-dependent manner. Clustering meth-
ods in on-line handwriting are developed to remedy
this situation. They try to model intra-class varia-
tions caused by different writing styles found in large
databases. Vuori [62] uses a self-organizing map to
cluster writing styles. She uses variations of the elas-
tic matching method as a similarity measure. Her
clustering algorithms can be used for prototype se-
lection, which serves to classify characters according
to the k-Nearest Neighbors (k-NN) rule. The recog-
nition system adapts to new writing styles by modi-
fying its prototype set. In the same fashion, Connell
and Jain [15] use also elastic matching to measure
intra-cluster and inter-class measures, to be used in
a hierarchical clustering algorithm.

Watt and Xie [63] propose a clustering method for
the classification of large on-line symbol databases.
The proposed methods can recognize four symbols
sets used in mathematical formulas which include dig-
its, uppercase and lowercase Latin letters, Greek let-
ters, mathematical operators and arrows, summing
up a total of 277 symbol classes. They find clusters in
the symbol database based on the following features:
number of strokes, initial stroke position, width to
height stroke ratio, and the initial and end direction
as north, north-west, etc. They selected these fea-
tures not only by their effectiveness, but also by their
low computational cost. The cluster in the database
are pruned by locating prototypes via a elastic match-
ing distance. A new symbol is classified by locating
it in a cluster and assigning it the label of the clos-
est prototype using elastic matching. The method
reduces the computation time with a small degrada-
tion of the classification rate.

4 Structural Analysis

4.1 Expression Formation

Expression formation consists of translating the re-
sults obtained in the symbol recognition step into a
tree which describes the relations between symbols of
the mathematical expression. The nodes that consti-
tute this tree are a data structure which stores the
symbol’s label and other numerical parameters, for
example size and location. Nodes are a compact rep-
resentation of the original raw symbol. After an anal-
ysis of the relative positions of symbols, the nodes
in the tree are linked to each other depending on
which one of the spatial relations –above-left, above,
superscript, right, subscript, below, below-left, and

subexpression– they satisfy [6, 36]. As we will see,
most of the methods described in this section rely on
this principle.

Fateman et al. [17] developed a recognizer for type-
set mathematical expressions. The recognized sym-
bols are grouped into box tokens representing num-
bers, function names, and variables. They use a
bottom-up recursive descent parser to obtain the final
result as a lisp expression.

Lavirotte and Pottier [35] define a context-sensitive
graph grammar to represent mathematical formulas
and to remove ambiguities during structural analy-
sis. Rules in graph grammars consist of collapsing a
subgraph in a node, if they satisfy a given condition.
They define a set of rules to describe the mathemati-
cal relation and apply a bottom-up parsing algorithm
to obtain the final result. If we consider the expres-
sion ‘ex+1’, a rule is defined to collapse the two nodes
representing the symbols ‘e’ and ‘x’. They now repre-
sent a single token, and the process can be continued
by collapsing the new tokens ‘ex’ and ‘1’ to construct
the final result.

Miller and Viola [42] use a generative model ap-
proach based on a stochastic-free grammar. The
recognition process of the structure consists in find-
ing the productions of the grammar with the highest
probability when considering the overall probability
of generating the expression. They use a convex hull
condition to prune the searching space of the gram-
mar productions. A production in the grammar is
not admissible if the convex hull of a symbol group
intersects a symbol not belonging to the group.

Winkler et al. [65] used HMMs for segmentation
and classification of symbols. Using a soft-decision
approach, they construct a hypothesis net of all pos-
sible segmentations of strokes. They store the in-
formation of the possible spatial relations between
symbols in a directed graph, and a set of alternative
interpretations of the expression is given.

Kosmala et al. [32] also present a statistical ap-
proach based on the application of HMMs. The sys-
tem allows simultaneous segmentation and symbol
classification, as well as the interpretation of the sym-
bols’ spatial relationships. One of the conditions for
correct segmentation and recognition is that the ex-
pression be written from left to right and from top
to bottom. Delayed symbols are not allowed, as
when first writing an expression and then enclosing
it in parenthesis. In an posterior work [31] they use
graph rewriting for the structure analysis to avoid the
above-mentioned restrictions of handwriting.

Chan and Yeung [8] propose the use of a definite-
clause grammar (DCG) to define precise replacement
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rules when parsing mathematical expressions. They
use DCG because a grammar expressed through this
formalism is declarative and easy to maintain and ex-
tend. They use a parsing scheme using left-factoring
to reduce the time for the expression’s interpretation.

Eto and Suzuki [16] use a weighted graph to rep-
resent spatial relations between symbols. The nodes
in the tree represent the symbols obtained during the
segmentation stage. They are connected depending
on whether they satisfy the superscript, subscript, or
right relations. Because of the multiple results ob-
tained during the recognition step, nodes have mul-
tiple edges which store a symbol’s label and weight.
They generate a set of spanning trees of the initial
graph, which result from the minimization of the edge
costs. If they result in an admissible (not contradic-
tory) mathematical structure, one of them is selected
as the final result if it minimizes a global cost crite-
rion.

Zanibbi et al. [68] describe a mathematical expres-
sion as a structure of nested baselines, a so-called
baseline structure tree. Baselines constitute horizon-
tal arrangements of symbols. The first step in the
procedure recursively constructs the baseline tree in
the handwritten expression by handling irregular or
poor horizontal layout structures. The second step
converts the structure tree into an operator tree,
which is further processed by applying tree transfor-
mations using the TXL language. Tree transforma-
tions consists of locating patterns in the tree struc-
ture and applying replacing rules on them. Defining
different replacing rules helps to define a particular
dialect or recognition scope of mathematical nota-
tion.

Zahng et al. [70] use fuzzy logic to define spatial re-
lationships among mathematical symbols. They use
fuzzy membership functions to define the superscript,
subscript and horizontal symbol relationships. They
produce recursively different alternatives for the in-
terpretation of a expression in the case of non-zero
membership values. To illustrate de procedure, con-
sider the expression abcd, where a is the dominant
symbol in the expression. The fuzzy regions provide
two interpretation for the spatial relations between a
and b, generating the two alternatives ab and ab. The
method proceeds recursively with these two subex-
pressions, generating another two interpretations abc
and a[bc] for the latter. The square brackets indicate
that the symbols they embrace must be analyzed as
well. A final interpretation is a symbol group which
can not generate any alternative. Finally, confidence
values are assigned to final alternatives by taking the
minimum membership value among all the fuzzy spa-

tial relationships in the expression. The interpreta-
tions are presented to the user as list ordered by the
confidence values.

4.2 Error Correction

Most of the approaches mentioned before convert a
two-dimensional representation of the expression into
a one-dimensional one, a string of characters, which
represents the expression in a certain computer lan-
guage. Erroneous symbol segmentation and classifi-
cation can generate incorrect results during structural
analysis.

Lee and Wang [36] propose heuristics for the cor-
rection of the most common errors derived by false
recognized symbols. They consider four heuristic
rules. One of them is “for every binary operator there
must exist two operands”. By applying this rule the
expression ‘/ < i < n’ is corrected to ‘1 < i < n’.
They also define a rule to consider errors encoun-
tered during the construction of function names. An
expression like ‘5inx’ should be corrected to ‘sinx’.
Numerals with subindexes are considered as an error.
Expressions like ‘12’ and ‘5b’ are corrected to ‘l1’ and
‘Sb’ respectively. The last rule considers the correc-
tion derived by case confusion of letters and other
character properties, considering whether it is italic,
bold, etc., because letters forming a determined group
in the expression are similar. Expressions like ‘3Pqr’
and ‘x · y’ are transformed to ‘3pqr’ and ‘x · y’.

Chan and Yeung [10] extend their system based
on definite-clause grammar to handle lexical, syn-
tactic, and semantic errors. They implement some
rules to identify common errors in string grammar,
namely substitution, deletion, and insertion. They
also incorporate rules for the correction of some com-
mon syntactic errors, like incorrect implicit opera-
tors, missing binding and fence symbols, or missing
operands. The semantic errors they consider are cor-
rected heuristically, similar to the way Lee and Wang
do. The lexical errors they consider take place at the
recognition and segmentation level, caused by poor
digitalization or irregular writing. They also propose
some performance measures that concern the recog-
nition of expressions, symbols, and operators, as well
as an integrated performance measure.

Actually, not much effort is expended on the error
correction task. Some other authors does not handle
automatically the correction of errors. For this pur-
pose, they offer instead user-friendly interfaces which
allow immediate feedback and have undo-redo and
visualization capabilities, as we will see in the next
section.
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Figure 9: The Natural Log system.

5 User Interfaces

5.1 The Natural Log System

The Natural Log system is a user-dependent system
developed by Matsakis [41]. The system was written
in Java and is only available on-line as an applet on
the internet. See Fig. 9.

To classify on-line symbols, he constructs a high-
dimensional normal distribution, which describes the
population of each class. The symbol label corre-
sponds to the class that has the maximum probabil-
ity. Low probability values are used to reject symbols
which can represent potential errors in the handwrit-
ing. The procedure to recognize a given mathemati-
cal expression begins by finding an optimal grouping
of the written strokes into isolated symbols. The fi-
nal grouping of stroked is determined by evaluating
all possible groupings and taking the one which min-
imizes a sum-cost function. This function is the sum
of the log likelihood of the classifier output of each
symbol in the current partition. To make the opti-
mization of the cost function manageable, its evalua-
tion is constrained by the minimum spanning tree of
strokes, considering the centers of strokes’ bounding
boxes as nodes of a completely connected weighted
graph. Different combinations of subtrees of the min-
imum spanning tree are evaluated and the optimal
one is taken as the final segmentation result.

The structural analysis in this system consists of
locating a “key” symbol usually an explicit mathe-
matical operator. Once the key symbols are located,
the parse algorithm proceeds to find their correspond-
ing operands, and partial subexpression are formed.
The procedure is applied recursively until no more
key symbols are found. The algorithm is extended to
support parsing of superscripts, i.e. to non-explicit
operators, but no support for subindexes is offered.

Figure 10: Free Hand Formula Entry System

5.2 Free Hand Formula Entry System

The Freehand Formula Entry System is a pen-
based equation editor developed by Smithies and
Norvins [55] and distributed under the GNU Gen-
eral Public License. The program runs under Linux
and MacOS X platforms.

The classification of symbols is done by using the
nearest-neighbor method. The developers use confi-
dence information supplied by the classifier to group
strokes. Their method proceeds by generating all pos-
sible combinations of a fixed number of strokes (by
default they take a maximum of four strokes), which
potentially can constitute a single symbol. Once sin-
gle symbol is classified, the confidence level of a com-
bination correspond the lowest output of the classi-
fier. Finally, the group with the highest confidence is
taken and the first symbol in the group is returned
and considered a correctly recognized character. The
procedure is repeated, once again, when a fixed num-
ber of input strokes is reached.

For the structural analysis, they first used a
method based on graph rewriting, similar to the
method developed by Lavirotte and Pottier [35]. Fig-
ure 10 shows a version of their program, modified
by Zanibbi [68], which uses the structural analysis
method he developed.
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Figure 11: Infty editor

5.3 Infty Editor

Infty Editor [44, 56] is a commercial system special-
ized for creating mathematical documents. The edi-
tor is linked to the computer algebra system Mathe-
matica by Mathlink. It also supports input and out-
put of expressions in TEX format. The editor contains
an real-time recognition system for mathematical ex-
pressions. See Fig. 11.

The recognition system combines segmentation
and recognition of characters to remedy difficulties
in structural analysis due to irregular symbol posi-
tion and size [27]. The rewriting puts symbols into
extendable symbols and unextendable ones. The for-
mer are extended to form other symbols by adding
more strokes and the latter are written with only
one stroke. For example, F can be extended into E.
When a stroke is classified as unextendable, the clas-
sification result is rewritten by the computer in the
drawing area using a predefined prototype. If a stroke
is classified as an extendable character, the system
waits for the next strokes. The classification result is
written automatically if a predetermined time inter-
val has elapsed or the expected number of strokes is
reached.

5.4 MathJournal

Wenzel and Dillner [64] describe another commercial
product, MathJournal, developed for the Tablet PC
version of the Windows platform. The interface is
very similar to Microsoft’s Journal program, which is
included in the operating system, see Fig. 12. Ap-
parently, the program is still under development and
only descriptions of it are given. The developers also
offer the xThink Calculator as an evaluation program.
The recognition capabilities of this program are sim-

Figure 12: MathJournal.

ilar to the ones of MathJournal. It operates as a
normal pocket calculator, the operations are done by
recognizing a handwritten arithmetical expression.

MathJournal uses the recognizer integrated in the
operating system for the classification of isolated
handwritten characters. Although it is possible to
recognize special mathematical symbols and con-
stants (square root, calculus operators, and the con-
stant π), the system does not recognize Greek letters.
The symbols recognized by the system are limited to
the ones recognized by the Microsoft API.

In the description of the system, they mention that
heuristics of graph rewriting and, when required, a
minimum spanning tree construction are used during
structural analysis.

The most relevant aspects of this system are its
“solution engines”. They process the recognized ex-
pressions in numeric, graphic, or symbolic formats.
Diagrams, such as function tables, are processed and
plotted by using curly braces and arrows as gestures.
Similar gestures are used for the solution of equation
systems or for plotting functions.

5.5 MathPad

MathPad is a system for the creation and exploration
of mathematical sketches. The main objective in this
user interface is to facilitate the user-editor interac-
tion using sketches. This gestural user interface is one
of the most advanced in terms of pen-based design.

The set of gestures are used to interact with the
recognition and processing engine included in the sys-
tem. The basic interaction is the drawing of a lasso
gesture followed by a tap. This action indicates the
system the recognition of the selected strokes. It is
used also for the association of variables and stroke
grouping. Drawing the equals sign followed by a tap
or by the minus sign allows the solution of equations

12



Figure 13: Gestures used in the mathematical sketch-
ing paradigm.

or factorization of expressions. Other gestures are
used for deletion of ink, association of recognized ex-
pressions, and angle association. Figure 13 showa the
different gestures used in MathPad.

The system is writer-dependent to guarantee the
a more accurate symbol recognition. Handwriting is
recognized using hybrid recognizer. First, a dynamic
classifier calculates the similarity with prototypes [37]
is combined with an statistical classifier [55], to ob-
tain information to use once again dynamic program-
ming for the fine classification [15]. The structural
analysis uses the techniques described in [6].
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