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Abstract

We show that for any finite set P of points in the plane and for any integer & > 2
there is a finite set R = R(P, k) with the following property: For any k-colouring of
R there is a monochromatic set P, P C R, such that P is combinatorially equivalent
to the set P and the convex hull of P contains no point of R\ P. We also consider
related questions for colourings of p-element subsets of R (p > 1) and show that
these analogues have negative solutions.

*Department of Applied Mathematics, Charles University, Malostranské nam. 25, 118 00 Praha 1, Czech
republic.

tGraduiertenkolleg “Algorithmische Diskrete Mathematik”, Fachbereich Mathematik, Freie Universitit
Berlin, Takustrasse 9, 14195 Berlin, Germany, supported by “Deutsche Forschungsgemeinschaft”, grant
We 1265/2-1.



1 Introduction and the statement of results

In this paper we investigate geometrical Ramsey—type results which are related to
the celebrated Erdos—Szekeres Theorem.

Theorem 1 (Erdés—Szekeres Theorem) For every positive integer n there exists a
positive integer ES(n) such that any set X of ES(n) points in general position in
the plane (i.e., no three lie on a line) contains vertices of a convex n-gon.

The Erdés—Szekeres Theorem is one of the original gems of Ramsey theory. By
combining it with Ramsey’s theorem [Ra 30] (see also [GRS 80] or [NR 90]) itself

we get:

Corollary 2 For every choice of positive integers p, k,n, there exists a positive in-
teger ES(p, k,n) with the following property: For any set X of at least ES(p, k,n)
points in general position in the plane and for any partition (f) =ChU...UC
there exists a set Y C X, |Y| = n, such that all p-subsets of Y belong to one class
Ci, of the partition and Y s the set of vertices of a convex n-gon.

To verify the corollary, one simply puts ES(p,k,n) = r(p,k, ES(n)), where
r(p, k, N) is the usual Ramsey number for p-tuples and k colours.

We are interested in a generalization of Corollary 2 to sets Y of a given config-
uration. Somewhat surprisingly this generalization can be done for p = 1 (i.e., for
partition of points) while in general (p > 1) a similar statement fails to be true.

Here is the key concept of this paper: Two finite planar point sets P and @)
are called combinatorially equivalent if there exists a bijection ¢ : P — () such that
p € conv(P’) if and only if i(p) € conv(i(P’)), for any p € P and P’ C P. Here
conv(X) is the convex hull of the set X and ¢(X) denotes the set {i(x): 2z € X}.

A finite planar point set X is said to be convex independent if conv(X') #
conv(X) for every proper subset X’ of X (or equivalently, if points of X are vertices
of a convex polygon). Otherwise X is said to be conver dependent. It is easy to
see that two sets are combinatorially equivalent if and only if there is a bijection
between them which preserves both convex dependent and convex independent sets.

Combinatorially equivalent sets and similar concepts have already been studied
explicitly in several papers (see [GP 91] or [GP 93] for a survey). Implicitly they
play a very important role mainly in discrete and computational geometry. See
also [KLS 91] for a survey on more general structures. In Section 2 we prove the
following Ramsey—type theorem.

Theorem 3 For any finite set P of points in the plane and for any integer k > 2,
there is a finite set R = R(P, k) of points in the plane such that for any partition of
R into k colour classes there is a subset P of R with the following three properties:
(i) P is monochromatic (i.e., it is a subset of one of the colour classes),

(ii) P is combinatorially equivalent to P,

(iii) conv(P)N R = P.
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Moreover, as we shall see from the proof, the set P in Theorem 3 may be required
to be an affine transform of P.

A subset X of a finite planar point set P is called a hole in P, or simply a
P-hole, or an empty polygon, if X is convex independent and conv(X)N P = X.
Horton [Ho 83] (see also [BF 87] or [Va 92]) proved that, for n > 7, the Erdés—
Szekeres Theorem cannot be strengthened to guarantee the existence of an n-hole.
The existence of a 5-hole in any set of 10 points in general position in the plane was
shown by Harborth [Ha 78] while the case n = 6 is still open.

Now Theorem 3 can be rephrased as follows.

Theorem 4 For any finite set P of points in the plane and for any integer k > 2,
there is a finite set R = R(P, k) of points in the plane such that for any partition
R=CyU...UCy there is an injection ¢ : P — R with the following three properties:
(i) i(P) C C,, for someig e {l,... k},

(ii) © preserves convex independent and convexr dependent sets,

(iii) ¢ maps P-holes to R-holes.

Motivated by Corollary 2 one can also consider a higher—order Ramsey—type
theorem (for p > 1). If we are partitioning the set (f) into k colour classes then a
result analogous to Theorem 3 cannot be valid in general: The pairs of any finite
set R can be coloured as follows. On every line with at least two points of R we
colour pairs of consecutive points alternately by two colours while all the other pairs
are coloured arbitrarily. In this way we avoid a monochromatic triple of collinear
points of R containing no other point of R in the convex hull. It follows that if we
are partitioning the set (f) then a result analogous to Theorem 3 cannot be valid
for planar point sets P which are not in general position. More generally, for p > 2,
if we are partitioning the set (?) then a result analogous to Theorem 3 cannot be
valid for planar point sets P with p 4+ 1 points on a line.

However, the situation is more difficult if we restrict our attention to point sets
P in general position. It turns out that Theorem 3 has no higher—order analogues
even in this case. In fact, this remains true even if we drop the hole—preserving

condition:

Theorem 5 For every p > 2, there exists a finite planar point set P(p) in general
position with the following property: There exvists a partition ("f) = (L UCy of all
p-element subsets of the plane into two colour classes such that no monochromatic
subset of R* is combinatorially equivalent to P(p).

Thus Theorem 3 fails to have a higher—order analogue in general. However, such
an analogue holds in some particular cases. Apart from Corollary 2 (which yields
such an analogue for any finite convex independent set P) we have the following
result which deals with the configuration () containing the three vertices and an
inner point of a triangle.



Theorem 6 Let () be a convex dependent set of four points in general position in the
plane. Then, for every integer k > 1, there exists a finite planar point set R = R(k)
such that for every partition of pairs of R into k classes one of the classes contains
all 6 pairs of points of some f-point set combinatorially equivalent to ().

The paper is divided into sections as follows. Section 2 contains the proof of
Theorem 3. In Section 3 we give the proofs of Theorems 5 and 6. Section 4 contains
concluding remarks.

2 Proof of the main result

Here is a short outline of the proof of Theorem 3: Given a planar point set we find
an equivalent set P whose points are placed inside a small neighborhood of a line.
Then we construct a set R containing many subsets combinatorially equivalent to
P and apply the Hales—Jewett Theorem to show that at least one of these subsets
is monochromatic.

Fix a set P in the plane, and let n = |P|. Without loss of generality (or by a
slight rotation of P) we may assume that all x-coordinates of the set P are different.
Let the points of P, ordered according to their z-coordinate, be p(1),...,p(n).

Let M > 0 be any number such that all points of the set P lie inside the M-
neighborhood of the x-axis (i.e., the y-coordinates of the points in P liein the interval
(=M, M)). For any € > 0, let P. be the set obtained from the set P by replacing
each point (z,y) by the point (z, 77y). If ¢ # 0 then the set P, is equivalent to P and
is placed inside the e-neighborhood of the x-axis. Otherwise (if ¢ = 0) the points
of Fy are collinear. The points of P, listed according to increasing x-coordinate will
be denoted by p.(1),...,p-(n).

Let o € [0,7) and let r, be the rotation of the plane by the angle a around
the origin. Thus r,(z) denotes the point which we get by rotating « by r,. Put
Pea(t) = ro(pe(?)) (for e > 0,0 = 1,...,n) and P.y = {peall),...,pea(n)} (for
e >0). Thus we could also write P., = r,(FP:).

To invoke the Hales—Jewett Theorem we need some notation. Put A = {1,...,n}
(and think of A as an alphabet). Given a positive integer N, we consider the set AN
of all mappings {1,..., N} — A. One can also think of A" as of the N-dimensional
cube over A. A (combinatorial) line L in AV is defined as an n-element subset of
AV satisfying the following condition: There exists a proper subset w C {1,..., N}
and a mapping fo : w — A such that the line L is formed by all mappings f :
{1,...,N} — A which satisfy f(:) = fo(¢) for ¢ € w and f(i) = f(j) whenever
i,7 € w. More explicitly, L = {«(1),...,2(n)}, where (for j =1,...,n)

2(5) = (x1(5), - -, an(j))
and

o) Jol) foricw
51?2(])—{]- for ¢ € w.
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Now we can formulate the Hales—Jewett Theorem [HJ 63] (see also [GRS 80]
or [NR 90]).

Theorem 7 (Hales—Jewett Theorem) For any two positive integers n,k > 2, there
exists an integer N = N(n, k) such that for any k-colouring of the points of the cube
AN A ={1,...,n}, there exists a monochromatic line.

Denote by L(AY) the set of all (combinatorial) lines in AY. For two points
= (x1,22),y = (y1,y2) in the plane, we define @ + y = (1 + y1, 22 + y2).

We shall embed the cube A" into the plane using properly chosen rotations
determined by ‘independent’ angles. For simplicity, for ¢ > 0, a = (a;)Y, and z =
(2 € AN, put ¢..(2) = Ef\il Peo(z:) and ¢o(2) = qoo(z). Now let L € L(AV)
be a combinatorial line such that the points ¢,(x) (z € L) are distinct. It is easy
to check that the points ¢, (2) (# € L) all lie on a straight line on the plane. Let us
denote this line by ¢.(L). We say that a = (aq,...,an) above is P-independent if
the points ¢,(z) (z € AV) are distinct and ¢,(2) & ¢.(L) for all lines L € L(AN)
and all z € AN\ L.

Lemma 8 For any finite planar point set P with different x-coordinates and for
any positive integer N, there is a P-independent N-tuple o = (aq,...,an).

Proof. Let a = (aq,...,an) be an arbitrary tuple of NV angles. We shall show that
one can get a P-independent N-tuple by small change of the angles «;. Suppose
two points ¢o (1), ¢u(w2) (v1,29 € AV 21 # 23) coincide. Let z; and x, differ in
the i-th coordinate. For ¢ > 0, set @ = (aq,..., -1, 0; + £, Qi41,...,an). The
points ¢z(x1) and gz(xs) are different and, if ¢ > 0 is sufficiently small, any two
points ¢z(7), ¢z(2'), z, 2" € AN, are different whenever the points ¢,(x) and ¢, (=)
are different. Thus, if « is replaced by @ (with ¢ > 0 sufficiently small) then the
number of coincidences between the points ¢,(z) (z € AY) drops. Repeating this
procedure we obtain a tuple a such that the points ¢, (x) (x € AY) are distinct.

Suppose now that, for Ly € L(AY) and for o € AN \ Lo, the point ¢, (xo)
lies on the line ¢,(Lo). Let ¢ € {1,..., N} be such that the n points of Ly have
distinct ¢-th coordinates (i.e., their i-th coordinates are 1 through n). For ¢ > 0, set
a=(o1,...,0_1,0; + &, Qit1,...,ay) as above.

Suppose ¢.(Lo) determines the angle 3 with the positive z-axis. Picking small
enough £ > 0, we may assume that (o; 4 (a;+¢))/2 # f—n/2 and (a;+ (e, +¢))/2 #
4 w/2. Then, ¢,(Lo) and ¢z(Lo) are not parallel. Let & be the point of Ly whose
i-th coordinate equals the i-th coordinate of xg. Then, the points ¢z(%) and ¢z(x0)
lie on a line which is parallel to ¢,(Lo) and, hence, not parallel to ¢z(Lo). Note that
the point ¢z(&) lies on the line ¢z(Lo) by definition. It follows that the point gz(x0)
does not lie on the line ¢z(Lg) (since otherwise ¢z(xo) = ¢z(2) and, consequently,
4o(70) = ¢o(2)). If ¢ > 0 is sufficiently small then the points gz(z) (z € AY) are
distinct and, for any L € L(AY) and = € AN \ L, the point gz(x) does not lie on
the line ¢z(L) whenever the point ¢,(x) does not lie on the line ¢,(L). Thus, if



« is replaced by @ (with ¢ > 0 sufficiently small) then the number of line—point
incidences drops.

Repeating the procedure described in the above two paragraphs, we finally obtain
a P-independent tuple «.

Now we are in a position to conclude the proof of Theorem 3.

Proof of Theorem 3. Let P be a set of n points in the plane with distinct -
coordinates. Put A = {l,...,n}. Let N = N(n,k) be a number guaranteed by
the Hales—Jewett Theorem. Let a be a P-independent N-tuple. Thus for any
line L € L(AY) and any z € AV \ L we have ¢,(z) € ¢.(L). By an obvious continuity
argument, there is a sufficiently small ¢ > 0 such that, for any line L € £(AY), the
convex hull of the points ¢. () (z € L) contains no point ¢. ,(z) with = € AV \ L.
For any line L € L(A"N), the set {q..(z) : # € L} is combinatorially equivalent to
the set P. Now we are prepared to show that the set B = {q. .(z): 2 € AV} has all
the required properties.

Let R = CyU...UCy be a k-colouring of R. It induces a k-colouring of the
set AN, According to the Hales—Jewett Theorem, there exists a monochromatic line
Lo € L(AYN). The set P= Geo(Lo) = {gea(x) : @ € Lo} is a monochromatic subset
of R, it is combinatorially equivalent to P, and its convex hull contains no point of

R\ P.

Note that the set P in the above proof is actually an affine transform of the set
P.

3 Proofs of related results

In this section we prove Theorems 5 and 6. The proof of Theorem 5 follows from
the following geometric result which we proved in [NV 93].

Theorem 9 ( [NV 93]) For any integer k > 0 and for any k+1 positive real numbers
E,T1,72, ..., T > 0, there exists a finite planar point set P in general position such
that any set combinatorially equivalent to P determines k + 1 distances d; (1 =
0, 1,...,k) such that |r; — d;/dy| < € for any i = 1,2,..., k. Moreover, one may
require the distances d; (1 =0, 1,...,k) to be determined by pairwise disjoint pairs
of points.

Proof of Theorem 5. First we prove Theorem 5 for p = 2. Let P be a set satistying
Theorem 9 for k = 2, ¢ = 0.01, r; = 1.9, and ry = 2.5. We find a 2-colouring of all
pairs of points of the plane such that no set combinatorially equivalent to P has all
pairs coloured by the same colour. Any pair (x,y) € ("R;) of points of the plane with
FEuclidean distance |zy| > 0 will be coloured blue if [log,|xy|| is an even integer.
Otherwise (z,y) will be coloured red. In other words, a pair of points is coloured
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blue if and only if the distance between the two points belongs to some interval
[2¢,2!F1) ) where ¢ is an even integer.

Now let P’ be a set combinatorially equivalent to P and let d;,7 =0, 1,2, be the
three distances in P’ ensured by Theorem 9. Thus |§—(1) —1.9] < 0.01. If the two pairs
of points determining dy and d; are coloured by the same colour, then the numbers
do and d; belong to the same interval [2!,2!T1). ¢ € 7, and, consequently, dy belongs
to the next interval [2!71 2!%2). Tt follows that all the three pairs determining the
distances dy, dy,ds cannot be coloured by the same colour. Theorem 5 for p = 2
follows.

Now let p > 2. Fix an arbitrary linear order < of the points of the plane,
and colour every p-tuple of points of the plane by the colour in which the pair
of the two smallest (in the order <) points of the p-tuple was coloured above. A
short argument shows that Theorem 5 holds for this 2-colouring and for the set
P(p) = P obtained from Theorem 9 for k =3p —4, e =0.01, 11 = ... =r,_o = 1,
rp1 = ... =73 =19, and rop_g = ... =rg,_q = 2.5.

Thus, an analogue of Theorem 3 fails to be true for partitions of p-tuples in a
very strong sense. However, some particular cases are valid. One such example is
provided by Theorem 6. We could denote the statement of Theorem 6 by R — (Q)3.
Despite the simplicity of the configuration ) our proot is quite involved and, in
particular, it makes use of Theorem 3. We shall only sketch the proof here as we
intend to return to this topic elsewhere.

Proof of Theorem 6 (Sketch).

First we prove the following lemma.

Lemma 10 For every given point sets Py, Py in general position and for every k > 1,
there are point sets Ry, Ry with the following two properties:

(i) R1 U Ry is in general position,

(i) for every partition C1U...UCy of all pairs (x1,22), 11 € R1,x2 € Ry, there exist
two sets P| C Ry, Py C Ry, P! combinatorially equivalent to P; for + = 1,2, such
that all pairs (x1,22), 21 € Ry, 22 € Ry, are monochromatic.

Proof. We apply Theorem 3. Put Ry — (P))}, Ry — (P}, where K = klfal. By
a standard Ramsey theory argument we get the statement.

Clearly Lemma 10 may be generalized (from bipartite to multipartite graphs with
more sets Py, Ps, Ps,...). We shall use this for r-partite graphs, where r = r4(3) is
the classical Ramsey number for a monochromatic triangle in any k-colouring of the
edges of the complete graph.

Somewhat surprisingly we shall prove Theorem 6 by induction on & : For k =1
Theorem 6 trivially holds. Let us assume that we have already found a planar
point set S such that S — (Q)?_,. Now let Ry,..., R, be r planar point sets such
that for any partition of all pairs (z,y),@ € R,y € Rj,i # j, there are r sets



Styeey 5551 € Ry,....5 C R,, equivalent to S such that for every choice of
indices ¢, j,7 # j, all pairs between S; and S; are coloured by the same colour ¢(z, j).
Now we can suppose that the set R; is placed in a very small neighborhood of the
vertical line L; = {(¢,y) : y € R} with all its y-coordinates distinct. Assume that
the y-coordinates of all the points in R; are in the interval (i%,:% 4+ 1). According to
Ramsey’s Theorem (r = ri(3)), there are three indices ¢, 7,[,¢ < j < [, such that all
pairs x,y between S;, 5}, 5; are coloured by the same colour ¢ (in the above notation
c=c(i,j) = c(i,l) = e(y,1)). If no pair of distinct points of S; is coloured by the
colour ¢, then we can use the inductive assumption S; — (Q)i_, to get a copy of )
with all pairs of points coloured by the same colour. Thus we may assume that there
exists a pair (2, 2) of points of S; coloured by the colour ¢. Choose x; € Si,x; € S
arbitrarily. By our construction both x; and 2’ lie below the line z;z; and, if R; is
in a small enough neighborhood of L;, the line z;2’ separates the points z; and ;.
Thus {x;,2;,2%, 2} is a homogeneous set equivalent to Q.

4 Concluding remarks

1. Theorem 3 may be generalized to any fixed finite dimension. Since Theorem 9
holds in a higher dimension (see [NV 93]), Theorem 5 may be also generalized to a
higher dimension.

2. Another way of rephrasing Theorem 3 (for sets in general position) is by means
of geometric graphs (which were studied in various contexts, e.g. in [Lo 79], [NPT
81], [KL 85], [Pa 91], [MP 93]). A geometric graph is defined as a pair (V, F), where
V' is a set of points in general position in the plane and F is a subset of the set of
all line segments connecting points of V. Two geometric graphs (V, E), (V', E') are
said to be isomorphic if there exists a bijection f:V — V' satisfying the following
two conditions:
(i) vivy € F if and only if f(v1)f(ve) € £/,
(ii) two line segments vivg,v3vy € F cross if and only if the corresponding line
segments f(v1)f(vs), f(vs)f(vy) € E' cross.

The following theorem may be proved with the method used in the proof of
Theorem 3.

Theorem 11 For every geometric graph (V, E) there exists a geometric graph (W, F')
such that, for every partition W = CyU. ..U Cy, there exists a set V! C W with the
following three properties:

(i) The subgraph of (W, F) induced by V' is isomorphic to (V, E) as a geometric
graph,

(it) V' C Cy, for some i,

(iii) the convex hull of V' contains no point of W\ V'.
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3. The above proof of Theorem 6 does not guarantee that conv(Q’) N R = @'. We
do not know whether Theorem 6 with the extra condition conv(Q)’) N R = @’ holds.
In general we have the following question: Does there exist a planar point set Q for
which an analogue of Theorem 6 holds but such an analogue does not hold if we
further require that the corresponding set @/ should satisfy conv(@l) NR= @/?

4. The minimal size of the set R in Theorem 3 is bounded by a primitive recursive
function (by Shelah’s proof of the Hales—Jewett Theorem, [Sh 88]). However, the
best lower bound we have is only quadratic (in |P|). The quadratic lower bound
holds even if we delete condition (iii) in Theorem 3.

5. If we delete condition (iii) in Theorem 3 then, for k& = 2 and for any set P in
general position, it is possible to find a set R of size O(n?) satisfying Theorem 3
(without (iii)), where n = |P|. On the other hand, for any positive integer n, there
is a set P of size n in general position for which the size of any set R satisfying
Theorem 3 (without (iii)) is at least Q(n?/logn).

Acknowledgment. We would like to thank the referee for his very careful work.

(This paper is to appear in Combinatorics, Probability and Computing (1994).)
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