FINITE THREE DIMENSIONAL PARTIAL ORDERS
WHICH ARE NOT SPHERE ORDERS
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ABSTRACT. Given a partially ordered set P = (X, P), a function F which as-
signs to each x € X a set F'(x) so that z <y in P if and only if F(z) C F(y)
is called an inclusion representation. Every poset has such a representation,
so it is natural to consider restrictions on the nature of the images of the
function F'. In this paper, we consider inclusion representations assigning to
each € X a sphere in R%, d-dimensional Euclidean space. Posets which have
such representations are called sphere orders. When d = 1, a sphere is just an
interval from R, and the class of finite posets which have an inclusion repre-
sentation using intervals from R consists of those posets which have dimension
at most two. But when d > 2, some posets of arbitrarily large dimension have
inclusion representations using spheres in R?. However, using a theorem of
Alon and Scheinerman, we know that not all posets of dimension d + 2 have
inclusion representations using spheres in R%. In 1984, Fishburn and Trotter
asked whether every finite 3-dimensional poset had an inclusion representation
using spheres (circles) in R2. In 1989, Brightwell and Winkler asked whether
every finite poset is a sphere order and suggested that the answer was nega-
tive. In this paper, we settle both questions by showing that there exists a
finite 3-dimensional poset which is not a sphere order. The argument requires
a new generalization of the Product Ramsey Theorem which we hope will be
of independent interest.

1. INTRODUCTION

Given a partially ordered set (poset) P = (X, P), a function F which assigns to
each z € X a set F(z) is called an inclusion representation of P if x < y in P if
and only if F(x) C F(y). Every poset has such a representation. For example, just
take F(z) = {y € X : y < z in P}. In recent years, there has been considerable
interest in inclusion representations where the images of the function F are required
to be geometric objects of a particular type, with attention focused on circles and
spheres. We refer the reader to [7] for a summary of results in this area and an
extensive bibliography.

As is well known, the finite posets of dimension at most two are just those which
have inclusion representations using closed intervals of the real line R. Because a
closed interval of R can also be considered as a sphere in R!, it is natural to ask
which posets have inclusion representations using disks (circles) in R?. For historical
reasons, these posets are called circle orders. Fishburn [4] showed that all interval
orders are circle orders. Also, the so called standard examples of n-dimensional
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posets, the 1-element and (n — 1)-element subsets of {1,2,...,n}, ordered by in-
clusion, are circle orders. So among the circle orders are some posets of arbitrarily
large dimension.

Call a poset P a sphere order if there is some d > 1 for which it has an inclusion
representation using spheres in R?. Using the “degrees of freedom” theorem of Alon
and Scheinerman [1], it follows that not all posets of dimension d+ 2 have inclusion
representations using spheres in R?. In particular, when d = 2, we conclude that
there are 4-dimensional posets which are not circle orders. In this case, an explicit
example can be given, as Sidney et al. [22] have shown that the 4-dimensional poset
consisting of the 14 proper nonempty subsets of {1,2,3,4} ordered by inclusion is
not a circle order.

In [21], Scheinerman and Wierman used a very nice Ramsey theoretic argument
to show that the countably infinite 3-dimensional poset Z? is not a circle order.
They also noted that {1,2,...,n} x {1,2,...,n} x Nis not a circle order when n is
sufficiently large. Additional contributions along this line appear in Hurlbert [11],
Lin [13] and Fon-Der-Flaass [9]. The last of these proves that {1,2} x {1,2,3} x N
is not a circle order.

These results leave open the following question:

Question 1. Is every finite 3-dimensional poset a circle order? O

This question was raised by Fishburn and Trotter at the Banff meeting on ordered
sets in 1984 but has also been posed by other researchers. Although the results
in the preceding paragraph suggest that the answer is negative, some evidence
supports a positive answer. As shown in [24], for every finite 3-dimensional poset
P and every integer n > 3, P has an inclusion representation using regular n-gons
in the plane. So it is natural to surmise that as n — oo, we may be able to pass to
a limit and obtain the desired inclusion representation using circles.

Some of the motivation for questions involving inclusion representations for
posets comes from the parallel concept of intersection graphs. For example, Mae-
hara [14] showed that for every finite graph G = (V, E), there is some d > 1 so
that G is the intersection graph of a family of spheres in R?. The corresponding
question for posets was posed independently by Brightwell and Winkler [3] and by
Meyer [15]. Brightwell and Winkler also conjectured that the answer is negative.

Question 2. Is every finite poset a sphere order? O
This paper settles Question 1 and Question 2 with the following result.

Theorem 1.1. There exists a finite 3-dimensional poset which is not a sphere or-
der.

Inclusion representations that use circles and spheres have other applications and
have been studied for a variety of reasons. For example, Scheinerman [18] proved
that a graph G = (V, E) is planar if and only if the poset formed by its vertices and
edges, ordered by inclusion, is a circle order. Knight [12] has studied representation
problems using non-standard analysis, while Meyer [15], [16], [17] and Brightwell
and Gregory [2] have investigated the modeling of time and space with spheres, an
approach of interest to physicists.

Additional information on circle and sphere orders appears in Scheinerman [19],
[20], while more general geometric objects are considered in Fishburn and Trot-
ter [6], Sidney et al. [22], Tanenbaum [23], Urrutia [27] and other papers cited in
Fishburn and Trotter [7].
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The remainder of the paper is organized as follows. Section 2 provides basic no-
tation and terminology. Section 3 outlines the proof. Section 4 gathers important
Ramsey theoretic tools essential to our argument, tools which we feel will have ap-
plications beyond this paper. In Sections 5-10, we present the proof of Theorem 1.1.
Section 11 discusses related problems and research directions.

2. NOTATION AND TERMINOLOGY

For positive integers n and ¢, let n denote the chain0 < 1 < --- < n—1, and let n!
denote the cartesian product of ¢ copies of n, so that (i1,i2,-..,i) < (J1,42,---,]t)
in n? if 4, < jr in R for k = 1,2,...,¢t. Also let Ry denote the set of all positive
real numbers.

Given a poset P = (X, P), recall that the the minimum cardinality of a family
of linear extensions of P whose intersection is P is called the dimension of P and is
denoted by dim(P). We refer the reader to [24] for additional background material
on the subject of dimension for partially ordered sets and to [25] and [26] for more
discussion of connections between graphs and posets. Here we will need only the
well known fact that a finite poset has dimension at most ¢ if and only if there
is an integer n for which it is isomorphic to a subposet of nf. Hence, to prove
Theorem 1.1, it then suffices to establish the following result.

Theorem 2.1. There exists an integer ng so that if n > ng, the finite 3-dimensional
poset n3 is not a sphere order.

For positive integers n, d and ¢, we consider inclusion representations of the
poset n? using spheres from R?. We use the letters u, v, w, z, y, z, B and T
to denote elements of nf. For example, the coordinates of x for t+ = 3 would be
(z(1),2(2),2(3)). Also, we write, for example, z = (5,4, 7) to indicate the element
in n? with (1) =5, #(2) =4 and x(3) = 7.

Given an inclusion representation F of n?, using spheres in R?, the center of the
sphere F(z) will be denoted by c(x). We never refer explicitly to the coordinates
of ¢(x), as we wish to emphasize that our argument is independent of the value of
d.

We will also use the symbol s (with various subscripts) to denote points in R?
which may or may not be centers of spheres in our representation. We denote the
Euclidean distance between points s; and s» from R? by p(s;,s2). When z and y
are points in n®, we abbreviate p(c(z),c(y)) by p(z,y). Accordingly, the inclusion
rule may be stated as follows:

(1) z < yin n® if and only if r(y) — r(z) > p(z,v).

In other words, one sphere is contained in another when the difference in their
radii is at least as large as the distance between the centers. Technically speaking,
we should write pp(x,y) because the distance between c(z) and c(y) depends on
F. However, in our proof, once an inclusion representation F' is determined, we
make at most two modifications to the representation, and both leave the distance
between centers invariant.

Given two points s; and so in R?, let L(sy, s2) denote the line they determine.
The line L(c(x), c(y)) will be abbreviated by L(z,y).

Given three non-collinear points s1, s2 and ss, let ¢(s1, s2, s3) denote the angle
at s1 determined by L(s1, s2) and L(s1,s3). Also let y(s1, $2, s3) denote the angle
formed at s3 by L(s1,s3) and L(s2,s3). Then let p(si,s2,s3) denote the unique
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point on L(sy, s3) which is closest to sq, and let h(sy, s2,s3) = p(32,p(51,32,53))
(see Figure 1). As usual, when discussing centers, we will just write ¢(z,y,z),
v(2,9,2), p(z,y,2) and h(z,y, 2).

The proof of our main theorem uses a large constant N which we somewhat ar-
bitrarily take as N = 101%°. More modest values would work but would undermine
the Ramsey theoretic perspective we have adopted. More importantly, in a certain
sense, the perspective we have taken is forced. Given any collection of spheres,
elementary Lorentz transformations may be applied to relocate the centers so that
they are very close to being collinear. So this paper can be viewed as an effort to
work with small errors—a task that sometimes requires large constants.

The following notation is used throughout. When e; and e» are positive quanti-
ties, we write

e1 << ey when Ne; < es.
Also, we write
e1 S ex when eg < ex(1+1/N).

We use e2 >> e; as an alternative for e; << ez, and e3 2 e; for ey < e2. When
e1 S ez < ey, we will write e; & e2. Furthermore, our inequalities will be strong
enough to allow the natural notion that if e; &~ es and es & e3, then e; = e3.

When arguing to a contradiction using quantities compared with this notation,
we must be careful to avoid such traps as believing that

e1<ex<eg<es<es<er

results in a contradiction, because it only leads to the conclusion that the five
quantities are approximately the same. So to obtain a contradiction, we will always
show (at least) something like

e1 Sez and 2e2 S e

Also, our argument will make extensive use of a principle which we call differen-
tiation and develop in Section 4. To illustrate this principle, consider an injective
function f : n®> — R, and let = and y be distinct elements of n®. Because f is
injective, f(z) # f(z). In arguments that follow, we will control the behavior of f
so that one of the following three situations always obtains:
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flz) << f(y).
f(x) >> f(y).
fz) = f(y)-

In other words, we want to exclude the middle ground where, for example,

fx)(1+1/N) < f(y) < Nf(=).

When f maps distinct points  and y so that f(z) ~ f(y), we will need to
examine how differences behave. In this case, when f(z) < f(y) < f(z), we want
to have either

fly) = f(@) << f(2) = f(y),

or

fly) = f(z) >> f(2) = f(y),

and never
fy) = f(@) = f(z) — f(y).
Let ey, e; and ez be positive positive real numbers. We write
e1 — ey = zero(es)

when ez << e, ex S ep +e3, and e; < ez + eg. The basic idea here is that we will
have three quantities satisfying a weak version of the triangle inequality

ei+e; 2 e

for all distinct 4,7,k € {1,2,3}. We will then discover that e; is much larger than
es3, leading to the conclusion that e; and e, are almost exactly the same size.

3. OUTLINE OF THE PROOF

We will assume that we have an inclusion representation of n® using spheres in
R? and argue to a contradiction—provided n is sufficiently large.

The basic idea of the proof is straightforward. We envision the centers of the
spheres as being nearly collinear along some line in R?. Each sphere will have as
its radius a value which is almost exactly the same as the distance from its center
to the center ¢(B) of the bottom point B = (0,0,0). Given any two other points x
and y in n?, the center of one will be much closer to ¢(B), say by a mulitiplicative
factor of N = 10'% or more.

For distinct points z and y from n®

, we define

gap(z,y) = r(y) —r(z) — p(z,y).

When z < y, gap(z,y) > 0, and when z is incomparable to y, gap(z,y) < 0.
However, in all cases, p(x,y) and |r(y) — r(z)| will be approximately equal, so we
will need to pay careful attention to the magnitude of the error terms.

For three distinct points z, y and z, let

A(%Z/:Z) = p(fL’,y) + p(yvz) - p(m,z)
Clearly, A(z,y,2) > 0, and A(z,y,2) > 0 when the centers are not collinear.
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The proof of our main theorem focuses on a 2-element chain z < z and the
quantity gap(z,z). We will obtain upper bounds on gap(z,z) by considering a
point incomparable to both xz and z. For example, suppose v is such a point. Then

r(z) —r(x) = (r(v) —r(@) + (r(z) = r(v)) < plz,v) +p(v, 2),
so that
gap(z, z) < A(z,v, 2).

Since this bound holds for any point incomparable to both z and z, we may consider
several candidate points and take the best bound they produce.

To obtain a lower bound, we consider an integer k and a chain C' of 2k + 1 points
having = as its bottom element and z as its top element. Let C' = {z = u; < us <
-+« < Usp41 = 2} be such a chain. Then

r(z) = r(z) = r(ugpsr) = r(u)

2k

= Z[T(“Hl) — r(u;)]
12_161

> Z p(Wit1,u;)

k
= [p(u2igr, i 1) + Alui 1, uni, tniga)]
i=1

k
> plug, tzpr) + Y Aunio1, Uni, Ugigr)-
i=1
k
= p(z,2) + Z A(uzi—1,u2i, U2i41)-
i=1
Setting
k
Az, C,2) = Z Auzi—1, Ui, U2i41),
i=1
we conclude that
gap(z,z) > Az, C, 2).

In all cases, we will obtain a contradiction by carefully choosing a point v, with v
incomparable to both = and z, and a chain C' having x and z as its bottom and top
elements so that

Az,v,2) < Az, C, 2).

The chain C will often consist of x, z and one intermediate point, but there are
cases that need several intermediate points.

The argument depends heavily on Ramsey theory to assure that our representa-
tion is suitably regular. However, we must avoid any dependence on the dimension
of the space from which the spheres in the representation are taken.

Finally, we encourage the reader to observe the key role played by dominating
coordinates, a concept which is introduced in the next section.
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4. EXTENSIONS OF THE ProDpucT RAMSEY THEOREM

Given a finite set S and an integer k£ with 0 < k < |S|, we denote the set of all
k-element subsets of S by (i) Given integers t and k and finite sets S1, S5, ..., Sy,

we call an element of (5') x (52) x -+ x (%) a grid (also, a k' grid ). The sets

S1,S5%,...,S; are called factor sets of the grid. Using the natural order, a set of n
integers is just an n-element chain, so considered as a poset, S; X Sy X --+ X S; is
isomorphic to ny X ny X --- X ng, where n; = |S;| for i =1,2,...t.

The following Product Ramsey Theorem, stated here in poset form, will be
used extensively in making certain uniformizing assumptions about the inclusion
representation. We refer the reader to [10] for the proof and additional material on
Ramsey theory.

Theorem 4.1. Given positive integers m, k, r and t, there exists an integer ng
so that if n > mno and f is any map which assigns to each k' grid of n' a color
from {1,2,...,r}, then there exists a subposet P isomorphic to m' and a color
a€{1,2,...,r} so that f(g) = a for every k* grid g from P. O

We will refer to the least ng for which the conclusion of the preceding theorem
holds as the Product Ramsey number PR(m, k, r, t).

Recall that z < y in n! if and only if x(i) < y(i) for i = 1,2,...,t. So it does
not follow that z(i) < y(i) for i = 1,2,...,t when = < y in n’. Nevertheless, the
following elementary proposition allows us to assume that if z # y, then z(i) # y(7)
fori=1,2,...,t. We view this proposition as a “spacing” tool in that it allows us
to assume that distinct points have all coordinates distinct and separated by some
reasonable amount.

Proposition 4.2. Let m, n and G be positive integers with n > Gmt. Then the
function I : m! — nt defined (cyclically) by

I(z)(i) = GZm(z +j—1)(m —1)t=i~t

is an embedding. Furthermore,
1. Ifz,yemt, i€ {1,2,...,t} and z(i) < y(i), then I(z)(i) < I(y)(i).
2. Ifz,y € m' and x # y, then |I(z)(i) — I(y)(i)| > G fori=1,2,...,t.
O

In what follows, we refer to the integer G in the preceding theorem as the gap
size of the embedding I.

Let P be a poset and let f map P into R. We say f is monotonic if it is either
order-preserving or order-reversing. Now consider an order-preserving function f
which maps n? (or a subposet of nf) to R. We say that f is dominated by coor-
dinate « if for all z and y from its domain, f(z) < f(y) whenever z(a) < y(a).
Dually, given an order-reversing function f, we say that f is dominated by « if for
all z and y from its domain, f(z) > f(y) whenever z(«a) < y(a).

In [8], Fishburn and Graham used the Product Ramsey Theorem to obtain the
following result.

Theorem 4.3. Given integers m and t, there exists an integer ng so that if n >
no and f is any injective function from m® to R, then there ewist a coordinate
a € {1,2,...,t} and a subposet P isomorphic to m! so that the restriction of f to
P is monotonic and dominated by coordinate «. O



8 S. FELSNER, P. C. FISHBURN, AND W. T. TROTTER

We stated the preceding theorem (and all to follow) in terms of injective func-
tions, because all the functions we consider may be assumed to be injective. If this
assumption is dropped, then a modestly more complicated concept of domination
is needed, and the conclusions of the theorems have additional cases. However, the
basic principles we discuss here apply to arbitrary functions.

Here is one elementary consequence of coordinate domination.

Proposition 4.4. Let f, g and h be monotonic injective functions from nt to Ry,
each dominated by a coordinate. If h(x) = f(x)g(x) for all x in n?, then two of the
three functions are dominated by the same coordinate.

Proof. We provide the proof when f is order-preserving and ¢ is order-reversing,
all other cases being similar.

Suppose the conclusion fails and f, g and h are dominated by distinct coor-
dinates, say f by coordinate 1, g by coordinate 2 and h by coordinate 3. Then
consider the points z; = (1,3,2,0,0,...,0), 22 = (2,2,3,0,0,...,0), and z3 =
(3,1,1,0,0,...,0). Observe that h(z1) < h(z2) < h(zs), 1(3) = 2, z2(3) = 3 and
23(3) = 1. Thus h cannot be dominated by coordinate 3, regardless of whether it
is order-preserving or order-reversing. O

Note that if f is a monotonic function from n?! to Ry and f is dominated by
coordinate a, then the reciprocal of f is also dominated by coordinate «, as is the
square of f.

One central concept in our proof is the notion of how fast a function changes.
Now a sequence, even a strictly increasing sequence, doesn’t have to change very
much at all, but in this case, differences can change dramatically.

To provide further motivation, we present the following elementary proposition.

Proposition 4.5. For positive integers m and N with N > 1, there exists an
integer ng so that if n > ng and a1 < as < --- < a, s any strictly increasing
sequence of real numbers, then there exists a subsequence ap, < ap, < -+ < ap,, S0
that for all i,7,k,l with 1 <i < j <k <Il<m, either

Qp

; — Op; >> QAp, — Qpy,s

or
ap; — Ap; << Ap; — Gpy -
O

We will be studying functions defined on n' in what follows. Setting u; =

(i,1,...,1), the values of f(u;) form a long sequence, and we will want (at least)
to control the behavior of f on a long subchain in a manner indicated by the
conclusions of Proposition 4.5.

With these comments in mind, we present the basic definitions which will de-
scribe how a function changes. We say an order-preserving function f : X — Ry
advances conservatively in magnitude if f(y) >> f(x) whenever f(y) > f(x). Simi-
larly, we say that an order-reversing function f retreats aggressively in magnitude if
fy) << f(z) whenever f(y) < f(z). We abbreviate these two definitions with the
symbols ACM and RAM, respectively. The basic idea is that an ACM function
advances in a manner that postpones large changes as long as possible. Dually, a
RAM function retreats rapidly, making large changes as soon as possible. Both
properties are defined in terms of a parameter IV, which we fix in this paper by
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setting N = 10'%, Nevertheless, our definitions make complete sense with any
value of N which exceeds 1.

We say a function f : X — Ry is nearly constant if f(z) =~ f(y) for all z,y € X.
We abbreviate this property with the notation NC. Evidently, the three properties
ACM, RAM and NC are mutually exclusive. However, a function can be NC
without being monotonic.

As discussed in Section 3, when a function is nearly constant, we still need to
describe how its differences behave. Accordingly, when f is an NC order-preserving
function, we say that f advances conservatively if f(y) — f(x) << f(2) — f(y)
whenever f(z) < f(y) < f(z). Similarly, we say that an order-preserving NC
function f advances aggressively if f(y) — f(z) >> f(2) — f(y), whenever f(z) <
fy) < f(2).

Dually, if f is an NC order-reversing function, we say that f retreats conserva-
twely if f(z) — f(y) << f(y) — f(z) whenever f(z) > f(y) > f(z), and we say that
f retreats aggressively if f(x) — f(y) >> f(y) — f(z) whenever f(z) > f(y) > f(2).

We use the abbreviations AC, AA, RC, and RA for the four properties defined
in the preceding two paragraphs, so for example, the statement f is RC means
that f is an NC order-reversing function which retreats conservatively. Note that
we have defined these last four properties only for NC functions.

Let £ ={AC,AA,RC,RA, ACM,RAM]}. We call the elements of £ change
labels. Now for any function f, at most one of these change labels applies—and for
many functions, none of them is appropriate. The 6¢ elements of £ x {1,2,...,t}
are called change patterns. A function f : nt — Ry is said to be uniform if there
exists a change pattern (L, @) so that f is L and is dominated by coordinate a. In
this case, we say that f satisfies the change pattern (L, ).

With this background material in mind, we state a theorem which is only a gentle
extension of Theorem 4.3. However, we will need an even stronger result, one for
which the following theorem is an immediate corollary.

Theorem 4.6. Given positive integers m, t and N with N > 1, there exists an
integer ng so that if n > ng and f : nt — Ry is any injective function, then
there exist a subposet Q isomorphic to m' and a change pattern (L, ), so that the
restriction of f to Q is a uniform function satisfying (L, ). O

To prove our main theorem, we need to uniformize a large number of functions,
a number which goes to infinity with n. The preceding result would allow us to
handle only a bounded number of functions. Fortunately, the functions we need to
uniformize have additional structure.

Let k and s be positive integers with 1 < s < k, and let A be a function which
maps the k! grids of n® to Ry. Then for each (k — 1)* grid g, we can define a
function A, s on certain points in n’, namely on those points z (the set of such
points may be vacuous) in n’ so that for each i = 1,2,...,t, the coordinate z(i) is
larger than the smallest s — 1 integers in the i*" factor set of g and less than the
largest k — s. Of course, when the it coordinate of z is added to the i*" factor set
of g for i = 1,2,...,t, we obtain a k' grid ¢’. So we can define 4, ,(z) = A(g').
Note that the function A, has as its domain a poset which is a product of ¢
chains—although in general the lengths of these chains is not constant. We call
A, s a (k, s)-induced function.

To make this more concrete, suppose we have an inclusion representation of

n® using spheres from R?. Then we can define a function A which maps the
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33 grids from n?® to Ry as follows. With each 33 grid ¢', we associate a chain
x <y < z, and then define A(g') = ¢(z,y, z), the angle at = formed by L(z,y) and
L(z,z). Now consider, for example, the value s = 2. Then consider the 2¢ grid
g = {10,23} x {47,90} x {18,45}. It follows that the (3,2)-induced function A, »
is defined on a subposet isomorphic to 12 x 42 x 26. Of course, the size of the
subposet on which the function A, s is defined depends both on g and s. However,
if the set of points on which A, ; is defined is non-empty, we can discuss the issue
of whether A4, , is uniform.

We are ready to present the main uniformizing theorem needed to prove Theo-
rem 2.1. In the proof, we sketch those details which are included in the proof of
Theorem 4.3 and concentrate on those which are new to this paper.

Theorem 4.7. Given positive integers m, t, k and N with N > 1, there exists an
integer ng so that if n > ng and A is any injective function which maps the kt grids
of n® to Ry, then there exist k change patterns (Li, 1), (L2, a2), ..., (L, ar) and
a subposet P isomorphic to m! so that for every s = 1,2,...,k and every (k — 1)
grid g in P, the (k, s)-induced function Ay s is uniform and satisfies change pattern
(L, a).

Proof. Before beginning the proof, we comment that it is essential that the change
pattern of an induced function A, , depends only on s, not on g. There are only k
choices for s, but the number of choices for g can be much larger than n. To help
the reader keep track of sizes, we will always use g, g’ and ¢" (with subscripts) to
denote grids of size (k — 1), k! and (k + 1)¢, respectively.

Set ¢ = 100m! N log N +4k and [ = k(2% +3-22%). Then set r = 2!. The value of
q is taken to insure that ¢ is comfortably larger than m?, Nlog N and k. We now
show that the value no = PR(q, k + 1,r,t) satisfies the conclusmn of our theorem.
To accomplish this, we start with a poset P = P isomorphic to nf. We will then
determine subposets Py, Py and P3 with P;;1 a subposet of P; for ¢ =0,1,2. For
each i = 0,1,2,3, P; will be isomorphic to n. The values of the other parameters
are n; = ¢, ne = ny; — 4k and nzg = m.

To show that the specified value of ng works, we first describe a coloring of the
(k + 1)? grids in nt.

Let A be any injective function which maps the k? grids of nf to Ry. We use A
to define a coloring of the (k + 1)! grids of nf using r colors.

Given a (k + 1)t grid ¢”, we temporarily relabel the factor sets so that each
is just {1,2,...,k + 1}. For each s = 1,2,...,k, we consider the set G, of all
k! grids having factor sets of the form {1,2,...,5s — 1,e,s + 2,5+ 3,...,k + 1},
where e € {s,s + 1}. For each s, there is a natural correspondence between grids
in G5 and subsets of {1,2,...,t}. So we can label these grids as ¢'(S,s) where
S C {1,2,...,t}. With this convention, ¢'(f),s) corresponds to the subgrid in
which every factor set is {1,2,...,s,s+2,s+3,...,k+ 1}. When the value of s is
fixed, we may just refer to a grid as a subset of {1,2,...,t}.

Now fix a value of s. Then consider all the images of the grids in G5 under the
map A, using the abbreviation A(S) for A(¢'(S,s)). As a consequence, some of the
following statements will be true (T) and some will be false (F).

1. (51) < A(Sz)

2. A(S1) << A(So).

3. A(S1) S A(S2).

4. A(S1) — A(S2) << A(S3) — A(S4)-
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To emphasize that these statements actually depend on both ¢” and s, we refer
to them collectively as X(g", s).

In each of the first three forms, there are 22! ordered pairs of variables for which
the statement can be meaningfully expressed. In the last form, there are 2* ordered
4-tuples for which the statement makes sense. So summing over all s, there are
[ = k(2% + 3 - 2%) statements altogether. It follows that we may associate with g
a boolean string of T’s and F’s of length I. There are r = 2! such strings.

Since ng = PR(q,k + 1,r,t), there is a subposet P; isomorphic to q' so that
all (k +1)* grids in P; receive the same color. This uniform color is then an
assignment of truth values so that the issue of whether statements in X(g", s) are
true or false depends only on s and not on ¢g”. Accordingly, for the subposet Py
in which all grids receive the same color, we can refer to statements in the family
Y (s), deleting ¢g"" from our earlier notation.

Now let P» denote all those x € Py so that 2k < z(i) < n;—2kfori=1,2,... t.
Then P5 is isomorphic to ny with ny = n; — 4k as promised. (This technical step
is just to save some space at the top and bottom of Ps.)

Since ny > 3mf, we may use the spacing proposition to choose a subposet P3 of
P., with P3 isomorphic to m?, so that Pz is embedded by I in Py with gap size 3.

In the remainder of the proof, we concentrate on points from P3, but we discuss
their coordinates in Po— via the embedding I.

Now fix a value of s. We show that there exists a change pattern (L, «) so that if
g is any (k — 1)? grid in P, the induced (k, s) function A, , is uniform and satisfies
the change pattern (L, @).

Let g be any (k — 1) grid in P3. We may assume without loss of generality that
the subposet Q of points in P3 on which A, ; is defined is non-trivial, else there is
nothing to prove.

If  and y are distinct points from Q, then the coordinates of x and y together
with the grid g form a (k + 1)¢ grid ¢g”. Although ¢ depends on g, x and y, all
(k + 1) grids receive the same color, so we can track the behavior of their images
in some canonical grid, say the one in which all factor sets are just {1,2,...,k+1}.

As before, we associate x and y with subsets of {1,2,...,t}. If z <y, then z =
and y = {1,2,...,t}, so A, s is order-preserving if and only if the statement

AD) < A({1,2,...,t})

from X(s) is true.

Now suppose A, s is order-preserving. We explain why A, s is dominated by a
coordinate o which depends only on s.

Consider the grids corresponding to the singleton sets {1}, {2},...,{¢t}, and the
order of their images under A. Suppose that the largest of these is A({a}). We
now show that A, , is dominated by coordinate @, and assume that o = 1 without
loss of generality.

Now consider the points v, va,...,v; in Py where

1. v (1) =i —1;

2. vi(j)=ny—1 forj=2,3,...,t —i+1; and

3. v;(j) =0 forj=t—i+2,...,t

We claim that A s(v;) < Ay s(vig1) fori =1,2,...,t— 1. To see this, note that
for each i, we can add a (k — 1) grid to the coordinates of v; and v;;1 to form a
(k + 1)? grid for which v; = {1} and v;11 = {t — i + 2}.

It follows that A, (0,6 —1,t —1,...,.t—1) < A, 4(t —1,0,0,0,...,0).
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Now let # and y be distinct points from Q with z(1) < y(1). We show that
Ay s(x) < Ags(y). This is certainly true if 2 < y, so we assume that 2 and
y are incomparable. Since the coloring of grids is uniform, and A, s is order-
preserving, we conclude that A, s(z) < Ags(z(1),n1 —1,n1 —1,...,n1 — 1) <
A!J,S(y(l)a 07 07 07 Tt 0) S A!J,s(y)'

The situation when A, ; is order-reversing is dual.

We now show that the restriction of A4, to P3 is uniform and has a change
pattern which depends only on s. Suppose first that A, , is order-preserving.

Consider the following statement from X(s):

A({1,2,..,8) S AD).
Suppose first that this statement is false. Then we know that A, ,(y) > (1 +

1/N)A, s(z) for every 2-element chain from Q.
Recall that ¢ > 10N log N. Consider the chain uy < u; < -+ < ug — 1 in Py,

where u; = (4,4, ...,1) (coordinate values in P5). Then consider two other auxiliary
chains v; < vy < --- < v and wy; < we < - -+ < wy, from P; — Py, where v;(j) =i
fori =1,2,...,kandallj =1,2,...,t. Also, w;(j) =ni1—k—1+ifori=1,2,... k
and all 7 = 1,2,...,¢t. These coordinate values are defined in Py, so vy < ug and
Ug—1 < W1.

Then for each i =0,1,...,¢ — 1, we may consider the grid g; determined by u;
and appropriate portions of the two auxiliary chains, i.e, s — 1 of the points from
the bottom and k — s from the top. Together, they form a k’ grid g;. For simplicity,
we write A(u;) rather than A(g}).

For each 4,5 =0,1,...,¢ — 1, with ¢ < j, we may consider the points u; and u;
together with portions of the auxiliary chains as forming a (k + 1)! grid in which
u; and u; occur as levels s and s + 1. In such a grid, u; = 0 and u; = {1,2,...,t}.

With the choice j = i + 1, we conclude that A(u;11) > (1 + 1/N)A(u;) for
i =1,2,...,g — 1. Since ¢ > 10N logN, it follows that A(u1)) << A(ug_1).
Therefore the statement

A0) << A({1,2,...,t})

from X(s) is true, and A, s(z) << Ay 5(y) for every 2-element chain z < y.

Now suppose that # and y are any two points from Q and that A, ;(z) < Ay 5(y).
Since A, s is dominated by coordinate o, we know that z(a) < y(a). Since the gap
size is at least 3, we may choose an integer § so that z(a) < 8 < 8+ 1 < y(a).
Now let u and v be any two points in Q so that u < v, u(a) = 8 and v(a) = 4+ 1.
Then A, s(z) < Ags(u), Ags(u) << Ay 5(v) and Ay 5(v) < A, 5(y). It follows that
Ay s(r) << Ay 5(y), so that A, 5 is ACM.

Now suppose that the statement

A({L,2,...,t}) S A@0)

from X(s) is true. Then A, (y) < Ay s(x) for every 2-element chain < y from
Q. Let B be the bottom element of Q and let T' be the top element. Then
Ay s(B)) < Ay s(x) < Ay s(T) for every other point 2 from P;. This shows that
A, s is NC.

We now show that A, ; is either AC or AA. Suppose first that the statement

A({1}) — A(D) << A({1,2,...,t}) — A({1})

from X(s) is true. Then it follows that for every 3-element chain z < y < z in
Q, 4, 5(y) — Ags(z) << Ags(z) — Ay 5(y). Now let z, y and z be any three
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points from P with A, (z) < Ags(y) < Ags(2). Then, since the gap size in
P, is 3 and A, , is dominated by coordinate o, we may find a 3-element chain
w; < wy < wg so that wi(a) < z(a) < y(a) < wa(a) < wz(a) < z(a). Since
Ags(y)—Ags(x) < Ags(wa)—Ags(wr) and Ay s(w3)—Ag,s(w2) < Ags(2)—Ags(y),
it follows that Ay s(y) — Ags(x) << Ay s(2) — Ag,s(y). We conclude that A, , is
AC.

Dually, if the statement

A({1}) - A0) >> A({1,2,...,t}) — A({1})

from X(s) is true, then A, ; is AA.

Now suppose that both statements from X(s) are false. Then, referring to the
chain up < w3 < ...,uq_; discussed earlier in the proof, we note that if 0 <7 <
j<k<l<gqg-1, wehave:

(Aluj) = A(wi) /N < A(wr) = Au) < N (Ag,s(uj) — Ags(ui)).-

It follows that the interval [A(ug), A(uq—1)] is divided up into g — 1 disjoint
subintervals. Choose an integer j with 1 < j < ¢ — 2 so that the length of the
interval [A(u;), A(ujt+1)] is as small as possible. Then set i = 0, k = j + 1 and
I = ¢ —1 to conclude that the length of [A(ug), A(u;)] is at most N times the
length of [A(u;), A(ug)]. Similarly, the length of [A(w), A(ug—1)] is at most N
times the length of [A(u;), A(ur)]. Being generous, we can conclude that j < N
and ¢ — j < N, so that ¢ < 2N. This contradicts the fact that ¢ > 10N log N.

A dual argument shows that when A, ; is order-reversing, it is either RAM or
NC. When it is NC, it is either RC or RA.

O

Note that Theorem 4.6 is just the special case of Theorem 4.7 obtained when k = 1.
Although we stated Theorem 4.7 in terms of a single function A, it is clear that we
can apply it to a bounded number of functions. In fact, this result—and for that
matter, all the Ramsey theoretic material discussed here—can be treated in much
greater generality.

Before leaving this section, we point out two important implications of the pre-
ceding Theorem 4.7. Let f : n® — Ry be a uniform function. Now let z,y € n® and
suppose that we know that f(y) > (14 1/N)f(z). Even with no information as to
which change pattern f satisfies, not even knowing whether it is order preserving or
order reversing, we may still conclude that f(y) > N f(x). We call this phenomenon
the prinicple of differentiation. It results from using the Ramsey theoretic tools de-
veloped in this section to eliminate the case in which (1+1/N) f(z) < f(y) < N f(z).

Second, the theorem allows us to recover from errors. For example, in arguments
to follow, we will say that e; ~ e> and e3 ~ e4 imply e; + e3 = ey + e4. Similarly,
if we know that e; < 1/N and e; < 1/N, we will conclude that e; + ez < 1/N.
Technically speaking, this may not quite be true. But by restricting to a subposet,
we can strengthen the bounds so that such conclusions can be made (at least a
bounded number of times) with impunity.

5. PART 1: UNIFORMIZING THE REPRESENTATION

This section begins the proof of Theorem 1.1. As discussed in Section 2, we prove
Theorem 1.1 by showing that if n is sufficiently large, the finite 3-dimensional poset
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n? is not a sphere order. We start with the assumption that we have an inclusion
representation F' using spheres for n® and then argue to a contradiction—provided
n is sufficiently large. The issue of how large n must be is decided in six steps. We
begin by setting n = ng and P = Py = n}. Then, for each i = 1,2,...,6, we will
choose an appropriate subposet P; of P;_;, with P; isomorphic to n?. At each
step, we increase the uniformity of the inclusion representation for the remaining
points. The final poset Pg is isomorphic to 113, which is certainly of modest size
in comparison to other quantities we have discussed. But to obtain this final poset,
we must start with a very large poset. The relative sizes between ng,ni,...,ng will
be clear from the material to follow.

To begin, we assume that the spheres used in our representation are in “general
position,” i.e.:

1. No two spheres are tangent.

All centers are distinct.

No three centers are collinear.

No four centers are coplanar.

All radii are distinct and positive.

The angles determined by any three centers are distinct.

The distances from any center to the line passing through two other centers
are all distinct.

NOo otk W

This assumption is allowed by the fact that we may add (in an order preserving
manner) a small quantity to each radius without disturbing the inclusion relation.
We may then make small perturbations in the center locations.

Assuming that ng is sufficiently large in terms of n;, we may apply Theorem 4.6
to find a subposet P; isomorphic to n} on which the radius function r is uniform.

When z < y, we know that r(xz) < r(y), so the function r must be order-
preserving on P;. Without loss of generality, we assume that it is dominated by
coordinate 1. So r satisfies one of the following three change patterns: (ACM, 1),
(AC,1), or (AA,1). However, we want to assume that r is ACM.

Should 7 be AA, we choose a large positive number Ry, with r(z) < Ry for every
x € P;. We then take a new representation by setting 7(z) = Ry — r(z). Note
that we are merely taking advantage of the well known fact that the dual of a finite
sphere order is again a sphere order—together with the trivial observation that n3
is self dual. Now that the change has been made, we drop the hat and use r(z) to
denote the new radius function. Obviously, the new function is again uniform.

So now we have a representation of P; on which the radius function is either
AC or ACM. If it is AC, we let B; = (0,0,0) and ro = r(B;1). We then define a
new radius function 7(z) = r(z) — ro. Since 7(y) — #(z) = r(y) — r(z) for every =
and y in Py, we could equally well use 7 as our radius function.

Now let # < y be any two elements of P; with #(z) < #(y) and > B;. Then
r(B1) < r(z) < r(y). It follows that N7#(z) = N(r(z) —r9) = N(r(z) —r(B1)) <
r(y) —r(z) < r(y) — r(B1) = 7(y). It follows that 7 is a uniform ACM function.
Again, we drop the hats and use r to denote the new radius function. However, we
now have a representation where the least element has a circle of radius zero. Since
the criteria for uniformity are expressed in terms of strict inequalities, we add a
small quantity to the radius of the bottom element.

We next describe three functions A, B and C to which we will apply Theorem 4.7.
In each case, we take the value k = 3. With each 3% grid g in Py, we associate a
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3-element chain z < y < z and then set A(g) = ¢(z,y,2), B(g) = h(z,y,2) and
Clg) = hz,y,2)d(z,y,2)/2.

After applying Theorem 4.7 three times, once for each of these functions, we
may assume that we have a subposet P isomorphic to nj so that we have nine
change patterns, one for each ordered pair from {4, B,C} x {1,2,3}, so that the
nine classes of (3, s)-induced functions they produce are uniform and have a change
pattern depending only on the class.

We are only concerned with five of these nine classes:

1. The (3,2) and (3,3) functions induced by A.
2. The (3,1) and (3, 2) functions induced by B.
3. The (3,2) function induced by C.

We find it convenient to use the symbols ®, ©, K, H, and G to denote these
functions, so that:

1. For each 2-element chain z < z, the (3, 2)-induced function ®(z, y, z) is defined
on those y with z < y < z by setting ®(z,y, z) = ¢(z, y, 2).

2. For each 2-element chain z < y, the (3, 3)-induced function O(xz,y, z) is de-
fined on those z with < y < z by setting O(z,y,2) = é(z,y, 2).

3. For each 2-element chain y < z, the (3, 1)-induced function K(z,y,z) is de-
fined on those z with <y < z by setting K(z,y,2) = h(z,y, 2).

4. For each 2-element chain = < z, the (3,2)-induced function H(z,y,z) is de-
fined on those y with z < y < z by setting H(z,y, 2) = h(z,y, z).

5. For each 2-element chain z < z, the (3,2)-induced function G(x,y, z) is de-
fined on those y with z < y < z by setting G(z,y,2) = h(z,y, z)d(z,y,2)/2.

We will return to the discussion of these induced functions after we develop some
geometric aspects of our construction.

6. PART 2: GEOMETRIC IMPLICATIONS

Now let uy = (0,n2 — 1,ny — 1), and let €9 = r(uy). Setting ng = ny — 2, and
letting P3 consist of all z € P> whose coordlnates satisfy 0 < z(i) < no — 1 for
i = 1,2,3, it follows that P is isomorphic to n3. Also, note that Ney < r(z) for
every x from Pj.

Claim 1. For all z,y € P3 with (1) < y(1), r(y) =~ p(z,y).

Proof. Let u € P3. Then B; < u, so that F(By) C F(u), and r(u) — r(B1) >
p(u, By), so r(u) > p(u, By) + r(B1) > p(u, By). On the other hand, v is incompa-
rable to uy, so r(u) —r(u1) < p(u,ur) < p(u, B1) + p(B1,u1) < p(u, By) + r(uy) =
p(u, By) + €. It follows that

p(z,B1) < r(u) < p(x,B1) + 2¢

for every u € P3. Thus r(u) ~ p(u, By), for every u in Ps.
Noting that p(y, B1) < p(z,B1) + p(z,y) and p(z,y) < p(y, B1) + p(z, B1), we
see that r(y) — p(z,y) = zero(r(z)). Therefore, r(y) = p(z,y). O

When z, y and z are distinct points in P3, we know that A(xz,y,2) = p(z,y) +
p(y,z) — p(z,z) > 0. However, we can actually write the following elementary
identity:

(2) A(xvyaz) = p(xvy)(l — CO8 ¢(xvyaz)) + p(yv Z)(l - cosv(a:,y,z)).
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Note that

p(z,y)sing(z,y,2) = h(z,y,2) = p(y, 2) siny(,y, 2).
Also, p(z,y) ~ r(y), p(y,2) = r(2) and r(y) << r(z) imply that y(z,y,2) <<
o(z,y,z). We conclude that

A(z,y,z) = r(y)(l — cosp(x,y, z)).

When z(1) < y(1) < 2(1), the preceding discussion shows that the angle v(z,y, 2)
is very small. But at this point, we cannot make such a claim for ¢(z, y, z). However,
we now show that we may assume that all ¢(z,u,z) are very small, provided z <
u<z.

To accomplish this, we use the Product Ramsey Theorem. With each 3% grid g,
we associate a chain < u < z. Color the grid red if ¢(z,u,z) < 1/N; otherwise,
color it blue. Setting n3 = PR(n4,3,2,3), we may find a subposet P4 isomorphic to
ny so that all 3% grids in P4 receive the same color. Now set ng = n?, and ns = 17.
We may then choose a subposet Pj isomorphic to n? via the embedding I defined
in the spacing proposition.

Claim 2. For every 3-element chain © < u < z in Ps, ¢(x,u,z) < 1/N.

Proof. Suppose to the contrary that ¢(z,u,z) > 1/N for some 3-element chain in
P5. Considering coordinates in P4, we see that P4 contains a blue 3! grid. Thus
all 33 grids in P4 are blue.

Then consider the following points in Py: z = w3 = (1,1,1), v = (2,0,7),
u=us = (5,5,5) and z = ug = (6,6,6). Because r is dominated by coordinate 1,
we know that N3r(v) < r(u).

Since

A(z,u,2) 2 r(u)(1 - cos p(z, u, z))

and ¢(x,u,z) > 1/N, we conclude that 2N2A(z,u, z) > r(u). On the other hand,
since (1—cos @(z,v,2)) < 1, we know that A(z,v,2) < r(v). Thus, r(u) < 2N?r(v).
But, since r(u) > N3r(v), this last inequality fails badly. The contradiction com-
pletes the proof. O

For the remainder of the proof, we will use the symbols B = (0,0,0) and T =
(16,16, 16) to denote the top and bottom elements of P5. Also, we let B’ = (1,1, 1),
B" =(2,2,2), T" = (14,14,14), T' = (15,15,15). We then let Pg consist of those
points z in P5 with 2 < (i) < 14 for i = 1,2,3. Then B< B' <2 <T' < T for
every x in Pg. As anticipated, ng = n5 — 6 = 11.

Also, in Pg, we will let C' = {u; < us < --- < ug} denote the nine element chain
with u; = (4,4,1), for i = 1,2,...,9. Of course, we intend that the coordinates of
the points in C' are given in Pg rather than in Pj.

For emphasis, we point out that the triangle inequality holds for angles in R?.

Proposition 6.1. Let z1, =2, x3 and x4 be distinct points from n3. Then

(3) ¢($1,$2,$3) + ¢($1,.’I}3,CE4) > ¢($1,.’I}2,.’L’4), and

(4) ’7(1’1,1’2,1'4) + 7(:32)1.3)1.4) > ’7(1’1,1’3,1’4)-

If 51, 5o and s3 are distinct points from R?, then ¢(s1, s, 53) = @(s1, 53, 52) and
~v(s1,82,83) = Y(s2,81,83). So the triangle inequalities in Proposition 6.1 can be
written in several different forms.
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On the other hand, note that h(s1, s2,s3) # h(s2, s1,s3) in general. In fact, the
two quantities can be far apart. However, due to the uniform behavior of the radius
function, we do have approximate symmetry in the first two coordinates for centers.

Proposition 6.2. Let z;, x5 and x3 be distinct points from n® with x1(1) < z3(1)
and x2(1) < x3(1). Then

h(z1, 2, 23) = h(x2, x1,23) ~ r(x3)y(T1, T2, T3).
Proof. Observe that
h(z1,2zq,23) = p(2,z3) siny(z1, T2, 3)
and
h(za,z1,23) = p(z1,3) siny(z2, 1, x3).
Because y(x1,x2,23) = v(z2,21,23) and p(x2,x3) = r(zs3) ~ p(z1,3), it follows
that
h(z1,22,23) = h(x2,x1,23) ~ r(x3)y(T1, T2, T3).

O

We consider the next corollary as providing a “weak” version of the triangle in-
equality for the height function (see Figure 2). From an intuitive standpoint, we
consider this the “view back from infinity.”

Corollary 6.3. Let x1, xo, x3 and x4 be points from n® with x;(1) < z4(1) for
1=1,2,3. Then

(5) h(z1,x2,z4) + h(T2, 3, 24) 2 h(T1, 23, T4).

Proof. We know that vy(z1,z2,z4) + v(x2,23,24) > v(x1,23,24). From Proposi-
tion 6.2, we note that

1. h(zy,z0,24) = 7(24)y(21, T2, T4),

2. h(xza,x3,24) = r(xs)y(22,23,%4),

3. h(z1,x3,14) & r(xg)y(21,23,%4)-

Clearly, these statements imply the conclusion of the corollary. O
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Because the expression h(z1,z2,z3) is (approximately) symmetric in the first two
coordinates, we can write the (weak) triangle inequalities for height in several dif-
ferent forms, just as was the case for angles. For example, we could have written

h($1,$2,£ﬂ4) + h($1,$3,£ﬂ4) Z h($2,$3,$4).
Claim 3. For all z, y and z in Pg with z(1) < y(1) < 2(1), ¢(z,y,2z) < 1/N.

Proof. Using the weak triangle inequality, we see that h(z,y,z) < h(B,z,z) +
h(B,y, z), so that

sin ¢(z,y, 2) = h(z,y,2)/r(y) Sr(z)sind(B,z,2)/r(y) +sing(B,y, 2).

Now ¢(B,z,z) < ¢(B,z,T) + ¢(B,z,T) < 1/N. Similarly, ¢(B,y,z) < 1/N.
Thus sin ¢(z,y,2) < 1/N. O

We may now use the following estimates for any three points x, y and z with
z(1) < y(1) < z(1):

A(z,y,2) #r(y)¢*(w,y,2)/2  and  h(w,y,2) = r(y)d(z,y, 2).

7. PART 3: APPLICATIONS OF UNIFORMITY

This section develops properties of the various functions involving angles and
distances. Already, we know that the radius function r is ACM and dominated by
coordinate 1.

Without loss of generality, we may assume :

1. There is a coordinate a1 and a change label Ly € £ so that for every 2-element
chain z < z in Py, the map ®(z,y,2), defined on those y with z < y < z is
uniform and satisfies change pattern (L;, ;).

2. There is a coordinate a2 and a change label Ly € £ so that for every 2-element
chain z < y in Py, the map O(z,y, z), defined on those z with z < y < z is
uniform and satisfies change pattern (La, a2).

3. There is a coordinate az and a change label L3 € £ so that for every 2-element
chain y < z in Py, the map K (z,y, z), defined on those z with z <y < z is
uniform and satisfies change pattern (Ls, a3).

4. There is a coordinate ay and a change label Ly € £ so that for every 2-element
chain x < z in P35, the map H(z,y,z), defined on those y with z < y < z is
uniform and satisfies change pattern (Lg, a4).

5. There is a coordinate a5 and a change label Ly € £ so that for every 2-element
chain z < z in Pj, the map G(z,y, z), defined on those y with z < y < z is
uniform and satisfies change pattern (Ls, as).

When z € Pg, we use the shorthand notations: ®(z) = ®(B,z,T), ©(z) =
©(B,B',z), K(z) = K(z,T',T), H(z) = H(B,z,T) and G(z) = G(B,z,T). Also,
for example, when we say that ® is dominated by coordinate a;, we mean that
®(z) = ®(B,z,T) is dominated by «;. It is important to remember that, for
example, for all z < z, the function ®(z,y, z), defined on y with z < y < z, satisfies
the same change pattern as ®(z).

We now begin to gather some information about other patterns present in Ps.
For reasons which will become clear, we concentrate on the (3, 2)-induced functions
® and H, and we make extensive use of the principle of differentiation.

Claim 4. The function ® cannot be ACM.
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Proof. Suppose to the contrary that & is ACM. Then for every 2-element chain
x < z, the map ®(z,y,z) defined on those y with z < y < z is ACM. It follows
that

1. ¢(U1,U3,U4)—¢(U1,U2,U3 (d) U, U2, Us )

2. ¢(U1,U3,U5)—¢(U1,U2,U3 0(¢ Ui, u2,Us )

3. o(ur,ug,us) — d(ur, us,uq) = Zer0(¢ U1, us, us)).

Therefore, ¢(u1, w4, us) & ¢(ur, us, us) ~ ¢(ur, uz, uz) & ¢(u1,us, us). It follows
that ¢(u1,uq,us) = ¢(ur,us,us). However, the fact that ® is ACM requires that
P(ur,ua,us) >> dur, us, us). O

The next claim is dual to the preceding one—except for the fact that it uses the
weak version of the triangle inequality.

Claim 5. The function H cannot be RAM.

Proof. Suppose to the contrary that H is RAM. Then for every 2-element chain
x < z, the map H(zx,y,z) defined on those y with z < y < z is RAM. It follows
that

1. h(us2,us,us) — h(uz, us,us) = zero(h(us, us, us)),

2. h(ur,us,us) — h(ug, us,us) = O(h Uy, s, us)),

3. h(u1,u2,us) — h(usz,us,us) = Zero(h U1, U3, Us )

Therefore, h(u1,uz,us) ~ h(us, us, us) = h(us,us,us) = h(ui,us,us). It follows
that h(u1,us,us) =~ h(ui,us,us). However, the fact that H is RAM requires
h(ul,u2,us)) << h(ul,U3,U5). O

Next we begin to consider the issue of coordinate domination. The next two claims
are again dual.

Claim 6. If ® is NC, then H is ACM and dominated by coordinate 1.

Proof. Let s1 = (1,2,2) and sz = (2,1,1). Since ®(s1) = ®(s2), and r(s1) <<
r(sz), we know that H(s1) << H(sz). From the preceding claim, we know that H
cannot be RAM. Evidently, it is not NC, so it must be ACM. Furthermore, it

must be dominated by coordinate 1, since s1(i) > s2(i) for i = 2, 3.
O

Claim 7. If H is NC, then ® is RAM and dominated by coordinate 1.

Proof. Again, let s1 = (1,2,2) and s» = (2,1,1). Since H(s1) =~ H(sz2), and
r(s1) << r(s2), we know that ®(s;) << ®(s2). We know that ® cannot be ACM.
Evidently, it is not NC, so it must be RAM. Furthermore, it must be dominated
by coordinate 1, since s (i) > s2(i) for i = 2, 3. O

Here is another useful property.

Claim 8. If ® is dominated by coordinate 2, then H is ACM and dominated by
coordinate 1.

Proof. Once again, consider s; = (1,2,2) and s2 = (2,1,1). The inequalities
r(s1) << r(s2) and ¢(s2) > ¢(s1) imply H(s;) << H(s2), so H is ACM and
dominated by coordinate 1. O
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The remainder of the argument is by cases which depend on the change patterns of
® and H. Originally, this would have resulted in 324 = 182 cases, which would have
been unbearable even for the most patient of readers. But in view of the results of
the claims in this section, we only have 3 cases:

Case 1. ® is RAM; H is ACM.
Case 2. ® is NC; H is ACM.
Case 3. H is NC; ¢ is RAM.

Moreover, in Case 2, we know that H is dominated by coordinate 1, while in
Case 3, we know that ® is dominated by coordinate 1. Also, following the pattern
evidenced in this section, Cases 2 and 3 will be dual.

Since we are arguing by contradiction, we will show that each of the cases is
impossible. When this is accomplished, our proof will be complete.

8. ParRT 4: CASE 1l OF 3

In this section, we assume ® is RAM and H is ACM. We assume without loss
of generality that ay, the coordinate which dominates ® is either 1 or 2.

Let y be a point with z(1) < y(1) < 2(1) and = < z. We obtain some estimates
on ¢(x,y, z) and Az, y, z).

First, note that

¢(B,$,T) - ¢(B,$,Z) = ZeI‘O((ZS(B,Z,T)),

so that ®(z) = ¢(B,z,T) ~ ¢(B, z, 2).
Furthermore, exactly one of the following statements is true:

1. ¢(B,y,T) — ¢(B,y,z) = Zer0(¢(B,z,T)).

2. ¢(B,z,T)— ¢(B,y,z) = Zer0(¢(B,y,T)).

The issue as to which of the two statements is true is decided by the order of
y(a1) and z(a1). Noting that ¢(B,y,T) = ®(y) and ¢(B,z,T) = ®(z), we can
then say that ¢(B,y, z) ~ max{®(y), ®(z)}.

Now suppose that © < u < z is a chain. We know that ®(z) << ®(u), so that
®(B,u,z) ~ ®(u). Since H is uniform and ACM, we know that h(B,z,Z) <
h(B,u,z). It follows that:

h(B,u,z) — h(z,u,z) = zero(h(B, z, z)).
Thus h(B,u, z) ~ h(z,u,z). Therefore, ®(u) ~ h(B,u, z)/r(u) = h(z,u,z)/r(u) ~
¢(1‘7 u7 Z)7 i'e'7 Q(u) ~ ¢("I:7 u) Z)'

Recall that G(z) = H(z)®(z)/2. It follows that A(z,u,z) ~ G(u). The impor-
tant fact here is that this estimate is independent of both z and z.

For the remainder of this case, we will fix notation for the following points in
Pg: 2 =(1,1,1), 2 =(9,9,9), v = (5,0,10) and w = (5,10,0). Note that = and 2
are just the bottom and top elements of the chain C' = {u; <us < --- <ug}.

As outlined in Section 3, we have the following lower bound on gap(z, z).

1
gap(z, 2) > Az, C,2) = ZA(U2i—17U2i:U2i+1)-

i=1
Since A(UQZ'_I, U2i, U2i+1) Z G(UQZ'), we can write

A(z,C, z) 2 G(uz) + G(us) + G(ug) + G(us).
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We now turn our attention to the problem of finding relatively tight upper bounds

on gap(z, z).
To do this, we consider the points v and w, but we need to consider subcases
depending on the coordinate that dominates ®.

Subcase 1la. ® is dominated by coordinate 1.

In this subcase, it is straightforward to verify that:

1. ¢(B,v,z) = ®(v).

2. ¢(B,w,z) =~ ®(w).

3. h(B,v,z) ~ H(v).

4. h(B,w,z) ~ H(w).

Using the property that H is ACM, we know that exactly one of the following
statements is true:

1. H(z) >> H(v).

2. H(v) >> H(x).

Recall that ¢(B,zx,z) ~ ®(z), so that H(z) ~ r(z)®(z) ~ r(z)¢(B,z,2) =~
h(B,z,z). Also, h(B,v,z) ~ r(v)d(z,v,z) ~ r(v)®(v) =~ H(v). If the first state-
ment listed above is true, then

h(B,z,z) — h(z,v,z) = Zero(h(B,v, z)),
and thus h(B, z, z) =~ h(z,v,z). In this case, we see that ¢(z, v, z) = r(z)®(z)/r(v).
Now if the second statement holds, then
h(B,v,z) — h(z,v,2) = zero(h(B,a:, z)),

and h(B,v,z) =~ h(x,v,z). In this case, we conclude that ¢(z,v,z) ~ ®(v). So we
may then write:

d(z,v,2) ~ max{r(z)®(z)/r(v), ®(v)}.
Applying the same argument to w, we can write:

d(z,w,z) ~ max{r(z)®(z)/r(w), ®(w)}.
Therefore,

A(z,v,z) & max{r(z)G(z)/r(v), G(v)},
and

A(z,w, z) & max{r(z)G(z)/r(w), G(w)}.

Now we consider the implications of the (weak) inequality
A(z,C, z) < min{A(z,v, z), A(z,w, 2)}.

At this point, the argument depends on the coordinate dominating GG. Suppose
first that G is dominated by coordinate 1. If G is order-preserving, then A(x, C, z) >
2G(v), but G(v) =~ max{r(z)G(x)/r(v),G(v)}, which is a contradiction.

Now suppose G is order-reversing. Then A(z,C,2) 2 2G(w) and A(z,C,z) 2>
2G(v), which implies that r(z)G(z)/r(v) >> G(v) and r(z)G(z)/r(w) >> G(w).
Thus H(z) >> H(v) and H(z) >> H(w). However, there is no coordinate i €
{1,2, 3} for which z(7) > v(i) and (i) > w(i). We conclude that G is not dominated
by coordinate 1.
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Because the definitions of v and w are symmetric between coordinates 2 and 3, we
can assume without loss of generality that G is dominated by coordinate 2. If G is
order-preserving, then max{r(z)G(z)/r(v),G(v)} < G(z), but A(z,C, z) 2 2G(z).

So G must be order-reversing. Now A(z,C,z) 2 2G(w), so r(z)G(x)/r(w) >
G(w). This implies that H(z) > H(w), so that H must be dominated by co-
ordinate 3. This is impossible, because ® is dominated by coordinate 1, G by
coordinate 2 and G ~ H¢/2. The contradiction completes the proof of this sub-
case.

Subcase 1b. ® is dominated by coordinate 2.

In this subcase, we know from Claim 8 that H is dominated by coordinate 1. It
follows without loss of generality that we may assume G is dominated by coordi-
nate 1 or 2.

Now it is straightforward to verify that:

1. ¢(B,v,2) =~ ®(v).

2. ¢(B,w, z) = ®(2).

3. h(B,v,z) =~ H(v).

4. h(B,w,z) ~ r(w)®(z).

Since H is ACM and dominated by coordinate 1, we know that H(v) >> H(x)
and H(w) >> H(z). Therefore, h(B,v,z) — h(z,v,z) = zero(h(B,,2)), so that
h(B,v,z) ~ h(z,v,z), ®(v) = ¢(x,v,z) and A(z,v,2) =~ G(v).

Now r(w)®(z) >> r(w)®(w) =~ H(w) >> H(z), so h(B,w,z) — h(z,w,z) =
zero(h(B,z,z)). Therefore ¢(z,w, z) ~ ®(z) and A(z,w, 2) = r(w)G(2)/r(z).

We now consider the implications of A(z,C,z) < min{G(v),r(w)G(z)/r(2)}.
Regardless of whether G is order-preserving or order-reversing, since G is dominated
by coordinate 1 or 2, we see that A(x,C,z) 2 2G(v). The contradiction completes
both the proof of the subcase as well as Case 1.

9. PART 5: CASE 2 OF 3

In this case, we assume ® is NC. By Claim 6, H is ACM and dominated by
coordinate 1. Without loss of generality, we may assume that as, the coordinate
which dominates O, is either 1 or 2.

Claim 9. The function © is ACM.

Proof. Suppose to the contrary that © is not ACM. Let ¢ < y < z < w be a
4-element chain in P5. Since ® is NC, we know ¢(x,y,w) & ¢(z,z,w). Since O is
not ACM, we know ¢(z,y,w) < ¢(z,y, 2), and thus ¢(z,z,w) < ¢(z,y, 2).

Since H is ACM, we know that h(z,z,w) >> h(z,y,w), so that h(z,z,w) —
h(y,z,w) = zero(h(m,y,w)). Thus h(z,z,w) ~ h(y,z,w) so that ¢(z,z,w) =
o(y,z,w). It follows that

(b(x)y? Z) Z (b(x)Z)w) ~ (b(x)y?w) ~ ¢(y7z7w)'

In particular, ¢(x,y,z) 2 ¢(y, z,w).

On the other hand, ¢(z,y,2) < é(z,y,w) + ¢(z, z,w) < 2¢(y, z,w). It follows
that ¢(z,y,2) ~ ¢(y, 2, w).

Now let w; < wy < --- < wg be a chain in Py. It follows that

(w1, w2, w3) & d(ws, ws, ws) = ¢(wsz, ws,ws) & ¢p(ws, ws, ws),
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and therefore

d(x1,y1,21) = ¢(x2,Y2, 22)

for any two 3-element chains z1 < y; < 21 and =3 < ¥ < 2 from P5.

Now consider the following points in Pg: z = (1,1,1), v = (2,0,4), u = (3,3,3)
and z = (4,4,4). Since z < u < z is a 3-element chain, we know that ¢(x,u,z) ~
#(B,B', B") so that A(z,u,z) ~r(u)¢?(B, B',B")/2.

On the other hand, ¢(z,v,2) < ¢(z,2,T) + ¢(z,v,T). Also, h(B,v,T) —
h(z,v,T) = zero(h(B,a:,T)) implies h(z,v,T) =~ h(B,v,T) so that ¢(z,v,T) =~
¢(B,v,T). Thus ¢(z,y,2) < 2¢(B,B',B").

In turn, this implies that A(z, v, z) < 2r(v)¢?(B, B', B"), and thus r(u) < 2r(v).
However, r(u) >> r(v). The contradiction completes the proof. O

Claim 10. For all 4-element chains © < y < z < w, ¢(z,y,w) =~ ¢(y,z,w) ~
O(w).

Proof. Since ® is NC, we know that ¢(z,y,w) ~ é(z,z,w). Thus h(z,y,w) <<
h(z,z,w). This implies that
h(z,z,w) — h(y, z,w) = Zero(h(a:,y,w)).

Thus h(z,z,w) = h(y, z,w) and ¢(z, z,w) = ¢(y, z,w). It follows that ¢(z,y, w) ~
oy, z,w).
Observing that this pattern holds for any 4-element chain, we may also conclude
that
O(w) = ¢(B,B',w) = ¢(B', z,w) = §(z,y,2).

O

So for chains, the behavior of ® depends only on the last coordinate. The next
claim extends this to certain triples which are not chains.

Claim 11. If (1) < y(1) < 2(1), z(2) < 2(2) and y(2) < z(2), then ¢(z,y,2) ~
O(z). O
Proof. Since © is ACM and dominated by coordinate 1 or 2, we know that
6(B, B,z) = O(z) >> O(y) = ¢(B, B',y). Thus

¢(B,B',z) — ¢(B,y, z) = zero($(B, B', y)),

and O(z) ~ ¢(B,y,2).
Similarly, we know that ©(z) ~ ¢(B, z, z). Now H is dominated by coordinate 1,
so h(B,y,z) >> h(B,z,z). Thus

h(B,y,z) — h(z,y,2) = Zero(h(B,a:, z))
It follows that h(B,y,z) ~ h(z,y,z) and thus O(z) =~ ¢(B, y, z) = ¢(x,y, z). O
Now we consider the following points in Pg: z = (1,1,1), v = (2,0,5), u = (3,3,3)
and z = (4,4,4).
From Claim 11, it follows that ¢(z,u,2) ~ 0(2) =~ ¢(x,v,2). Thus A(z,u,z) =~

r(u)©?(2)/2 and A(x,v,z) ~ r(v)©?(z)/2. This requires r(u) < r(v). Since u(1) >
v(1), we know that r(u) >> r(v). The contradiction completes the proof of Case 2.
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10. PART 4: CASE 3 OF 3

In this case, we assume that H is NC and ® is RAM. Because this case is
dual to Case 2, we outline only the statements necessary to complete the proof. Of
course, the key idea here is to focus on the function K.

From Claim 7, we know that ® is dominated by coordinate 1. So first, we prove
the following claim.

Claim 12. The function K is RAM. O

The reader should note that the proof will hinge on the situation where h(z,y, 2)
is nearly constant for all 3-element chains z < y < z. But this will lead to a
contradiction by considering the same four points as in the proof of Claim 9.
Next, the following claims are established.

Claim 13. For all 4-element chains © < y < z < w, h(z,y,w) = h(z,z,w) ~
H(z). O
Claim 14. If (1) < y(1) < 2(1), (2) < 2(2) and z(2) < y(2), then h(z,y,z) ~
H(z). O

To complete the argument, we consider the following points: = = (1,1,1), u =
(2,2,2), w=(3,0,5) and z = (4,4,4). In this case, we conclude that

Az, u,2) = h*(z,u,2)/2r(u) ~ H*(x)/2r(u),
while
Az, w, z) = h2(z,w, 2) /2r(w) ~ H*(x)/2r(w).

Thus, we must have r(w) < r(u). Instead, we know r(w) >> r(u). With this
remark, the proof of Case 3 and our principal theorem is complete. O

11. CONCLUDING REMARKS

Not surprisingly, our original proof was quite different from the one given here.
It was specific to the plane and showed only that there was a finite 3-dimensional
poset that was not a circle order. Many details of this approach did not extend to
the general problem, and some new techniques were necessary to work around the
apparent obstacles. In the end, the proof of the general result is simpler.

It is tempting to conjecture that there is a poset of modest size, say at most 100
points, which is not a sphere order. Certainly, new ideas will be required to prove
the existence of such a poset.
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