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Abstract. This paper describes the hardware and software of the robotic soccer
team built at the Freie Universität Berlin which look part in the 1999 RoboCup
Championship in Stockholm, Sweden. Our team, the FU Fighters, consists of five
robots of less than 18 cm horizontal cross-section. Four of the robots have the
same mechanical design, while the goalie is slightly different. All the hardware
was designed and assembled at the FU Berlin. The paper describes the hierarchi­
cal control architecture used to generate the behavior of individual agents and the
whole team. Our reactive approach is based on the dual dynamics framework pro­
posed by Jäger, but extended with a third module of sensor readings. Fast chang­
ing sensors are aggregated in time to form slowly changing percepts in a temporal
resolution hierarchy. We describe the main blocks of the software and their inter­
actions.

1. Introduction

Robotic soccer has been gaining popularity in the last years. Obviously, tbis has to
do with the fact that the final objective of the game is well-defined, easy to under­
stand, and the actions of the robots can be watched and judged on the spot. The
impact of robotic soccer on the Artificial Intelligence (Al) community has been
tremendous and this requires a more careful explanation.

The development of Al has been always led by some benchmark problems
which have been regarded as being hard for machines, although easy for humans.
Speech recognition, face recognition, understanding of linguistic context, are aII
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problems in which much research has been done and which are far from having
been completely solved. Not long aga computer algebra was regarded also as a
subject pertaining to AI. However, once the field became established, computers
faster, and the algoeithms bettel', computer algebra metamorphosed into applica­
tions and commercial software packages like Mathematica oe Maple, moving out
of the AI domain. Al research is confronted with a moving horizon: once a prob­
lem has been efficiently solved, it becomes uninteresting for the AI community
and we proceed to deal with something different. For example, although work on
computer chess continues to date, it is not the field many young researchers want
to be, since a computer has already bet the world champion!

Robotic soccer is interesting for many different reasons. First of all, it has to
deal with coordination of autonomous agents. Each robot is "alone" on the field
and has to respond to achanging and almost unpredictable environment. The
movement of the opposing team is difficult to compute in advance, so that we
need control software capable of reacting to many different circumstances. The
actions of the robots in a team, if coordinated, can lead to a higher level of play
and ultirnately to victory. Cooedination of autonomous agents is a weil studied
problem regarding software agents, but very difficult in the context of robots act­
ing in the real world.

The second interesting problem in robotic soccer is control of individual robots
and the constraints imposed by the game. Each robot has to be able to fmd the
correct orientation to stop or shoot the ball, has to find the best path to the ball in a
field full of obstacles and has to adapt its "intentions" to the perceived objectives
of the own or adversary players. The problem can best be solved using a learning
approach, like for example reinforcement learning, in which the pertinent actions
of a robot are not coded by hand, but are generated automatically by a system that
learns from experience and rewards to map situations to actions without manual
intervention.

Robotic soccer has also to do with computer vision. The ball has to be found
using one or more video cameras and must be tracked continuously during the
game. The movement of the other players has to be monitored also. Object track­
ing is done finding color marks on the robots but in the future this could be abol­
ished, so that only the form of the robots and their motion can serve as a Clle for
the vision system.

A last interesting problem is how best to balance the computing power in each
robot with the external computer power available for processing. Too much proc­
essing in the robot can require excessive energy and heavy batteries. No process­
ing can overburden the central computer.

It is for all these reasons that robotic soccer has become a paradigmatic problem
of AI. The application domain is simple and well-understood, a robotic solution is
therefore feasible even when only small resources are available. At the same time

'though, robotic soccer points to other more challenging problems and is open
ended in its possibilities. Legged robots, for example, require more complex con­
trol and power management strategies. Each new robotic championship closes
therefore a development period and sets the stakes higher for the next meeting.
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2. Thc RoboCup challcngc

3

RoOOCup consists, at the moment of this writing, of four tournaments: the simula­
tion league, in which the players and playing field are sirnulated in a computer,
the small size league (FI80) of wheeled roOOts with less than 18 cm cross-section,
the middle size league (F2000) with wheeled robots of less than 50 cm cross­
section and the league o/legged robots, which during RoOOCup 99 will mainly
consist of off-the-shelf Sony mechanical toy dogs. Our team qualified for the
small size league, in which 19 teams, divided in four groups, participate. The
tournament is played like a FIFA World Cup, with group games at the beginning
that filter out some teams and sudden-death in the following rounds.

2.1 Thc smalilcague

The playing field for roOOts in the small league is a green table, the size of those
used in ping pong matches (1.525 m by 2.74 m), sUITounded by a 10 cm high
white wall. Each goal has a width of 50 cm and it is 18 cm deep. The area behind
the goalline can be used by the roOOts. One of the walls of the goal area is colored
dark blue, the other yellow. The playing ball is an orange golf ball. Fig. 1 shows a
view of the playing field from aOOve. The rules of the game are similar to normal
soccer (regarding kick-off, penalties, etc.) but there are some special rules re­
garding the protected zones around the two goallines, in which the goalie cannot
be attacked by the roOOts of the opposing team.

Figure 1: A snapshot of the playing field with the ball at the center
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A RoboCup game is divided in two halves of 10 minutes each. Once the game
starts, human intervention is not allowed, that is the on-board and off-board com­
puters take full charge. The garne can be only stopped by the referee when robots
or the ball get stuck, in which case the designated team operator stops the robots
and restarts the game when the referee gives the start signal.

2.2 Overview of the FU Fighters team

Our robots were designed in compliance with the new FI80 league (the "small
league") size regulations. Our team, the FU Fighters, consists of four field player
robots with the same mechanical design, and a goalie with different mechanical
characteristics, but the same on-board electronics. The robots have stable 4 mm
aluminum frames that protect the sensitive inner parts. Each robot has two wheels
activated by individual DC motors. A small rolling ball provides the third contact
point needed to stabilize the chassis of the field players. The goalie has two extra
passive wheels in addition to the active wheels.

Fig. 2 shows the main components of oUf system. The video camera provides a
full view of the playing field from above and delivers 30 frames per second to the
main computer. The central computer, an IBM-PC compatible system, processes
the video frames, finds the ball and all robots and delivers commands to them
using a radio unit attached to the computer. All our robots receive the same mes­
sages, but discard those not intended for them (according to the ID of the destina­
tion robot contained in the message). The on-board computer processes the pack­
ets received by each robot and activates three motors: the two wheel-motors and
the motor for the shooting device. It is thus possible to turn a robot on the spor, to
make it advance forward or backward, or to combine all these movements. When
the robot is in the right position and ready to shoot, the shooting device (a pla!e)
starts rotating.

QVideo camera

radio link

radio link

On-board

Figure 2: The hardware used by the· FU Fighters

Central
computer
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Fig. 3 shows tlu'ee of our robors in a playing situarion. The color marks on rhe
top are used to identify the robors. In rhis image two robors marked with lighr
blue. dark blue and red spots. are playing against a single robor marked wirh orher
colors.

Figure 3: A playing siruation. The robot 10 the left is about 10 shoa!.

2. Mechanical design

2.1 Small-Size League Constraints

A team consists of at least five robors. This means that the rules allow each team
to use less than five robots, but this is not the normal case. Robots can get stuck
du ring the game and can be retired during a time off.

The maximum diameter of each robot body is restricted to 18 cm, but the toral
floor area of the robot must be smaller than 180 cm2

. For robots with local vision
the height is restricred to 22.5 cm. Robors using agiobai camera (like ours) are
restricted to a maximum height of 15 cm.

2.2 Chassis

The chassis of the robots is made of 4 mm aluminum plate. The shape of the sides
of each robot as weil as the bottom is shown in Fig. 4. The perforations and carv­
ings provide structural support for other components of the robor.
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Figure 4: The sides and botlorn of lhe a1uminum frame

The robot uses soft wheels that provide good traction. The frame is kept together
by bars laid from one side to the other.

2.3 The wheels and motors

Each wheel of the robot uses a different motor. This allows the robot to rotate in
place or change direction while going forward or backward. Two De-motors from
Faulhaber provide a maximum speed of about I mls. The motors have an inte­
grated 19: I gear and an impulse generator with 16 ticks per revolution. The
maximum number of revolutions per second, without load, is 9700.

Figure 5: Cornponenls of lhe wheel motors

The motors are activated by sending series of pulses with different width. If the
motor has to go faster, the width of the pulses is increased. If it has to slow down,
the width is decreased. The motor is activated therefore in discrete steps, but since
this is done 122 times per second, it appears as if the motor is being controlJed
using a slowly continuously varying input.
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The microcontroller on the robot sets a target for the motor rotational speed, but
since the actual speed varies with the charge of the batteries, we implemented a
feed-back loop to check the number of motor revolutions. The 16 impulses per
revolution sent by the motors are counted 122 times per second, the difference
with the target value is computed, and the width of the control pulses is adjusted
accordingly. We use a simple P-control to adapt the motor power.

2.4 The shooting plate

Every robot has in the front a shooting device, which consists of an aluminum
plate with a central axis. The plate is moved using a third motor in the robot that
makes the plate rotate as shown in Fig. 6. The idea is to store kinetic energy in the
plate and release it to the ball when shooting.

Figure 6: The shooting device

The shooting plate consists of a single aluminum piece machined as shown in
Fig. 7. There is no need for fast control of the shooting plate, since the energy is
released in the moment that the ball is hit.
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Figure 7: Detailed side view ofthe shooting pl.te
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3. The electronics

FU-Fighters Team

The electronics for our robots is based on some off-the-shelf cOl1lponents and a
custOI1l motherboard that integrates all the necessary !ogic.

3.1 On-board computer

The hean of the on-board electronics is a controller card built and distributed by
Conrad Eleclronic in Germany (calIed C-Contro!). The board is powered with SV
and consumes about 5 mA. Fig. 8 shows the components contained in the card,
which has a ',4 Euroformal size.

Figure 8: The C-Control unil

The largest chip on the card is a 4 MHz Motorola MC68HC05B 16 controller with
256 Bytes free for objecl code and a built-in 6 Kb operating system. The
EEPROM integrated in the contro! card is an 8K by 8 Bit seria! unil. This allows
the EEPROM to have a small footprinl. The two buttons on the right allow to start
(yellow) or reset (red) the program contained in the EEPROM. The three LEDs
provide a reading of the status of the controller: the green LED shows the syn­
chronization of the unit with an optional antenna for wireless programming. the
yellow LED shows that the processor is ready. while the red LED blinks \Vhen the
program is running or a progral1l is being lransfered to the unil. The conneClOrs to

the far right and far left provide access to the follo\Ving 1/0 options:
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· 16 digital JlO ports (SV11 OmA).
· 8 analog inputs.
· 2 analog outputs (pulse-width modulation. PWM frequency of 1953 Hz).

9

The ten-pin connector on the top is an RS-232 interface for 1200 - 9600 baud.
The controller on the computer is responsible for interpreting the received

commands from the central computer and activating the two motors on the unit. as
weIl as the third motor. which drives the shooting plate. The two pulse-width
modulated outputs are used to control the wheel motors. The impulse generators
of the motors are connected to the interrupt inputs.

The microcontroller updates an internal counter periodically. In case that the
counter fails to be updated. because the user prograrn has crashed or after a sud­
den power drop, the whole unit resets itself. This provides a way of recovering
from unexpected electrical problems. for example after a hard collision.

3.2. Custom board

A custom board was designed to provide the necessary power to the microcon­
troller and to allocate the extra components needed: a dual H-bridge motor driver
L298, a beeper, and the radio transceiver SE-2oo. The robots are powered by 8+4
Ni-MH rechargeable mignon balteries
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Figure 9: Layout of the custom board
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The robots can be configured using eight DIP switches and four jumpers. We use
the microcontroller to initialize the radio transceiver and to perform a self-check
on start-up.

3.3 Radio link

The actions chosen by the control module of the software are transmitted to the
robots via a wireless serial communication link with a speed of 9600 baud. We
use radio transmitters operating on a single frequency that can be chosen between
433.0 MHz and 434.5 MHz in 100 KHz steps. The host sends commands in 8­
byte packets that include address of the robot, control bits, motor speeds, and a
checksum. A priority value can be used to direct more packets to the most active
players. The microcontroller on the robots decodes the packets, checks their integ­
rity, and sets the target values for control of the motor speeds. No attempt is made
to correct transmission errors, since the packets are sent redundantly. To be inde­
pendent from the state of the batteries, we implemented on the custom board a
feed-back controlloop of the motor speeds. The microcontroller counts the im­
pulses from the motors 122 times per second, computes the differences to the tar­
get values and adjusts the pulse width ratio tor the motor drivers accordingly. We
use a simple P-control to adapt the motor power.

3.4 Block diagram of the software

Fig. 10 shows a diagram ofthe main modules ofthe control software in the central
computer. The vision system is responsible for analyzing the 30 frames arriving
each second from the video carnera. The result of the analysis is stored in an array
of variables used by the behavior module for further calculations (for example, the
coordinates of the ball and of each robot in the playing field). The behavior mod­
ule determines, using the information provided by the vision system, which ac­
tions are more adequate for the current situation. Each robot is a different thread
in this module and acts "independently" from the others. Once an action has been
determined it is passed to the radio communication module, which transmits a
packet to the corresponding robol. The packet is interpreted by the on-board com­
puter and is transforrned in a movement of the robol.

User inter­
face

Vision
system

Reactive
behaviof Radio

link

Figure 10: The main modules of (he software and their relation
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The user interface, finally, allows the programmers to get snapshots of the playing
field and of most of the behavior, vision and radio link variables. Thi~ is a useful
debugging tool in case the actual behavior of the robots differs from the intended
one - a common problem in behavior based robotics.

4. Vision and user interface

4.1 The camera

The only physical sensor for our control software is a S-VHS camera placed 3 m
above the playing field. Its output is an analog video stream in NTSC format. A
PC running MS-Windows captures the images using a PCI frame grabber. We
obtain RGB images with 640 x 480 pixels at a rate of 30 fps and interpret them to
extract the relevant information.
Since the ball as weil as the robots are color-coded, we designed our vision soft­
ware to find and track multiple colored objects, i.e., the orange ball and the robots
marked with colored balls. One of the teams is required to bear a yellow spot on
the top, and the other a b!ue one. There is therefore a "yellow" and a "blue" team.

4.2 Ball and robot tracking

In order to track the objects we predict their positions in the next frame and then
inspect a small window centered around the predicted position. We use an adap­
tive saturation threshold and intensity thresholds to separate the objects from the
background. Only if an object is not found, the window size is increased and
larger portions of the image are investigated. When we find the desired objects,
we update our model of the world using the measured parameters, such as posi­
tion, color, and size. The decision whether 01' not the object is present is made on
the basis of a quality measure that takes ioto account the hue and size distances to
the model and also geometrical plausibility.
Fig. II shows how the vision software works. There is an update module that
continuously analyzes the frames arriving from a frame grabber. It locates and
tracks the ball using a "ball model", which consist in some variables which de­
scribe color and expected position of the ball. The "team" modules do sornething
similar for each robot in each team. There is an individual robot model for each
player, that is, a team can consist of entirely different robots. Once located, a ro­
bot is tracked continuously during the game. Finally, a translation module trans­
forms the positions of the ball and each roOOt, as weil as the position of obstacles,
into normalized sensor readings that can be used by the behavior module. This
transformation takes into account the actual position of the field within the image,
as weil as the distortion caused by the optics of the camera.
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Figure 11: Structure of the vision module

4.3 Visualization ofvariables

FU-Fighters Team

In order to be able to program the system and adapt the behavior parameters. it
was necessary to write a user interface which could allow the visual inspection of
the system dynamics. Several variables can be monitored at once in a single dia­
gram, so that the actual function of the system can be compared to the intended
one. This is a kind of developing and debugging tool which we found very im­
portant for a project in which the actual behavior of the robots "emerges" and is
not coded explicitly anywhere.
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User interface

initialization module

13

vision

visualization
module

manual control

Views

control

Figure 12: Structure of the user interface

Fig. 12 shows the three main components of the user interface. There is an ini­
tialization module that allows to set the parameters needed to star! the game, like
the position of the relevant marks on the field (goallines, corners, etc) as weil as
the marks that will be tracked on the robots (robot models). The visualization
module allows to produce multiple views of the internal state of the system, as
shown in Fig. 13. The diagrams can show single variables like an oscilloscope and
x-y variables as a trace within the field. Since manual intervention is sometimes
needed (when the referee stops the game or in special situations), a third module
takes care of providing some game controls for the operator.

Zielabstand --_____.,
........

....~,....-.,...
......

0 ••

Lenkkraft .

Zielwinkel

Drehen Schnellfahren

Beschleunigen Bremsen

Figure 13: Example of the visualization of some variables

Stop
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5. Control software

5.1 General approach

FU-Fighters Team

The "behavior based'" approach [Brooks 91,ChristaJler 99,PfeiferScheier 98] has
proved useful for real time control of mobile robots. In this framework, so called
reactive agents do not have a complete internal symbolic model of the world.
They act responding to stimuli arriving asynchronously from the environment.
Each reactive agent is simple and interacts with others also in a simple way, but
complex patterns of behavior emerge from their interaction. This is what Brooks
has called "intelligence without reason", i.e. intelligent behavior without a sym­
bolic plan.
Brooks, specially, has put much emphasis in a hierarchical approach to the prob­
lem of intelligence in mobile agents. Taking some cues from the evolutionary
process, he proposed his "subsumption architecture" (Fig. 14) in which sensory
information activates different behaviors that compete to define the fmal signal to
the actuators [Maes and Brooks 90]. In Brooks model, different behaviors can be
active simultaneously and together, through excitation and inhibition, they define
the final action of the system. The behavior "wander", for example, can make a
robot move around in a roorn, but the subordinated behavior "avoid obstacles" lets
it move without bumping into other objects.

s " ...
E A
N " ... , C
S exp10re - T
I

-0- ,
I

N " wander , N
G .

avoid obstacles G,

Figure 14: Brook's subsumption architecture

In 1992, the programming language PDL was developed by Steels and Vertom­
men for the stimulus driven control of autonomous agents [Steels 92,Steels 94].
This language has been used by several groups working in behavior oriented ro­
botics [Schlottmann et al. 97]. It allows the description of parallel processes that
react to sensor readings by influencing actuators. Many primitive behaviors, like
taxis, are easily formulated in such a framework. On the other hand, it is difficult
and computationally expensive to implement more complex behaviors in PDL,
specially those that require persistent percepts about the state of the environment,
i.e. the handling of different contexts. Consider for example a situation in which
we want to position our defensive players preferentially on that region of the field
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where the offensive players of the other team mostly attack. It is not feasible to
take such adecision based only on a snapshot of sensor readings. The positioning
of the defense has to be determined only from time to time, e.g. every minute, on
the basis of the average positions of the attacking roOOts during the last time pe­
riod.
The Dual Dynamics control architecture proposed by Herben Jäger [Jäger 96,
Jäger and Christaller 97], describes reactive behaviors using a hierarchy of control
processes. Each layer of the system is partitioned into two modules: the activation
dynamics that determines at every time step whether or not a behavior tries to
influence actuators, and the target dynarnics, that describes strength and direction
of that influence. The activation dynamics corresponds to different contexts,
leading to different targets. The different levels of the hierarchy correspond to
different time scales. Behavior modi at higher levels configure the lower level
control loops via activation factors which determine the primitive behavior mo­
dus. This can produce qualitatively different reactions if the agent fmds the same
stimulus again, but has changed its modus due to stimuli received in the mean­
time.

5.2 The architecture of the system

Our control architecture is based on the Dual Dynamics scheme developed by H.
Jäger [Jäger 96, Jäger and Christaller 97]. The roOOts are controlled in c10sed
loops that use different time scales and that correspond to behaviors which sit on
different levels of the hierarchy.

We extended the dual dynarnics approach by introducing a third dynamics,
namely the perceptual dynarnics. Sensory data is processed using different tirne
resolutions. The position of the ball, for example, can be registered for every
frame corning from the carnera. The average position every four frames can be
stored in a higher layer. And the average position every sixteen frames in still
another layer. Sensory layers contain therefore information which is relevant at
different time scales. The predicted ball position, for example, is relevant only if
the roOOt has cnough time to reael. The behaviors of the system are activated by
different sensory readings at different time scales.

level 2

level I
sensors

level 0

Figure 15: Aggregated sensory readings at three levels ofthe hierarchy
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The complete architecture of our system is shown in Fig. 16. The three main
structures visible in the diagram are: sensors, behaviors and actuators. Sensors
determine different behaviors, at different levels of the hierarchy, and behaviors,
in turn, determine the value of the actuators of the system. In our case there are
just three physical actuators: the rotational speed of each of the two wheels and
the state of the motor for the shooting plate (on or off). Some of the actuators at
the higher levels of the hierarchy are "abstract actuators" in the sense that they do
not correspond to physical actuators. For example, an actuator "position to move"
at the second level just sets the objective function for the wheel actuators in the
lowest level. These abstract actuators can modify some of the sensor variables
through an internaI feedback loop.

slow

medium

fast

~ -
.,.. ,., ,.,

~
.,. ,., t

• -
feedback

sensors behaviors actuators

Figure 16: The extended dual dynamics architecture

The boxes shown on the left of Fig. 16 are divided into celJs. There are several
possible sensors. Since we use agIobaI camera to scan the field, the sensors in our
system are virtual sensors. There is for example one to determine the position of
the ball. There is a sensor for the position and orientation of every robot on the
field which is tracked during the game, etc.

The column of behaviors is shown in the middle of Fig. 16. There are several
behaviors in each box. Each of them has an associated activation factor (a number
between 0 and I) that deterrnines when the corresponding behavior is allowed to
influence actuators.

The actuators are shown on the right hand side. Some of these actuators are
connected to physical actuators that change the environment. The higher-level
actuators influence lower levels of the hierarchy or generate sensory percepts in
the next time step via the internal feedback loop.

Since we use temporal subsampling, we can afford to implement an increasing
number of sensors, behaviors, and actuators in the higher layers without an explo­
sion of computational costs. This leads to rich interactions with the environment.
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Each physical sensor or actuator can only be connected to one level of the hierar­
chy. One can use the typical speed of the change of sensor readings to decide
where to connect it. Similarly, the placement of actuators is determined by the
time constant they need to 00 effective.

Behaviors are placed on the level that is low enough to ensure a timely response
to stimuli, but that is high enough to provide the necessary aggregated perceptual
information and that contains actuators which are abstract enough to produce the
desired reactions.

Behaviors are constructed in a bottom up fashion in a way resembling Brook's
philosophy for the subsumption architecture: First, the processes that should react
quickly to fast changing stimuli are designed. Their critical parameters, e.g. a
mode parameter or a target position, are determined. When the fast primitive 00­
haviors work reliably with constant parameters, the next level can be added to the
system. More complex OOhaviors can now 00 designed for this slower level that
influence the environment either directly by moving slow actuators or indirectly
by changing the critical parameters of the control loops in the lower level. After
adding some layers, fairly complex behaviors can 00 obtained that make decisions
using abstract sensors which are based on a long history and that use powerful
actuators to influence the environment. In a soccer playing mOOt, basic skills, like
movement to a position and ball handling, reside on lower levels, tactic OOhaviors
are situated on intermediate layers, while the game strategy is determined on the
topmost levels of the hierarchy.

5.3. Update of the dynamics

The state of the sensors, OOhaviors and actuators is updated using difference
equations. Time advances in discrete steps ßto at the lowest level in the contral
hierarchy. At the higher levels updates are done less frequently: the time step is a
multiple of the time step at level O. Useful choices for the subsampling factor arc
2,4, 8, etc., but they can 00 adjusted as desired.

The variables in each layer of the hierarchy are updated using information from
the lower or the upper levels. In the case of the sensors, the i-th sensor at level j in
the hierarchy is updated at time I using its last value at time I-I, the state of the
relevant physical sensors at time I, as weil as the value of the corresponding sen­
sors in the lower level. The update mechanism is shown in Fig. 17.

level}

level (i-I)

i-th Sensor (t-I) i-th Sensor (I),

~ ~
PhysicaJ sensors (1,2,... ,k) Sensors (I)
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Figure 17: Update of sensors

The aclivation factors of OOhaviors depend on the sensor values at the same
level of the hierarchy, their previous values and the activation of OOhaviors in the
immediate upper level.

level (j+I)
activations

i-th aclivalion (I-I) i-th aclivalion (t)

level}

sensors (1.2•...• rn)

Figure 18: Updale ofbehavior aclivalions

A OOhavior situated at a higher level can "use" or activate lower level OOhav­
iors. For every "connection" from a OOhavior up in the hierarchy to a OOhavior at a
lower level, there is a connection strength that determines the desired change in
the activation factor of the OOhavior at the lower level. Ir the upper level OOhavior
is not active, the total connection strength is zero. To determine the new activation
of the OOhavior at the lower level, the changes arriving from all connections to a
lower level OOhavior are accumulated and transformed into the new activation
using an adequate function.

Each behavior j at each level specifies for each actuator k a target value Tfk.
However, the more a OOhavior is active, the more it can influence the actuator
vaJues. The actual change to the actuators is the difference OOtween the present
state and the target value, multiplied by the conneclion strength between the 00­
havior and each actuator and the activation factor of the OOhaviof. Several OOhav­
iors can update the sarne actuators simultaneously, and in this case the total update
is the sum of the individual updates.

5.4. Behaviors

The final set of behaviors in our control software has a relatively complex struc­
ture, as shown in Fig. 19. There is a team OOhavior that determines when a player
is the one in charge of taking the initiative ("my_turn" variable). The highest level
OOhaviors (in the middle) distinguish between a player who wants to shoot, one
who is defending and one guarding his horne position. The next level of OOhaviors
decompose these three OOhaviors in their elementary components: shooting,
moving forward, blocking the path to the own goalline, dribbling, going back to
the horne position. The behaviors at the lowest level are just moving (forward or
backward) and steering. The actuators (third colurnn) are two fast ones at the low-
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I radio link

ITeam behavior l

my_turn {G,I} shoat {O,l)
my_position (x,y)
ball_position (x,y) defending (0,1 )
my goal (x,y)
enemy~oal (x,y) homing (O,l)
...

" activations
,

aggregate compute

my_position (x,y) forward
ball_position (x,y) shoat

I
obstacle (x,y,1,9) avoid ball
direction {-1,1 ) bloclung
ball distance dribble with ball
angle to goal shoal to goal
dislance to goal shoalout
distance 10 ball go horne
ball direction move from corner shoat plate on
predicted ball (x,y) ... position to go
my_speed
my angle -....

, activations

aggregate compute
J.

my_speed k- move forward drive
my_angular_speed rotate rotation
angle 10 objective ...
distance to objec-
tive
directioll {-\,I }
.... " activations

--

est level for the two wheel motors and one at the immediate upper level for the
shooting plate, which has a slower time constant than the wheels.
The goal keeper has a different set of behaviors and sensors as those shown in the
figure, since it has to act in a different way. In general, the goal keeper reacts
faster to the moving ball in order to block it as soon as it becomes clear that is
coming towards the goalline

Figure 19: Sketch of the extended dynarnic architecture for the FU Fighters
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5.5. Standard situations

FU-Fighters Team

Finally, a set of special modules had to be written for such standard situations as
kick-off, penalties, and reinitialization of the game. There are special rules for
each one of these cases which have to be considered in the software.

5.6 Some examples

To realize a Braitenberg vehicle that drives towards a target, we need the direction
and the distance to the target as input. The control loop for the two differential
drive motors runs on the lowest level of the hierarchy. The two actuator values
used determine the average speed of the motors and the speed differences between
them. We determine the sign of the speed by looking at the target direction. If the
target is in front of the robot, the speed is positive and the robot drives forward, if
it is behind then the robot drives backward. Steering depends on the difference of
the target direction and the robot's main axis. If tbis difference is zero, the robot
can drive straight. If it is large, it turns on the spot. Similarly, the speed of driving
depends on the distance to the target. If the target is far away, the robot can drive
fast. When it comes close to the target it slows down and stops at the target posi­
tion. Smooth transitions between the extreme behaviors are produced using sig­
moidal functions. Fig. 13 shows an example of some variables and how they
change over time.
This primitive taxis behavior can be used as a building block for the goal keeper.
A simple goal keeper could be designed with two modes: block and catch, as
shown in Fig 20. In the block mode it sets the target position to the intersection of
the goal line and a line that starts behind the goal and goes through the ball. In the
catch mode it sets the target position to the intersection of the predicted ball tra­
jectory and the goal line. The goal keeper is always in the bock mode, except for
situations where the ball moves fast towards the goal.

block

calch

Figure 20: Reactive architecture for the goal keeper
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The control hierarchy of the fjeld player that wants to move the ball to a target,
e.g. a tearnmate or the goal, could contain the alternating müdes run and push. In
the run mode the robot moves to a target point behind the ball with respect to the
ball target. When it reaches this location, the push mode becomes active. Then the
robot tries to drive through the ball towards the target and pushes it into the de­
sired direction. When it looses the ball, the activation condition for pushing is not
longer valid and the run mode becomes active again.

-I~,--- -,I

Figure 21: Trajectories generated in the ron mode of the field player

Fig. 21 illustrates how the trajectory of the fjeld player is generated in the run
mode. A line is drawn through the ball target and the ball. The target point is
found on this line at a ftxed distance behind the ball. The distance from the robot
to this target point is divided by two. The robot is heading always towards the
intersection of the dividing circle and the line. This produces a trajectory that
smoothly approaches the line. When the robot arrives at the target point, it is
heading towards the ball target and can start rotating the shooting plate.
Each of our robots is controlIed autonomously by the lower levels of the hierar­

chy using a local view of the world. For instance, we present the angle and the
distance to the ball and the nearest obstacle to each agent. In the upper layers of
the control system the focus changes. Now we regard the team as the individual. It
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has a slow changing global view to the playground and coordinates the robots as
its extremities to reach strategic goals. For example, it could position its defense
on the side of the field where the offensive players of the opponent team mostly
attack and place its offensive players where the defense of the other team is weak.

6. Conclusions and future work

We described in this paper the design of robust and fast robots with reliable radio
communication and a high-speed global vision system Although our first idea
was to use off-the-shelf robots to build oUf team, the harsh competition require­
ments of the RoboCup tournament eventually led us to develop customized hard­
ware. The software is divided in three main blocks: a) the vision module, which
tracks colored objects on the field and sets the scene for the computation of the
activation dynamics, b) the behavior module, and c) the communication module
that transforms the desired actions in motor speeds and sends them to the robots
using a radio link. To generate actions, we implemented a reactive control archi­
tecture with behaviors interacting on different time scales. The relevant control
loops were designed in a bottom-up fashion. Lower level behaviors are configured
by an increasing number of higher level behaviors that can use a longer history to
determine their actions.

Building and programming our own robots was a long but rewarding journey.
In the future, more of the software will include learning modules, so that the rele­
vant parameters in the control hierarchy do not have to be set heuristically or us­
ing trial and error. Simple actions, like shooting or selecting the best path of ap­
proach, can be best solved using neural networks and reinforcement learning. The
second generation of PU Fighters robots will feature these advances, as weIl as
improved mechanical and electronic components.
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