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Abstract

Given disjoint sets P�� P�� � � � � Pd in Rd with n points in total� a ham�sandwich cut is
a hyperplane that simultaneously bisects the Pi� We present algorithms for 	nding
ham�sandwich cuts in every dimension d � 
� When d � �� the algorithm is optimal�
having complexity O
n�� For dimension d � �� the bound on the running time is
proportional to the worst�case time needed for constructing a level in an arrangement
of n hyperplanes in dimension d� 
� This� in turn� is related to the number of k�sets
in Rd��� With the current estimates� we get complexity close to O
n���� for d � ��
roughly O
n���� for d � � and O
nd���a�d�� for some a
d� � � 
going to zero as d
increases� for larger d� We also give a linear time algorithm for ham�sandwich cuts
in R� when the three sets are suitably separated�
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� Introduction and Summary

A hyperplane h is said to bisect a set P of n points in Rd if no more than n�� points
of P lie in either of the open halfspaces de�ned by h	 It is no loss of generality to
assume n odd since otherwise we may delete any point
 x
 and observe that any
hyperplane that bisects P n fxg also bisects P 	

If P is a disjoint union of d sets P�� � � � � Pd
 a ham�sandwich cut is a hyperplane
that simultaneously bisects all the Pi	 The ham�sandwich theorem �see for example

���� guarantees the existence of such a cut	 Here we focus on the algorithmic
question
 which asks for e�cient procedures for computing a cut
 and for bounds on
the complexity of this task	 Throughout
 we use a model of computation where any
arithmetic operation or comparison is charged unit cost �the real RAM model�	

In two dimensions
 a ham�sandwich cut is a line h that bisects P� and P
	 For
the linearly separated case
 where the convex hulls of P� and P
 do not intersect

Megiddo 
��� gave an algorithm to compute h that runs in O�n� steps	 Megiddo�s
algorithm gives an optimal solution to a partitioning problem posed by Willard

���
 namely to �nd lines �� and �
 that separate n given points into �quadrants�
containing at most n�� points each	 The �rst line may be any �say horizontal� line
�� partitioning the points evenly
 easily obtained in O�n� steps	 The second line is a
ham�sandwich cut for the points P� �above ��� and P
 �below ���
 obtained in linear
time by Megiddo�s algorithm	

Edelsbrunner and Waupotitsch 
��� modi�ed Megiddo�s method for the general
planar case	 Their algorithm can compute h in time O�n log n�	 Earlier
 Cole

Sharir and Yap 
�� had described a procedure that may now be seen to have the
same complexity
 in view of the existence of a logarithmic depth sorting network 
��	

In this paper we prove the following result �see also 
����	

Proposition � Given two sets of points P� and P
 in R
� jP�j� jP
j � n� a ham�
sandwich cut can be computed in O�n� time�

The proof consists of an optimal linear time algorithm which thus settles the
complexity question for two dimensional ham sandwich cuts	

In three and higher dimensions much less was known	 The brute�force approach
has complexity O�nd���� the odd cardinality assumption forces a cut to contain a
point from each Pi
 and we can check the hyperplane corresponding to each possible
d�tuple in linear time	 It is also not too di�cult to give an O�nd� algorithm
 by
constructing the arrangements of hyperplanes dual to the points of P �see Section
� for the dual formulation of the problem�	

Edelsbrunner 
��� described a related problem of �nding two planes that simul�
taneously divide each of two given sets of points in R� into four equal sized subsets�
the points were required to satisfy a special separation condition	 He gives an algo�
rithm with running time O�t�n��log n�
�
 where t�n� denotes the maximal number
of �n����sets possessed by any set of n points in R� �see also section ��	

In Section � we show how to generalize the ideas used in Proposition � to di�
mension d � � and describe an algorithm with complexity O�nd���	 The running
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time can be further decreased using �relatively complicated� ray shooting methods
for construction of levels in hyperplane arrangements	 We prove the following	

Proposition � Given n points in Rd which are partitioned into d sets P�� � � � � Pd

in Rd� a ham�sandwich cut can be computed in time proportional to the �worst�case�
time needed to construct a given level in the arrangement of n given hyperplanes in
Rd��� The latter problem �i� requires at least ��nd�
� time� �ii� is easy to solve in
O�nd��� time� �iii� can be solved within the following bounds�

O�n��
 log
 n� log� n� for d � ��
O�n
����� for d � ��
O�nd���a�d�� with certain �small� constant a�d� � � for d � ��

Finally for the case d � �
 if the sets are suitably separated
 the general algorithm
can be modi�ed so that it �nds a ham�sandwich cut in linear time	 This extends
Megiddo�s result to R�	

� Preliminaries and Notation

We denote by S the coordinate hyperplane xd � � �i	e	 the x�axis for d � ��	 For a
subset X � S we denote by V �X� the vertical �cylinder� erected through X
 i	e	

V �X� � f�x�� x
� � � � � xd�� xd � R� �x�� � � � � xd��� �� � Xg�

It is easier to look at a dual version of the ham�sandwich problem	 We use the duality
transform which maps the point p � �x�� � � � � xd� to the �nonvertical� hyperplane
� � f�w�� � � � � wd� � wd � �x�w� � � � �� �xd��wd�� � xdg �see 
��� for properties�	
The ham�sandwich cut problem then becomes the following�

Given a setH of hyperplanes in Rd
 partitioned into d classesH�� � � � �Hd

jHij odd
 �nd a point x which
 for each i � �� � � � � d
 has no more than
jHij�� of the hyperplanes of Hi below it
 and no more than jHij�� hy�
perplanes above	

To simplify our considerations
 we make some general position assumptions	 We
suppose that every d�tuple of hyperplanes of H meets in a unique point �vertex� and
that no point in Rd is incident with more than d of the hyperplanes	 Also we assume
that the vertical direction �the direction of the xd�axis� is a �generic� one
 i	e	 that
the vertical projections of all vertices on the coordinate hyperplane xd � � are all
distinct	 This is no loss of generality
 as one may use some variant of simulation of
simplicity �see 
���� to handle the general case	

Given a set H of hyperplanes in Rd
 they partition the space into a complex of
convex cells
 called the arrangement of H	 An important concept for us will be the
p�level in the arrangement of H
 denoted by Lp�H�	 This is de�ned as the closure
of the set of all points which lie on a unique hyperplane of the arrangement and
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have exactly p� � hyperplanes below it	 In dimension �
 the p�level is a continuous

piecewise linear function whose segments always coincide with one of the lines in
the arrangement	 In higher dimensions
 the p�level also consists of certain cells of
the arrangement of H
 and thus it is a piecewise linear hypersurface in Rd	

When p � b�jHj�����c
 the Lp�H� is called the median�level of the arrangement	
The dual version of the ham�sandwich cut problem may be restated as follows�

Given a set H � f��� � � � � �ng of hyperplanes in Rd
 partitioned into d
classes H�� � � � �Hd
 jHij odd
 �nd an intersection point of the median
levels of the arrangements of H�
 � � � 
 Hd	

Such an intersection point will be a vertex in the arrangement of H
 whose d
de�ning hyperplanes contain precisely one hyperplane of each Hi	

A key feature used by our algorithms is the odd intersection property	 A set
X � S � f�x�� � � � � xd��� ��g has the odd intersection property with respect to levels
�i � Lpi�Hi� if

j��� 	 � � � 	 �d� 	 V �X�j is odd� �����

i	e	
 the levels intersect an odd number of times in the cylinder erected through X
�note that the set �� 	 � � � 	 �d is �nite by our general position assumption�	

The running time of our algorithm will depend on the time needed for construc�
tion of levels in arrangements of hyperplanes� this time in turn depends on the
combinatorial complexity of these levels	 We review the known results�

Let ed�n� k� denote the maximum possible number of vertices of the k�level in an
arrangement of n hyperplanes in Rd
 and let ed�n� � maxfed�n� k�� k � �� � � � � ng	
It is well�known that ed�n� k� is proportional to the maximum number of k�sets of
an n point set in Rd	 The k�set problem has been extensively studied �see 
��
 
���

and 
����	

It is known that ed�n� � ��nd�� log n� and it is conjectured that this bound
is close to the truth	 The known upper bounds seem much weaker
 however	 It
was shown that e
�n� � O�n��
� log� n� 
���
 that e��n� � O�n
��� 
��
 
���
 and in
general ed�n� � O�nd���d�� for some �small� positive constant 	�d� 
��
 
���	

E�cient output�sensitive algorithms for level construction are known in dimen�
sions � and �� a level of complexity b can be constructed in time O�n log n�b log
 n�
for d � � 
��� and in time O�n��� � bn�� for d � �
 
 an arbitrarily small positive
constant 
��	 For d � � the e�ciency of the algorithm of 
�� gets worse� it guarantees
that if the complexity of the level is O�nd���d�� for some 	�d� � �
 then the level can

be constructed in O�nd���d� d
d��

��� time	

� The Planar Case

To elucidate the ideas used in our algorithms
 we begin by explaining the planar case

and then show how these ideas may be extended to higher dimensions	 To prove
Proposition �
 namely that the planar ham�sandwich problem has linear complexity
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we will present an algorithm for the task using the dual setting introduced in the
previous section	 Therefore we have two sets H� and H
 of lines
 and we want to
�nd an intersection of the median levels �� �of the lines in H�� and �
	 We suppose
that both n� � jH�j and n
 � jH
j are odd
 and n � n� � n
	

In this situation and with our general position assumptions we have

Lemma ��� The median level of H� and the median level of H
 intersect in an odd
number of points�

Proof� This conclusion may be deduced from a well�known elementary proof of the
existence of the ham�sandwich cut in the plane	 Here we give an elementary geo�
metric proof	 First we observe that the left unbounded ray and the right unbounded
ray of the median level of H� lies on the same line h� � H� �the one with the median
slope�	 Similarly the unbounded rays of the median level of H
 are parts of some
line h
 � H
	 One of these lines
 say h�
 has smaller slope	 This means that far
enough left
 the median level of H� is below the median level of H

 while far to the
right
 it is above the median level of H
	 By continuity
 the median levels intersect
an odd number of times	 �

Remark� The lemma says that the whole x�axis has the odd intersection property
with respect to the median levels of H�� � � � �Hd	 In general
 let �i � Lpi�Hi� denote
the pi level in the arrangement of the lines in Hi	 Then an interval T � ��� r� has
the odd intersection property with respect to ��� �
 if and only if

������� �
��������r�� �
�r�� � �� �����

where �t� ��t�� denotes the point on the level � at x � t	
Our algorithm will work in phases
 and it will discard a constant fraction of the

lines in each phase
 until it reaches a situation with a small �constant� number of
lines
 where the ham�sandwich cut vertex can be found directly	 At the beginning
of each phase
 the algorithm has the following data�


 an open interval T on the x�axis



 current sets G�� G
 of lines
 Gi � Hi
 jGij � mi



 integers p�� p

 � � pi � mi


and the following invariant holds�

The levels �� � Lp��G�� and �
 � Lp��G
� have an odd number of
intersections within V �T �
 and each such intersection is an intersection
of the median levels of the original sets H��H
 of lines�	

At the end of the phase
 lines have been discarded so we now have new sets G�
i � Gi


jG�
ij � m�

i
 integers p
�
i � m�

i
 and a new interval T � � T on which the invariant holds

�In fact these intersections are the only ham�sandwich vertices in V �T ��
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for the new data	 To start the algorithm
 T is the whole x�axis
 G� � H�
 G
 � H


p� � b�n� � ����c and p
 � b�n
 � ����c	 The invariant will be satis�ed in view of
Lemma �	�	

Clearly the assertion of Proposition � holds if we can prove

Lemma ��� Let T�G�� G
� p�� p
 be as above and satisfy the conditions of the invari�
ant� Then in time O�m� �m
�� one can compute new T � � T � G�

� � G�� G�

 � G
�

p�� � p�� p�
 � p
� again satisfying the conditions of the invariant� and with the new
value of m� � jG�

�j � jG�

j � �m��� i�e�� in linear time at least a quarter of the

lines G� � G
 that begin a phase may be discarded as candidates for ham�sandwich
vertices�

Proof� We �rst give an outline of the algorithm
 and then we �ll in the details	 We
suppose that m� � m
 �renumbering the sets if necessary�	 The algorithm performs
the following steps 
the time for each step is indicated in square brackets��

�	 Divide the interval T into a constant number of subintervals T�� � � � � TC
 such
that no V �Ti� contains more than a prescribed �constant� fraction of the ver�
tices of the arrangement of G� 
O�m���	

�	 Find one subinterval Ti with the odd intersection property 
O�m� �m
�� 	

�	 Construct a trapezoid 
i � V �Ti�
 such that

�� 	 V �Ti� � 
i ��	��

At most half of the lines of G� intersect 
i ��	��


O�m���	

�	 Discard all the lines of G� which do not intersect 
i �at least m��� � �m� �
m
��� lines�
 and update p� accordingly �p�� 
 p� � b
 b denoting the number
of discarded lines of G� lying completely below 
i�	 Then Ti becomes the new
T 
 and we are ready for the next phase of the algorithm 
O�m� �m
��	

Now we discuss the steps in greater details	 The �rst result pertains to Step �	

Lemma ��� Let H be a set of n lines in the plane in general position� � � � a
prescribed positive constant� and T an interval on the x�axis� In O�n� time� one can
subdivide T into subintervals T�� T
� � � � � TC �C � C��� a constant�� such that each
V �Ti� contains the at most �N of the N �

�
n



�
vertices of the arrangement of H�

Proof� We apply a theorem of 
� � on approximate selection of the k�th leftmost
intersection �which in turn uses a technique developed in 
 ��	 Let t� � � � � � tN
denote the x�coordinates of the vertices of H
 in order	 It is proved in 
� � that
given a positive constant � � � and a number k� � � k � N 
 then in linear time
one can �nd two lines of H whose intersection lies between tk��N and tk��N 	 Using
this selection procedure
 we divide the x�axis into intervals guaranteed to contain no
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more than �N intersections each
 as follows	 Taking � � �
�
and k � di�



Ne we get


in linear time
 an intersection with x�coordinate ui that lies between td�i� �
� �

�
�Ne and

td�i� �
� �

�
�Ne	 Carrying out such approximations for i � �� � � � � b 


�
c we obtain intervals

T �
i � �ui��� ui� and the non�empty intervals Ti � T 	Ti have the asserted properties

�note that C��� � ����	 �
At the end of this section we will discuss more practical aspects of the algorithm

and there we suggest another approach for constructing the subdivision in Step �	 A
third possibility is to specialize the construction we use when subdividing in higher
dimensions	

Lemma �	� shows how to do Step � in linear time	 We will apply it to the m�

lines in G�	 The value of � will be �xed later	 For Step � �subinterval selection�
 we
need the following lemma�

Lemma ��� Given an interval T � ��� r�� the odd�intersection property for levels
�� � Lp��G�� and �
 � Lp��G
� may be tested in linear time� i�e�� in time O�jG�j�
jG
j� we can 	nd the parity of j�� 	 �
 	 V �T �j�

Proof� The parity is odd i! the vertical order of the intersections of �� and �
 with
the line x � � is opposite to the order of the intersections with x � r� i	e	
 ��	��
must hold on T � ��� r�	 The intersection of the p��level with a vertical line x � v
can be found in O�m�� time
 by computing the y�coordinates of the intersections of
all lines of G� with x � v and selecting the p��th smallest of these numbers
 using a
linear�time selection algorithm	 �

Since T has the odd intersection property
 so will at least one of the subintervals
Tj from the subdivision	 Testing them sequentially
 we are guaranteed by Lemma �	�
that in linear time we will discover a suitable subinterval Ti � ��� r� with the odd
intersection property	 We now describe the construction of the trapezoid 
i men�
tioned in Step � and verify its properties	 Let D�

l and D�
l be the intersections of the

vertical line x � � with the levels Lp���m� �G�� and Lp���m� �G��
 respectively� simi�
larly we de�ne D�

r �D
�
r 	 These four points de�ne the trapezoid 
i � D�

l D
�
l D

�
r D

�
r 	

With appropriate choice of 
 it has the desired properties in view of

Lemma ��� Let 
 � �


and � � �

�

� Then �
��� and �
�
� hold for any 
i� i�e�� at

most half of the lines in G� meet 
i� and within the strip V �Ti�� the level Lp��G��
remains within 
i�

Proof� The proof very much resembles the proof of a similar lemma in 
� �	 Consider
the top of 
i
 the segment � � D�

l D
�
r 	 The lines of G� that meet � are partitioned

into two classes
 S
 the lines with slope smaller than that of �
 and L
 those with
larger slope	 Traversing � from left to right
 we keep count of the number of G�

lines below	 At the start
 there are p� � 
m� lines below	 When we meet a line in
S
 the count increases by one
 and when we meet an L�line
 it decreases by one	 At
the end there are again p� � 
m� lines below	 Hence jSj � jLj	

Each S�line intersects each L�line within the vertical strip V �Ti�	 Since this strip
contains at most �

�
m�




�
� �m


��� intersections
 by the construction in Lemma �	�




 

we have jSj
 � jSjjLj � �m

���
 so jSj � jLj � �

p
����m�	 Since � is 
m� lines

above the p��level at both endpoints of the interval Ti
 the p��level remains below �
as long as r

�

�
� 
�

The same argument will show that the p��level never breaks below the bottom of 
i	
Now we count intersections of G� lines with the boundary of 
i	 There are exactly

�
m� such intersections on each of the vertical sides D�
� D

�
� and D�

r D
�
r 
 by de�nition	

Also
 we have shown that at most ��
p
����m� lines of G� meet the top side of 
i�

similarly the bottom side contributes the at most ��
p
����m� intersections	 The

total is at most �
m����
p
����m� intersections which
 using the above inequality


is less than  
m�	 Since each G� line that meets 
i intersects two sides
 at most
�
m� lines can meet any trapezoid	 So if 
 � �



at least half the lines in G� miss 
i

as required by ��	��	 If we now take � � �
�
 
 ��	�� is satis�ed because the inequality


above
 is	 This �nishes the proof of Lemma �	� and thus of Proposition � as well	 �
We conclude this section by a remark concerning a practical implementation of

the planar ham�sandwich cut algorithm	 There are 

�
� �� subintervals in the sub�

division	 In practice
 it is wasteful to construct all of them and test them for the
odd intersection property sequentially �although the asymptotic complexity is not
a!ected�	 Instead
 one may perform a binary search� start with T as the current
interval
 and select an intersection approximately in the middle among the intersec�
tions of the G��lines in the current interval	 Subdivide the current interval into two
subintervals by the selected intersection	 At least one of them has the odd intersec�
tion property �one application of Lemma �	� su�ces to determine which one� and
it can be used as the current interval in the next step	 This "halving� is repeated
until the number of intersections within the current interval becomes small enough

then one constructs 
i and discards the G��lines
 as described above	 A relatively
easy way to select an intersection approximately in the middle of the current in�
terval is to choose a random intersection within that interval	 For this purpose

one can use a modi�cation of an algorithm for counting inversions of a permutation
�or its approximate version
 if one wants to stay within the asserted asymptotically
linear time�
 see 
 �
 
��� or 
���	 With these modi�cations
 the algorithm becomes
relatively simple and �hopefully� practical	

� The General Case

In this section we describe a generalization of the algorithm for an arbitrary �xed
dimension
 and prove the complexity assertions made in Proposition �	
Proof of Proposition �� The presentation is quite analogous to the one for
the planar case	 Let �i denote the median level of Hi	 Let us call every point of
�� 	 � � � 	 �d a ham�sandwich vertex �with our general position assumptions
 there
are �nitely many points in the intersection
 each being a vertex of the arrangement
of H � H� � � � � �Hd�	
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We begin with an analog of Lemma �	� which shows that the odd intersection
property ��	�� holds for the whole coordinate hyperplane S with respect to median
levels	

Lemma ��� The total number of ham�sandwich vertices is odd�

Proof� This is
 essentially
 what one proves when establishing the existence of a
ham�sandwich cut by topological arguments �from the Borsuk�Ulam theorem�	 A di�
rect proof of showing the existence of odd number of ham�sandwich cuts along these
lines was shown to us by I	 B#ar#any	 Here we give a somewhat di!erent geometric
proof
 whose parts will also be useful later	

Using Lemma �	� as the base case in an induction we suppose the statement of
Lemma �	� is true for dimensions smaller than d	 Let H denote the arrangement of
the n given hyperplanes	 Consider the N �

�
n

d��

�
distinct ��$ats �lines� determined

by �d � ���tuples of hyperplanes of H and project each of these ��$ats vertically
onto the coordinate hyperplane S �the general position assumption guarantees that
no intersection projects to a point�	 Choose a unit vector 	 � S
 not orthogonal
to any of the N projections	 We can �nd two vertical hyperplanes �left and �right

both with normal 	 such that all the vertices of H lie between them	 By the choice
of 	 each of the given hyperplanes of H meets �left and �right	 The intersections of
the hyperplanes in H
� � � � �Hd with �left satisfy the induction hypothesis with d� �
and therefore �
 	 � � � 	 �d meets �left in an odd number of vertices �ham�sandwich
vertices in �left�	 Call them ��� � � � � �
m��	 Similarly there are an odd number of
�
 	 � � � 	 �d vertices in �right� call them r�� � � � � r
k��	

To complete the proof we describe the skeleton

� � �
 	 � � � 	 �d�

the intersection of the median levels of the H
� � � � �Hd hyperplanes	 It consists of
vertices connected by edges	 A vertex is a point of the form

v � h
 	 � � � 	 hd 	 a� � �x�� � � � � xd��

where hi � Hi is in �i at �x�� � � � � xd��� and for some q � f�� � � � � dg
 a� �� hq is also
in �q	 The intersections

e � h
 	 � � � 	 hq�� 	 hq 	 hq�� 	 � � � 	 hd

and
e� � h
 	 � � � 	 hq�� 	 a� 	 hq�� 	 � � � 	 hd

are both edges ���$ats� incident with v	 The general position assumption guarantees
that vertices have degree exactly two	 Each vertex is in a connected component of �
which is either a chain v�� � � � � v� � � � � vt of distinct vertices or a cycle v�� � � � � v� � � � � vt
of distinct vertices
 except that v� � vt	 The terminal vertices v� and vt in a chain are
each incident with one edge which is an in�nite hal$ine	 If u and v are vertices on a



��

chain and both above �w	r	t	 xd coordinate� or both below ��
 the chain determines
an even number of ham�sandwich cuts between u and v� otherwise it determines an
odd number	 Clearly cycles determine an even number of cuts	

Since all vertices of H are between �left and �right
 no cycle of � can meet either
of these hyperplanes	 On the other hand both terminal hal$ines of each chain must
meet one of these hyperplanes
 by the choice of 		 Thus each �i � �left and rj � �right
is the intersection with a terminal hal$ine of some chain of �	

In fact each �i is naturally matched with a unique rj	 Consider the line p contain�
ing the hal$ine meeting �left at �i	 The part of p to the left of �left is in �	 Between
�left and �right
 p meets each of the n�d�� hyperplanes in which it is not contained

and to the right of �right
 p has no vertices	 Therefore the n�d�� hyperplanes each
reverse their �above�below� relation with p between �left and �right	 This means
that the part of p to the right of �right is also in �
 	 � � � 	 �d
 so it intersects �right
at some rj	 This establishes two facts� First
 �m��
 the number of �j �s
 also equals
the number of ri�s� second
 amongst the �i�s and rj �s
 exactly half �or �m � �� are
below ��	 Now we are �nished
 because each chain has two terminal hal$ines that
are either both above ��
 both below it
 or one of each	 But since an odd number of
the �i and rj are below ��
 an odd number of chains can have one terminal hal$ine
above �� and the other
 below it
 and this proves the lemma	 �

Our algorithm uses simplices in the coordinate hyperplane S analogous to the
interval T in the planar algorithm	 It again works in phases
 discarding a constant
fraction of the hyperplanes in each phase	

At the beginning of each phase
 the algorithm has the following data�


 an open simplex T in the coordinate hyperplane S



 current sets G�� G
� � � � � Gd of hyperplanes
 Gi � Hi
 jGij � mi
 m � m� �
� � ��md



 integers p�� p
� � � � � pd
 � � pi � mi	

The invariant is as follows�

There are an odd number of intersections of �� 	 � � � �d ��i � Lpi�Gi��
in V �T �	 These intersections are the ham�sandwich vertices in V �T � for
the original sets H�� � � � �Hd of hyperplanes	

In the beginning
 we let T be the whole coordinate hyperplane S � fxd � �g �the
word �simplex� is to be interpreted as an intersection of at most d� � halfspaces�

Gi � Hi and pi � b�ni � ����c	 Then the invariant is then satis�ed because of
Lemma �	�	

To establish Proposition �
 we prove an analog of Lemma �	��

Lemma ��� Let T�Gi� pi be as above and satisfy the conditions of the invariant�
One can compute new T � � T � G�

i � Gi� p�i � pi� �i � �� � � � � d�� again satisfying
the conditions of the invariant� and with the new size m� � jG�

�j � � � � � jG�
dj �

�� � ���d�m� The running time is at most proportional to the worst�case running
time needed to construct one level in a given arrangement of m hyperplanes in Rd���
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We again suppose that m� � m
� � � � �md	 The outline of the algorithm is almost
identical to the planar case�

�	 Partition the simplex T into simplices T�� � � � � TC �C � C�d� a constant� with
suitable properties �to be described later�	

�	 Find one simplex Ti with the odd�intersection property� i	e	
 j�� 	 � � � 	 �d 	
V �Ti�j is odd	

�	 Construct a region 
i � V �Ti�
 such that

�� 	 V �Ti� � 
i ��	��

At most half of the hyperplanes of G� intersect 
i	 ��	��

�	 Discard all the hyperplanes of G� which do not intersect 
i �at least m��� �
m���d�� and update p� accordingly �p�� 
 p� � b
 b the number of G� planes
lying below 
i�	 Then Ti becomes the new T 
 and we are ready for the next
phase of the algorithm	

To de�ne the subdivision of T in Step � we need the notion of 
�approximation	
LetH be a collection of hyperplanes inRd
 and consider the set system �H�R�
 where
R consists of all subsets of H de�nable by segments
 i	e	 of the form fh � H� h	s ��
�g
 where s is a segment in Rd	 Given a parameter 
 � �
 an 
�approximation for
�H�R� is a subset A � H of hyperplanes with the property that

���� jA 	Rj

jAj
�
jRj

jHj

���� � 
� �����

for every R � R	 The following lemma is a particular case of a result of 
����

Lemma ��� 
� � Given a set H of n hyperplanes in Rd and 
 � �� one can compute
an 
�approximation for �H�R� of size O�
�
 log �

�
� in time O�f�
�n�� where f�
� is

a factor depending on 
 �and d� only� in particular� the running time is O�n� for a
	xed 
� �

Let us remark that a random sample A of size C
�
 log �
�
�for a suitable constant

C� will
 with high probability
 be an 
�approximation for �H�R�	 This again suggests
a possible simpli�cation for an implementation of the algorithm	

The partition in Step � of the algorithm is performed as follows� We let 
 � �
be a small enough constant �to be �xed later�
 and let A be an 
�approximation
for the hyperplanes in G�	 We project all pairwise intersections of the hyperplanes
of A into the coordinate hyperplane S
 which gives a set �
 of K �

�
jAj



�
d � �

dimensional projections �hyperplanes� in S	 Note that the size of A and thus also K
are bounded by a constant
 as 
 is a constant	 We form the arrangement of � �within
S� and triangulate the part of it within T 
 obtaining the simplices T�� � � � � TC �this



��

partitioning procedure
 which may look rather mysterious
 will be substantiated
when discussing Step � of the algorithm�	

The following lemma deals with Step � �selecting the appropriate simplex�	 This
step will dominate the running time
 as all other steps can be performed in linear
time	

Lemma ��� Given a simplex T � S� the parity of j�� 	 � � � 	 �d 	 V �T �j can be
determined in time proportional to the �worst�case� time needed to construct one
given level for a collection of at most m hyperplanes in Rd���

Proof� In each vertical face F of the in�nite prism V �T � consider the d� � dimen�
sional arrangement AF of the hyperplanes of G � G� � � � ��Gd intersected with F 	
We call a vertex v � AF good if it is in � � �
 	 � � � 	 �d and below ��	

First
 we claim that the parity of j�� 	 � � �	 �d 	 V �T �j is the same as the parity
of the total number of good vertices within all faces F of V �T �	 The argument is
similar to the one used in Lemma �	�� Consider a chain v�� � � � � vt in � and traverse
it continuously from the in�nite hal$ine leading to v�
 along edges vivi��
 and then
through the in�nite hal$ine leading from vt	 It meets faces of V �T � an even number
of times
 say at points u�� u
� � � � � u
k
 each point alternately an entrance and an
exit of V �T � �i	e	
 u
j��� u
j denotes a part of the chain in V �T � and u
k� u
k�� a
part not in�	 Each ui is a vertex in AF for a face of V �T �	 If u
j�� and u
j are
both good or both bad
 then the chain has an even number of ham�sandwich cuts
in V between these points
 and if one of them is good and the other bad
 then there
are an odd number of cuts	 This proves that for each chain in � the parity of its
intersections with faces of V �T � which are good vertices
 is the same as the parity
of its intersections in V �T � with ��	 Obviously the same argument can be made
for any cycle v�� � � � � vt
 v� � vt in �	 This establishes our claim and it su�ces to
describe how the parity of the number of good vertices is found	

An easy way of counting the good vertices is to construct the arrangement AF 

traverse its vertices and count the good ones	 This requires O�md��� time for each
face F 	 But we can do better using level construction algorithms	 Let �F be the
vertical hyperplane containing F 
 and let us put %Gi � fg 	 �F � g � Gig
 %�i �
Lpi�Gi� � �i 	 �F 	 The problem is now to count the points of F 	 �%�
 	 � � � 	 %�d�
lying below %��	

For each point of %�i
 we know that the number of hyperplanes of %Gi below
it is pi	 Hence each point �vertex� of � � %�
 	 � � � 	 %�d is a vertex of the level
L
 � Lp������pd� %G
 � � � �� %Gd�	 If we have a suitable combinatorial representation of
L

 we can thus traverse it in time proportional to its complexity and �nd all the
vertices of �	

It remains to decide which vertices of � are below %��	 An obvious method
is to locate each vertex v of � in a projection of %�� onto a horizontal �d � ���
dimensional hyperplane	 However
 reasonably e�cient point location structures in
convex subdivisions are only known for dimensions at most � �which means d � ��	
We outline an alternative method that works for any d	



Algorithms for Ham�Sandwich Cuts ��

We will determine the position of all vertices of the above de�ned level L
 with
respect to %��
 by traversing the ��skeleton of L
 �by a depth��rst graph traversal

say�	 During this traversal
 we remember whether we are below or above %��
 and
we will update this information as we traverse an edge crossing %��	 To this end

we need to detect all intersections of the edges of � with %��	 We observe that each
such intersection is a vertex of the level L� � Lp������pd�

%G� � � � � � %Gd�	 Hence all
such intersections can be constructed in advance by constructing and traversing L�	
Knowing these intersection
 we associate and store them along with the edges of L
	
With a suitable implementation of the traversal of the levels
 the running time is
dominated by the time needed to construct the levels L� and L
	 �

In Step �
 we de�ne the polyhedron 
i and establish its properties	 Let c � � be
a constant to be speci�ed later	 For each vertex vj of the simplex Ti � S
 we de�ne
the points D�

j 
 D
�
j as follows�

D�
j � Lp��c�m� �G�� 	 V �vj� and

D�
j � Lp��c�m� �G�� 	 V �vj��

i	e	
 D�
j �resp	 D�

j � is the intersection of the p� � c
m� �resp	 p� � c
m�� level
of the G� hyperplanes with the vertical line through vj �these points can be found
in O�m�� time by linear�time selection�	 Then we de�ne 
i as the convex hull of
fD�

� �D
�
� � � � � �D

�
d �D

�
d g	 It remains to prove that the constants c� 
 can be chosen in

such a way that 
i has the required properties ��	�� and ��	��	

Lemma ��� Choose c � ��d����� and 
 � �����d�����c�� Then ���
� and �����
hold for any 
i� i�e�� at most half of the lines in G� meet 
i� and within the prism
V �Ti�� the level Lp��G�� remains within 
i�

Proof� Consider a pair D�
j 
 D

�
k of vertices of 
i	 We will estimate the number of

hyperplanes of G� intersecting the segment D�
j D

�
k 	 The levels of D�

j and D�
k in

the arrangement of G� are equal
 and the de�nition of 
�approximation implies that
their levels in the arrangement of A di!er by at most �
jAj	

Suppose that there are more than �
jAj of the A hyperplanes intersecting the
segment D�

j D
�
k 	 It is easy to argue that there must be two hyperplanes of A inter�

secting inside the two�dimensional vertical strip erected through the segmentD�
j D

�
k

�the argument is similar as in the planar case�	 If we project the intersection of such
two hyperplanes into S
 we get a hyperplane �within S� belonging to the set �	 But
Ti was a simplex from a triangulation of the arrangement of �
 so its edge cannot
be intersected by a hyperplane of �	 This contradiction shows that the segment
D�

j D
�
k is intersected by no more than �
jAj of the A�hyperplanes
 and thus by at

most �
m� of the G� hyperplanes
 by the 
�approximation property	
Since the top and bottom faces of 
i have a total of d�d � �� edges
 there are

at most �d�d � ��
m� intersections of hyperplanes in G� with edges in the top
or bottom of 
i	 By the de�nition of D�

j �D
�
j 
 each of the d vertical edges of 
i

accounts for �c
m� intersections with hyperplanes in G�
 giving a total of at most
��d�d � �� � �cd�
m� intersections	 Because each hyperplane meeting 
i intersects



��

at least d edges
 at most ���d � �� � �c�
m� of the hyperplanes in G� can meet 
i	
Whatever c is
 we will take 
 � �����d � �� � �c� and satisfy ��	��	 To �x c
 we
already showed that there are at most �d�d � ��
m��� intersections of hyperplanes
in G� with edges in the top face of 
i	 The choice of c � ��d� ���� guarantees that
the top face of 
i meets at most c
m� hyperplanes in G�	 This means that the level
of each point in the top face di!ers from the �common� level of the vertices D�

j by
at most c
m�
 and
 in particular
 it is not smaller than p�	 This implies that ��
 the
p��level of G�
 can never get above the top of 
i	 The argument for the bottom is
the same	 This �nishes the proof of Lemma �	� and therefore of Proposition � as
well	 �

� A Separated Case in R�

Suppose we have three disjoint sets P�� P
� P� in R�	 A line � is a transversal if it
meets all three convex hulls conv�P��
 conv�P
�
 conv�P��	 Our separation condition
is that the sets have no transversal	 For this case we generalize Megiddo�s result 
���
and prove that the complexity of the separated ham�sandwich problem inR� is O�n�	
Speci�cally we will show that the separation condition allows a modi�cation of the
general algorithm so it runs in linear time	 In Step � of the algorithm � the only
one requiring more than linear time � we will be able to replace level construction
in a two dimensional vertical face by planar ham�sandwich computations and a few
other linear time operations	

Let us begin with two equivalent formulations of the transversal condition	

Lemma ��� The following statements about three convex sets A�� A
� A� � R� are
equivalent�

�i� A�� A
� A� have no line transversal�

�ii� For every permutation �i� j� k� of ��� �� ��� Ai can be separated from Aj �Ak by
a plane�

�iii� For any plane �� at least one pair of sets among the orthogonal projections of
A�� A
� A� on � has an empty intersection�

Proof� �i���ii�� If su�ces to show that conv�A� � A
� 	 A� � �	 Any point
x � conv�A� � A
� lies on a segment a�a
 with a� � A� and a
 � A

 so if also
x � A� then the line � through a�� x and a
 is a transversal	

�ii���iii�� Let �i denote a plane separating Ai from the union of the other
two sets �i � �� �� ��	 For simplicity assume that ��� �
� �� are in general position�
place the origin of coordinates to the point �� 	 �
 	 �� and let ��i denote the
halfspace bounded by �i and containing Ai
 and ��

i the opposite halfspace	 We
have A� � ��� 	 ��


 	 ��
� 
 and similarly for A
� A�	 Let � be a projection plane and

let r be its normal	 Let us place the vector r into the origin and discuss the position
of its endpoint R with respect to the �i�s	 If R belongs
 for instance
 to ��

� 	 ��
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then the plane passing through R and through the line �� 	 �
 separates A� from
A

 and it projects to a line in � separating the projection of A� from the projection
of A
	 Similarly for R � ��� 	 ��
 
 and generally we get a separating line for some
pair of projections whenever the signs of the halfspaces containing R for some two
indices coincide	 But this is the case for any R	

�iii���i�� The projection to a plane orthogonal to a line transversal � violates
the condition �iii�	 �

Note that the condition �ii� can be tested in O�n� time �using a linear�time linear
programming algorithm in dimension ��	

A dual formulation of �iii� yields the condition we will need in the algorithm	

Lemma ��� Let P�� P
� P� be point sets satisfying the separation condition� and let
H��H
�H� be the dual sets of planes� Let � be a vertical plane� There exists a pair of
indices �i� j� � f��� ��� ��� ��� ��� ��g such that if �i is some level of Hi and �j some
level of Hj � then �i and �j have a unique intersection within �� Given �� such a
pair of indices can be determined in O�n� time�

Proof� Let � be described by the equation cx� dy � e � �	 The duality transform
maps a point x � � to a plane D�x� parallel to the direction r � ��c� �d��e�
 so
the points in � correspond to lines in a plane � orthogonal to r	 If another plane
h intersects � in a line �
 then the points of � dualize to planes parallel to r and
passing through the point D�h� dual to h	 Hence the corresponding lines in � all
pass through the projection of D�h� on �
 so a line if � corresponds to a point in �	
It is not di�cult to verify that the point in � does not depend on the choice of h

and that this correspondence between points and lines in � and lines and points in
� has the properties of a duality transform	

Returning to our situation
 we �nd �according to Lemma �	��iii�� a pair �i� j�
of indices such that the projections of the �primal� sets Pi and Pj into the above
de�ned plane � are linearly separated �this can be done in linear time by linear
programming�	 The proof is concluded by showing that when %Pi� %Pj are the linearly
separated projections in the plane �
 then any level of the arrangement of lines dual
to %Pi �in the plane �
 under the above discussed dual correspondence between � and
�� intersects any level of the arrangement of lines dual to %Pj in a unique point	 This
is essentially a result of Megiddo	 He proved the uniqueness of the ham�sandwich
cut for linearly separated sets
 but the idea applies to any pair of levels	 Choose
the system of coordinates in the primal plane so that the separating line is the y�
axis
 and the coordinates in the dual plane so that the duality is the �usual� one
�introduced in Sec	 ��	 Then all the lines dual to %Pi have �say� positive slopes while
the ones dual to %Pj have negative slopes
 and the claim follows	 �

Step � of the algorithm tests a triangle Ti for the odd�intersection property by
computing the parity of good vertices in the vertical faces of V �Ti�	 In the general
case we constructed the relevant levels in a face and counted the good vertices	 Using
the separation condition
 we may deduce the parity without constructing the levels	



��

Lemma ��� Let n lines in general position in R
 partitioned into sets H��H
�H�

be given� and let �i denote a level in the arrangement of Hi lines� Suppose that �i� j�
is a given pair of indices such that j�i	�j j � �� Then in time O�n� we can compute
the parity of good vertices in the strip V � V ���� r�� � f�x� y� � x � ��� r�g �a vertex
v � �x� y� � �
 	 �� is good if ���x� � y��

Proof� First suppose that the order of intersections of �i and �j with the vertical
line x � � is the same as the one for the vertical line x � r
 that is


��i���� �j������i�r� � �j�r�� � �� �����

Then �i and �j have an even number of intersections within V 
 and since this number
is at most � at the same time
 they are disjoint within V 	 So if fi� jg � f�� �g there
are no good vertices and we are done	 Otherwise
 by symmetry
 we may suppose
i � �
 j � �	 In such case
 either all vertices of �
 	 �� in V are good �if �
 is
below �� within V � or none is �if �
 is above ���	 In the former case
 the parity of
j�
	��	V j can be deduced from the ordering of the intersections of �
 and �� with
the verticals bounding V 	

It remains to deal with the case when ��	�� does not hold	 In such case
 we know
that the �unique� intersection of �i and �j is contained in V 
 and we can �nd it in
O�n� time by the algorithm of Section �� let c be its x�coordinate	 We then replace
the interval T � ��� r� by two intervals T � � ��� c� and T �� � �c� r� and observe that
��	�� already holds for both of them	 Thus we can determine the parity of good
vertices within V �T ��
 within V �T ��� and account appropriately for the potential
good vertices lying on the vertical line x � c �for �i� j� � ��� ���	 �

We can return to the algorithm from the previous section	 We have a triangle
T � PQR in x� � �	 Lemma �	� shows that in the vertical plane containing its side
�say PQ� at least one pair of the considered levels has a unique intersection
 and
that we can �nd such a pair in linear time	 Lemma �	� then shows that the parity of
good vertices in the vertical strip V �PQ� may be found in linear time	 This shows
that Step � of the algorithm has linear complexity and proves

Proposition � Given n points in R� partitioned into sets P�� P
� P�� each with an
odd number of points� and having no transversal� the complexity of the ham�sandwich
problem is O�n��

� Final Remarks


 Approximation� In various applications of the ham�sandwich cut construction

one sometimes does not really need an exact bisection of every set
 but an approxi�
mate bisection su�ces instead	 Let us say that a hyperplane h is an 
�approximate
ham�sandwich cut for sets P�� � � � � Pd if there are no more than �
�����jPij points of
Pi in either of the open halfspaces de�ned by h
 i � �� � � � � d	 For a �xed 
 � �
 one
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can obtain such an approximate ham�sandwich cut in linear time
 in any �xed di�
mension	 First we computeAi
 an 
�approximation for Pi with respect to halfspaces

this means that for every halfspace �


���� jPi 	 �j

jPij
�
jAi 	 �j

jAij

���� � 
 �

Such an Ai of size depending on d and 
 only can be computed deterministically
and in O�jPij� time
 see 
���	 Then we compute a ham�sandwich cut for A�� � � � � Ad

by some algorithm� since the size of Ai is bounded by a constant
 this only takes a
constant time	 It is easy to see that a ham�sandwich cut for A�� � � � � Ad is also an

�approximate ham�sandwich cut for P�� � � � � Pd	 In practice
 one may take random
samples of suitable size for the Ai�s
 and is guaranteed to �nd an 
�approximate
ham�sandwich cut with probablility close to �	


 Applications� Willard�s partitioning problem
 initially solved by Cole
 Sharir

and Yap
 admitted an optimal solution when Megiddo�s ham�sandwich algorithm
for the separated case was applied	 There are some other problems to which the
algorithms of the present paper may be applied so the current solutions can be im�
proved	 For example Atallah 
�� considered the problem of matching n given red
points r�� � � � � rn in the plane with n given blue points
 b�� � � � � bn in such a way that
the segments joining matched pairs do not intersect	 He gave an O�n�log n�
� al�
gorithm for this task	 If we used the ham�sandwich algorithm of Section � for the
divide step of a recursive algorithm
 after O�log n� levels we would have n trivial
matching problems
 each with one red and one blue point
 and the segments will
not intersect	 This gives an extremely simple
 O�n log n� solution to the matching
problem which
 by reduction to sorting
 is easily seen to be optimal 
the red points
are ��� ��� � � � � ��� n�� the blue points are ��� a��� � � � � ��� an�
 the ai the inputs to the
sorting problem� the matching gives the ranks of the ai�s�	 The approach easily
extends to a higher dimensional version where
 with d sets of n points each �each
set of a certain color�
 the matching is an assignment of each point to a distinct

multicolored d�simplex� the geometric requirement is that the n simplices are pair�
wise disjoint	 The algorithm we described here can be used to �nd such a matching
in O�nd����� time	 This matching problem was discussed by Akiyama and Alon 
��
but no algorithm was mentioned	
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