Concurrency, Distribution and Parallelism
in Object-Oriented Programming

Jean-Pierre BRIOT
Laboratoire d’Informatique de Paris 6, UPMC
Jean-Pierre.Briot@lip6.fr

Rachid GUERRAOUI
Département d’'Informatique, Ecole Polytechnique Fédérale de Lausanne
guerraoui@di.epfl.ch

Klaus-Peter LOHR

Institut fiir Informatik, Freie Universitat Berlin
lohr@inf.fu-berlin.de

TECHNICAL REPORT B-97-14
December 1997

Abstract

This paper aims at classifying and discussing the various ways along which
the “object” paradigm is used for concurrent systems. We distinguish the [i-
brary approach, the integrative approach and the reflective approach. The
library approach applies object-oriented concepts, as they are, to structure
concurrent systems through libraries. The integrative approach consists in
merging concepts such as object and activity, message passing and transac-
tion. The reflective approach closely integrates protocol libraries and object-
oriented languages. We discuss and illustrate each of these approaches and
point out their complementary levels and goals. We will also make a careful
distinction between the notions of concurrency on the one hand - referring to
the non-sequential semantics of a program - and parallelism and distribution
on the other hand - referring to the actual implementation of a concurrent
system.

Keywords: Object, object-oriented, concurrency, message passing, paral-
lelism, distribution, transposition, application, libraries, integration, reflec-
tion, classification, combination.

Freie Universitat Berlin

Institut fur Informatik
Takustrafle 9

D-14195 Berlin, Germany
http://www.inf.fu-berlin.de

1 Introduction

It is now widely accepted that the object paradigm provides good foundations for
the new challenges of parallel, distributed and open computing. Object notions,
rooted in the data abstraction principle, are strong enough to structure and encap-
sulate modules of concurrent computation, whereas the notions are flexible enough
to match various granularities of software and hardware architectures.

Most object-oriented programming languages do have some concurrency exten-
sions or libraries, and almost every new architectural development in the distributed
system community is, to some extent, object-oriented. For instance, both the Open
Distributed Processing (ODP) and the Object Management Group (OMG) stan-
dardization initiatives for heterogeneous distributed computing are based on object
concepts.

As a result, many object-oriented models, languages and architectures for con-
current, parallel and distributed systems have been proposed and described in the
literature. Towards a better understanding and evaluation of these proposals, this
paper addresses the question of how object orientation and concurrency can be ac-
commodated in a common framework. Rather than presenting an exhaustive study
of relevant systems, this paper aims at extracting, classifying and discussing the
various ways the object paradigm is used in those systems.

1.1 Three approaches to concurrency

A coarse classification identifies three approaches: the library approach, the integra-
tive approach and the reflective approach.

Using the [ibrary approach, concurrency features are added to a sequential object-
oriented model through libraries. For example, library classes for processes, sema-
phores, messages etc. can be provided. The language proper is not changed.

The integrative approach aims at unifying concepts of concurrency and of object
orientation, either by extending an existing (sequential) language or by designing
a new language. Concepts of object orientation and concurrency are merged. For
example, merging the notions of process and object gives rise to the notion of active
object, and this in turn implies a unification of the notions of message passing and
invocation. However, integration is not always that smooth; we will see that concepts
may be in conflict, notably inheritance with synchronization and replication with
communication.

The reflective approach integrates protocol libraries within an object-oriented
programming language. The idea is to separate the application program from the
various aspects of its implementation and computation contexts (models of com-
putation, communication, distribution etc.), which are described in terms of meta-
program(s). Reflection may also deal with resource management, such as load bal-
ancing and time dependencies, and describe it with the full power of a programming
language. The reflective approach may be considered as a “bridge” between the two
previous approaches as it helps to transparently integrate various computing proto-
col libraries within a programming language/system. Moreover, it helps to combine
the two other approaches, by making explicit the separation of, and the interface

between, their respective levels (i.e.: the integrative approach for the end user, and
the library approach for developing and customizing the system).

Although these approaches seem to compete at a first glance, they are in fact
complementary: The library approach is oriented towards systems programmers
and aims at identifying required concurrency concepts and casting them into library
classes. The integrative approach is oriented towards application programmers and
aims at defining a high-level programming language supporting a powerful concur-
rent object model. The reflective approach does not take sides. Its main goal is
to provide the basic infrastructure to enable (dynamic) system customization with
minimal impact on the application programs. The success of a reflective system re-
lies both on a high-level programming language and on a rich library of concurrency
abstractions.

1.2 Parallel and distributed implementation of concurrency

We will make a careful distinction between concurrent, parallel and distributed.
There are different ways of running a concurrent program on an execution platform.
The program may be executed on a uniprocessor, e.g., using a threading system, or
on a parallel computer, or even on a network of computers. Thus, while concurrency
is a semantic property of a program, parallelism and distribution pertain to its im-
plementation, as determined by the compiler and other systems software. Regarding
distribution, the notion of distribution transparency is often used to emphasize the
fact that the distributed implementation is not reflected in the program text.

We will therefore be reticent with notions such as “parallel program” or “dis-
tributed program” and rather speak of parallel and/or distributed implementation of
a concurrent language or program. We feel that only if the underlying parallel and /or
distributed system architecture is somehow reflected in the program text, defeating
transparency, the program can justifiably be called “parallel” or “distributed”.

It should be kept in mind that distribution does not necessarily imply concur-
rency: a purely sequential program may be executed across machine boundaries,
using remote procedure calls. A similar situation is found with client/server sys-
tems: while a server may or may not be concurrent, its clients rarely are; only when
we view a server and its clients as one system we see a concurrent system, operating
in a distributed fashion.

1.3 Active vs. passive objects

What kind of relationship exists between the notions of process (as used in traditional
concurrent programming) and object? There are several possible answers to this
question, ranging from ”they are unrelated” to ”they are just synonyms”. For swift
introduction of concurrency into an existing object-oriented language the first answer
may seem the natural one. An Ada programmer, however, knowing that an Ada
task is both a process and an invokable object, might prefer the second answer.
Transplanting the Ada task concept into the object-oriented world gives rise to
active objects, as opposed to the common ”passive” objects used in purely sequential
object-oriented programming. As we will see, one of the distinguishing features of

an active object, its independent activity, actually comes in different flavors. For
example, the object may start its activity spontaneously (as in Ada), or it may have
to be triggered by an invocation; it may feature one thread of control (as in Ada),
or it may have several threads.

Note that in principle the particular choice of an active object model will be
independent of whether that model is implemented in a library or employing special
language constructs or using reflection. In reality, the more interesting active object
models are found in integrative systems, for reasons to become clear below.

1.4 Previous work

The reader is assumed to be familiar with traditional concurrency concepts as de-
scribed, e.g., in [Andrews 91]. It should also be kept in mind that object-based
concurrent programming is a well-established discipline which is supported by many
languages. Ada is a well-known example [Ada 83| [Barnes 97]. SR, although less
known, features versatile and powerful constructs [Andrews/Olsson 93]. Emerald
has become known for its distribution support [Jul et al. 88].

Combining concurrency with object orientation proper, i.e., including inheri-
tance, has been the subject of many research projects since 1985. Several new lan-
guage designs, representing the integrative approach, are discussed and compared
in [Papathomas 89] and [Papathomas 95|. An early book featuring different articles
on concurrent object-oriented programming is [Yonezawa/Tokoro 87|, a more recent
one is [Agha et al. 93]. For workshops on the subject the reader is referred to [Agha
et al. 89] [Agha et al. 91] [Tokoro et al. 92] [Guerraoui et al. 94] [Ciancarini et al.
95] [Briot et al. 95].

Much effort has recently been put into C++ variants and libraries for parallel
processing. For a collection of articles about different projects on C++ and paral-
lelism see [Wilson/Lu 96].

As mentioned above, our treatment of concurrent object-oriented programming is
not meant as an exhaustive study of the relevant programming languages. A fairly
complete survey (as of 1995) focusing on parallelism and including an annotated
bibliography can be found in [Philippsen 95a,b].

2 The Library Approach

The basic idea of the library approach is to use encapsulation and abstraction, and
possibly also classes and inheritance, as structuring tools for concurrency mecha-
nisms imported from a certain execution platform. This should facilitate the con-
struction of concurrent systems using an object-oriented methodology and a given,
sequential, object-oriented language.

To illustrate the approach, we survey the following examples: (1) the Smalltalk-
80 programming language and environment, where a basic and simple object concept
is uniformly applied to model and structure the whole system through class libraries,
including concurrency and distribution aspects; (2) the Eiffel programming language,
for which several libraries have been proposed to address concurrency; (3) C++,

whose widespread use has resulted in a proliferation of concurrency libraries. We
will also briefly mention concurrency support in object-oriented operating systems
such as Choices and Peace.

2.1 Smalltalk

Smalltalk is often considered as one of the “purest” examples of object-oriented
languages [Goldberg/Robson 89]. This is because its “motto” is to have only a few
concepts (object, message passing, class, inheritance) and to apply them uniformly to
any aspect of the language and environment. One consequence is that the language is
actually very simple; its richness comes from its set of class libraries. They describe
and implement various programming constructs (control structures, data structures
etc.), internal resources (messages, processes, compiler etc.), and a sophisticated
programming environment with integrated tools (browser, inspector, debugger etc.).

2.1.1 Standard class libraries

In Smalltalk, even basic control structures, such as loop and conditional, are not
primitive language constructs, but just standard methods of standard classes, which
make use of the generic invocation of message passing. They are based on booleans
and execution closures - blocks. Blocks, represented as instances of class Block-
Context, are essential for building various control structures that may be extended
as required. They are also the basis for multi-threaded concurrency through pro-
cesses. Standard class Process describes their representation; the associated meth-
ods implement process management (suspend, resume, adjust priority etc.). The
process scheduler is the single instance of the class ProcessorScheduler. Smalltalk
processes are implemented using coroutines or threads.

Object

Collection

SequenceableCollection

Link LinkedList
ProcessorScheduler Process Semaphore

Figure 1: Concurrency in Smalltalk - The “inherits from” relationship

The basic synchronization primitive is the semaphore, represented by class Sema—
phore. Standard libraries also include higher abstractions: class SharedQueue to
manage communication between processes, and class Promise for representing a
value still being computed by a concurrently executing process.

Smalltalk also offers libraries for remote communication using sockets and RPC,
and for storage and exchange of object structures, supporting marshaling, persis-
tence and transactions. The Binary Object Streaming Service (BOSS) library pro-
vides a basic support for building distribution mechanisms.

2.1.2 Extending class libraries

Due to Smalltalk’s uniform approach, concurrency concepts and mechanisms are
well encapsulated and organized in a class hierarchy. Thus, they are better under-
standable than if they were just a set of primitives in the programming language.
It is also relatively easy to build more sophisticated abstractions on top of the basic
standard library.

Mailer
Bcast
Rbcast Cbcast abcast Arpc

Figure 2: Communication in GARF - The “inherits from” relationship

Inheritance has been used extensively to structure various services for concur-
rent programming. An example is the Simtalk platform [Bézivin 87|, which im-
plements and classifies various synchronization and simulation abstractions (Hoare
monitors, Kessels monitors, pessimistic or optimistic simulation objects etc.) on top
of Smalltalk standard abstractions/classes. For distributed and fault-tolerant pro-
gramming abstractions, an example is the GARF project [Garbinato et al. 94], in
which two complementary class hierarchies have been developed for various commu-
nication models (point-to-point, multicast, atomic multicast etc.) (see Figure 2) and
object models (monitor, persistent, replicated etc.). The HP Distributed Smalltalk
product provides a set of distributed services following the OMG CORBA standard
[OMG 95], also implemented as Smalltalk-80 class libraries.

In a similar approach for the Beta programming language [Lehrmann Madsen
et al. 93], a library of classes (named “patterns” in Beta) for distributed pro-
gramming has been developed [Brandt/Lehrmann Madsen 94]. For instance, class
NameServer represents a name server which maps textual object names to physical
references. Class ErrorHandler manages partial errors/faults of a distributed sys-
tem. This approach enables the programmer to add distributed features to a given
sequential /centralized program without changing the program logic, i.e., through
additions rather than changes.

2.2 [Eiffel

While Smalltalk is untyped (or at least not statically typed), FEiffel [Meyer 91] is
a language with static typing. Originally designed as a sequential object-oriented
language, it has been extended towards concurrency in different ways. Language

extensions proper will be considered later. Here we concentrate on the library ap-
proach to Eiffel concurrency.

Existing concurrency libraries for Eiffel demonstrate that there are fundamen-
tally different ways to model an independent activity (process, task, thread etc.) as
an object. We observe that two kinds of data belong to a process: application data
and management data; they can be either

1. separated: a process object encapsulates data and operations just for manage-
ment of the process; the executed code is responsible for its application data
and any inter-process communication;

2. integrated: a process object encapsulates both management and application
code and data; consequently, all process management and inter-process com-
munication is performed through the object’s interface; we thus have an active
object in the sense of 1.3.

Be careful not to confuse the object-process integration leading to active objects
with what we have defined as the integrative approach - they are independent of
each other. In fact, as we will see later, either of the three approaches - library,
integrative, reflective - can accommodate both object-process separation and object-
process integration.

Separation is the basis of the Smalltalk solution. A corresponding variant for
Eiffel is described in [Colin/Geib 91]. We will discuss an integrated solution, pre-
sented in [Karaorman/Bruno 93] for Eiffel-2, the precursor of the current version of
Eiffel.

If a class inherits from the library class Concurrency its objects are active ob-
jects. The behaviour of an active object resembles that of an Ada task, its op-
erations corresponding to the Ada task entries. Essentially, the object executes a
loop, checking for and accepting pending invocations. As opposed to Ada, service
execution is always asynchronous; results, if any, are returned using futures (which
are similar to the promises mentioned in 2.1.1) [Halstead 85]. The programmer of
an active object class is responsible for redefining the routine scheduler inherited
from Concurrency; scheduler must contain the loop that controls the behaviour
of the object.

A simplified example is shown in Figure 3. Active Printer objects are capable
of asynchronously executing print requests. Note that Printer does not export
print. Concurrency exports remote-invoke (among others), and it is this oper-
ation that has to be called by a client as shown. (remote-invoke is implemented
as sending a message which is then picked up by a separate process executing the
never-ending scheduler).

We see that this technique does not achieve a fully transparent solution that
would allow the same syntax for invoking active and passive objects (p.print (arg)).
So although the system achieves more than just supporting passive Process objects,
it also exhibits problems with the library approach. The subject is discussed in detail
in [Karaorman/Bruno 93]; a methodology for alleviating the problems is suggested.

CLASS Printer
INHERIT Concurrency REDEFINE scheduler
FEATURE —-— any attributes are declared here

print(filename: String) IS END -- print;

scheduler IS LOCAL fn: String
DO FROM get_request UNTIL false

LOOP current_request := request_queue.remove;
fn 7= current_request.parameters.item(1);
print(fn); END -- loop

END -- scheduler
END -- Printer

..... -- in a client class
p: Printer;

p.remote_invoke("print", args);

Figure 3: Definition and usage of a class for active objects

The designers of the system have decided to implement active objects as Unix
heavy-weight processes rather than light-weight threads. So invocation of an active
object always involves Unix inter-process communication. This makes the approach
unsuitable for medium- to small-grain concurrency and highly parallel computation.
It is readily usable, though, for physical distribution on platforms that support
remote process spawning.

Highly parallel computation is supported by the EPEE system [Jézéquel 93b].
EPEE follows the SPMD (single program, multiple data) approach to data paral-
lelism: large data aggregates (such as, e.g., matrices) are divided into fragments.
The fragments are distributed, together with replicated code, over the CPUs of a
multicomputer; each CPU operates on its data fragment, communicating with the
other CPUs as necessary. The essentials of EPEE are:

1. A data aggregate is an Eiffel object. Its interface is given by an Eiffel class.
The class, however, describes the implementation of a fragment, not that of
the complete aggregate (!).

2. Such a class for distributed aggregates must be designed as a subclass of a
given non-distributed class, say, Matrix, and the library class DISTAGG.

3. The original operations of Matrix have to be redefined. Their implementation
has to be modified in such a way that update operations in the code are applied
to the local fragment only. DISTAGG manages the required inter-fragment data
exchange on remote read operations and provides various support functions
such as fragment specific index mapping.

4. Note that there is no explicit process creation, nor any visible message passing.
The fragments of a distributed object operate concurrently, each with its own
thread of control. If each fragment is placed on a CPU of its own, invoking the
object causes all the fragments to start operating in parallel.

EPEE’s ideas are close to other object-oriented approaches to massive paral-
lelism, notably those of Concurrent Aggregates [Chien 93a] and Charm-++
[Kalé/Krishnan 93]. We will come back to these in section 3.5. EPEE is not as
elegant, but this may be the price that had to be paid for not changing the lan-
guage.

2.3 C+H++

As opposed to Smalltalk and Eiffel, C++ [Stroustrup 93] is not genuinely object-
oriented. It is an object-oriented extension of C, a language originally designed for
systems programming. Thus, it is not the ideal vehicle for building object-oriented
applications. Nevertheless, it has become the most widely used object-oriented
language, and it is the language for object-oriented systems programming.

This implies that combining C++ with concurrency libraries is more than a mar-
riage of convenience. As explained in 1.1, the systems programmer needs flexibility
and therefore prefers libraries to built-in features. He also likes to exploit the low-
level concurrency mechanisms offered by the underlying execution platform. As the
library approach allows for any functionality of a given platform to be wrapped in
C++ functions or classes, it is not surprising that there is a wide variety of concur-
rency mechanisms cast in C++ libraries. In fact, any programmer can readily build
wrappers for concurrency mechanisms from her or his favourite platform.

2.3.1 Threading libraries

Class libraries can be built for all kinds of process concepts, heavy-weight or light-
weight, and for their corresponding synchronization mechanisms. We have seen how
concurrency can be added to Eiffel by providing a library class Concurrency which is
implemented using a heavy-weight Unix process. Many concurrent programs, how-
ever, are conveniently implemented using a threading system (e.g., network servers,
interactive programs, parallel programs). So it is important to look into object-
oriented threading libraries.

Is a thread an object? While defining classes for synchronization objects such
as semaphores is a straightforward exercise, it is not obvious how to cast a thread
abstraction into a class. There are at least three different ways, depending on how
the activity of a thread object is described:

1. A thread is an instance of a subclass of Thread, and its activity is described by
the constructor of the subclass. This is akin to the Simula approach to corou-
tines: the body of a coroutine class describes both initialization and activity
of a coroutine object.

2. Again, a thread is an instance of a subclass of Thread, but its activity is
described by overriding a special method (similar to the scheduler routine in
2.2).

3. A thread is an instance of Thread, and its activity is described by a function
that is passed as a parameter to the constructor or a special method.

In all these approaches, creating a thread object spawns a new thread. Note that
the lifetime of its activity may be shorter than the lifetime of itself (as an object).
Also note that although a thread object is ”active” in a way (because the thread is
executing some code), it is not an active object.

An example of approach 1 is found in the coroutine library part of Sun’s C++
library [Sun 95]. The library offers a class task (not Thread). A task object is
implemented as a coroutine, i.e., with non-preemptive scheduling. There is also a
class Interrupt_handler that allows to catch Unix software interrupts (signals).
Typical operations on tasks are result() (wait for termination), rdstate() (get
state) etc. Synchronization is supported by low-level wait operations and by object
queues.

class producer: public task {

public:
producer ()
{..... // compute x
resultis(x);
}
}

int main()

{ producer p;
..... // compute y
cout << "Results are " << p.result() << " and " << y;
return O;

}
Figure 4: Typical scenario for thread objects: customized Sun C++ task object

Figure 4 shows a fragment of a simple program using the coroutine library.
The main program, by declaring the object p, creates a task which executes the
producer () constructor. There is no interaction between parent and child task,
except that the child terminates with producing a result, which is picked up by the
parent.

An example of the third approach sketched above is found in PRESTO, a sys-
tem for parallel programming on a multiprocessor [Bershad et al. 88]. A newly
created thread is idle until explicitly started. The function to be executed (and its
parameters) are passed as parameters to the start operation. For synchronization,
PRESTO features atomic integers and lock, monitor and condition classes.

The function to be executed is passed to the constructor in DC++ [Schill/Mock
93], a system for distributed execution of C++ programs on top of DCE, the OSF

10

Distributed Computing Environment [OSF 94] [Rosenberry et al. 93]. While DC++
focuses on distribution it does offer a few classes for concurrent programming. Con-
currency is implemented using the DCE threading subsystem. Thus, DC++ is
readily ported to any system that is equipped with the DCE platform. The DC++
library includes a class Thread as described above, plus a few classes for synchro-
nization. Parameters of the Thread constructor allow the user to choose among
different scheduling policies.

An example that is typical for C++, exploiting overloading and templates, is
the threading library of the ACE system [Schmidt 95]. ACE stands for Adaptive
Communications Environment; it is a toolkit for developing communication-oriented
software. One of the goals of the ACE threading library is to present abstractions
that subsume the threading mechanisms of different platforms (POSIX, Solaris 2,
Win32), thus enhancing portability.

ACE has classes Mutex, Semaphore, RW_Mutex and others for synchronization.
A class template Guard is parametrized with a lock class (e.g., Mutex). A guard
object acquires and releases a lock upon initialization and finalization, resp., similar
to a PRESTO monitor object; thus, declaring a guard in a block will turn this block
into a critical region. (Note that ACE guards have nothing to do with the Boolean
expression guards used in genuinely concurrent languages.)

typedef void *(xTHR_FUNC) (void *);

class Thread {

public:
static int spawn(THR_FUNC fun, // create thread to execute fun
void *arg, // with argument arg
long flags,
thread_t * = 0,
void *stack = O,
size_t stack_size = 0,
hthread_t *t_handle = 0); // to be referred to by t_handle
static int suspend(hthread_t); // suspend thread
static void exit(void #*status); // terminate current thread
....... // more routines
}

Figure 5: Threads are not objects in ACE

Threads are handled on a very low level of abstraction in ACE. There does
exist a class Thread, but this is just a package of static functions such as spawn,
join, yield etc., abstracting from the idiosyncrasies of the threading functions of
POSIX, Solaris and Win32 (Figure 5). Another class, Thread_Manager, does serve
the purpose of creating and using thread manager objects; they are responsible for
managing groups of threads, spawning new members, disposing of a thread when it

11

terminates etc. But there is no class that would resemble Smalltalk’s Process or
the task from Figure 4.

A relatively high-level concept in ACE is the Task class. This class must not
be confused with Sun’s task class mentioned above. Task is an abstract class
whose interface is designed for use according to the Stream/Module concept for
layered communication. Subclass objects of Task can participate in a batch of
modules implementing a stream, either as passive or as active objects (the latter
are associated with their own thread(s) of control). Each task must provide a put
operation to be invoked from an adjacent module in a stream and an svc operation
(“service”) for asynchronous execution of the invoked service in case of an active
task object.

Task
OO0 concurrency
Thread Mutex Semaphore
Unified threading API
0s
Different threading APIs
POSIX Solaris2 Win32

Figure 6: Architecture of the ACE concurrency library

Figure 6 shows part of the layered architecture of the ACE concurrency class
library. Portability of the concurrency classes is achieved through a class 0S that
just packages threading-related functions, hiding the peculiarities of different native
threading systems.

2.3.2 Distribution support

We have seen that for C++ the library approach tends to mirror the functionality
of the underlying execution platform. This is true not only for concurrency but also
for distribution. So we often find library classes that encapsulate message passing
mechanisms such as ports or sockets (e.g., ACE supports Unix socket objects).

This is unfortunate because the object invocation paradigm is lumped together
with the message passing paradigm of distributed computation. In many cases it is
also not necessary because remote invocation would be the mechanism of choice: it
hides message passing and achieves distribution transparency in a genuinely object-
oriented program. Remote object invocation, the object-oriented analog to remote
procedure call, is a technique that does not require either changes in the language
or explicit usage of libraries.

The DC++ system mentioned above supports remote object invocation. Note,
however, that distribution and concurrency are not strictly orthogonal in DC++.
Remote invocation comes in two flavours: synchronous and asynchronous (where
asynchrony leads to truly parallel execution of client and server). Asynchronous
invocation of local objects, however, is not directly supported. Ironically, this implies
that it is easier in DC++ to write a distributed concurrent program than to write
a centralized one.

12

The most prominent platform for object-oriented distributed computing is CORBA
[OMG 95] [Mowbray/Zahavi 95]. Although CORBA is language-independent, the
bulk of support available for CORBA today is geared towards C++. Concurrency is
not a central issue in CORBA. But implementors of server objects may of course be
confronted with the need for concurrency control. Therefore, an object transaction
service and a non-transactional concurrency control service are provided.

2.3.3 Parallel Computing

The challenge of object-oriented programming for parallel computing systems is to
find an object model that fits in with the preferred models for parallel computation.
For a library-based solution there is no choice - the object model is given by the
sequential language. Here the most straightforward path to parallel processing is
just executing the programs described in 2.3.1 on a shared-memory multiprocessor,
as mentioned above for PRESTO. This produces functional parallelism, but no data
parallelism.

We have seen that EPEE uses Eiffel objects to represent fragments of data ag-
gregates (also called collections) for data-parallel programming. A different way
of accommodating the notions of object and aggregate is to simply identify them.
A popular technique is to provide library classes for certain kinds of aggregates,
hiding fragmentation and communication. This, of course, leaves the programmer
with a limited set of predefined aggregate classes. But still, a good degree of flex-
ibility can be achieved in C++ by using templates. The Amelia Vector Template
Library (AVTL) [Sheffler 96] is an example of library support for parallel processing
of vectors.

While an approach like AVTL is tailored towards a specific class of applications, it
has the advantage of hiding communication from the programmer. If we are willing
to pay the price of low-level message-based programming, unlimited flexibility is
achieved by libraries that connect to a communication platform, e.g., MPI [Skjellum
et al. 96]. Libraries of this kind can be seen as the “distributed-parallel” equivalent
to threading libraries as described above.

2.3.4 Object-oriented operating systems

Choices [Campbell et al. 93| is a generic operating system: it was designed to be
easily ported onto various machines, but also to be adjustable to various character-
istics of both hardware, resources, and application interfaces, such as file format,
communication network, and memory model (shared or distributed). An object-
oriented methodology is presented together with the system, both for the design of
distributed applications and for the design of new extensions to the Choices kernel.

A specific C++ class library has been developed for Choices. For instance, class
ObjectProxy implements remote communications between objects, classes Memory-
Object and FileStream represent memory management, and class ObjectStar
provides some generalized notion of pointer. Class ObjectStar provides trans-
parency for remote communications without need for a pre-compilation step. This
class is also useful for the automatic garbage collector. Class Disk abstracts and

13

encapsulates a physical storage device which may be instantiated, e.g. in class
SPARCstationDisk when porting Choices onto a SPARC station.

The experience of the Choices projects shows that a distributed operating system,
developed with an object-oriented methodology and programming language, helps
at achieving better genericity and extensibility.

Distributed memory multicomputers are the target of the Peace parallel oper-
ating system [Schroder-Preikschat 94). Peace is actually a family of object-oriented
operating systems. Its components, implemented in C++, can be configured in
different ways, in order to fit different hardware platforms and offer varying func-
tionality.

Peace makes heavy use of inheritance in implementing the system family concept.
A stepwise bottom-up design of minimal extensions using subclasses results in a fine-
grain inheritance hierarchy. Exploiting this scheme, application programs interface
to the operating system by simply extending certain system classes.

The basic unit of concurrent execution, the thread, is introduced through a series
of abstractions. Most threads are made up from two objects, of classes native
and thread, respectively. The class native describes the kernel-level part of the
thread, thread refers to the user-level part. An application program can declare
a subclass of thread, say, custom, redefining the method action() inherited from
thread. Creating a custom object causes the creation of a thread that executes the
redefined action(). The situation is not unlike the one described in 2.3.1.2, with
the same caveat: a thread is not an active object (contrary to the terminology in
Peace) because there is no provision for communicating with the thread through the
custom interface.

coroutine

notice points associate - -~~~ - > gate > native

thread

custom

Figure 7: Small excerpt from the architecture of Peace (simplified). “inherits from”
proceeds bottom-up, and “uses” proceeds left-to-right.

Figure 7 shows an excerpt from the architecture of Peace. There is a sequence
of abstractions, implemented through inheritance, that leads from coroutine to
native. The associate part of a user-level thread refers to a gate object that
knows the unique identifier of the kernel-level thread.

14

Threads interact either via shared objects or, if located in different address
spaces, through message passing. Intra-address-space thread synchronization is
achieved via event counters which are supported by notice. A variety of message
passing mechanisms is supported.

2.4 In search for standard abstractions

The main issue underlying the library approach is the design and implementation of
adequate abstractions on top of which various higher-level concurrency abstractions
can be built in a convenient way.

One of the most significant examples for concurrent programming is the semaphore
abstraction which, through a well-defined interface (wait and signal operations),
and a known behavior (metaphor of the train semaphores), represents one stan-
dard of synchronization for concurrent programming. Such a basic abstraction
may be used as a foundation to build various higher-level synchronization mech-
anisms (as, e.g., the Guard class of ACE). Classification and specialization mecha-
nisms, as offered by object-oriented programming, are then appropriate to organize
such a library/hierarchy of abstractions, as for instance in the the Simtalk platform
(Sect.2.1). Peace is a typical example for an extremely careful design of a hierarchy
of thread abstractions.

An example of developing concurrency abstractions complementary to program
abstractions can be found in the Demeter environment [Lopes/Lieberherr 94]. The
abstract specification of a program is decomposed into two loosely coupled dimen-
sions: the “structural block”, which represents relations between classes, and the
“behavioral block”, which describes the operations. A third dimension has recently
been added: the “concurrency block”, which describes the abstract synchronization
patterns between processes. The abstract specifications and the relative indepen-
dence between these three components help with the development of generic and
reusable programs.

A similar study of abstractions for distributed programming has been proposed
in [Black 91] where decomposing the concept of transaction into a set of abstrac-
tions is suggested. The goal is to represent concepts such as lock, recovery, and
persistence, through a set of objects that must be provided by a system in order
to support transactions. The modularity of this approach would help defining var-
ious transaction models, adapted to specific kinds of applications. For instance,
a computer-supported cooperative application does not need concurrency control
constraints as strong as those required for a banking application!. Both the Venari
[Wing 94] and the Phoenix [Guerraoui/Schiper 95] projects aim at defining various
transactional models from a set of minimal abstractions.

2.5 Evaluation of the library approach

In summary, the library approach aims at increasing the flexibility, yet reducing
the complexity, of concurrent computing systems by structuring them as libraries

!The former application requires strict serialization of transactions through a locking mechanism
while the latter does not.

15

of classes. Each aspect or service is represented by an object. Such modularity and
abstraction objectives are very important because concurrent computing systems
are rather complex and ultimately use very low-level mechanisms, such as processor
switching and network communication. Furthermore, such systems are often devel-
oped by teams of programmers; having separate modules with well-defined interfaces
is of prime importance in such a context. Finally, the difficulty with maintaining and
extending Unix-like systems is mainly due to low modularity and poor abstractions.

Although progress is being made towards that direction, as noted above, it is
still too early to come up with a standard class library for concurrent program-
ming. It may even be a red herring. We need a good knowledge of the minimal
mechanisms and their interaction; in addition, we need a consensus about the de-
sirable extensions and how to structure them. Different technical communities are
involved: people from programming languages, operating systems, distributed sys-
tems, database sytems and, last but not least, real-time systems. The fact that
the semaphore abstraction became a standard primitive for synchronization is just
a tiny grain of hope that a generally accepted library of concurrency abstractions
might emerge.

3 The Integrative Approach

We have seen that the library approach to concurrent object-oriented programming
starts out from a given concurrency platform such as an operating system or a
user-level threading package. The low-level concurrency mechanisms offered by the
platform are cast into objects. Wherever possible, inheritance is used as an aid in
structuring a concurrency library.

This bottom-up approach, although flexible, is not attractive for the applica-
tion programmer. If we follow the object paradigm all the way down from anal-
ysis through modeling through design to implementation, we would like to stay
on a problem-oriented level. Now the library approach does help with the object-
oriented structuring of low-level mechanisms like threads, semaphores, messages
etc.; but those objects are not hidden: they are kept separate from the objects
structuring the application. In other words, there is no integration between the two
tasks the programmer faces: programming with application objects and managing
concurrency, also with objects, but not the same objects!

Furthermore, programming may become cumbersome when using libraries, and
concurrency management may obscure the application logic. For instance, subclasses
of the Concurrency class mentioned in 2.2 give rise to active objects. But in pro-
gramming such a class we are forced to manage explicit acceptance of invocations.
It would be more attractive to have a solution where classes for active objects are
not much different from regular classes.

In summary, rather than keeping application logic and concurrency management
separate, we should strive for a solution that offers a unified object model to the
programmer. This cannot be achieved through libraries. An integrative approach is
necessary where concurrency semantics are built into the language, either from the
beginning or by extending a given sequential language.

16

3.1 Degrees of object-process integration

The concept of active object which integrates the notions of object and process is
appealing and natural: it immediately occurs to us when we model reality. But it
is not the only way of incorporating concurrency into an object-oriented language.
There is a variety of ways, exhibiting different degrees of object-process integration:

1. No integration: The language supports independent activities (called processes,
threads, tasks or whatever), but these are not objects. All objects are passive,
and activities interact via shared (and properly synchronized) objects. (Exam-
ples: Modula-3 [Harbison 92|, Guide [Decouchant et al. 91] [Balter et al. 94],
Beta [Lehrmann Madsen et al. 93], pSather [Feldman et al. 93]).

2. Poor integration: a) Process objects do exist, but they are a species different
from class objects. They are instantiated from certain process templates which
do not participate in inheritance. (Example: Concurrent C++ [Gehani/Roome
88].) Or b) process objects are instantiated from a built-in Thread class, but
have no application-specific interface; operations on processes are stop, start,
reschedule etc. The semantics is very close to that of the library approach
described in 2.3.1. (Example: Java [Arnold/Gosling 96| [Lea 97].)

3. Partial integration: There are two kinds of objects, active and passive. In-

heritance among their classes is possible, but subject to certain restrictions.
(Examples: Eiffel// [Caromel 93], Charm++ [Kalé/Krishnan 93].)

4. Full integration: All objects are potentially active, and there are no restrictions
regarding inheritance. (Examples: Pool [America/van der Linden 90], CEiffel
[Lohr 93).)

This classification is a refinement of the simple distinction made in the context
of the library approach in 2.2: separated vs. integrated handling of management
data and application data of a process object. Note that integration in the sense of
2.2 is fully realized in 2a), 3 and 4.

The integrative approach tries to integrate into the application objects not only
processes but also synchronization. For passive objects this is similar to rejecting
synchronization objects (e.g., semaphores) and instead using synchronized objects
(e.g., monitors) in traditional concurrent programming. Active objects use synchro-
nized invocation similar to the Ada rendezvous. In both cases, however, it is not
obvious how synchronization relates to inheritance. It turns out that inheritance
may give rise to a phenomenon called inheritance anomaly. We will return to this
later.

3.2 Passive objects

There are rare cases where allowing several concurrent activities to access a given
passive object cannot do any harm. Examples are read-only objects or very small
objects where the operations are implemented as indivisible machine instructions
(e.g., increment an integer variable). In most cases, however, shared objects in a
concurrent environment have to be synchronized. It is helpful to distinguish between
different sources of the need for synchronization:

17

e specification of the object: condition synchronization;
e implementation of the object: exclusion synchronization;

e scheduling of the operations (if different from built-in scheduling).

We will discuss each of these in turn.

3.2.1 Condition synchronization

The specification of, e.g., job queues would indicate that the operation to remove a
job from a Queue can only be executed under the precondition that the queue is not
empty. Thus, acceptance of a remove invocation has to be delayed when the queue
is empty.

A problem-oriented solution to this synchronization problem is to use a declar-
ative guard, i.e., a concrete version of the abstract precondition, expressed as a
predicate over the object’s data representation (Figure 8, upper part, with ad-hoc
syntax). Guards are well-known in traditional concurrent programming and can
be found, e.g., in Ada, SR and Orca [Bal et al. 92]. Guards achieve the desired
integration because they do not require any synchronization statements in the imple-
mentation of the object’s operations. Activities are blocked or woken up implicitly.
The price that has to be paid for this is performance; explicit operations such as
signalling a monitor event or a semaphore are more efficient.

CLASS Queue;

VAR length: Natural;

OPERATION remove: Item;
WHEN length>0
END END;

METHOD remove(OUT i: Item);

BEGIN END remove;
CONTROL remove: completed(append) > completed(remove) ;
END Queue.

Figure 8: Guarded remove operation in class Queue

In the language Guide the guards are gathered in a central location of the class,
called the control clause (see Figure 8, lower part). A guard can refer not only to the
object’s state and the operation’s parameters, but also to counters which indicate
certain numbers connected with operations [Robert/Verjus 77]; e.g., completed (op)
is the number of completed executions of op.

18

Referring to counters has the advantage of representation independence but may
have drawbacks when it comes to inheritance. The guards in the control clause are
inherited and can be redefined if necessary. Figure 9 shows a subclass of Queue,
ExtendedQueue: a new operation delete for deleting the last element has been
added. Notice that it does not suffice to add a new guard for delete to the control
clause. Annoyingly, we have to redefine the remove guard although remove itself is
not redefined. This anomaly is one example of a species of phenomena called inher-
itance anomaly. We will encounter more examples below. A thorough treatment of
inheritance anomalies can be found in [Matsuoka/Yonezawa 93].

CLASS ExtendedQueue INHERIT Queue
OPERATION delete;
WHEN length>0
BEGIN END; END ExtendedQueue.

CLASS ExtendedQueue SUBCLASS OF Queue IMPLEMENTS ExtendedQueueType IS
METHOD delete;
BEGIN END delete;

CONTROL remove: completed(append)>completed(remove)+completed(delete);
delete: completed(append)>completed(remove)+completed(delete);
END ExtendedQueue.

Figure 9: Inheritance anomaly when using counters

The expressive power of counters is not very high. Imagine we need a Clearable-
Queue, to be derived from Queue by adding a clear operation. There is no way to
express the new synchronization requirements by means of counters. Fortunately,
Guide does not rely solely on counters: the guards may also refer to the object’s
represention. If we derive our subclass from another version of Queue where the
control clause reads remove: length>0, we arrive at the trivial solution shown in
Figure 10. (A solution for the above ExtendedQueue is also very simple.) The lesson
to be learned is: try to avoid using counters for condition synchronization.

Another high-level approach to condition synchronization is to use synchroniza-
tion expressions: all information about synchronization is centralized in one ex-
pression which specifies all possible histories (= sequences of operation executions)
of an object. This approach is attractive because a synchronization expression is
completely independent of the object’s representation; it is, in fact, part of the
specification (or derivable from it).

Synchronization expressions are akin to path expressions [Campbell/Habermann
74]. Because the original path expressions lack expressive power, later versions
have been extended with predicates. A predicate may again refer to counters as
mentioned above [Andler 79], or it may be a guard referring to the object’s state
[van den Bos/Laffra 91]. The latter version obviously defeats what makes path
expressions attractive in the first place.

19

CLASS ClearableQQueue INHERIT Queue
OPERATION clear;

BEGIN END;
END ClearableQueue.

CLASS ClearableQueue SUBCLASS OF Queue
IMPLEMENTS ClearableQueueType IS
METHOD clear;
BEGIN END clear;
END ClearableQueue.

Figure 10: State-based guards in superclass: no inheritance anomaly

The biggest problem with synchronization expressions is that they do not blend
well with inheritance. This is due to their centralized nature. It is usually impossible
to inherit a synchronization expression and take new operations in the subclass into
account by just making an incremental change to the synchronization behaviour,
adding a new expression. Thus, redefinition of the complete synchronization expres-
sion is usually inevitable - a grave inheritance anomaly.

3.2.2 Exclusion synchronization

Until now we have tacitly assumed that an object is never invoked when one of its
operations is already executing. However, activities meeting at an object are the
rule rather than the exception. So the object designer has to specify the object’s
behaviour under such circumstances. The sequential specification of the object has
to be extended to cope with a concurrent environment.

The simplest extension is to postulate serializability: the effect of any concurrent
invocation of operations and their subsequent execution is equal to the effect of some
serial execution of the invocations (i.e., any order is acceptable). Often this is too
strong a requirement. There are many cases where it is perfectly acceptable that an
object, when placed in a concurrent environment, may display a behaviour unseen
in a sequential environment.

In any case, the implementation usually has to employ synchronization mech-
anisms to meet the specification. This kind of synchronization is called ezclusion
synchronization or concurrency control. Note that how to synchronize is highly de-
pendent on the object’s representation. Complete mutual exclusion as known from
monitors guarantees serializability. So do transactional locking schemes such as two-
phase locking. But even more liberal synchronization measures are often sufficient
when the specification does not require serializability.

The integrative approach calls for avoidance of explicit locking operations: the
programming language should offer transactions or declarative constructs suitable
for specifying exclusion. Several languages are rather poor in this respect, distin-
guishing just between atomic objects with complete exclusion (i.e., monitor-like) and
non-atomic objects with no exclusion at all. Some insist that all objects be atomic

20

- an approach that is doomed to failure, for the same reasons that make nested
monitors impractical.

Non-atomic shared objects give rise to intra-object concurrency, in addition to
the inter-object concurrency which is present a priori, due to the mere existence of
concurrent activities operating on different objects. We distinguish between different
degrees of intra-object concurrency:

1. Atomic object: There is no intra-object concurrency.

2. Quasi-atomic object: Several activations of operations may coexist, but at most
one of them is not suspended. (This is similar to a monitor using event variables
to suspend processes.)

3. Semi-concurrent object: There is true intra-object concurrency, but some re-
strictions apply, as specified by the programmer.

4. Fully concurrent object: Concurrency within the object is not restricted. This is
the default for a normal sequential object placed in a concurrent environment.

We will often not distinguish between semi-concurrent and fully concurrent ob-
jects, just calling them concurrent objects.

Exclusion can be specified either per object/class or per operation. The per-
object approach lacks flexibility and results in declaring objects either fully con-
current or atomic. While this may be considered restrictive, even more restric-
tive schemes have been suggested: it has been argued that intra-object concur-
rency should be banished altogether because reasoning about programs that contain
atomic objects only is much easier [America 89] [Meyer 97].

Most language designers have considered this too severe a restriction. It is com-
mon to allow intra-object concurrency and to tie the specification of exclusion to
the operations. A typical device is the synchronized keyword in Java: operations
marked synchronized are mutually exclusive for the underlying object (or for the
underlying class if the operation is a static method). Actually, synchronized
can also be used for establishing arbitrary critical regions. Condition synchroniza-
tion is handled using events, another indication that Java favours a low degree of
integration.

A language that allows for specifying reader/writer exclusion is Distributed Eiffel
[Gunaseelan /LeBlanc 92|, designed as a modified Eiffel for programming distributed
applications on top of the Clouds distributed operating system. An operation can
be marked as accesses or modifies, meaning that it has to acquire a read lock or
a write lock, resp., on the object before it can execute. If neither mark is present,
no lock is acquired.

This approach is generalized in another Eiffel extension, CFEiffel [Lohr 93]: us-
ing annotations to the operations, a binary, symmetric compatibility relation among
the operations of an object can be specified. If operation op1l is declared com-
patible to operation op2, both can be executed in an overlapping fashion. Incom-
patible operations are mutually exclusive. This approach can be traced back to
[Andrews/McGraw 77] where a centralized parallel clause is used to specify com-
patibility in a precursor of SR. Note that declaring compatibilities is safer than
declaring exclusion requirements:

21

1. When a given sequential class without any annotations is used as a template
for shared objects, these objects are atomic by default, thus keeping their
sequential semantics.

2. When a subclass extends the set of operations of the superclass, a new opera-
tion is incompatible with all the inherited operations, unless explicitly stated
otherwise.

The fact that exclusion synchronization is implementation-dependent and there-
fore conceptually different from condition synchronization is recognized by some,
though not all, languages. Guide employs counters not only for condition synchro-
nization, as mentioned above, but also for exclusion synchronization. current (op)
denotes the number of activities currently executing op, so a guard opl: current (op2)=0
specifies that op2 excludes opl (though not the other way around). Unfortunately,
this approach is once more prone to inheritance anomalies. Figure 11 shows three
versions of a class Part, given in Distributed Eiffel, CEiffel and Guide, resp. A
CFEiffel annotation starts with the characters —-, just like an Eiffel comment, but is
identified as an annotation by the next character. (The reader is invited to fill in
the missing code.)

CLASS Part

EXPORT number, text, update

FEATURE number: Integer IS
DO END;

text: String ACCESSES
DO END;

update(s: String) MODIFIES

DO END;

END -- Part

CLASS Part

CREATION ...

FEATURE number: Integer IS --1|| number --
DO END:
text: String IS --|| text, number --
DO END;
update(s: String) IS --|| number --
DO END;

END -- Part

22

CONTROL text: current(update) = 0;
update: current(update) + current(text) = 0;
END Part.

Figure 11: Reader/Writer exclusion using Distributed Eiffel, CEiffel and Guide

A subclass ClearablePart is shown in Figure 12. It turns out that the Guide
version suffers from an inheritance anomaly: although text and update are not
redefined, their guards have to be 2.

CLASS ClearablePart INHERIT Part
EXPORT number, text, update, clear
FEATURE clear MODIFIES

DO END;
END -- ClearablePart

CLASS ClearablePart INHERIT Part

CREATION ...

FEATURE clear IS ——|| number --
DO END;

END -- ClearablePart

CLASS ClearablePart SUBCLASS OF Part IMPLEMENTS ClearablePartType IS
METHOD clear;
BEGIN END clear;

CONTROL text: current (update) + current(clear) = 0;
update: current(update) + current(clear) + current(text) = 0;
clear: current(update) + current(clear) + current(text) = 0;

END ClearablePart.

Figure 12: Exclusion synchronization and inheritance
in Distributed Eiffel, CEiffel and Guide

A unique approach to concurrency control for shared passive objects is taken in
the parallel language Charm++ [Kalé/Krishnan 93]. A few special, built-in, tem-

plates for abstract classes support concepts such as ”accumulator objects”, ” mono-
tonic objects” and others. These concepts are defined by certain properties of the

2Tt should be mentioned that the current version of Guide supports the extension - by logical
anding - of an inherited guard. So if we and assertions current (clear)=0 instead of summing up
the synchronization counters we can at least weaken the anomaly in this example.

23

operations. A monotonic class MC, e.g., models objects that are modified monotoni-
cally (with respect to some linear ordering) through an update operation. By virtue
of being declared monotonic, MC has a built-in operation MonoValue () that delivers
the current value of the object. The programmer has to explicitly provide the opera-
tion update that has to be monotonic, idempotent, commutative and associative. An
example is given in Figure 13: a Max object m would contain some current maximum
integer value which is updated periodically, using m->update (new). The current
maximum value is obtained by m->MonoValue(). The necessary synchronization is
performed automatically (and so is the replica maintenance of its distributed imple-
mentation, as explained below). The programmer only supplies the problem-specific
data representation, which must be a Charm++ message object (an instance of a
special record-like message type), and the update code.

message Integer {int value};

monotonic class Max {
Integer *object;
public: Max(Integer *init) {
object = (Integer *) new_message(Integer);
object->value = init->value; }

int update(Integer *new) {
if (object->value < new->value) {
object->value = new->value;
return(1); }
return(0); }

Figure 13: Simple monotonic class in Charm-++

Providing built-in solutions for several common synchronization problems rep-
resents, in a way, the ultimate integration of synchronization. The advantages are
obvious - and so are the drawbacks: if you need support for something the language
designers did not plan for, you may find yourself building a simple mechanism out
of heavy-weight constructs.

3.2.3 Scheduling

There are two reasons why an object might not accept an invocation right when
it arrives: condition synchronization and exclusion synchronization. An invocation
that has been issued yet not accepted is said to be pending. Any synchronized object
has an associated queue of pending invocations.

The natural strategy for handling this queue is FCFS: if several pending invo-
cations become eligible for acceptance, they are accepted in the sequence of their
arrival. This strategy is not necessarily fair (as seen, e.g., with the Reader/Writer
problem), and it may not be in accordance with what the programmer wants. The
situation can be handled in either of two ways: a) the language designer ignores it,

24

leaving the programmer with the task of designing separate scheduling objects which
implement the desired non-standard strategy; b) hooks are built into the language
that allow to refer to the pending invocations in appropriate ways.

Most languages support b), if only in restricted form. A popular approach is to
use synchronization counters which, as we have seen, are also used for condition and
exclusion synchronization. Simple scheduling problems (such as some Reader/Writer
variants) can be solved in this way; but synchronization counters are much too
restrictive, not allowing to take into account object state, operation parameters and
invocation time. Figure 14 shows another solution to the Reader/Writer problem
solved in Figure 11; this time, priority is given to the writers by extending the text
guard with pending(update)=0. Note that exclusion issues and scheduling issues
are indiscriminately interwoven, which may hamper understanding and complicates
modification in subclasses.

CLASS Part IMPLEMENTS PartType IS

CONTROL text: current(update) + pending(update) =
update: current(update) + current(text)

END Part.

] |
o O

Figure 14: Using synchronization counters
for both exclusion and scheduling in Guide

The language SR, although not object-oriented, offers a more powerful construct
for scheduling: invocations of an operation declared with a by clause are scheduled
according to the value of the integer expression given in that clause (which may refer
to parameters). A flexible solution that is even more powerful than SR’s by has
been described in [McHale et al. 91] and [Lohr 91]: scheduling predicates referring
to the pending invocations are used in guards. Their expressivenes is strong enough
to allow for straightforward solutions of complex scheduling problems. Figure 15
shows the Part example (writer priority) and an atomic, shortest-job-next Printer
class.

CLASS Part
FEATURE number: Integer IS --|| number --
DO END;
text: String IS -—|| text, number --
REQUIRE --0@--
ALL update SAT false -- no pending updates
DO END;
update(s: String) IS --|| number --
DO END;
END -- Part

25

FEATURE print(f: File) IS
REQUIRE --@--
ALL print SAT
(print.f.size>=f.size AND
print.f.size =f.size => print.Rank>=Rank)
DO END
END -- Printer

Figure 15: Scheduling predicates (CEiffel version)

The examples are given in CEiffel where a guard is marked by the delay annota-
tion ——@-- in Eiffel’s precondition clause (REQUIRE ...). The universal quantifier
in the guard of the operation print uses a variable called print, too. This implic-
itly declared variable refers to the pending print requests, represented as records
of invocation arguments. Rank is an additional record field referring to the virtual
arrival time of an invocation. Here it is used for FCFS ordering of jobs with equal
size.

3.2.4 Access to object representation considered harmful

There is a potential for subtle errors when synchronization and scheduling decisions
for an object are based on those very variables that represent the object’s state and
are modified by the object’s operations. The programmer has to be aware of possi-
ble conflicts between guard evaluation and state manipulation. Enhanced safety is
achieved by complete separation of instance variables and synchronization variables
[McHale 94]. As the Printer example in Figure 16 demonstrates, all synchronization
information is centralized in a synchronization section of the class. Synchroniza-
tion variables, actions and guards are declared here. Several standard identifiers are
used to refer to action-triggering events such as arrival of an invocation, start of
an operation etc. Other identifiers refer to synchronization counters (such as exec,
waiting etc.) and to certain constituents of a guard (e.g., this_inv).

The first line of the synchronization section declares an integer variable len of
which there will be one instance per invocation of print. The second line specifies
an action to be taken when a print invocation arrives: get the length of the file to
be printed and store it in this invocation’s len variable. The remaining four lines
constitute the guard for print, specifying mutual exclusion in the first conjunct and
shortest-job-next scheduling in the second conjunct.

The synchronization variables approach lends itself naturally to the introduction
of generic synchronization policies which can be instantiated for different application
classes that need the same kind of synchronization. This can also mitigate the
problem of inheritance anomalies in some, though not all, cases.

26

class Printer {

print (String fileName) {..... }
synchronization
int len local to print;
arrival(print) -> this_inv.len := ...; // get file length

print: exec(print)=0 and
there_is_no(p in waiting(print):
p.len<this_inv.len or
p.len=this_inv.len and p.arr_time<this_inv.arr_time);

Figure 16: Synchronization variables
(example shows one variable, one action and one guard)

3.3 Active objects

Invocation of a passive object works like a procedure call: the calling activity ”enters”
an operation of the object, executes the operation and returns. An active object,
however, can have one or more independent threads of control associated with it.
Now introducing low-level message-passing primitives for inter-object communica-
tion would violate the spirit of integration. It is preferable to keep the invocation
paradigm and generalize it towards remote invocation as known from Ada. It is
important to differentiate between this notion of remote invocation - meaning ac-
tive object invocation - and the RPC-like notion of remote invocation, introduced in
2.3.2 as a distributed implementation technique for passive object invocation across
machine boundaries.

3.3.1 Object bodies

Many designs for the active object concept have been inspired by the Ada tasking
model. A task has its own thread of control. Its body encapsulates state variables
and a statement sequence that begins executing as soon as the task is created. A
set of entries - comparable to operation signatures - is associated with a task. A
remote invocation - looking like a procedure call - refers to one of these entries.
As opposed to a passive object, however, a task uses explicit accept statements
for accepting invocations and executing the requested service. Compare this to the
implicit acceptance in a passive object: if a body is present, it is used for initialization
only; and acceptance just means that one of the operations starts executing.
Concurrent C++ and Pool? are typical representatives of this approach. We omit
Concurrent C++ because of its low level of integration (3.1.2). A Pool class for active
Queue objects is shown in Figure 17. The declarative part for local data is omitted.
Operations such as METHOD enq are declared just like for passive objects. A Queue
object has a single thread of control. Its activity is described by the statements
enclosed in the BODY/YDOB keywords (DO/0D is an infinite loop). As opposed to Ada,

3 Actually, there are three different versions of Pool: Pool-T, Pool2 and Pool-I

27

the accept statements, starting with the keyword ANSWER, just refer to one or more
operation names (ANY meaning all operation names).

CLASS Queue
METHOD enq(item: T)
BEGIN cell!put(rear,item);
rear := (rear+1)MOD size END enq

METHOD deq(): T
BEGIN RESULT cell!get(front);
%% postprocessing starts:
front := (front+1)MOD size END deq

BODY %% defaults to DO ANSWER ANY 0D
DO IF empty THEN ANSWER(enq)
ELSIF full() THEN ANSWER(deq)
ELSE ANSWER ANY FI 0D YDOB
END Queue

Figure 17: Active object class in Pool
(comments start with %% and end with line end)

Several points have to be noted:

1. A queue is usually implemented as a passive object, as we have seen earlier.
It is only for demonstration purposes that we present an ”active queue”. And
it should be kept in mind that the body of a Pool class can of course be of
arbitrary complexity.

2. The example does exhibit tiny bits of independent activity:

e The caller of an operation continues as soon as the operation’s RESULT
statement has been executed. Any statements following the RESULT are
executed by the object, which constitutes a kind of independent postpro-
cessing. The service is therefore partly asynchronous.

e The invocation of an operation without a result (enq in the example) re-
turns immediately. In this case, the service is fully asynchronous.

3. Notice that a missing body defaults to
DO ANSWER ANY 0D

This is Pool’s answer to the question of how to distinguish passive from ac-
tive objects: there is no such distinction. All objects are conceptually active.
Whether an object without a body is implemented with or without a perma-
nent thread is a matter of optimization (in a centralized system) and can be
left to the compiler. Note, however, that because of the single-thread semantics
those ”passive” objects are atomic (monitor-like), not concurrent.

28

An important observation is that in more complex cases the body may describe
both application-specific behaviour and the logic for accepting invocations, i.e., all
condition synchronization and scheduling (not exclusion synchronization, because of
the atomicity) 4. The missing distinction among these very different issues and their
centralized handling in the body is the source of several problems with Pool. The
language is highly prone to inheritance anomalies. If Guide’s central control clause
was problematic, Pool’s BODY is even more so because it is imperative rather than
declarative, lacking the structure achieved by associating guards with operations.
Figure 18 shows the Pool version of the ClearableQueue we have seen before. There
is no way of reusing the body of the superclass; a complete redefinition is required.
Recognizing this, Pool requires that every class provide its own body. Thus, inheri-
tance anomaly is the rule rather than the exception - except for the special case of
empty bodies in both superclass(es) and subclass.

CLASS ClearableQueue INHERIT Queue

METHOD clear()
BEGIN front := rear END clear

BODY DO IF empty THEN ANSWER(enq,clear)
ELSIF full() THEN ANSWER(deq,clear)
ELSE ANSWER ANY FI OD YDOB
END ClearableQueue

Figure 18: Pool: even a very simple subclass necessitates a new body

3.3.2 Asynchronous service and lazy synchronization

We have seen that Pool supports limited forms of asynchronous service: if there is
no result, the client continues immediately after the call (not even waiting for the
acceptance of the call); and if there is a result, client and server operate concurrently
after the result has been returned (postprocessing).

It is possible to decouple invocation and waiting for a result. Using futures as
surrogates for results that are yet to be computed, asynchrony can be achieved
without resort to explicit message passing. Only when the caller really needs the
result - i.e., is going to operate on it - synchronization with the service provider is
required. Integration of futures into the invocation mechanism has the effect that
the strict synchronization inherent in synchronous invocation is replaced with syn-
chronization by need, or lazy synchronization. This technique was first introduced
in Eiffel// [Caromel 93] where it is known as wait-by-necessity. Eiffel// has a pre-
defined class PROCESS. Instances of a (direct or indirect) subclass of PROCESS are
active objects. The object body is represented by a routine Live which has a de-
fault implementation in PROCESS and is usually redefined in subclasses of PROCESS
(comparable to Pool’s BODY). Several other routines inherited from PROCESS enable

4This is not the whole story because ANSWER statements can also occur in the code of operations,
giving rise to quasi-atomic objects.

29

an active object to control the acceptance of invocations in its Live routine, much
like it is done with ANSWER in Pool.

Eiffel// shares with Pool the property that there are no concurrent objects.
Passive objects do exist in Eiffel//: any non-PROCESS object is passive. But these
objects cannot be shared among active objects. Objects are always passed by value
in remote invocations, i.e., the active object receives a copy.

server: ActiveServer;

result: R;

result := server.service(args);

..... —-- client continues immediately
result.op —-- synchronization is implicit

Figure 19: Lazy synchronization

Service execution is always asynchronous in Eiffel//. If there is a result, lazy syn-
chronization takes effect. In Figure 19, the calling client may proceed immediately
after the invocation, becoming blocked only when it tries to prematurely invoke the
result object.

3.3.3 Implicit acceptance

We have seen that controlling the behaviour of an active object by a body is fraught
with problems. Fortunately, active objects can also use implicit acceptance as known
from passive objects. (We not in passing that SR is a language where both implicit
and explicit acceptance can be used at the programmer’s discretion.)

Exclusive usage of implicit acceptance brings forth a restricted form of active
objects - reactive objects: they start operating only when invoked. Reactive objects
degenerate to passive objects if all operations are synchronous.

Reactive objects with asynchronous operations only are supported by Charm++-:
they are instances of special classes that start with the keywords chare class.
Figure 20 shows an example - a chare class featuring two operations.

message Message{..... +;

chare class Printer {

Figure 20: A Charm++ class for reactive Printer objects

30

The operations of a chare class must have exactly one argument which has to
be a pointer to a Charm-++ message. Note that although the Printer class "looks
passive” a Printer object is active and operates concurrently with its clients (if
only executing one operation at a time). Asynchronous invocation without result
is semantically equivalent to asynchronous message passing - and is in fact imple-
mented with messages in Charm+-+. That the semantics is independent of explicit
vs. implicit sending/receiving is the essence of the well-known duality principle of
procedure-oriented vs. message-oriented interaction [Lauer/Needham 78].

Chare classes cannot be used with condition synchronization, nor do they allow
for synchronous operations. The reason is efficient distributed implementation (see
3.4 below). There is no conceptual reason, however, why condition synchronization
and discretionary synchrony/asynchrony specification should not go together. In
fact, CEiffel allows a class Printer to be written as shown in Figure 21. Operations
are synchronous by default, as for passive objects, but can be marked asynchronous,

using the asynchrony annotation --v--. Guards are introduced by the delay an-
notation -—@--. Note that foo is a guarded, asynchronous operation with lazy
synchronization.

CLASS Printer
FEATURE print(f: File) IS --v--
DO END

waitTrayEmpty IS
REQUIRE --0--
sheets

I
o

DO END

foo: T IS --v--

REQUIRE --0--

DO END
END -- Printer

Figure 21: A CEiffel class for reactive Printer objects

3.3.4 Multi-threaded objects

We have only considered atomic active objects by now: each object had a single
thread of control and so was not capable of intra-object concurrency. Remembering
the duality principle, we see that dynamic invocation hierarchies of single-threaded
active objects are prone to the same pitfalls as nested monitors (although the prob-
lem is mitigated when using asynchronous invocation).

The more flexible concurrent active objects can be traced back to the resources
of SR. In addition to data and procedures, an SR resource may encapsulate one or
more processes. Concurrency within a resource may result both from concurrent
procedure invocations and from the activities of the resource’s processes.

31

In an object-oriented setting, multiple static processes in an object would amount
to multiple bodies using explicit acceptance. Now, in view of inheritance anomalies,
if one such body causes problems, multiple bodies would lead to disaster. It is
therefore the cleanest solution to use only implicit acceptance (i.e., procedures).

Removing the atomicity restriction from reactive objects readily allows for con-
current reactive objects. Concurrency control can be introduced in the same way
as for passive objects. Act++, another extension of C++, is an example of this
approach [Kafura et al. 93]. Inspired by the actor model, Act++ supports reac-
tive objects as instances of subclasses of a given class Actor. Synchronization is
achieved by having an object switch between different behaviours, each tied to a set
of operations whose invocations are acceptable by that behaviour.

Even autonomous - not just reactive - active objects are possible without a body.
In CEiffel, operations can be specified as autonomous using the autonomy annotation
-->--. The language thus allows to decide for each operation of a class whether
it should be synchronous (no annotation) or asynchronous (annotation --v--) or
autonomous (annotation -->--). An autonomous operation is executed repeatedly,
without being invoked. More precisely, when an autonomous operation finishes it is
implicitly invoked anew. The scheduling mechanism does not distinguish between
explicit and implicit invocations. Note that the degree of intra-object concurrency
is still controlled by the compatibility annotations.

The annotations of CEiffel blend well with inheritance and avoid anomalies be-
cause any centralization, such as represented by a body or a central synchronization
expression, is avoided: condition synchronization, exclusion synchronization and
autonomy /asynchrony are specified per operation and orthogonally to each other
Subclassing, even with multiple inheritance, works just like in the sequential case,
no matter if asynchronous or autonomous operations are involved. (The situation
can be seen as a generalization of what has been described as ”process inheritance”
in [Thomsen 87].) The difference between a passive and an active class is just that
the former has only synchronous operations.

Figure 22 shows an example with double inheritance. Class Alien inherits both
from Moving (which models objects moving autonomously in the plane) and from
Beeping (which models objects repeatedly producing a sound). Thus, Alien objects
are autonomous and will both move and beep. Their behavior may of course be
influenced by any additional operations provided in Alien.

CLASS Moving CREATION init
FEATURE —-- interface
position: Vector;

setVelocity(v: Vector) IS
DO velocity.set(v.x,v.y) END;

FEATURE {} -- hidden

velocity: Vector;
stepTime: Real;

32

step IS -—>-—-
DO position.set(position.x + velocity.x*stepTime,
position.y + velocity.y*stepTime) END;

init(startingPoint: Vector; timeUnit: Real) IS
DO position := startingPoint;
stepTime := timeUnit END
END -- Moving

CLASS Beeping CREATION init
FEATURE on(b: Boolean) IS
DO beepon := b END;

FEATURE {}
beepon: Boolean;
sound: Speaker;

beep IS -—>--
DO IF beepon THEN sound.beep END END;

init(s: Speaker) IS
DO sound := s END
END -- Beeping

CLASS Alien INHERIT Moving RENAME init AS minit END;
Beeping RENAME init AS binit END;

CREATION init

FEATURE

END -- Alien

Figure 22: Multiple inheritance with multi-threaded active classes in CEiffel

3.4 Distribution

An object represents an independent unit of execution, encapsulating data, proce-
dures, and possibly private resources (activity) for processing the requests. Therefore
a natural option is to consider an object as the unit of distribution, and possible
replication. Furthermore, self-containedness of objects (data plus procedures, plus
possible internal activity) eases the issue of moving and migrating them around.
Also, note that message passing not only ensures the separation between services
offered by an object and its internal representation, but also provides the indepen-
dence of its physical location. Thus, message passing may subsume both local and
remote invocation (whether sender and receiver are on the same or on distinct pro-
cessors is transparent to the programmer) as well as possible inaccessibility of an
object /service.

33

Distributed implementations are available for many concurrent object-oriented
languages. Some have even been designed with distribution in mind right from the
beginning (e.g., Pool, Eiffel//, Charm++). Distribution transparency sometimes
suffers from this approach. Ideally, the issues of concurrent semantics on the one
hand and distributed implementation on the other hand should be kept independent
of each other. This would imply access transparency for all kinds of objects, active
or passive, whether local or remote.

3.4.1 Accessibility and fault tolerance

In order to handle inaccessibility of objects, in the Argus distributed operating
system [Liskov/Sheifler 83], the programmer may associate an exception with an
invocation. If an object is located on a processor which is inaccessible, because of
a network or processor fault, an exception is raised, e.g. to invoke another object.
A transaction is implicitly associated to each invocation (synchronous invocation in
Argus), to ensure atomicity properties. For instance, if the invocation fails (e.g. if
the server object becomes unaccessible), the effects of the invocation are canceled.
The Karos distributed programming language [Guerraoui et al. 92] extends the
Argus approach by allowing the association of transactions also to asynchronous
invocations.

3.4.2 Migration

In order to improve the accessibility of objects, some languages or systems support
mechanisms for object migration. Object migration has been pioneered by Emerald
[Jul et al. 88]. A more recent, and truly object-oriented, system is Dowl [Achauer
93], a distributed extension of the Trellis/Owl language [Moss/Kohler 87]. Dowl fea-
tures a standard attribute $location of type $Node for each object. This attribute
can be read and written; changing its value causes the object to migrate to a new
node. This can even happen on the fly, i.e., while an operation is in execution.

If any attribute a of a class Cis declared a: $attached T, with some type T, this
implies co-location of any C object ¢ and the object referred to by c.a. Attachment
is transitive (but not symmetric).

Parameter migration towards an invoked object can be specified as either perma-
nent (”call-by-move”) or temporary (”call-by-visit”). All these features have been
adapted from similar features of Emerald.

Explicit migration control is of course not distribution-transparent. It can also
be argued that the programmer may not have sufficient knowledge to use those
language features in an efficient way. Implicit migration control, combined with
clever heuristics, may be an alternative (see 4.5.2 below).

3.4.3 Replication

As for migration, a first motivation of replication is in increasing the accessibility
of an object, by replicating it onto the processors of its (remote) clients. A second
motivation is fault-tolerance. By replicating an object on several processors, its ser-
vices become robust against possible processor failure. In both cases, a fundamental

34

issue is to maintain the consistency of the replicas, i.e. to ensure that all replicas
hold the same values. In the Electra [Maffeis 95] distributed system, the concept of
remote invocation has been extended in the following fashion: invoking an object
leads to the invocation of all its replicas while ensuring that concurrent invocations
are ordered along the same (total) order for all replicas. A system supporting weaker
orderings, exploiting knowledge about the semantics of the operations, is described
in [Huang 94]. A general mechanism for group invocation that is well-suited for
replicated objects was introduced in [Black/Immel 93].

3.5 Parallelism

If the concurrent activities of a program are to run in a truly parallel fashion, the
program has to be mapped to a multiprocessor, a multicomputer or a computer
network, giving rise to what is known as functional or task parallelism. For mas-
sive parallelism, however, there is more potential in data parallelism of the SPMD
type (single program, multiple data) which is well-suited for distributed-memory
architectures.

We have already seen EPEE, an SPMD [ibrary for Eiffel (2.2). Charm++, also
mentioned above, is an example of the integrative approach. We have not men-
tioned Charm’s specific abilities for SPMD yet. There exists a variant of the chare
class concept called the branched chare class, instances of which are called branched
chares. A branched chare is a distributed object: its code is replicated among the
nodes of a distributed-memory computer (or of a computer network) and each node
works on one fragment of the object.

Similar as they may seem, there is a big difference between the object models of
EPEE and Charm-++: the interface of a branched chare class reflects the fragmen-
tation in that it describes the messages (or, dually, the asynchronous invocations) it
can accept from other fragments, in addition to messages from other objects (chares
or branched chares). Thus, although EPEE has the advantage of hiding the explicit
operations for inter-fragment message passing from the clients of an object, pro-
gramming in Charm++ is less cumbersome because message passing is built into
the language - as chare invocation.

The ubiquity of C++ has given rise to a variety of approaches to parallel pro-
gramming based on that language [Wilson/Lu 96], most of them integrative. The
majority tries to avoid explicit message passing so that the object model is not
blurred by a different - and lower-level - paradigm.

3.6 Limitations of the integrative approach
The integrative approach attempts at unifying object mechanisms with parallelism

and distribution mechanisms. Meanwhile, some conflicts may arise between them,
as we will see below.

35

3.6.1 Inheritance anomaly

Inheritance is one of the key mechanisms for achieving reuse of object-oriented
programs. It is therefore natural to use inheritance to specialize synchronization
specifications associated with a class of objects. Unfortunately, as we have seen in
several examples, (1) synchronization is difficult to specify and even more difficult to
reuse, because of the high interdependency between the synchronization conditions
for different methods, (2) various uses of inheritance (inheriting variables, methods,
synchronizations) may conflict with each other, as noted in [McHale 94| [Baquero
et al. 95]. In some cases, defining a new subclass, even only with one additional
method, may force the redefinition of all synchronization specifications.

Specifications along centralized schemes turn out to be very difficult to reuse,
and often must be completely redefined. Decentralized schemes, being modular by
essence, are better suited for selective specialization. However, this fine-grained de-
composition, down to the level of each method, may also fail to solve the problem.
This is because synchronization specifications, even if decomposed for each method,
may still remain interdependent: we have seen in 3.2.1 that for intra-object synchro-
nization with synchronization counters, adding a delete method in a subclass forces
the redefinition of the remove guard. (See [Matsuoka/Yonezawa 93] for a detailed
analysis and classification of the possible problems.)

Recent directions proposed for minimizing the problem include the following:
(1) specifying and specializing independently condition and exclusion synchroniza-
tion [Thomas 92] and autonomy/asynchrony [Lohr 93], (2) shunning synchroniza-
tion counters, (3) allowing the programmer to select among several schemes [Mat-
suoka/Yonezawa 93] and (4) generic synchronization policies (3.2.4) as an alternative
to inheritance for reusing synchronization specifications [McHale 94].

3.6.2 Compatibility of transaction protocols

It is tempting to integrate transaction protocols for concurrency control into ob-
jects. Thus one may locally define, for a given object, the optimal concurrency
control or recovery protocol. For instance, commutativity of operations enables the
interleaving (without blocking) of transactions on a given object. Unfortunately, the
gain in modularity and specialization may lead to incompatibility problems [Weihl
89]. Broadly speaking, if objects use different transaction serialization protocols (i.e.
serialize the transactions along different orders), global executions of transactions
may become inconsistent, i.e, non serializable. A proposed approach to handle this
problem is defining local conditions, to be verified by objects, in order to ensure
their compatibility [Weihl 89] [Guerraoui 95].

3.6.3 Replication of objects and communications

The communication protocols which have been designed for fault-tolerant distributed
computing (see Sect. 3.4.3) consider a standard client/server model. The straight-
forward transfer of such protocols to the object model leads to the problem of
unexpected duplication of invocations. An object often acts both as a client and as
a server. Thus an object which has been replicated as a server may in turn invoke

36

other objects (as a client). As a result, all replicas of the object will invoke these
other objects several times. This unexpected duplication of invocations may lead,
in the best case, to inefficiency, in the worst case to inconsistencies. A solution, pro-
posed in [Mazouni et al. 95|, is based on pre-filtering and post-filtering. Pre-filtering
consists of coordinating processing by the replicas (when considered as a client) in
order to generate a single invocation. Post-filtering is the dual operation for the
replicas (when considered as a server) in order to discard redundant invocations.

3.6.4 Factorization vs. distribution

Last, a more general limitation (i.e. less specific to the integrative approach)
comes from standard implementation frameworks for object factorization mecha-
nisms, which usually rely on strong assumptions about centralized (single memory)
architectures.

The concept of class variables, supported by several object-oriented program-
ming languages, is difficult and expensive to implement for a distributed system.
Unless introducing complex and costly transaction mechanisms, consistency is hard
to maintain once instances of a same class are distributed among processors. Note
that this is a general problem for any kind of shared variable. Standard object-
oriented methodology tends to forbid the use of shared variables, but may advocate
using class variables instead.

In a related problem, implementing inheritance on a distributed system [Wolff
95] leads to the problem of accessing remote code for superclasses, unless all class
code is replicated to all processors, which has obvious scalability limitations. A
semi-automatic approach consists of grouping classes into autonomous modules so
as to help with partitioning the class code among processors.

A rather different approach replaces the inheritance mechanism between classes
with the concept/mechanism of delegation between objects. This mechanism has ac-
tually been introduced in the actor concurrent programming language Act 1 [Lieber-
man 87]. Intuitively, an object which does not understand a message will then del-
egate it (i.e. forward it°) to another object, called its prozy. The proxy will process
the message in place of the initial receiver, or it can also itself delegate it further
to its own designated proxy. This alternative to inheritance is very appealing as it
only relies on message passing; thus it blends well with distributed implementation.
Note, however, that the delegation mechanism needs some non-trivial synchroniza-
tion mechanism to ensure the proper handling (ordering) of recursive messages,
prior to other incoming messages. Thus, it may not offer a general and complete
alternative solution [Briot/Yonezawa 87].

3.7 Evaluation of the integrative approach

In summary, the integrative approach is appealing because it merges concepts from
object-oriented and distributed programming. It thus presents a minimal number
of concepts and a single conceptual framework to the programmer. Nevertheless,

®Note that, in order to handle recursion properly, the delegated message will include the initial
receiver.

37

as we discussed in Sect. 3.6, this approach unfortunately suffers from limitations in
some aspects of the integration.

Another potential weakness is that a too systematic unification/integration may
lead to a too restrictive model (“too much uniformity kills variety ") and to inef-
ficiencies. For instance, stating that every object is active (or that every message
transmission is a transaction) may be inappropriate for some applications not nec-
essarily requiring such protocols and their associated computational load. Last but
not least, we may have a legacy problem: difficulties with reusing standard sequential
programs. Encapsulation of sequential programs into active objects may look like a
straightforward solution. But note that cohabitation of active and passive objects
may require the observance of certain methodological rules [Caromel 93].

4 The Reflective approach

As we discussed earlier, the library approach helps with structuring concurrent pro-
gramming concepts and mechanisms, due to encapsulation, genericity, class, and
inheritance concepts. The integrative approach minimizes the amount of concepts
to be mastered by the programmer and makes mechanisms more transparent, but
at the cost of possibly reducing the flexibility and the efficiency of the mechanisms
offered. Indeed programming systems built from libraries are often more extensible
than languages designed along the integrative approach. Libraries help at structur-
ing and simulating various solutions, and thus usually bring good flexibility, whereas
brand new languages may freeze their computation and communication models too
early. In other words it would be interesting to keep the unification and simplifi-
cation advantages of the integrative approach, while retaining the flexibility of the
applicative/library approach.

One important observation is that the library approach and the integrative ap-
proach actually address different levels of concerns and use: the integrated approach
is for the application programmer, and the library approach is for the system pro-
grammer. In other words, the end user programs his or her applications with an
integrative (simple and unified) approach in mind. The system programmer, or the
more expert user, builds or customizes the system, through the design of libraries
of protocol components, following the library approach.

Therefore, and as opposed to what one may think at first, the library approach
and the integrative approach are not in competition, but rather complementary. The
issue is then: “How can we actually combine these two levels of programming 7”7,
and to be more precise: “How do we interface them 7”. It turns out that a general
methodology for adapting the behavior of computing systems, named reflection,
offers such kind of a “glue”.

4.1 Reflection

Reflection is a general methodology to describe, control, and adapt the behaviour of
a computational system. The basic idea is to provide a representation of the impor-
tant characteristics/parameters of the system in terms of the system itself. In other

38

words, (static) representation characteristics, as well as (dynamic) execution charac-
teristics, of application programs are made concrete into one (or more) program(s),
which represents the default computational behaviour (interpreter, compiler, exe-
cution monitor...). Such a description/control program is called a meta-program.
Specializing such programs allows for customizing the execution of the application
program, by possibly changing data representation, execution strategies, mecha-
nisms and protocols. Note that the same language is used, both for writing ap-
plication programs, and for meta-programs controlling their execution. However,
the complete separation between the application program and the corresponding
meta-programs is strictly enforced.

Reflection helps at decorrelating libraries specifying implementation and exe-
cution models (execution strategies, concurrency control, object distribution) from
the application program. This increases modularity, readability and reusability of
programs. Last, reflection provides a methodology to open up and make adaptable,
through a meta-interface®, implementation decisions and resources management,
which are often hard-wired and fixed, or delegated by the programming language to
the underlying operating system.

In summary, reflection helps at integrating protocol libraries tightly within a
programming language or system, thus providing the interfacing framework (the
“glue”) between the integrative and the library approaches/levels.

4.2 Reflection and objects

Reflection fits especially well with object concepts, which enforce a good encapsula-
tion of levels and a modularity of effects. It is therefore natural to organize the con-
trol of the behaviour of an object-oriented computational system (its meta-interface)
through a set of objects. This organization is named a Meta-Object Protocol (MOP)
[Kiczales et al. 91|, and its components are called meta-objects [Maes 87], as meta-
programs are represented by objects. They may represent various characteristics
of the execution context such as: representation, implementation, execution, com-
munication and location. By specializing meta-objects we may extend and modify,
locally, the execution context of some specific objects of the application program.

Reflection may also help with expressing and controlling resources management,
not only at the level of an individual object, but also at a broader level such as sched-
uler, processor, name space, object group. .., such resources also being represented
by meta-objects. This allows for a very fine-grained control (e.g. for scheduling and
load balancing) with the whole expressive power of a full programming language
[Okamura/Ishikawa 94], as opposed to some global and fixed algorithm (which is
usually optimized for a specific kind of application or an average case).

6This meta-interface enables the client programmer to adapt and tune the behaviour of a soft-
ware module, independently of its functionalities, which are accessed through the standard (base)
interface. This has been named the concept of open implementation [Kiczales 94].

39

4.3 Examples of meta-object protocols (MOPs)

The CodA architecture [McAffer 95] is a representative example of a general object-
based reflective architecture (i.e. a “MOP”) based on meta-components’. CodA
considers by default seven (7) meta-components, associated to each object, corre-
sponding to: message sending, receiving, buffering, selection, method lookup, exe-
cution, and state accessing. An object with default meta-components behaves like
a standard (sequential and passive) object®. Attaching specific (specialized) meta-
components allows to selectively changing a specific aspect of the representation or
execution model for a single object. A standard interface between meta-components
supports composing meta-components from different origins.

Note that some other reflective architectures may be more specialized and may
offer a more reduced (and abstract) set of meta-components. Examples are the
Actalk and GARF platforms, where a smaller amount of meta-components may be
in practice sufficient to express a large variety of schemes and application problems.
The Actalk platform [Briot 89] [Briot 96] helps at experimenting with various syn-
chronization and communication models for a given program, by changing and spe-
cializing various models/components of: (1) activity (implicit or explicit acceptance
of requests, intra-objet concurrency etc.) and synchronization (abstract behaviours,
guards etc.), (2) communication (synchronous, asynchronous etc.), and (3) invoca-
tion (time stamp, priority etc.). The GARF platform [Garbinato et al. 94|, for
distributed and fault-tolerant programming, offers a variety of mechanisms along
two dimensions/components: (1) object control (persistence, replication etc.) and
(2) communication (multicast, atomic etc.).

More generally speaking, depending on the actual goals and the balance expected
between flexibility, generality, simplicity and efficiency, design decisions will dictate
the amount and the scope of the mechanisms which will be “opened-up” to the
meta-level. Therefore, some mechanisms may be represented as reflective methods
while belonging to standard object classes, that is, without explicit and complete
meta-objects.

Smalltalk is a representative example of that latter category. In addition to
the (meta-)representation of the program structures and mechanisms, as first class
objects (see Sect.2.1), a few very powerful reflective mechanisms offer some con-
trol over program execution. Examples are: redefinition of error handling message,
reference to current context, references swap, changing the class of an object etc.
Such mechanisms facilitate building and integrating various platforms for concur-
rent, parallel and distributed programming, such as Simtalk, Actalk, GARF, and
CodA itself.

"Note that meta-components are indeed meta-objects. In the following, we will rather use the
term meta-component in order to emphasize the pluggability aspects of a reflective architecture
(MOP) such as CodA. Also, for simplification, we will often use the term component in place of
meta-component.

8To be more precise, as a standard Smalltalk object, as CodA is currently implemented in
Smalltalk.

40

4.4 Examples of applications

To illustrate how reflection may enable us to map various computation models and
protocols onto user programs, we will quickly survey some examples of experiments
with a specific reflective architecture. (We chose CodA. See [McAffer 95] for a more
detailed description of its architecture and libraries of components.)

Note that, in the case of the CodA system, as well as for almost all other examples
of reflective systems further described, the basic programming model is integrative,
while reflection enables the customization of parallelism and distribution aspects
and protocols, by specializing libraries of meta-components.

4.4.1 Concurrency models

In order to introduce concurrency for a given object (by making it into an active
object, following the integrated approach), two meta-components are specialized.
The specialized message buffering component? is a queue which will buffer incoming
messages. The specialized execution component associates an independent activity
(thread) with the object. This thread executes an infinite loop that accepts messages
from the buffering component.

4.4.2 Distribution models

In order to introduce distribution, a new meta-component is added for marshaling
messages. In addition, two new specific objects are introduced which represent the
notion of a remote reference (to a remote object) and the notion of a (memory/name)
space. The remote reference object has a specialized message receiving component
which marshals the message into a stream of bytes and sends it through the network
to the actual remote object. This object has another specialized message receiving
component which reconstructs and actually receives the message. Marshaling deci-
sions, e.g., which argument should be passed by reference, by value (i.e. a copy), up
to which level etc., may be specialized by a marshaling descriptor supplied to the
marshaling component.

4.4.3 Migration and replication models

Migration is introduced by a new meta-component which describes the form and
the policies (i.e. when it should occur) for migration. Replication is managed by
adding two new dual meta-components. The first one is in charge of controlling
access to the state of the original object. The second one controls the access to
each of its replicas. Again, marshaling decisions such as which argument should
be passed by reference, by value, by move (i.e., migrated, as in Emerald), with
attachments etc., may be specialized through the marshaling descriptors supplied by
the corresponding component. Also one may specialize aspects such as which parts
of the object should be replicated, and various management policies for enforcing
the consistency between the original object and its replicas.

9The default buffering component is actually directly passing incoming messages on to the
ezecution component.

41

4.5 Other Examples of reflective architectures

We will briefly mention other related examples of representative reflective architec-
tures and their applications, not trying to be exhaustive.

4.5.1 Dynamic installation and composition of protocols

The general MAUD methodology [Agha et al. 93] focuses on fault tolerance proto-
cols, such as server replication, checkpoint etc. Its specificity lies in offering a frame-
work for dynamic installation and composition of specialized meta-components. The
dynamic installation of meta-components allows the installation of a given protocol
only when needed, and without stopping the program execution. The possibility to
associate meta-components, not only to objects, but also to other meta-components
(which are first-class objects), enables the layered composition of protocols.

4.5.2 Control of migration

The autonomy and self-containedness of objects, further reinforced in the case of
active objects, makes them easier to migrate “as a single piece”. Nevertheless, the
decision to migrate an object is an important issue which often remains with the
programmer. As mentioned in 3.4.2, it may be interesting to semi-automate such a
decision, along various considerations such as processor load, ratio of remote com-
munications etc. Reflection helps with integrating such statistical data (residing for
physical and shared resources) and with using them by various migration algorithms
described at the meta-level [Okamura/Ishikawa 94].

4.5.3 Customizing system policies

The Apertos distributed operating system [Yokote 92| represents a significant and
innovative example of a distributed operating system, completely designed with an
object-based reflective architecture (MOP). In addition to the modularity and the
genericity of the architecture of systems like Choices or Peace, reflection opens up
another dimension of (possibly dynamic) customization of the system towards ap-
plication requirements. For example, we can easily specialize the scheduling policy
in order to support various kinds of schedulers, e.g. a real-time scheduler. An-
other gain is in the size of the micro-kernel obtained, which is particularly small,
as it is reduced to supporting the basic reflective operations and the basic resources
abstractions. This facilitates both the understanding and the porting of the system.

4.5.4 Reflective extension of an existing commercial system

A reflective methodology has recently been used in order to incorporate extended!®
transaction models into an ezisting commercial transaction processing system. It
extends a standard transaction processing monitor in a minimal and disciplined
way (based on “upcalls”), to introduce features such as lock delegation, dependency
tracking between transactions and definition of conflicts, and to represent them

0That is, relaxing some of the standard (“ACID”) transaction properties.

42

as reflective operations [Barga/Pu 95]. These reflective primitives are then used
to implement various extended transaction models, such as split/join, cooperative
groups etc.

4.6 Related techniques for customizing behavior

We finally mention two examples of customizing computational behavior that are
closely related to reflection.

4.6.1 The composition-filters model

The SINA language is based on the notion of a filter, a way to specify arbitrary
manipulation and actions for messages sent to (or from) an object [Aksit et al.
94a). In other words, filters represent some reification of the communication and
interpretation mechanism between objects. By combining various filters for a given
object, one may construct complex interaction mechanisms in a composable way.

4.6.2 Generic run-time as a dual approach

The boundary between programming languages and operating systems is getting
thinner. Reflective programming languages have some high-level representation of
the underlying execution model. Conversely, and dual to reflection, several dis-
tributed operating systems provide a generic run time layer, as for instance the
COOL layer for the Chorus operating system [Lea et al. 93]. These generic run
time layers are designed to be used by various programming languages: “upcalls”
are used to delegate specific representation decisions to the programming language.

4.7 Evaluation of the reflective approach

Reflection provides a general framework for the customization of parallelism and
distribution aspects and protocols, by specializing and integrating (meta)-libraries
intimately within a language or system, while separating them from the application
program.

Many reflective architectures are currently proposed and evaluated. It is too
early to find and validate a general and optimal reflective architecture for parallel
and distributed programming (although we believe that CodA is a promising step
in that direction). Meanwhile, we need more experience in the practical use of
reflection, to be able to find good tradeoffs between the flexibility required, the
architecture complexity, and the resulting efficiency. One possible (and currently
justified) complaint is about the actual relative complexity of reflective architectures.
Nevertheless, and independently of the required cultural change, we believe that this
is the price that has to be paid for the increased, albeit disciplined, flexibility that
they offer. Another significant current limitation concerns efficiency, a consequence
of extra indirections and interpretations. Partial evaluation (also called program
specialization) is currently proposed as a promising technique to minimize such
overheads [Masuhara et al. 95].

43

5 Conclusion

Towards a better understanding and evaluation of various object-based parallel and
distributed developments, we have proposed a classification of the different ways
in which the object paradigm is used in concurrent environments. We have identi-
fied three different approaches which convey different, yet complementary, research
streams in the object-oriented concurrent systems community.

The library approach helps with structuring concurrent programming concepts
and mechanisms through encapsulation, genericity, classes and inheritance. Its prin-
cipal limitation is that the solution of an application problem is represented by
unrelated sets of concepts and objects. The library approach can be viewed as a
bottom-up approach and is directed towards system builders.

The integrative approach minimizes the amount of concepts to be mastered by
the programmer and makes mechanisms more transparent, by providing a unified
concurrent high-level object model. However, this is at the cost of possibly reducing
the flexibility and efficiency of the mechanisms. The integrative approach can be
viewed as a top-down approach and is directed towards application builders.

Finally, by providing a framework for integrating protocol libraries within a
programming language or system, the reflective approach provides the interfacing
framework (the “glue”) between the library and the integrative approaches. It also
enforces the separation of their respective levels. In other words, reflection provides
the meta-interface through which the system designer may install system customiza-
tions and thus change the execution context (parallel, distributed, fault-tolerant,
real-time, adaptive...) with minimal changes in the application programs.

The reflective approach also contributes to blurring the distinction between pro-
gramming language, operating system and data base, and at easing the development,
adaptation and optimization of a minimal computing system which is dynamically
extensible. Nevertheless, we should always keep in mind that this does not free us
from the necessity of a good basic design and a sound set of fundamental abstrac-
tions.

44

References

[Achauer 93] ACHAUER, B., 1993. The Dowl distributed object-oriented language.
Comm. ACM 36(9), 48-55.

[Ada 83] ApA 1983. The Programming Language Ada Reference Manual. LNCS
155, Springer-Verlag.
[Ada 95] ADA 1995. Ada 95 Rationale. Intermetrics Inc, Cambridge, Mass.

[Agha 86] AGHA, G., 1986. Actors: A Model of Concurrent Computation in Dis-
tributed Systems, Series in Artificial Intelligence, MIT Press.

[Agha et al. 89] AGHA, G.A., WEGNER, P., YONEzAwA, A., EDs., 1989. Proc.
ACM Sigplan Workshop on Object-Based Concurrent Programming. ACM
Sigplan Not. 24(4).

[Agha et al. 91] AcHA, G.A., HEwITT, C., WEGNER, P., YONEZAWA, A., EDs.,
1991. Proc. OOPSLA/ECOOP ’90 Workshop on Object-Based Concurrent
Programming. ACM OOPS Messenger 2(2).

[Agha et al. 93a] AGHA, G.A., WEGNER, P., YONEZAWA, A., EDS., 1993. Re-
search Directions in Concurrent Object-Oriented Programming, M.1.T. Press.

[Agha et al. 93b] AcHA, G.A., FrRoLUND, S., PANWAR, R., STURMAN, D,

1993. A linguistic framework for dynamic composition of dependability pro-
tocols. Dependable Computing for Critical Applications III (DCCA-3), IFIP
Transactions, Elsevier, 197-207.

[Aksit et al. 94a] AksiT, M., Wakita, K., BoscH, J., BERGMANS, L.
YONEzZAWA, A., 1994. Abstracting object interactions using composition
filters. In [Guerraoui et al. 94], 152-184.

[Aksit et al. 94b] AksiT, M., BoscH, J., VAN DER STERREN, W., BERGMANS,
L., 1994. Real-time specification inheritance anomalies and real-time fil-
ters. Proc. European Conf. on Object-Oriented Programming (ECOOP ’94),
LNCS 821, Springer-Verlag, 386-407.

[America 87] AMERICA, P.H.M., 1987. Pool-T: a parallel object-oriented lan-
guage. In [Yonezawa/Tokoro 87].

[America 88] AMERICA, P.H.M., 1988. Definition of Pool2, a parallel object-
oriented language. ESPRIT project 415-A, report 364. Philips Research Lab-
oratories.

[America 89] AMERICA, P.H.M., 1989. Issues in the design of a parallel object-
oriented language. Formal Aspects of Computing 1, 366-411

[America/van der Linden 90] AMERICA, P.H.M., VAN DER LINDEN, F., 1990.

A parallel object-oriented language with inheritance and subtyping. Proc.
OOPSLA/ECOOP 90, ACM Sigplan Not. 25(10), 161-168.

[Andersen 94] ANDERSEN, B., 1994. A general, fine-grained, machine-
independent, object-oriented language. ACM Sigplan Not. 29(5), 17-26.

[Andler 79] ANDLER, S., 1979. Predicate Path Expressions. Proc. 6. ACM Symp.
on Principles of Programming Languages, 226-236.

45

[Andrews/McGraw 77] ANDREWS, G.R., McGrAw, J.R., 1977. Language fea-
tures for process interaction. Proc. ACM Conf. on Language Design for Re-
liable Software, ACM Sigplan Not. 12(3), 114-127.

[Andrews 91] ANDREWS, G.R., 1991. Concurrent Programming - Principles and
Practice, Benjamin/Cummings.

[Andrews/Olsson 93] ANDREWS, G.R., OLssoN, R.A., 1993. The SR Program-
ming Language, Benjamin/Cummings.

[Arnold/Gosling 96] ArRNOLD, K., GOSLING, J., 1996. The Java Programming
Language, Addison-Wesley.

[Atkinson 91] ATKINSON, C., 1991. Object-Oriented Reuse, Concurrency and Dis-
tribution, Addison-Wesley.

[Atkinson et al. 91] ATKINSON, C., GoOLDsAcCK, S.J., DI MA1o, A., BAYAN,
R., 1991. Object-oriented concurrency and distribution in Dragoon. J. of
Object-Oriented Programming, March/April 1991, 11-20.

[Bahsoun et al. 90] BAHsouN, J.P., FERAUD, L., BETOURNE, C., 1990. The
"two degrees of freedom” approach for parallel programming. Proc. 1. Int.
Conf. on Computer Languages, IEEE, 261-270.

[Bal et al. 92] BarL, H.E., KaasHOEK, M.F., TANENBAUM, A.S., 1992. Orca: a
language for parallel programming of distributed systems. IEEE Trans. on
Software Engineering 18(3), 190-205.

[Balter et al. 94] BALTER, R., LACOURTE, S., RIvEILL, M., 1994. The Guide
language. The Computer Journal 37(6), 519-530.

[Baquero et al. 95] BAQUERO, C., OLIVEIRA, R. MOURA, F.; 1995. Integra-

tion of concurrency control in a language with subtyping and subclassing.
USENIX COOTS Conference (COOTS’95), Monterey, CA.

[Barga/Pu 95] BARGA, R., Pu, C., 1995. A practical and modular implementa-
tion of extended transaction models. Technical Report 95-004, CSE, Oregon
Graduate Institute of Science & Technology, Portland, OR.

[Barnes 97] BARNES, J., 1997. Ada 95 Rationale: The Language, The Standard
Libraries, Springer-Verlag.
[Bergmans 94] BERGMANS, L., 1994. Composing Concurrent Objects. Ph.D. thesis,

Universiteit Twente.

[Bernstein et al. 87] BERNSTEIN, P., HADzILACOS, V., GOODMAN, N., 1987.
Concurrency Control and Recovery in Database Systems, Addison-Wesley.

[Bershad et al. 88] BERsHAD, B.N., Lazowska, E.D., Levy, H.M., 1988.
PRESTO: a system for object-oriented parallel programming. Software -
Practice and Ezperience 18(8), 713-732.

[Bézivin 87] BEZIVIN, J., 1987. Some Experiments in Object-Oriented Simulation.

ACM Conf. on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 87), 394-405.

46

[Birtwistle et al. 73] BIRTWISTLE, G.M., DAHL, O.-J., MYHRHAUG, B., Ny-
GAARD, K., 1973. Simula Begin, Petrocelli Charter.

[Black et al. 87] BLack, A.P., HurcHINsON, N., Jur, E., LEvy, H., CARTER,
L., 1987. Distribution and abstract types in Emerald. IEEE Trans. on Soft-
ware Engineering 13(1), 65-76.

[Black 91] BrAck, A.P., 1991. Understanding transactions in the operating sys-
tem context. Operating Systems Review 25, 73-77.

[Black/Immel 93] Brack, A.P., IMMmEL, M.P., 1993. Encapsulating Plurality.
Proc. European Conf. on Object-Oriented Programming (ECOOP’93), LNCS
707, Springer-Verlag, 57-79.

[Boles 93] BoLEs, D., 1993. Parallel object-oriented programming with QPC++-.
Structured Programming 14(4), 158-172.

[van den Bos/Laffra 91] VAN DEN Bos, J., LAFFRA, C., 1991. Procol - a con-
current object-oriented language with protocols, delegation and constraints.
Acta Informatica 28, 511-538.

[Brandt/Lehrmann Madsen 94] BRANDT, S., LEHRMANN MADSEN, O., 1994.
Object-Oriented Distributed Programming in BETA. In [Guerraoui et al.
94], 185-212.

[Briot/Yonezawa 87] BRI1OT, J.-P., YONEZAWA, A., 1987. Inheritance and syn-

chronization in concurrent OOP. Proc. European Conf. on Object-Oriented
Programming (ECOOP’87), LNCS 276, Springer-Verlag, 32-40.

[Briot 89] BrioT, J.-P., 1989. Actalk: a testbed for classifying and designing actor
languages in the Smalltalk-80 environment. Proc. European Conf. on Object-
Oriented Programming (ECOOP’89), Cambridge University Press, 109-129.

[Briot et al. 95] BrioT, J.-P., GEIB, J.-M., YONEzZAWA, A., EDs., 1995. Proc.
France-Japan Workshop on Object-Based Parallel and Distributed Computa-
tion, LNCS 1107, Springer-Verlag.

[Briot 96] BrioT, J.-P., 1996. An experiment in classification and specialization

of synchronization schemes. Proc. 2. Int. Symp. on Object Technologies for
Advanced Software (ISOTAS’96), LNCS, Springer-Verlag.

[Bruin et al. 94] DE BRUIN, H., BOUWMAN, P., VAN DEN Bos, J., 1994. Taming
concurrency in Smalltalk: the Procol approach. Object-Oriented Systems
1(1), 45-59.

[Buhr et al. 92] Bunr, P.A., DITCHFIELD, G., STROOBOSSCHER, R.A.,
YOUNGER, B.M., 1992. uC++: concurrency in the object-oriented lan-
guage C++. Software - Practice and Fzperience 22(2), 137-172.

[Campbell/Habermann 74] CAMPBELL, R.H., HABERMANN, A.N., 1974. The
specification of process synchronization by path expressions. In Gelenbe,
E., Kaiser, C., Eds.: Operating Systems, LNCS 16, Springer-Verlag, 89-102.

[Campbell et al. 93] CAMPBELL, R., IsLAM, N., RAILA, D., MADANY, P., 1993.
Designing and implementing Choices: an object-oriented system in C+4+.
Comm. ACM 36(9), 117-126.

47

[Capobianchi et al. 92] CAPOBIANCHI, R., GUERRAOUI, R., LANUSSE, A.,
Roux, P., 1992. Lessons from implementing active objects on a parallel

machine. Useniz Symp. on FExperiences with Distributed and Multiprocessor
Systems, 13-27.

[Caromel 89] CAROMEL, D., 1989. Service, asynchrony and wait-by-necessity. J.
of Object-Oriented Programming 2(4), 12-22.

[Caromel 90] CAROMEL, D., 1990. Concurrency and reusability: from sequential
to parallel. J. of Object-Oriented Programming 3(3), 34-42.

[Caromel 93] CAROMEL, D., 1993. Towards a method of object-oriented concur-
rent programming. Comm. ACM 36(9), 90-102.

[Chandra et al. 94] CHANDRA, R., GUPTA, A., HENNESsSY, J.L., 1994. COOL:
an object-based language for parallel programming. IEEE Computer 27(8),
13-26.

[Chandy/Kesselman 93] CHANDY, K.M., KESSELMAN, C., 1993. CC++: a
declarative concurrent object-oriented programming notation. In [Agha et
al. 93], 281-313.

[Chien 93a] CHIEN, A.A., 1993. Concurrent Aggregates. MIT Press.

[Chien 93b] CHIEN, A.A., 1993. Supporting modularity in highly-parallel pro-
grams. In [Agha et al. 93].

[Ciancarini et al. 95] CIANCARINI, P., NIERSTRASZ, O., YONEZAWA, A., EDs.,
1995. Object-Based Models and Languages for Concurrent Systems (ECOOP
'94 Workshop). LNCS 924, Springer-Verlag.

[Colin/Geib 91] CoLiN, J.-F., GEB, J.-M., 1991. Eiffel classes for concurrent
programming. Proc. TOOLS-4, 1991, Prentice-Hall, 23-34.

[Corradi/Leonardi 91] CORRADI, A., LEONARDI, L., 1991. PO constraints as

tools to synchronize active objects. J. of Object-Oriented Programming 4(6),
41-53.

[Decouchant et al. 91] DEcoucHANT, D., LE Dort, P., RiveiLL, M., RoisIN, C.,
RousseT DE Pina, X., 1991. A synchronization mechanism for an object-
oriented distributed system. Proc. 11. Int. Conf. on Distributed Programming
Systems, IEEE, 152-159.

[Feldman et al. 93] FELDMAN, J.A., LiM, C.-C., RAUBER, TH., 1993. The
shared-memory language pSather on a distributed-memory multiprocessor.
Proc. 2. Workshop on Languages, Compilers and Runtime Environments for
Distributed-Memory Multiprocessors. ACM Sigplan Not. 28(1), 17-20.

[Finke et al. 93] FINKE, S., JAHN, P., LANGMACK, O., LOHR, K.-P., PIENS, I.,
Worrr, TH., 1993. Distribution and inheritance in the HERON approach

to heterogeneous computing. Proc. 13. Int. Conf. on Distributed Computing
Systems, IEEE, 399—-408.

[Frolund 92] FROLUND, S., 1992. Inheritance of synchronization constraints in con-
current object-oriented programming languages. Proc. FEuropean Conf. on
Object-Oriented Programming (ECOOP °92), LNCS 615, Springer-Verlag,
185-196.

48

[Frglund 96] FROLUND, S., 1996. Coordinating Distributed Objects, MIT Press.

[Garbinato et al. 94] GARBINATO, B., GUERRAOUI, R., MAzouni, K.R., 1994.
Distributed programming in GARF. In [Guerraoui et al. 94|, 225-239.

[Gehani/Roome 88] GEHANI, N.H., RooMmE, W.D., 1988. Concurrent C++:
concurrent programming with class(es). Software - Practice & Ezperience

16(12), 1157-1177.

[Goldberg/Robson 89] GOLDBERG, A., RoBSON, D., 1989. Smalltalk-80. The
Language, Addison-Wesley.

[Grimshaw et al. 93] GRIMSHAW, A.S., STRAYER, W., NARAYAN, P., 1993. Dy-
namic, object-oriented parallel processing. IEEE Parallel and Distributed
Technology, 33-48.

[Guerraoui et al. 92] GUERRAOUI, R., CAPOBIANCHI, R., LANUSSE, A., ROUX,
P. 1992. Nesting actions through asynchronous message passing: the
ACS protocol. Proc. FEuropean Conf. on Object-Oriented Programming
(ECOOP’92), LNCS 615, Springer-Verlag, 170-184.

[Guerraoui et al. 94] GUERRAOUI, R., NIERSTRASZ, O., RIVEILL, M., EDs.,
1994. Proc. ECOOP 93 Workshop on Object-Based Distributed Program-
ming, LNCS 791, Springer-Verlag.

[Guerraoui/Schiper 95] GUERRAOUI, R., SCHIPER, A., 1995. The transaction
model vs virtual synchrony model: bridging the gap. In Birman, K., Cris-

tian, F., Mattern, F., Schiper, A., Eds.: Distributed Systems: From Theory
to Practice, LNCS 938, Springer-Verlag, 121-132.

[Guerraoui 95] GUERRAOUI, R., 1995. Modular atomic objects. Theory and Prac-
tice of Object Systems 1(2), 89-99.
[Gunaseelan/LeBlanc 92] GUNASEELAN, L., LEBLANC, R.J., 1992. Distributed

Eiffel: a language for programming multi-granular distributed objects. Proc.
4. Int. Conf. on Computer Languages, IEEE, 331-340.

[Halstead 85] HALSTEAD, R.H., 1985. Multilisp: a language for concurrent sym-
bolic computation. ACM Trans. on Programming Languages and Systems
7(4), 501-538.

[Hamelin et al. 94] HAMELIN, F., JEZEQUEL, J.-M., PrIOL, T., 1994. A multi-
paradigm, object-oriented parallel environment. Proc. 8. Int. Parallel Pro-
cessing Symposium, Cancun.

[Harbison 92] HARBISON, S.P., 1992. Modula-3, Prentice-Hall.

[Holmes et al. 97] HoLMES, D., NOBLE, J., POTTER, J., 1997. Aspects of syn-
chronization. Proc. TOOLS Pacific ‘97, IEEE, 7-18.

[Huang 94] Huang, S., 1994. Developing distributed applications by semantics-
based automatic replication. Proc. 1. Asia-Pacific Software FEngineering
Conf., Tokyo 1994, 40—49.

[Ishikawa et al. 92] ISHIKAWA, Y., TOKUDA, H., MERCER, C.W., 1992. An
object-oriented real-time programming language. IEEE Computer 25(10),
66-73.

49

[Issarny 93] IsSSARNY, V., 1993. An exception handling mechanism for parallel
object-oriented programming. J. of Object-Oriented Programming 6(6), 29—
40.

[Jézéquel 93a] JEZEQUEL, J.-M., 1993. EPEE: an Eiffel environment to program
distributed-memory parallel computers. J. of Object-Oriented Programming
6(2), 48-54.

[Jézéquel 93b] JEZEQUEL, J.-M., 1993. Transparent parallelization through reuse:

between a compiler and a library approach. Proc. European Conf. on Object-
Oriented Programming (ECOOP’93), LNCS 707, Springer-Verlag, 384-405.

[Jézéquel et al. 94] JEZEQUEL, J.-M., GUIDEC, F., HAMELIN, F., 1994. Paral-

lelizing object-oriented software through the reuse of parallel components.
Object-Oriented Systems 1(2), 149-170.

[Jul et al. 88] Jur, E., LEvy, H.M., HuTcHINSON, N.C., BLACK, A.P., 1988.
Fine-grained mobility in the Emerald system. ACM Trans. on Computer
Systems 6(1), 109-133.

[Kafura/Lee 90] KArFura, D.G., LEg, K.H., 1990. Act++: building a concurrent
C++ with actors. J. of Object-Oriented Programming 3(1).

[Kafura et al. 93] KAFURA, D., MUKHERJI, M., LAVENDER, G., 1993. Act++:
A class library for concurrent programming in C++ using actors. J. of
Object-Oriented Programming, October 1993, 47-62.

[Kalé/Krishnan 93] KALE, L.V., KRISHNAN, S., 1993. Charm++: a portable con-
current object-oriented system based on C++. Proc. ACM Conf. on Object-
Oriented Systems, Languages and Applications (OOPSLA °93), ACM Sig-
plan Not. 28, 91-108.

[Karaorman/Bruno 93] KARAORMAN, M., BRuNoO, J., 1993. Introducing concur-
rency to a sequential language. Comm. ACM 36(9), 103-116.

[Kiczales et al. 91] KiczaLgs, G., DES RIVIERES, J., BoBrROwW, D., 1991. The
Art of the Meta-Object Protocol, MIT Press.

[Kiczales 94] KiczALEs, G., ED., 1994. Foil for the Workshop On Open Imple-
mentation. http://www.parc.xerox.com/PARC/spl/eca/oi
/workshop-94/foil/main.html.

[Lauer/Needham 78] LAUER, H.C., NEEDHAM, R.M., 1978. On the duality of
operating system structures. Proc. 2. Int. Symp. on Operating Systems, IRIA
Rocquencourt. Reprinted in ACM Operating Systems Review 13(2), 3-19.

[Lea et al. 93] LEA, R., JAcQuEMOT, C., PILLEVESSE, E., 1993. COOL: System
support for distributed programming. Comm. ACM 36(9), 37-47.

[Lea 97] LEA, D., 1997. Concurrent Programming in Java, Addison-Wesley.

[Lehrmann Madsen et al. 93] LEHRMANN MADSEN, O., M@LLER-PEDERSEN, B.,
NYGAARD, K., 1993. Object-Oriented Programming in the BETA Program-
ming Language, Addison-Wesley.

[Lieberman 87] LIEBERMAN, H., 1987. Concurrent object-oriented programming
in Act 1. In [Yonezawa/Tokoro 87], 9-36.

20

[Liskov/Sheifler 83] Liskov, B., SHEIFLER, R., 1983. Guardians and actions: lin-
guistic support for robust, distributed programs. ACM Trans. on Program-
ming Languages and Systems 5(3), 387-404.

[Lohr 91] LOHR, K.-P., 1991. Concurrency annotations and reusability. Report
B-91-13, FB Mathematik, Freie Universitat Berlin.

[Lohr 92] LOHR, K.-P., 1992. Concurrency Annotations. Proc. ACM Conf. on
Object-Oriented Systems, Languages and Applications (OOPSLA °92), ACM
Sigplan Not. 27(10), 327-340.

[Lohr 93] LOHR, K.-P., 1993. Concurrency annotations for reusable software.
Comm. ACM 36(9), 81-89.

[Lopes/Lieberherr 94] LopeEs, C.V., LIEBERHERR, K.J., 1994. Abstracting
process-to-function relations in concurrent object-oriented applications.
Proc. European Conf. on Object-Oriented Programming (ECOOP’94), LNCS
821, Springer-Verlag, 81-99.

[Maas 87] MAEs, P., 1987. Concepts and experiments in computational reflection.
Proc. ACM Conf. on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), ACM Sigplan Not. 22(12), 147-155.

[Maffeis 95] MAFFEIS, S., 1995. Run-Time Support for Object-Oriented Distributed
Programming, PhD dissertation, Universitat Ziirich.

[Malony et al. 94] MALONY, A., MOHR, B., BECKMAN, P., GANNON, D.; YANG,
S., Bobin, F., 1994. Performance analysis of pC++: a portable data-
parallel programming system for scalable parallel computers. Proc. 8. Int.
Parallel Processing Symposium, Cancun.

[Masuhara et al. 95] MASUHARA, H., MATSUOKA, S., AsAI, K., YONEZAWA, A.,
1995. Compiling away the meta-level in object-oriented concurrent reflective
languages using partial evaluation. Proc. ACM Conf. on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA ’95), ACM
Sigplan Not. 30(10), 300-315.

[Matsuoka/Yonezawa 93] MATSUOKA, S., YONEZAWA, A., 1993. Analysis of in-
heritance anomaly in object-oriented concurrent programming languages. In

[Agha et al. 93], 107-150.

[Mazouni et al. 95] MAzouNI, K., GARBINATO, B., GUERRAOUI, R., 1995.

Building reliable client-server software using actively replicated objects.
Proc. TOOLS Europe ’95, Prentice-Hall, 37-53.

[McAffer 95 MCAFFER, J., 1995. Meta-level programming with CodA. Proc. Fu-
ropean Conf. on Object-Oriented Programming (ECOOP’95), LNCS 952,
Springer-Verlag, 190-214.

[McHale et al. 92] McHALE, C., WALSH, B., BAKER, S., DONNELLY, A., 1992.
Scheduling Predicates. In [Tokoro et al. 92], 177-193.

[McHale 94] McHALE, C., 1994. Synchronization in Concurrent, Object-Oriented
Languages: FEzpressive Power, Genericity and Inheritance, PhD thesis,
Dept. of Computer Science, Trinity College, Dublin.

ol

[McHugh/Cahill 93] McHuGH, C., CAHILL, V., 1993. Eiffel**: an implemen-
tation of Eiffel on Amadeus, a persistent, distributed applications support
environment. Proc. TOOLS FEurope ’93, Prentice-Hall.

[Meseguer 93] MESEGUER, J., 1993. Solving the inheritance anomaly in concur-
rent object-oriented programming. Proc. European Conf. on Object-Oriented
Programming (ECOOP ’93), LNCS 707, Springer-Verlag, 220-246.

[Meyer 91] MEYER, B., 1991. Fiffel: The Language. Prentice-Hall.

[Meyer 93] MEYER, B., 1993. Systematic concurrent object-oriented program-
ming. Comm. ACM 36(9), 56-80.

[Meyer 97] MEYER, B., 1997. Object-Oriented Software Construction, 2. ed.,
Prentice-Hall.

[Moss/Kohler 87] Moss, J.E.B., KoHLER, W.H., 1987. Concurrency features
for the Trellis/Owl language. Proc. European Conf. on Object-Oriented Pro-
gramming (ECOOP ’87), LNCS 276, Springer-Verlag, 171-180.

[Mowbray/Zahavi 95] MowBRAY, T.J., AND ZAHAVI, R., 1995 The Essential
CORBA: System Integration Using Distributed Objects, John Wiley & Sons
and The Object Management Group.

[Neusius 91] NEusius, C., 1991. Synchronizing actions. Proc. European Conf. on
Object-Oriented Programming (ECOOP °91), LNCS 512, Springer-Verlag,
118-132.

[Nicol et al. 93] Nicor, J., WILKES, T., MANOLA, F., 1993. Object-orientation

in heterogeneous distributed computing systems. IEEE Computer 26(6), 57—
67.

[Nierstrasz 87] NIERSTRASZ, O.M., 1987. Active objects in Hybrid. Proc. ACM
Conf. on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA ’87), ACM Sigplan Not. 22(12), 243-253.

[Nierstrasz 93a] NIERSTRASZ, O.M., 1993. Composing active objects. In [Agha et
al. 93].

[Nierstrasz 93b] NIERSTRASZ, O.M., 1993. Regular types for active objects. Proc.

ACM Conf. on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 93), ACM Sigplan Not. 28, 1-15.

[Okamura/Ishikawa 94] OKAMURA, H., ISHIKAWA, Y., 1994. Object location con-

trol using meta-level programming. Proc. Furopean Conf. on Object-Oriented
Programming (ECOOP ’94), LNCS 821, Springer-Verlag, 299-319.

[OMG 95] OMG 1995. The Common Object Request Broker: Architecture and
Specification (Revision 2.0). Object Management Group, Framingham,
Mass.

[OSF 94] OSF 1994. DCE Application Development Guide (Revision 1.0.2). Open
Software Foundation, Cambridge, Mass.

[Papathomas 89] PAPATHOMAS, M., 1989. Concurrency issues in object-oriented
programming languages. In Tsichritzis, D.C., ed.: Object-Oriented Develop-
ment, Centre Universitaire d’Informatique, Université de Geneve, 207-245.

52

[Papathomas 95] PAPATHOMAS, M., 1995. Concurrency in object-oriented pro-
gramming languages. In Nierstrasz, O., Tsichritzis, D., Eds.: Object-Oriented
Software Composition, Prentice-Hall, 31-68.

[Parrington/Shrivastava 88] PARRINGTON, G.D., SHRIVASTAVA, S.K., 1988. Im-

plementing concurrency control in reliable distributed object-oriented sys-
tems. Proc. European Conf. on Object-Oriented Programming (ECOOP’88),
LNCS 322, Springer-Verlag, 234-249.

[Philippsen 95a] PHILIPPSEN, M., 1995. Imperative concurrent object-oriented
languages. TR-95-050, International Computer Science Institute, Berkeley.

[Philippsen 95b] PHILIPPSEN, M., 1995. Imperative concurrent object-oriented
languages: an annotated bibliography. TR-95-049, International Computer
Science Institute, Berkeley.

[Robert/Verjus 77] ROBERT, P., VERJUS, J.-P., 1977. Toward autonomous de-
scriptions of synchronization modules. Proc. IFIP Congress 1977, North-
Holland, 981-986.

[Rosenberry et al. 93] ROSENBERRY, W., KENNEY, D., FISHER, J., 1993. Un-
derstanding DCE, O'Reilly.

[Rozier 92] RozIER, M., 1992. Chorus. Useniz Int. Conf. on Micro-Kernels and
Other Kernel Architectures, 27-28.

[Schill/Mock 93] ScHILL, A., Mock, M. 1993. DC++: Distributed object-
oriented system support on top of OSF DCE. Distributed Systems Engi-
neering 1(2), 112-125.

[Schmidt 95] ScumIDT, D.C., 1995. An OO encapsulation of lightweight OS con-
currency mechanisms in the ACE toolkit. TR WUCS-95-31, Dept. of Com-
puter Science, Washington University, St. Louis.

[Schroder-Preikschat 94] SCHRODER-PREIKSCHAT, W., 1994. The Logical Design
of Parallel Operating Systems, Prentice-Hall.

[Sheffler 96] SHEFFLER, TH.J., 1996. The Amelia Vector Template Library. In
[Wilson/Lu 96], 43-90.

[Skjellum et al. 96] SKJELLUM, A., LU, Z., BANGALORE, P.V., Doss, N., 1996.
MPI++. In [Wilson/Lu 96], 465-506.

[Stroustrup 93] STrROUSTRUP, B., 1993. The C++ Programming Language.
Addison-Wesley.

[Sun 95] SuN 1995. C++/.1 Library Reference Manual, Section 2. Part No. 802-
3045-10, Nov. 1995, Sun Microsystems Inc.

[Thomas 92] THOMAS, L., 1992. Extensibility and reuse of object-oriented syn-

chronization components. Proc. Int. Conf. on Parallel Languages and Envi-
ronments (PARLE ’92), LNCS 605, Springer-Verlag, 261-275.

[Thomas 94] THOMAS, L., 1994. Inheritance anomaly in true concurrent object-
oriented languages: a proposal. IEEE TENCON 9, 541-545.

23

[Thomsen 87] THOMSEN, K.S., 1987. Inheritance on processes, exemplified on dis-
tributed termination detection. Int. J. of Parallel Programming 16(1), 17-52.

[Tokoro et al. 92] TOKORO, M., NIERSTRASZ, O.M., WEGNER, P., EDs., 1992.
Proc. ECOOP 91 Workshop on Object-Based Concurrent Computing, LNCS
612, Springer-Verlag.

[Tomlinson/Singh 89] TomrLINsON, C., SINGH, V., 1989. Inheritance and syn-
chronization with enabled-sets. Proc. ACM Conf. on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’89), ACM Sig-
plan Not. 24, 103-112.

[Tripathi/Aksit 88] TRIPATHI, A., AKsIT, M., 1988. Communication, scheduling
and resource management in SINA. J. of Object-Oriented Programming 1(4),
24-41.

[Wegner 90] WEGNER, P., 1990. Concepts and paradigms of object-oriented pro-
gramming. ACM OOPS Manager 1(1), 7-87.

[Weihl 89] WEIHL, W., 1989. Local atomicity properties: modular concurrency
control for abstract data types. ACM Trans. on Programming Languages
and Systems 11(2), 249-283.

[Wilson/Lu 96] WiLsoN, G.V., Lu, P., Eps., 1996. Parallel Programming Using
C++, MIT Press.

(Wing 94] WiING, J., 1994. Decomposing and recomposing transaction concepts.
In [Guerraoui et al. 94], 111-122.

[Wolff 95] WoLFF, TH., 1995. Transparently distributing objects with inheritance.
Proc. 28. Hawaii Int. Conf. on System Sciences, IEEE, 222-231.

[Yokote/Tokoro 87] YOKOTE, Y., TOKORO, M., 1987. Experience and evolution
of Concurrent Smalltalk. Proc. ACM Conf. on Object-Oriented Program-
ming Systems, Languages and Applications OOPSLA ’87), ACM Sigplan
Not. 22(12), 406-415.

[Yokote 92] YOKOTE, Y., 1992. The Apertos reflective operating system: the con-
cept and its implementation. Proc. ACM Conf. on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA’92), ACM Sigplan
Not. 27(10), 414-434.

[Yonezawa et al. 86] YONEZAWA, A., BRioT, J.-P., SHIBAYAMA, E., 1986.
Object-oriented concurrent programming in ABCL/1. Proc. ACM Conf. on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA ’86), ACM Sigplan Not. 21(11), 258-268.

[Yonezawa/Tokoro 87] YONEzZAwWA, A., Tokoro, M., Ebps., 1987. Object-
Oriented Concurrent Programming, Computer Systems Series, MIT Press.

[Yonezawa et al. 93] YONEZAWA, A., MATSUOKA, S., YASuUGI, M., TAURA, K.,

1993. Implementing concurrent object-oriented languages on multicomput-
ers. IEEE Parallel and Distributed Technology, May 1993, 49-61.

o4

