
Concurrency� Distribution and Parallelism
in Object�Oriented Programming

Jean�Pierre BRIOT
Laboratoire d�Informatique de Paris �� UPMC

Jean�Pierre�Briot�lip��fr

Rachid GUERRAOUI
D�epartement d�Informatique� �Ecole Polytechnique F�ed�erale de Lausanne

guerraoui�di�epfl�ch

Klaus�Peter L �OHR
Institut f�ur Informatik� Freie Universit�at Berlin

lohr�inf�fu�berlin�de

Technical Report B������

December �		

Abstract

This paper aims at classifying and discussing the various ways along which

the �object� paradigm is used for concurrent systems� We distinguish the li�

brary approach� the integrative approach and the re�ective approach� The

library approach applies object�oriented concepts� as they are� to structure

concurrent systems through libraries� The integrative approach consists in

merging concepts such as object and activity� message passing and transac�

tion� The re�ective approach closely integrates protocol libraries and object�

oriented languages� We discuss and illustrate each of these approaches and

point out their complementary levels and goals� We will also make a careful

distinction between the notions of concurrency on the one hand � referring to

the non�sequential semantics of a program � and parallelism and distribution

on the other hand � referring to the actual implementation of a concurrent

system�

Keywords� Object� object�oriented� concurrency� message passing� paral�

lelism� distribution� transposition� application� libraries� integration� re�ec�

tion� classi�cation� combination�

Freie Universit	at Berlin

Institut f	ur Informatik

Takustra
e �

D�
�
�� Berlin� Germany

http���www�inf�fu�berlin�de

�

�

� Introduction

It is now widely accepted that the object paradigm provides good foundations for
the new challenges of parallel� distributed and open computing� Object notions�
rooted in the data abstraction principle� are strong enough to structure and encap�
sulate modules of concurrent computation� whereas the notions are �exible enough
to match various granularities of software and hardware architectures�

Most object�oriented programming languages do have some concurrency exten�
sions or libraries� and almost every new architectural development in the distributed
system community is� to some extent� object�oriented� For instance� both the Open
Distributed Processing
ODP� and the Object Management Group
OMG� stan�
dardization initiatives for heterogeneous distributed computing are based on object
concepts�

As a result� many object�oriented models� languages and architectures for con�
current� parallel and distributed systems have been proposed and described in the
literature� Towards a better understanding and evaluation of these proposals� this
paper addresses the question of how object orientation and concurrency can be ac�
commodated in a common framework� Rather than presenting an exhaustive study
of relevant systems� this paper aims at extracting� classifying and discussing the
various ways the object paradigm is used in those systems�

��� Three approaches to concurrency

A coarse classi�cation identi�es three approaches� the library approach� the integra�
tive approach and the re�ective approach�

Using the library approach� concurrency features are added to a sequential object�
oriented model through libraries� For example� library classes for processes� sema�
phores� messages etc� can be provided� The language proper is not changed�

The integrative approach aims at unifying concepts of concurrency and of object
orientation� either by extending an existing
sequential� language or by designing
a new language� Concepts of object orientation and concurrency are merged� For
example� merging the notions of process and object gives rise to the notion of active
object� and this in turn implies a uni�cation of the notions of message passing and
invocation� However� integration is not always that smooth� we will see that concepts
may be in con�ict� notably inheritance with synchronization and replication with
communication�

The re�ective approach integrates protocol libraries within an object�oriented
programming language� The idea is to separate the application program from the
various aspects of its implementation and computation contexts
models of com�
putation� communication� distribution etc��� which are described in terms of meta�
program�s�� Re�ection may also deal with resource management� such as load bal�
ancing and time dependencies� and describe it with the full power of a programming
language� The re�ective approach may be considered as a �bridge� between the two
previous approaches as it helps to transparently integrate various computing proto�
col libraries within a programming language�system� Moreover� it helps to combine
the two other approaches� by making explicit the separation of� and the interface

�

between� their respective levels
i�e�� the integrative approach for the end user� and
the library approach for developing and customizing the system��

Although these approaches seem to compete at a �rst glance� they are in fact
complementary� The library approach is oriented towards systems programmers
and aims at identifying required concurrency concepts and casting them into library
classes� The integrative approach is oriented towards application programmers and
aims at de�ning a high�level programming language supporting a powerful concur�
rent object model� The re�ective approach does not take sides� Its main goal is
to provide the basic infrastructure to enable
dynamic� system customization with
minimal impact on the application programs� The success of a re�ective system re�
lies both on a high�level programming language and on a rich library of concurrency
abstractions�

��� Parallel and distributed implementation of concurrency

We will make a careful distinction between concurrent� parallel and distributed�
There are di�erent ways of running a concurrent program on an execution platform�
The program may be executed on a uniprocessor� e�g�� using a threading system� or
on a parallel computer� or even on a network of computers� Thus� while concurrency
is a semantic property of a program� parallelism and distribution pertain to its im�
plementation� as determined by the compiler and other systems software� Regarding
distribution� the notion of distribution transparency is often used to emphasize the
fact that the distributed implementation is not re�ected in the program text�

We will therefore be reticent with notions such as �parallel program� or �dis�
tributed program� and rather speak of parallel and�or distributed implementation of
a concurrent language or program� We feel that only if the underlying parallel and�or
distributed system architecture is somehow re�ected in the program text� defeating
transparency� the program can justi�ably be called �parallel� or �distributed��

It should be kept in mind that distribution does not necessarily imply concur�
rency� a purely sequential program may be executed across machine boundaries�
using remote procedure calls� A similar situation is found with client�server sys�
tems� while a server may or may not be concurrent� its clients rarely are� only when
we view a server and its clients as one system we see a concurrent system� operating
in a distributed fashion�

��� Active vs� passive objects

What kind of relationship exists between the notions of process
as used in traditional
concurrent programming� and object� There are several possible answers to this
question� ranging from �they are unrelated� to �they are just synonyms�� For swift
introduction of concurrency into an existing object�oriented language the �rst answer
may seem the natural one� An Ada programmer� however� knowing that an Ada
task is both a process and an invokable object� might prefer the second answer�

Transplanting the Ada task concept into the object�oriented world gives rise to
active objects� as opposed to the common �passive� objects used in purely sequential
object�oriented programming� As we will see� one of the distinguishing features of

�

an active object� its independent activity� actually comes in di�erent �avors� For
example� the object may start its activity spontaneously
as in Ada�� or it may have
to be triggered by an invocation� it may feature one thread of control
as in Ada��
or it may have several threads�

Note that in principle the particular choice of an active object model will be
independent of whether that model is implemented in a library or employing special
language constructs or using re�ection� In reality� the more interesting active object
models are found in integrative systems� for reasons to become clear below�

��� Previous work

The reader is assumed to be familiar with traditional concurrency concepts as de�
scribed� e�g�� in �Andrews 	��� It should also be kept in mind that object�based
concurrent programming is a well�established discipline which is supported by many
languages� Ada is a well�known example �Ada ��� �Barnes 	
�� SR� although less
known� features versatile and powerful constructs �Andrews�Olsson 	��� Emerald
has become known for its distribution support �Jul et al� ����

Combining concurrency with object orientation proper� i�e�� including inheri�
tance� has been the subject of many research projects since �	��� Several new lan�
guage designs� representing the integrative approach� are discussed and compared
in �Papathomas �	� and �Papathomas 	��� An early book featuring di�erent articles
on concurrent object�oriented programming is �Yonezawa�Tokoro �
�� a more recent
one is �Agha et al� 	��� For workshops on the subject the reader is referred to �Agha
et al� �	� �Agha et al� 	�� �Tokoro et al� 	�� �Guerraoui et al� 	�� �Ciancarini et al�
	�� �Briot et al� 	���

Much e�ort has recently been put into C�� variants and libraries for parallel
processing� For a collection of articles about di�erent projects on C�� and paral�
lelism see �Wilson�Lu 	���

As mentioned above� our treatment of concurrent object�oriented programming is
not meant as an exhaustive study of the relevant programming languages� A fairly
complete survey
as of �		�� focusing on parallelism and including an annotated
bibliography can be found in �Philippsen 	�a�b��

� The Library Approach

The basic idea of the library approach is to use encapsulation and abstraction� and
possibly also classes and inheritance� as structuring tools for concurrency mecha�
nisms imported from a certain execution platform� This should facilitate the con�
struction of concurrent systems using an object�oriented methodology and a given�
sequential� object�oriented language�

To illustrate the approach� we survey the following examples�
�� the Smalltalk�
�� programming language and environment� where a basic and simple object concept
is uniformly applied to model and structure the whole system through class libraries�
including concurrency and distribution aspects�
�� the Ei�el programming language�
for which several libraries have been proposed to address concurrency�
�� C���

�

whose widespread use has resulted in a proliferation of concurrency libraries� We
will also brie�y mention concurrency support in object�oriented operating systems
such as Choices and Peace�

��� Smalltalk

Smalltalk is often considered as one of the �purest� examples of object�oriented
languages �Goldberg�Robson �	�� This is because its �motto� is to have only a few
concepts
object� message passing� class� inheritance� and to apply them uniformly to
any aspect of the language and environment� One consequence is that the language is
actually very simple� its richness comes from its set of class libraries� They describe
and implement various programming constructs
control structures� data structures
etc��� internal resources
messages� processes� compiler etc��� and a sophisticated
programming environment with integrated tools
browser� inspector� debugger etc���

����� Standard class libraries

In Smalltalk� even basic control structures� such as loop and conditional� are not
primitive language constructs� but just standard methods of standard classes� which
make use of the generic invocation of message passing� They are based on booleans
and execution closures � blocks� Blocks� represented as instances of class Block�

Context� are essential for building various control structures that may be extended
as required� They are also the basis for multi�threaded concurrency through pro�
cesses� Standard class Process describes their representation� the associated meth�
ods implement process management
suspend� resume� adjust priority etc��� The
process scheduler is the single instance of the class ProcessorScheduler� Smalltalk
processes are implemented using coroutines or threads�

ProcessorScheduler

Object

Collection

SequenceableCollection

LinkedList

Semaphore

Link

Process

Figure �� Concurrency in Smalltalk � The �inherits from� relationship

The basic synchronization primitive is the semaphore� represented by class Sema�
phore� Standard libraries also include higher abstractions� class SharedQueue to
manage communication between processes� and class Promise for representing a
value still being computed by a concurrently executing process�

�

Smalltalk also o�ers libraries for remote communication using sockets and RPC�
and for storage and exchange of object structures� supporting marshaling� persis�
tence and transactions� The Binary Object Streaming Service �BOSS� library pro�
vides a basic support for building distribution mechanisms�

����� Extending class libraries

Due to Smalltalk�s uniform approach� concurrency concepts and mechanisms are
well encapsulated and organized in a class hierarchy� Thus� they are better under�
standable than if they were just a set of primitives in the programming language�
It is also relatively easy to build more sophisticated abstractions on top of the basic
standard library�

Mailer

Bcast

AbcastCbcastRbcast Arpc

Figure �� Communication in GARF � The �inherits from� relationship

Inheritance has been used extensively to structure various services for concur�
rent programming� An example is the Simtalk platform �B�ezivin �
�� which im�
plements and classi�es various synchronization and simulation abstractions
Hoare
monitors� Kessels monitors� pessimistic or optimistic simulation objects etc�� on top
of Smalltalk standard abstractions�classes� For distributed and fault�tolerant pro�
gramming abstractions� an example is the GARF project �Garbinato et al� 	��� in
which two complementary class hierarchies have been developed for various commu�
nication models
point�to�point� multicast� atomic multicast etc��
see Figure �� and
object models
monitor� persistent� replicated etc��� The HP Distributed Smalltalk
product provides a set of distributed services following the OMG CORBA standard
�OMG 	��� also implemented as Smalltalk��� class libraries�

In a similar approach for the Beta programming language �Lehrmann Madsen
et al� 	��� a library of classes
named �patterns� in Beta� for distributed pro�
gramming has been developed �Brandt�Lehrmann Madsen 	��� For instance� class
NameServer represents a name server which maps textual object names to physical
references� Class ErrorHandler manages partial errors�faults of a distributed sys�
tem� This approach enables the programmer to add distributed features to a given
sequential�centralized program without changing the program logic� i�e�� through
additions rather than changes�

��� Ei	el

While Smalltalk is untyped
or at least not statically typed�� Ei�el �Meyer 	�� is
a language with static typing� Originally designed as a sequential object�oriented
language� it has been extended towards concurrency in di�erent ways� Language

�

extensions proper will be considered later� Here we concentrate on the library ap�
proach to Ei�el concurrency�

Existing concurrency libraries for Ei�el demonstrate that there are fundamen�
tally di�erent ways to model an independent activity
process� task� thread etc�� as
an object� We observe that two kinds of data belong to a process� application data
and management data� they can be either

�� separated	 a process object encapsulates data and operations just for manage�
ment of the process� the executed code is responsible for its application data
and any inter�process communication�

�� integrated	 a process object encapsulates both management and application
code and data� consequently� all process management and inter�process com�
munication is performed through the object�s interface� we thus have an active
object in the sense of ����

Be careful not to confuse the object�process integration leading to active objects
with what we have de�ned as the integrative approach � they are independent of
each other� In fact� as we will see later� either of the three approaches � library�
integrative� re�ective � can accommodate both object�process separation and object�
process integration�

Separation is the basis of the Smalltalk solution� A corresponding variant for
Ei�el is described in �Colin�Geib 	��� We will discuss an integrated solution� pre�
sented in �Karaorman�Bruno 	�� for Ei�el��� the precursor of the current version of
Ei�el�

If a class inherits from the library class Concurrency its objects are active ob�
jects� The behaviour of an active object resembles that of an Ada task� its op�
erations corresponding to the Ada task entries� Essentially� the object executes a
loop� checking for and accepting pending invocations� As opposed to Ada� service
execution is always asynchronous� results� if any� are returned using futures
which
are similar to the promises mentioned in ������ �Halstead ���� The programmer of
an active object class is responsible for rede�ning the routine scheduler inherited
from Concurrency� scheduler must contain the loop that controls the behaviour
of the object�

A simpli�ed example is shown in Figure �� Active Printer objects are capable
of asynchronously executing print requests� Note that Printer does not export
print� Concurrency exports remote�invoke
among others�� and it is this oper�
ation that has to be called by a client as shown�
remote�invoke is implemented
as sending a message which is then picked up by a separate process executing the
never�ending scheduler��

We see that this technique does not achieve a fully transparent solution that
would allow the same syntax for invoking active and passive objects
p�print�arg���
So although the system achieves more than just supporting passive Process objects�
it also exhibits problems with the library approach� The subject is discussed in detail
in �Karaorman�Bruno 	��� a methodology for alleviating the problems is suggested�

CLASS Printer

INHERIT Concurrency REDEFINE scheduler

FEATURE ����� �� any attributes are declared here

print�filename� String� IS ����� END �� print�

scheduler IS LOCAL fn� String

DO FROM get�request UNTIL false

LOOP current�request �	 request�queue�remove�

fn
	 current�request�parameters�item����

print�fn�� ����� END �� loop

END �� scheduler

END �� Printer

����� �� in a client class

p� Printer�

���

p�remote�invoke��print�
 args��

���

Figure �� De�nition and usage of a class for active objects

The designers of the system have decided to implement active objects as Unix
heavy�weight processes rather than light�weight threads� So invocation of an active
object always involves Unix inter�process communication� This makes the approach
unsuitable for medium� to small�grain concurrency and highly parallel computation�
It is readily usable� though� for physical distribution on platforms that support
remote process spawning�

Highly parallel computation is supported by the EPEE system �J�ez�equel 	�b��
EPEE follows the SPMD
single program� multiple data� approach to data paral�
lelism� large data aggregates
such as� e�g�� matrices� are divided into fragments�
The fragments are distributed� together with replicated code� over the CPUs of a
multicomputer� each CPU operates on its data fragment� communicating with the
other CPUs as necessary� The essentials of EPEE are�

�� A data aggregate is an Ei�el object� Its interface is given by an Ei�el class�
The class� however� describes the implementation of a fragment� not that of
the complete aggregate
 ��

�� Such a class for distributed aggregates must be designed as a subclass of a
given non�distributed class� say� Matrix� and the library class DISTAGG�

�� The original operations of Matrix have to be rede�ned� Their implementation
has to be modi�ed in such a way that update operations in the code are applied
to the local fragment only� DISTAGG manages the required inter�fragment data
exchange on remote read operations and provides various support functions
such as fragment speci�c index mapping�

�

�� Note that there is no explicit process creation� nor any visible message passing�
The fragments of a distributed object operate concurrently� each with its own
thread of control� If each fragment is placed on a CPU of its own� invoking the
object causes all the fragments to start operating in parallel�

EPEE�s ideas are close to other object�oriented approaches to massive paral�
lelism� notably those of Concurrent Aggregates �Chien 	�a� and Charm��
�Kal�e�Krishnan 	��� We will come back to these in section ���� EPEE is not as
elegant� but this may be the price that had to be paid for not changing the lan�
guage�

��� C

As opposed to Smalltalk and Ei�el� C�� �Stroustrup 	�� is not genuinely object�
oriented� It is an object�oriented extension of C� a language originally designed for
systems programming� Thus� it is not the ideal vehicle for building object�oriented
applications� Nevertheless� it has become the most widely used object�oriented
language� and it is the language for object�oriented systems programming�

This implies that combining C�� with concurrency libraries is more than a mar�
riage of convenience� As explained in ���� the systems programmer needs �exibility
and therefore prefers libraries to built�in features� He also likes to exploit the low�
level concurrency mechanisms o�ered by the underlying execution platform� As the
library approach allows for any functionality of a given platform to be wrapped in
C�� functions or classes� it is not surprising that there is a wide variety of concur�
rency mechanisms cast in C�� libraries� In fact� any programmer can readily build
wrappers for concurrency mechanisms from her or his favourite platform�

����� Threading libraries

Class libraries can be built for all kinds of process concepts� heavy�weight or light�
weight� and for their corresponding synchronization mechanisms� We have seen how
concurrency can be added to Ei�el by providing a library class Concurrency which is
implemented using a heavy�weight Unix process� Many concurrent programs� how�
ever� are conveniently implemented using a threading system
e�g�� network servers�
interactive programs� parallel programs�� So it is important to look into object�
oriented threading libraries�

Is a thread an object� While de�ning classes for synchronization objects such
as semaphores is a straightforward exercise� it is not obvious how to cast a thread
abstraction into a class� There are at least three di�erent ways� depending on how
the activity of a thread object is described�

�� A thread is an instance of a subclass of Thread� and its activity is described by
the constructor of the subclass� This is akin to the Simula approach to corou�
tines� the body of a coroutine class describes both initialization and activity
of a coroutine object�

	

�� Again� a thread is an instance of a subclass of Thread� but its activity is
described by overriding a special method
similar to the scheduler routine in
�����

�� A thread is an instance of Thread� and its activity is described by a function
that is passed as a parameter to the constructor or a special method�

In all these approaches� creating a thread object spawns a new thread� Note that
the lifetime of its activity may be shorter than the lifetime of itself
as an object��
Also note that although a thread object is �active� in a way
because the thread is
executing some code�� it is not an active object�

An example of approach � is found in the coroutine library part of Sun�s C��
library �Sun 	��� The library o�ers a class task
not Thread�� A task object is
implemented as a coroutine� i�e�� with non�preemptive scheduling� There is also a
class Interrupt handler that allows to catch Unix software interrupts
signals��
Typical operations on tasks are result��
wait for termination�� rdstate��
get
state� etc� Synchronization is supported by low�level wait operations and by object
queues�

class producer� public task �

public�

producer��

� ����� �� compute x

resultis�x��

�

�

int main��

� producer p�

����� �� compute y

cout �� �Results are � �� p�result�� �� � and � �� y�

return ��

�

Figure �� Typical scenario for thread objects� customized Sun C�� task object

Figure � shows a fragment of a simple program using the coroutine library�
The main program� by declaring the object p� creates a task which executes the
producer�� constructor� There is no interaction between parent and child task�
except that the child terminates with producing a result� which is picked up by the
parent�

An example of the third approach sketched above is found in PRESTO� a sys�
tem for parallel programming on a multiprocessor �Bershad et al� ���� A newly
created thread is idle until explicitly started� The function to be executed
and its
parameters� are passed as parameters to the start operation� For synchronization�
PRESTO features atomic integers and lock� monitor and condition classes�

The function to be executed is passed to the constructor in DC

 �Schill�Mock
	��� a system for distributed execution of C�� programs on top of DCE� the OSF

��

Distributed Computing Environment �OSF 	�� �Rosenberry et al� 	��� While DC��
focuses on distribution it does o�er a few classes for concurrent programming� Con�
currency is implemented using the DCE threading subsystem� Thus� DC�� is
readily ported to any system that is equipped with the DCE platform� The DC��
library includes a class Thread as described above� plus a few classes for synchro�
nization� Parameters of the Thread constructor allow the user to choose among
di�erent scheduling policies�

An example that is typical for C��� exploiting overloading and templates� is
the threading library of the ACE system �Schmidt 	��� ACE stands for Adaptive
Communications Environment� it is a toolkit for developing communication�oriented
software� One of the goals of the ACE threading library is to present abstractions
that subsume the threading mechanisms of di�erent platforms
POSIX� Solaris ��
Win���� thus enhancing portability�

ACE has classes Mutex
 Semaphore
 RW Mutex and others for synchronization�
A class template Guard is parametrized with a lock class
e�g�� Mutex�� A guard
object acquires and releases a lock upon initialization and �nalization� resp�� similar
to a PRESTO monitor object� thus� declaring a guard in a block will turn this block
into a critical region�
Note that ACE guards have nothing to do with the Boolean
expression guards used in genuinely concurrent languages��

typedef void ���THR�FUNC��void ���

class Thread �

public�

static int spawn�THR�FUNC fun
 �� create thread to execute fun

void �arg
 �� with argument arg

long flags

thread�t � 	 �

void �stack 	 �

size�t stack�size 	 �

hthread�t �t�handle 	 ��� �� to be referred to by t�handle

static int suspend�hthread�t�� �� suspend thread

static void exit�void �status�� �� terminate current thread

������� �� more routines

�

Figure �� Threads are not objects in ACE

Threads are handled on a very low level of abstraction in ACE� There does
exist a class Thread� but this is just a package of static functions such as spawn

join
 yield etc�� abstracting from the idiosyncrasies of the threading functions of
POSIX� Solaris and Win��
Figure ��� Another class� Thread Manager� does serve
the purpose of creating and using thread manager objects� they are responsible for
managing groups of threads� spawning new members� disposing of a thread when it

��

terminates etc� But there is no class that would resemble Smalltalk�s Process or
the task from Figure ��

A relatively high�level concept in ACE is the Task class� This class must not
be confused with Sun�s task class mentioned above� Task is an abstract class
whose interface is designed for use according to the Stream�Module concept for
layered communication� Subclass objects of Task can participate in a batch of
modules implementing a stream� either as passive or as active objects
the latter
are associated with their own thread
s� of control�� Each task must provide a put

operation to be invoked from an adjacent module in a stream and an svc operation

�service�� for asynchronous execution of the invoked service in case of an active
task object�

Task

Thread Mutex Semaphore

OS

POSIX Solaris2 Win32

OO concurrency

Unified threading API

Different threading APIs

Figure �� Architecture of the ACE concurrency library

Figure � shows part of the layered architecture of the ACE concurrency class
library� Portability of the concurrency classes is achieved through a class OS that
just packages threading�related functions� hiding the peculiarities of di�erent native
threading systems�

����� Distribution support

We have seen that for C�� the library approach tends to mirror the functionality
of the underlying execution platform� This is true not only for concurrency but also
for distribution� So we often �nd library classes that encapsulate message passing
mechanisms such as ports or sockets
e�g�� ACE supports Unix socket objects��

This is unfortunate because the object invocation paradigm is lumped together
with the message passing paradigm of distributed computation� In many cases it is
also not necessary because remote invocation would be the mechanism of choice� it
hides message passing and achieves distribution transparency in a genuinely object�
oriented program� Remote object invocation� the object�oriented analog to remote
procedure call� is a technique that does not require either changes in the language
or explicit usage of libraries�

The DC�� system mentioned above supports remote object invocation� Note�
however� that distribution and concurrency are not strictly orthogonal in DC���
Remote invocation comes in two �avours� synchronous and asynchronous
where
asynchrony leads to truly parallel execution of client and server�� Asynchronous
invocation of local objects� however� is not directly supported� Ironically� this implies
that it is easier in DC�� to write a distributed concurrent program than to write
a centralized one�

��

The most prominent platform for object�oriented distributed computing is CORBA
�OMG 	�� �Mowbray�Zahavi 	��� Although CORBA is language�independent� the
bulk of support available for CORBA today is geared towards C��� Concurrency is
not a central issue in CORBA� But implementors of server objects may of course be
confronted with the need for concurrency control� Therefore� an object transaction
service and a non�transactional concurrency control service are provided�

����� Parallel Computing

The challenge of object�oriented programming for parallel computing systems is to
�nd an object model that �ts in with the preferred models for parallel computation�
For a library�based solution there is no choice � the object model is given by the
sequential language� Here the most straightforward path to parallel processing is
just executing the programs described in ����� on a shared�memory multiprocessor�
as mentioned above for PRESTO� This produces functional parallelism� but no data
parallelism�

We have seen that EPEE uses Ei�el objects to represent fragments of data ag�
gregates
also called collections� for data�parallel programming� A di�erent way
of accommodating the notions of object and aggregate is to simply identify them�
A popular technique is to provide library classes for certain kinds of aggregates�
hiding fragmentation and communication� This� of course� leaves the programmer
with a limited set of prede�ned aggregate classes� But still� a good degree of �ex�
ibility can be achieved in C�� by using templates� The Amelia Vector Template
Library
AVTL� �She!er 	�� is an example of library support for parallel processing
of vectors�

While an approach like AVTL is tailored towards a speci�c class of applications� it
has the advantage of hiding communication from the programmer� If we are willing
to pay the price of low�level message�based programming� unlimited �exibility is
achieved by libraries that connect to a communication platform� e�g�� MPI �Skjellum
et al� 	��� Libraries of this kind can be seen as the �distributed�parallel� equivalent
to threading libraries as described above�

����� Object�oriented operating systems

Choices �Campbell et al� 	�� is a generic operating system� it was designed to be
easily ported onto various machines� but also to be adjustable to various character�
istics of both hardware� resources� and application interfaces� such as �le format�
communication network� and memory model
shared or distributed�� An object�
oriented methodology is presented together with the system� both for the design of
distributed applications and for the design of new extensions to the Choices kernel�

A speci�c C�� class library has been developed for Choices� For instance� class
ObjectProxy implements remote communications between objects� classes Memory�
Object and FileStream represent memory management� and class ObjectStar

provides some generalized notion of pointer� Class ObjectStar provides trans�
parency for remote communications without need for a pre�compilation step� This
class is also useful for the automatic garbage collector� Class Disk abstracts and

��

encapsulates a physical storage device which may be instantiated� e�g� in class
SPARCstationDisk when porting Choices onto a SPARC station�

The experience of the Choices projects shows that a distributed operating system�
developed with an object�oriented methodology and programming language� helps
at achieving better genericity and extensibility�

Distributed memory multicomputers are the target of the Peace parallel oper�
ating system �Schr�oder�Preikschat 	��� Peace is actually a family of object�oriented
operating systems� Its components� implemented in C��� can be con�gured in
di�erent ways� in order to �t di�erent hardware platforms and o�er varying func�
tionality�

Peace makes heavy use of inheritance in implementing the system family concept�
A stepwise bottom�up design of minimal extensions using subclasses results in a �ne�
grain inheritance hierarchy� Exploiting this scheme� application programs interface
to the operating system by simply extending certain system classes�

The basic unit of concurrent execution� the thread� is introduced through a series
of abstractions� Most threads are made up from two objects� of classes native

and thread� respectively� The class native describes the kernel�level part of the
thread� thread refers to the user�level part� An application program can declare
a subclass of thread� say� custom� rede�ning the method action�� inherited from
thread� Creating a custom object causes the creation of a thread that executes the
rede�ned action��� The situation is not unlike the one described in �������� with
the same caveat� a thread is not an active object
contrary to the terminology in
Peace� because there is no provision for communicating with the thread through the
custom interface�

notice points associate gate native

thread

custom

coroutine

Figure
� Small excerpt from the architecture of Peace
simpli�ed�� �inherits from�
proceeds bottom�up� and �uses� proceeds left�to�right�

Figure
 shows an excerpt from the architecture of Peace� There is a sequence
of abstractions� implemented through inheritance� that leads from coroutine to
native� The associate part of a user�level thread refers to a gate object that
knows the unique identi�er of the kernel�level thread�

��

Threads interact either via shared objects or� if located in di�erent address
spaces� through message passing� Intra�address�space thread synchronization is
achieved via event counters which are supported by notice� A variety of message
passing mechanisms is supported�

��� In search for standard abstractions

The main issue underlying the library approach is the design and implementation of
adequate abstractions on top of which various higher�level concurrency abstractions
can be built in a convenient way�

One of the most signi�cant examples for concurrent programming is the semaphore
abstraction which� through a well�de�ned interface
wait and signal operations��
and a known behavior
metaphor of the train semaphores�� represents one stan�
dard of synchronization for concurrent programming� Such a basic abstraction
may be used as a foundation to build various higher�level synchronization mech�
anisms
as� e�g�� the Guard class of ACE�� Classi�cation and specialization mecha�
nisms� as o�ered by object�oriented programming� are then appropriate to organize
such a library�hierarchy of abstractions� as for instance in the the Simtalk platform

Sect� ����� Peace is a typical example for an extremely careful design of a hierarchy
of thread abstractions�

An example of developing concurrency abstractions complementary to program
abstractions can be found in the Demeter environment �Lopes�Lieberherr 	��� The
abstract speci�cation of a program is decomposed into two loosely coupled dimen�
sions� the �structural block�� which represents relations between classes� and the
�behavioral block�� which describes the operations� A third dimension has recently
been added� the �concurrency block�� which describes the abstract synchronization
patterns between processes� The abstract speci�cations and the relative indepen�
dence between these three components help with the development of generic and
reusable programs�

A similar study of abstractions for distributed programming has been proposed
in �Black 	�� where decomposing the concept of transaction into a set of abstrac�
tions is suggested� The goal is to represent concepts such as lock� recovery� and
persistence� through a set of objects that must be provided by a system in order
to support transactions� The modularity of this approach would help de�ning var�
ious transaction models� adapted to speci�c kinds of applications� For instance�
a computer�supported cooperative application does not need concurrency control
constraints as strong as those required for a banking application�� Both the Venari
�Wing 	�� and the Phoenix �Guerraoui�Schiper 	�� projects aim at de�ning various
transactional models from a set of minimal abstractions�

��� Evaluation of the library approach

In summary� the library approach aims at increasing the �exibility� yet reducing
the complexity� of concurrent computing systems by structuring them as libraries

�The former application requires strict serialization of transactions through a locking mechanism
while the latter does not�

��

of classes� Each aspect or service is represented by an object� Such modularity and
abstraction objectives are very important because concurrent computing systems
are rather complex and ultimately use very low�level mechanisms� such as processor
switching and network communication� Furthermore� such systems are often devel�
oped by teams of programmers� having separate modules with well�de�ned interfaces
is of prime importance in such a context� Finally� the di"culty with maintaining and
extending Unix�like systems is mainly due to low modularity and poor abstractions�

Although progress is being made towards that direction� as noted above� it is
still too early to come up with a standard class library for concurrent program�
ming� It may even be a red herring� We need a good knowledge of the minimal
mechanisms and their interaction� in addition� we need a consensus about the de�
sirable extensions and how to structure them� Di�erent technical communities are
involved� people from programming languages� operating systems� distributed sys�
tems� database sytems and� last but not least� real�time systems� The fact that
the semaphore abstraction became a standard primitive for synchronization is just
a tiny grain of hope that a generally accepted library of concurrency abstractions
might emerge�

� The Integrative Approach

We have seen that the library approach to concurrent object�oriented programming
starts out from a given concurrency platform such as an operating system or a
user�level threading package� The low�level concurrency mechanisms o�ered by the
platform are cast into objects� Wherever possible� inheritance is used as an aid in
structuring a concurrency library�

This bottom�up approach� although �exible� is not attractive for the applica�
tion programmer� If we follow the object paradigm all the way down from anal�
ysis through modeling through design to implementation� we would like to stay
on a problem�oriented level� Now the library approach does help with the object�
oriented structuring of low�level mechanisms like threads� semaphores� messages
etc�� but those objects are not hidden� they are kept separate from the objects
structuring the application� In other words� there is no integration between the two
tasks the programmer faces� programming with application objects and managing
concurrency� also with objects� but not the same objects�

Furthermore� programming may become cumbersome when using libraries� and
concurrency management may obscure the application logic� For instance� subclasses
of the Concurrency class mentioned in ��� give rise to active objects� But in pro�
gramming such a class we are forced to manage explicit acceptance of invocations�
It would be more attractive to have a solution where classes for active objects are
not much di�erent from regular classes�

In summary� rather than keeping application logic and concurrency management
separate� we should strive for a solution that o�ers a uni�ed object model to the
programmer� This cannot be achieved through libraries� An integrative approach is
necessary where concurrency semantics are built into the language� either from the
beginning or by extending a given sequential language�

��

��� Degrees of object�process integration

The concept of active object which integrates the notions of object and process is
appealing and natural� it immediately occurs to us when we model reality� But it
is not the only way of incorporating concurrency into an object�oriented language�
There is a variety of ways� exhibiting di�erent degrees of object�process integration�

�� No integration	 The language supports independent activities
called processes�
threads� tasks or whatever�� but these are not objects� All objects are passive�
and activities interact via shared
and properly synchronized� objects�
Exam�
ples� Modula�� �Harbison 	��� Guide �Decouchant et al� 	�� �Balter et al� 	���
Beta �Lehrmann Madsen et al� 	��� pSather �Feldman et al� 	����

�� Poor integration	 a� Process objects do exist� but they are a species di�erent
from class objects� They are instantiated from certain process templates which
do not participate in inheritance�
Example� Concurrent C�� �Gehani�Roome
����� Or b� process objects are instantiated from a built�in Thread class� but
have no application�speci�c interface� operations on processes are stop� start�
reschedule etc� The semantics is very close to that of the library approach
described in ������
Example� Java �Arnold�Gosling 	�� �Lea 	
���

�� Partial integration	 There are two kinds of objects� active and passive� In�
heritance among their classes is possible� but subject to certain restrictions�

Examples� Ei�el�� �Caromel 	��� Charm�� �Kal�e�Krishnan 	����

�� Full integration	 All objects are potentially active� and there are no restrictions
regarding inheritance�
Examples� Pool �America�van der Linden 	��� CEi�el
�L�ohr 	����

This classi�cation is a re�nement of the simple distinction made in the context
of the library approach in ���� separated vs� integrated handling of management
data and application data of a process object� Note that integration in the sense of
��� is fully realized in �a�� � and ��

The integrative approach tries to integrate into the application objects not only
processes but also synchronization� For passive objects this is similar to rejecting
synchronization objects
e�g�� semaphores� and instead using synchronized objects

e�g�� monitors� in traditional concurrent programming� Active objects use synchro�
nized invocation similar to the Ada rendezvous� In both cases� however� it is not
obvious how synchronization relates to inheritance� It turns out that inheritance
may give rise to a phenomenon called inheritance anomaly� We will return to this
later�

��� Passive objects

There are rare cases where allowing several concurrent activities to access a given
passive object cannot do any harm� Examples are read�only objects or very small
objects where the operations are implemented as indivisible machine instructions

e�g�� increment an integer variable�� In most cases� however� shared objects in a
concurrent environment have to be synchronized� It is helpful to distinguish between
di�erent sources of the need for synchronization�

�

� speci
cation of the object� condition synchronization�

� implementation of the object� exclusion synchronization�

� scheduling of the operations
if di�erent from built�in scheduling��

We will discuss each of these in turn�

����� Condition synchronization

The speci�cation of� e�g�� job queues would indicate that the operation to remove a
job from a Queue can only be executed under the precondition that the queue is not
empty� Thus� acceptance of a remove invocation has to be delayed when the queue
is empty�

A problem�oriented solution to this synchronization problem is to use a declar�
ative guard� i�e�� a concrete version of the abstract precondition� expressed as a
predicate over the object�s data representation
Figure �� upper part� with ad�hoc
syntax�� Guards are well�known in traditional concurrent programming and can
be found� e�g�� in Ada� SR and Orca �Bal et al� 	��� Guards achieve the desired
integration because they do not require any synchronization statements in the imple�
mentation of the object�s operations� Activities are blocked or woken up implicitly�
The price that has to be paid for this is performance� explicit operations such as
signalling a monitor event or a semaphore are more e"cient�

CLASS Queue�

VAR length� Natural�

OPERATION remove� Item�

WHEN length��

END ����� END�

�����

END Queue�

���

CLASS Queue IMPLEMENTS QueueType IS

�����

METHOD remove�OUT i� Item��

BEGIN ����� END remove�

�����

CONTROL remove� completed�append� � completed�remove��

END Queue�

Figure �� Guarded remove operation in class Queue

In the language Guide the guards are gathered in a central location of the class�
called the control clause
see Figure �� lower part�� A guard can refer not only to the
object�s state and the operation�s parameters� but also to counters which indicate
certain numbers connected with operations �Robert�Verjus

�� e�g�� completed�op�
is the number of completed executions of op�

��

Referring to counters has the advantage of representation independence but may
have drawbacks when it comes to inheritance� The guards in the control clause are
inherited and can be rede�ned if necessary� Figure 	 shows a subclass of Queue

ExtendedQueue� a new operation delete for deleting the last element has been
added� Notice that it does not su"ce to add a new guard for delete to the control
clause� Annoyingly� we have to rede�ne the remove guard although remove itself is
not rede�ned� This anomaly is one example of a species of phenomena called inher�
itance anomaly� We will encounter more examples below� A thorough treatment of
inheritance anomalies can be found in �Matsuoka�Yonezawa 	���

CLASS ExtendedQueue INHERIT Queue

OPERATION delete�

WHEN length��

BEGIN ����� END� END ExtendedQueue�

���

CLASS ExtendedQueue SUBCLASS OF Queue IMPLEMENTS ExtendedQueueType IS

METHOD delete�

BEGIN ����� END delete�

CONTROL remove� completed�append��completed�remove��completed�delete��

delete� completed�append��completed�remove��completed�delete��

END ExtendedQueue�

Figure 	� Inheritance anomaly when using counters

The expressive power of counters is not very high� Imagine we need a Clearable�

Queue� to be derived from Queue by adding a clear operation� There is no way to
express the new synchronization requirements by means of counters� Fortunately�
Guide does not rely solely on counters� the guards may also refer to the object�s
represention� If we derive our subclass from another version of Queue where the
control clause reads remove� length��� we arrive at the trivial solution shown in
Figure ���
A solution for the above ExtendedQueue is also very simple�� The lesson
to be learned is� try to avoid using counters for condition synchronization�

Another high�level approach to condition synchronization is to use synchroniza�
tion expressions� all information about synchronization is centralized in one ex�
pression which speci�es all possible histories
sequences of operation executions�
of an object� This approach is attractive because a synchronization expression is
completely independent of the object�s representation� it is� in fact� part of the
speci�cation
or derivable from it��

Synchronization expressions are akin to path expressions �Campbell�Habermann

��� Because the original path expressions lack expressive power� later versions
have been extended with predicates� A predicate may again refer to counters as
mentioned above �Andler
	�� or it may be a guard referring to the object�s state
�van den Bos�La�ra 	��� The latter version obviously defeats what makes path
expressions attractive in the �rst place�

�	

CLASS ClearableQueue INHERIT Queue

OPERATION clear�

BEGIN ����� END�

END ClearableQueue�

��

CLASS ClearableQueue SUBCLASS OF Queue

IMPLEMENTS ClearableQueueType IS

METHOD clear�

BEGIN ����� END clear�

END ClearableQueue�

Figure ��� State�based guards in superclass� no inheritance anomaly

The biggest problem with synchronization expressions is that they do not blend
well with inheritance� This is due to their centralized nature� It is usually impossible
to inherit a synchronization expression and take new operations in the subclass into
account by just making an incremental change to the synchronization behaviour�
adding a new expression� Thus� rede�nition of the complete synchronization expres�
sion is usually inevitable � a grave inheritance anomaly�

����� Exclusion synchronization

Until now we have tacitly assumed that an object is never invoked when one of its
operations is already executing� However� activities meeting at an object are the
rule rather than the exception� So the object designer has to specify the object�s
behaviour under such circumstances� The sequential speci�cation of the object has
to be extended to cope with a concurrent environment�

The simplest extension is to postulate serializability� the e�ect of any concurrent
invocation of operations and their subsequent execution is equal to the e�ect of some
serial execution of the invocations
i�e�� any order is acceptable�� Often this is too
strong a requirement� There are many cases where it is perfectly acceptable that an
object� when placed in a concurrent environment� may display a behaviour unseen
in a sequential environment�

In any case� the implementation usually has to employ synchronization mech�
anisms to meet the speci�cation� This kind of synchronization is called exclusion
synchronization or concurrency control� Note that how to synchronize is highly de�
pendent on the object�s representation� Complete mutual exclusion as known from
monitors guarantees serializability� So do transactional locking schemes such as two�
phase locking� But even more liberal synchronization measures are often su"cient
when the speci�cation does not require serializability�

The integrative approach calls for avoidance of explicit locking operations� the
programming language should o�er transactions or declarative constructs suitable
for specifying exclusion� Several languages are rather poor in this respect� distin�
guishing just between atomic objects with complete exclusion
i�e�� monitor�like� and
non�atomic objects with no exclusion at all� Some insist that all objects be atomic

��

� an approach that is doomed to failure� for the same reasons that make nested
monitors impractical�

Non�atomic shared objects give rise to intra�object concurrency� in addition to
the inter�object concurrency which is present a priori� due to the mere existence of
concurrent activities operating on di�erent objects� We distinguish between di�erent
degrees of intra�object concurrency�

�� Atomic object	 There is no intra�object concurrency�

�� Quasi�atomic object	 Several activations of operations may coexist� but at most
one of them is not suspended�
This is similar to a monitor using event variables
to suspend processes��

�� Semi�concurrent object	 There is true intra�object concurrency� but some re�
strictions apply� as speci�ed by the programmer�

�� Fully concurrent object	 Concurrency within the object is not restricted� This is
the default for a normal sequential object placed in a concurrent environment�

We will often not distinguish between semi�concurrent and fully concurrent ob�
jects� just calling them concurrent objects�

Exclusion can be speci�ed either per object�class or per operation� The per�
object approach lacks �exibility and results in declaring objects either fully con�
current or atomic� While this may be considered restrictive� even more restric�
tive schemes have been suggested� it has been argued that intra�object concur�
rency should be banished altogether because reasoning about programs that contain
atomic objects only is much easier �America �	� �Meyer 	
��

Most language designers have considered this too severe a restriction� It is com�
mon to allow intra�object concurrency and to tie the speci�cation of exclusion to
the operations� A typical device is the synchronized keyword in Java� operations
marked synchronized are mutually exclusive for the underlying object
or for the
underlying class if the operation is a static method�� Actually� synchronized

can also be used for establishing arbitrary critical regions� Condition synchroniza�
tion is handled using events� another indication that Java favours a low degree of
integration�

A language that allows for specifying reader�writer exclusion is Distributed Ei�el
�Gunaseelan�LeBlanc 	��� designed as a modi�ed Ei�el for programming distributed
applications on top of the Clouds distributed operating system� An operation can
be marked as accesses or modifies� meaning that it has to acquire a read lock or
a write lock� resp�� on the object before it can execute� If neither mark is present�
no lock is acquired�

This approach is generalized in another Ei�el extension� CEi�el �L�ohr 	��� us�
ing annotations to the operations� a binary� symmetric compatibility relation among
the operations of an object can be speci�ed� If operation op� is declared com�
patible to operation op�� both can be executed in an overlapping fashion� Incom�
patible operations are mutually exclusive� This approach can be traced back to
�Andrews�McGraw

� where a centralized parallel clause is used to specify com�
patibility in a precursor of SR� Note that declaring compatibilities is safer than
declaring exclusion requirements�

��

�� When a given sequential class without any annotations is used as a template
for shared objects� these objects are atomic by default� thus keeping their
sequential semantics�

�� When a subclass extends the set of operations of the superclass� a new opera�
tion is incompatible with all the inherited operations� unless explicitly stated
otherwise�

The fact that exclusion synchronization is implementation�dependent and there�
fore conceptually di�erent from condition synchronization is recognized by some�
though not all� languages� Guide employs counters not only for condition synchro�
nization� as mentioned above� but also for exclusion synchronization� current�op�

denotes the number of activities currently executing op� so a guard op�� current�op��	�

speci�es that op� excludes op�
though not the other way around�� Unfortunately�
this approach is once more prone to inheritance anomalies� Figure �� shows three
versions of a class Part� given in Distributed Ei�el� CEi�el and Guide� resp� A
CEi�el annotation starts with the characters ��� just like an Ei�el comment� but is
identi�ed as an annotation by the next character�
The reader is invited to �ll in
the missing code��

CLASS Part

EXPORT number
 text
 update

FEATURE number� Integer IS

DO ����� END�

text� String ACCESSES

DO ����� END�

update�s� String� MODIFIES

DO ����� END�

�����

END �� Part

���

CLASS Part

CREATION ���

FEATURE number� Integer IS ���� number ��

DO ����� END�

text� String IS ���� text
 number ��

DO ����� END�

update�s� String� IS ���� number ��

DO ����� END�

�����

END �� Part

��

���

CLASS Part IMPLEMENTS PartType IS

�����

CONTROL text� current�update� 	 ��

update� current�update� � current�text� 	 ��

END Part�

Figure ��� Reader�Writer exclusion using Distributed Ei�el� CEi�el and Guide

A subclass ClearablePart is shown in Figure ��� It turns out that the Guide
version su�ers from an inheritance anomaly� although text and update are not
rede�ned� their guards have to be ��

CLASS ClearablePart INHERIT Part

EXPORT number
 text
 update
 clear

FEATURE clear MODIFIES

DO ����� END�

END �� ClearablePart

��

CLASS ClearablePart INHERIT Part

CREATION ���

FEATURE clear IS ���� number ��

DO ����� END�

END �� ClearablePart

��

CLASS ClearablePart SUBCLASS OF Part IMPLEMENTS ClearablePartType IS

METHOD clear�

BEGIN ����� END clear�

CONTROL text� current�update� � current�clear� 	 ��

update� current�update� � current�clear� � current�text� 	 ��

clear� current�update� � current�clear� � current�text� 	 ��

END ClearablePart�

Figure ��� Exclusion synchronization and inheritance
in Distributed Ei�el� CEi�el and Guide

A unique approach to concurrency control for shared passive objects is taken in
the parallel language Charm

 �Kal�e�Krishnan 	��� A few special� built�in� tem�
plates for abstract classes support concepts such as �accumulator objects�� �mono�
tonic objects� and others� These concepts are de�ned by certain properties of the

�It should be mentioned that the current version of Guide supports the extension � by logical
anding � of an inherited guard� So if we and assertions current�clear��� instead of summing up
the synchronization counters we can at least weaken the anomaly in this example�

��

operations� A monotonic class MC� e�g�� models objects that are modi�ed monotoni�
cally
with respect to some linear ordering� through an update operation� By virtue
of being declared monotonic� MC has a built�in operation MonoValue�� that delivers
the current value of the object� The programmer has to explicitly provide the opera�
tion update that has to be monotonic� idempotent� commutative and associative� An
example is given in Figure ��� a Max object m would contain some current maximum
integer value which is updated periodically� using m��update�new�� The current
maximum value is obtained by m��MonoValue��� The necessary synchronization is
performed automatically
and so is the replica maintenance of its distributed imple�
mentation� as explained below�� The programmer only supplies the problem�speci�c
data representation� which must be a Charm�� message object
an instance of a
special record�like message type�� and the update code�

message Integer �int value��

monotonic class Max �

Integer �object�

public� Max�Integer �init� �

object 	 �Integer �� new�message�Integer��

object��value 	 init��value� �

int update�Integer �new� �

if �object��value � new��value� �

object��value 	 new��value�

return���� �

return���� �

��

Figure ��� Simple monotonic class in Charm��

Providing built�in solutions for several common synchronization problems rep�
resents� in a way� the ultimate integration of synchronization� The advantages are
obvious � and so are the drawbacks� if you need support for something the language
designers did not plan for� you may �nd yourself building a simple mechanism out
of heavy�weight constructs�

����� Scheduling

There are two reasons why an object might not accept an invocation right when
it arrives� condition synchronization and exclusion synchronization� An invocation
that has been issued yet not accepted is said to be pending� Any synchronized object
has an associated queue of pending invocations�

The natural strategy for handling this queue is FCFS� if several pending invo�
cations become eligible for acceptance� they are accepted in the sequence of their
arrival� This strategy is not necessarily fair
as seen� e�g�� with the Reader�Writer
problem�� and it may not be in accordance with what the programmer wants� The
situation can be handled in either of two ways� a� the language designer ignores it�

��

leaving the programmer with the task of designing separate scheduling objects which
implement the desired non�standard strategy� b� hooks are built into the language
that allow to refer to the pending invocations in appropriate ways�

Most languages support b�� if only in restricted form� A popular approach is to
use synchronization counters which� as we have seen� are also used for condition and
exclusion synchronization� Simple scheduling problems
such as some Reader�Writer
variants� can be solved in this way� but synchronization counters are much too
restrictive� not allowing to take into account object state� operation parameters and
invocation time� Figure �� shows another solution to the Reader�Writer problem
solved in Figure ��� this time� priority is given to the writers by extending the text

guard with pending�update�	�� Note that exclusion issues and scheduling issues
are indiscriminately interwoven� which may hamper understanding and complicates
modi�cation in subclasses�

CLASS Part IMPLEMENTS PartType IS

�����

CONTROL text� current�update� � pending�update� 	 ��

update� current�update� � current�text� 	 ��

END Part�

Figure ��� Using synchronization counters
for both exclusion and scheduling in Guide

The language SR� although not object�oriented� o�ers a more powerful construct
for scheduling� invocations of an operation declared with a by clause are scheduled
according to the value of the integer expression given in that clause
which may refer
to parameters�� A �exible solution that is even more powerful than SR�s by has
been described in �McHale et al� 	�� and �L�ohr 	��� scheduling predicates referring
to the pending invocations are used in guards� Their expressivenes is strong enough
to allow for straightforward solutions of complex scheduling problems� Figure ��
shows the Part example
writer priority� and an atomic� shortest�job�next Printer
class�

CLASS Part

�����

FEATURE number� Integer IS ���� number ��

DO ����� END�

text� String IS ���� text
 number ��

REQUIRE �����

ALL update SAT false �� no pending updates

DO ����� END�

update�s� String� IS ���� number ��

DO ����� END�

END �� Part

��

���

CLASS Printer

�����

FEATURE print�f� File� IS

REQUIRE �����

ALL print SAT

� print�f�size�	f�size AND

print�f�size 	f�size 	� print�Rank�	Rank �

DO ����� END

END �� Printer

Figure ��� Scheduling predicates
CEi�el version�

The examples are given in CEi�el where a guard is marked by the delay annota�
tion ����� in Ei�el�s precondition clause
REQUIRE ����� The universal quanti�er
in the guard of the operation print uses a variable called print� too� This implic�
itly declared variable refers to the pending print requests� represented as records
of invocation arguments� Rank is an additional record �eld referring to the virtual
arrival time of an invocation� Here it is used for FCFS ordering of jobs with equal
size�

����� Access to object representation considered harmful

There is a potential for subtle errors when synchronization and scheduling decisions
for an object are based on those very variables that represent the object�s state and
are modi�ed by the object�s operations� The programmer has to be aware of possi�
ble con�icts between guard evaluation and state manipulation� Enhanced safety is
achieved by complete separation of instance variables and synchronization variables
�McHale 	��� As the Printer example in Figure �� demonstrates� all synchronization
information is centralized in a synchronization section of the class� Synchroniza�
tion variables� actions and guards are declared here� Several standard identi�ers are
used to refer to action�triggering events such as arrival of an invocation� start of
an operation etc� Other identi�ers refer to synchronization counters
such as exec�
waiting etc�� and to certain constituents of a guard
e�g�� this inv��

The �rst line of the synchronization section declares an integer variable len of
which there will be one instance per invocation of print� The second line speci�es
an action to be taken when a print invocation arrives� get the length of the �le to
be printed and store it in this invocation�s len variable� The remaining four lines
constitute the guard for print� specifying mutual exclusion in the �rst conjunct and
shortest�job�next scheduling in the second conjunct�

The synchronization variables approach lends itself naturally to the introduction
of generic synchronization policies which can be instantiated for di�erent application
classes that need the same kind of synchronization� This can also mitigate the
problem of inheritance anomalies in some� though not all� cases�

��

class Printer �

print�String fileName� �������

synchronization

int len local to print�

arrival�print� �� this�inv�len �	 ���� �� get file length

print� exec�print�	� and

there�is�no�p in waiting�print��

p�len�this�inv�len or

p�len	this�inv�len and p�arr�time�this�inv�arr�time��

�

Figure ��� Synchronization variables

example shows one variable� one action and one guard�

��� Active objects

Invocation of a passive object works like a procedure call� the calling activity �enters�
an operation of the object� executes the operation and returns� An active object�
however� can have one or more independent threads of control associated with it�
Now introducing low�level message�passing primitives for inter�object communica�
tion would violate the spirit of integration� It is preferable to keep the invocation
paradigm and generalize it towards remote invocation as known from Ada� It is
important to di�erentiate between this notion of remote invocation � meaning ac�
tive object invocation � and the RPC�like notion of remote invocation� introduced in
����� as a distributed implementation technique for passive object invocation across
machine boundaries�

����� Object bodies

Many designs for the active object concept have been inspired by the Ada tasking
model� A task has its own thread of control� Its body encapsulates state variables
and a statement sequence that begins executing as soon as the task is created� A
set of entries � comparable to operation signatures � is associated with a task� A
remote invocation � looking like a procedure call � refers to one of these entries�
As opposed to a passive object� however� a task uses explicit accept statements
for accepting invocations and executing the requested service� Compare this to the
implicit acceptance in a passive object� if a body is present� it is used for initialization
only� and acceptance just means that one of the operations starts executing�

Concurrent C�� and Pool� are typical representatives of this approach� We omit
Concurrent C�� because of its low level of integration
������� A Pool class for active
Queue objects is shown in Figure �
� The declarative part for local data is omitted�
Operations such as METHOD enq are declared just like for passive objects� A Queue

object has a single thread of control� Its activity is described by the statements
enclosed in the BODY�YDOB keywords
DO�OD is an in�nite loop�� As opposed to Ada�

�Actually� there are three di�erent versions of Pool� Pool�T� Pool� and Pool�I

�

the accept statements� starting with the keyword ANSWER� just refer to one or more
operation names
ANY meaning all operation names��

CLASS Queue

�����

METHOD enq�item� T�

BEGIN cell�put�rear
item��

rear �	 �rear���MOD size END enq

METHOD deq��� T

BEGIN RESULT cell�get�front��

�� postprocessing starts�

front �	 �front���MOD size END deq

BODY �� defaults to DO ANSWER ANY OD

DO IF empty THEN ANSWER�enq�

ELSIF full�� THEN ANSWER�deq�

ELSE ANSWER ANY FI OD YDOB

END Queue

Figure �
� Active object class in Pool

comments start with �� and end with line end�

Several points have to be noted�

�� A queue is usually implemented as a passive object� as we have seen earlier�
It is only for demonstration purposes that we present an �active queue�� And
it should be kept in mind that the body of a Pool class can of course be of
arbitrary complexity�

�� The example does exhibit tiny bits of independent activity�

� The caller of an operation continues as soon as the operation�s RESULT

statement has been executed� Any statements following the RESULT are
executed by the object� which constitutes a kind of independent postpro�
cessing� The service is therefore partly asynchronous�

� The invocation of an operation without a result
enq in the example� re�
turns immediately� In this case� the service is fully asynchronous�

�� Notice that a missing body defaults to

DO ANSWER ANY OD

This is Pool�s answer to the question of how to distinguish passive from ac�
tive objects� there is no such distinction� All objects are conceptually active�
Whether an object without a body is implemented with or without a perma�
nent thread is a matter of optimization
in a centralized system� and can be
left to the compiler� Note� however� that because of the single�thread semantics
those �passive� objects are atomic
monitor�like�� not concurrent�

��

An important observation is that in more complex cases the body may describe
both application�speci�c behaviour and the logic for accepting invocations� i�e�� all
condition synchronization and scheduling
not exclusion synchronization� because of
the atomicity� �� The missing distinction among these very di�erent issues and their
centralized handling in the body is the source of several problems with Pool� The
language is highly prone to inheritance anomalies� If Guide�s central control clause
was problematic� Pool�s BODY is even more so because it is imperative rather than
declarative� lacking the structure achieved by associating guards with operations�
Figure �� shows the Pool version of the ClearableQueue we have seen before� There
is no way of reusing the body of the superclass� a complete rede�nition is required�
Recognizing this� Pool requires that every class provide its own body� Thus� inheri�
tance anomaly is the rule rather than the exception � except for the special case of
empty bodies in both superclass
es� and subclass�

CLASS ClearableQueue INHERIT Queue

METHOD clear��

BEGIN front �	 rear END clear

BODY DO IF empty THEN ANSWER�enq
clear�

ELSIF full�� THEN ANSWER�deq
clear�

ELSE ANSWER ANY FI OD YDOB

END ClearableQueue

Figure ��� Pool� even a very simple subclass necessitates a new body

����� Asynchronous service and lazy synchronization

We have seen that Pool supports limited forms of asynchronous service� if there is
no result� the client continues immediately after the call
not even waiting for the
acceptance of the call�� and if there is a result� client and server operate concurrently
after the result has been returned
postprocessing��

It is possible to decouple invocation and waiting for a result� Using futures as
surrogates for results that are yet to be computed� asynchrony can be achieved
without resort to explicit message passing� Only when the caller really needs the
result � i�e�� is going to operate on it � synchronization with the service provider is
required� Integration of futures into the invocation mechanism has the e�ect that
the strict synchronization inherent in synchronous invocation is replaced with syn�
chronization by need� or lazy synchronization� This technique was �rst introduced
in Ei�el�� �Caromel 	�� where it is known as wait�by�necessity� Ei�el�� has a pre�
de�ned class PROCESS� Instances of a
direct or indirect� subclass of PROCESS are
active objects� The object body is represented by a routine Live which has a de�
fault implementation in PROCESS and is usually rede�ned in subclasses of PROCESS

comparable to Pool�s BODY�� Several other routines inherited from PROCESS enable

�This is not the whole story because ANSWER statements can also occur in the code of operations�
giving rise to quasi�atomic objects�

�	

an active object to control the acceptance of invocations in its Live routine� much
like it is done with ANSWER in Pool�

Ei�el�� shares with Pool the property that there are no concurrent objects�
Passive objects do exist in Ei�el��� any non�PROCESS object is passive� But these
objects cannot be shared among active objects� Objects are always passed by value
in remote invocations� i�e�� the active object receives a copy�

server� ActiveServer�

result� R�

�����

result �	 server�service�args��

����� �� client continues immediately

result�op �� synchronization is implicit

Figure �	� Lazy synchronization

Service execution is always asynchronous in Ei�el��� If there is a result� lazy syn�
chronization takes e�ect� In Figure �	� the calling client may proceed immediately
after the invocation� becoming blocked only when it tries to prematurely invoke the
result object�

����� Implicit acceptance

We have seen that controlling the behaviour of an active object by a body is fraught
with problems� Fortunately� active objects can also use implicit acceptance as known
from passive objects�
We not in passing that SR is a language where both implicit
and explicit acceptance can be used at the programmer�s discretion��

Exclusive usage of implicit acceptance brings forth a restricted form of active
objects � reactive objects� they start operating only when invoked� Reactive objects
degenerate to passive objects if all operations are synchronous�

Reactive objects with asynchronous operations only are supported by Charm���
they are instances of special classes that start with the keywords chare class�
Figure �� shows an example � a chare class featuring two operations�

message Message��������

chare class Printer �

�����

entry� printwhite�Message �msg�

�������

printgrey �Message �msg�

�������

�

Figure ��� A Charm�� class for reactive Printer objects

��

The operations of a chare class must have exactly one argument which has to
be a pointer to a Charm�� message� Note that although the Printer class �looks
passive� a Printer object is active and operates concurrently with its clients
if
only executing one operation at a time�� Asynchronous invocation without result
is semantically equivalent to asynchronous message passing � and is in fact imple�
mented with messages in Charm��� That the semantics is independent of explicit
vs� implicit sending�receiving is the essence of the well�known duality principle of
procedure�oriented vs� message�oriented interaction �Lauer�Needham
���

Chare classes cannot be used with condition synchronization� nor do they allow
for synchronous operations� The reason is e"cient distributed implementation
see
��� below�� There is no conceptual reason� however� why condition synchronization
and discretionary synchrony�asynchrony speci�cation should not go together� In
fact� CEi�el allows a class Printer to be written as shown in Figure ��� Operations
are synchronous by default� as for passive objects� but can be marked asynchronous�
using the asynchrony annotation ��v��� Guards are introduced by the delay an�
notation ������ Note that foo is a guarded� asynchronous operation with lazy
synchronization�

CLASS Printer

�����

FEATURE print�f� File� IS ��v��

DO ����� END

waitTrayEmpty IS

REQUIRE �����

sheets 	 �

DO END

foo� T IS ��v��

REQUIRE �����

�����

DO ����� END

END �� Printer

Figure ��� A CEi�el class for reactive Printer objects

����� Multi�threaded objects

We have only considered atomic active objects by now� each object had a single
thread of control and so was not capable of intra�object concurrency� Remembering
the duality principle� we see that dynamic invocation hierarchies of single�threaded
active objects are prone to the same pitfalls as nested monitors
although the prob�
lem is mitigated when using asynchronous invocation��

The more �exible concurrent active objects can be traced back to the resources
of SR� In addition to data and procedures� an SR resource may encapsulate one or
more processes� Concurrency within a resource may result both from concurrent
procedure invocations and from the activities of the resource�s processes�

��

In an object�oriented setting� multiple static processes in an object would amount
to multiple bodies using explicit acceptance� Now� in view of inheritance anomalies�
if one such body causes problems� multiple bodies would lead to disaster� It is
therefore the cleanest solution to use only implicit acceptance
i�e�� procedures��

Removing the atomicity restriction from reactive objects readily allows for con�
current reactive objects� Concurrency control can be introduced in the same way
as for passive objects� Act��� another extension of C��� is an example of this
approach �Kafura et al� 	��� Inspired by the actor model� Act�� supports reac�
tive objects as instances of subclasses of a given class Actor� Synchronization is
achieved by having an object switch between di�erent behaviours� each tied to a set
of operations whose invocations are acceptable by that behaviour�

Even autonomous � not just reactive � active objects are possible without a body�
In CEi�el� operations can be speci�ed as autonomous using the autonomy annotation
������ The language thus allows to decide for each operation of a class whether
it should be synchronous
no annotation� or asynchronous
annotation ��v��� or
autonomous
annotation ������� An autonomous operation is executed repeatedly�
without being invoked� More precisely� when an autonomous operation �nishes it is
implicitly invoked anew� The scheduling mechanism does not distinguish between
explicit and implicit invocations� Note that the degree of intra�object concurrency
is still controlled by the compatibility annotations�

The annotations of CEi�el blend well with inheritance and avoid anomalies be�
cause any centralization� such as represented by a body or a central synchronization
expression� is avoided� condition synchronization� exclusion synchronization and
autonomy�asynchrony are speci�ed per operation and orthogonally to each other�
Subclassing� even with multiple inheritance� works just like in the sequential case�
no matter if asynchronous or autonomous operations are involved�
The situation
can be seen as a generalization of what has been described as �process inheritance�
in �Thomsen �
��� The di�erence between a passive and an active class is just that
the former has only synchronous operations�

Figure �� shows an example with double inheritance� Class Alien inherits both
from Moving
which models objects moving autonomously in the plane� and from
Beeping
which models objects repeatedly producing a sound�� Thus� Alien objects
are autonomous and will both move and beep� Their behavior may of course be
in�uenced by any additional operations provided in Alien�

CLASS Moving CREATION init

FEATURE �� interface

position� Vector�

setVelocity�v� Vector� IS

DO velocity�set�v�x
v�y� END�

FEATURE �� �� hidden

velocity� Vector�

stepTime� Real�

��

step IS �����

DO position�set�position�x � velocity�x�stepTime

position�y � velocity�y�stepTime� END�

init�startingPoint� Vector� timeUnit� Real� IS

DO position �	 startingPoint�

stepTime �	 timeUnit END

END �� Moving

CLASS Beeping CREATION init

FEATURE on�b� Boolean� IS

DO beepon �	 b END�

FEATURE ��

beepon� Boolean�

sound� Speaker�

beep IS �����

DO IF beepon THEN sound�beep END END�

init�s� Speaker� IS

DO sound �	 s END

END �� Beeping

CLASS Alien INHERIT Moving RENAME init AS minit END�

Beeping RENAME init AS binit END�

CREATION init

FEATURE �������

END �� Alien

Figure ��� Multiple inheritance with multi�threaded active classes in CEi�el

��� Distribution

An object represents an independent unit of execution� encapsulating data� proce�
dures� and possibly private resources
activity� for processing the requests� Therefore
a natural option is to consider an object as the unit of distribution� and possible
replication� Furthermore� self�containedness of objects
data plus procedures� plus
possible internal activity� eases the issue of moving and migrating them around�
Also� note that message passing not only ensures the separation between services
o�ered by an object and its internal representation� but also provides the indepen�
dence of its physical location� Thus� message passing may subsume both local and
remote invocation
whether sender and receiver are on the same or on distinct pro�
cessors is transparent to the programmer� as well as possible inaccessibility of an
object�service�

��

Distributed implementations are available for many concurrent object�oriented
languages� Some have even been designed with distribution in mind right from the
beginning
e�g�� Pool� Ei�el��� Charm���� Distribution transparency sometimes
su�ers from this approach� Ideally� the issues of concurrent semantics on the one
hand and distributed implementation on the other hand should be kept independent
of each other� This would imply access transparency for all kinds of objects� active
or passive� whether local or remote�

����� Accessibility and fault tolerance

In order to handle inaccessibility of objects� in the Argus distributed operating
system �Liskov�Shei�er ���� the programmer may associate an exception with an
invocation� If an object is located on a processor which is inaccessible� because of
a network or processor fault� an exception is raised� e�g� to invoke another object�
A transaction is implicitly associated to each invocation
synchronous invocation in
Argus�� to ensure atomicity properties� For instance� if the invocation fails
e�g� if
the server object becomes unaccessible�� the e�ects of the invocation are canceled�
The Karos distributed programming language �Guerraoui et al� 	�� extends the
Argus approach by allowing the association of transactions also to asynchronous
invocations�

����� Migration

In order to improve the accessibility of objects� some languages or systems support
mechanisms for object migration� Object migration has been pioneered by Emerald
�Jul et al� ���� A more recent� and truly object�oriented� system is Dowl �Achauer
	��� a distributed extension of the Trellis�Owl language �Moss�Kohler �
�� Dowl fea�
tures a standard attribute �location of type �Node for each object� This attribute
can be read and written� changing its value causes the object to migrate to a new
node� This can even happen on the �y� i�e�� while an operation is in execution�

If any attribute a of a class C is declared a� �attached T� with some type T� this
implies co�location of any C object c and the object referred to by c�a� Attachment
is transitive
but not symmetric��

Parameter migration towards an invoked object can be speci�ed as either perma�
nent
�call�by�move�� or temporary
�call�by�visit��� All these features have been
adapted from similar features of Emerald�

Explicit migration control is of course not distribution�transparent� It can also
be argued that the programmer may not have su"cient knowledge to use those
language features in an e"cient way� Implicit migration control� combined with
clever heuristics� may be an alternative
see ����� below��

����� Replication

As for migration� a �rst motivation of replication is in increasing the accessibility
of an object� by replicating it onto the processors of its
remote� clients� A second
motivation is fault�tolerance� By replicating an object on several processors� its ser�
vices become robust against possible processor failure� In both cases� a fundamental

��

issue is to maintain the consistency of the replicas� i�e� to ensure that all replicas
hold the same values� In the Electra �Ma�eis 	�� distributed system� the concept of
remote invocation has been extended in the following fashion� invoking an object
leads to the invocation of all its replicas while ensuring that concurrent invocations
are ordered along the same
total� order for all replicas� A system supporting weaker
orderings� exploiting knowledge about the semantics of the operations� is described
in �Huang 	��� A general mechanism for group invocation that is well�suited for
replicated objects was introduced in �Black�Immel 	���

��� Parallelism

If the concurrent activities of a program are to run in a truly parallel fashion� the
program has to be mapped to a multiprocessor� a multicomputer or a computer
network� giving rise to what is known as functional or task parallelism� For mas�
sive parallelism� however� there is more potential in data parallelism of the SPMD
type
single program� multiple data� which is well�suited for distributed�memory
architectures�

We have already seen EPEE� an SPMD library for Ei�el
����� Charm��� also
mentioned above� is an example of the integrative approach� We have not men�
tioned Charm�s speci�c abilities for SPMD yet� There exists a variant of the chare
class concept called the branched chare class� instances of which are called branched
chares� A branched chare is a distributed object� its code is replicated among the
nodes of a distributed�memory computer
or of a computer network� and each node
works on one fragment of the object�

Similar as they may seem� there is a big di�erence between the object models of
EPEE and Charm��� the interface of a branched chare class re�ects the fragmen�
tation in that it describes the messages
or� dually� the asynchronous invocations� it
can accept from other fragments� in addition to messages from other objects
chares
or branched chares�� Thus� although EPEE has the advantage of hiding the explicit
operations for inter�fragment message passing from the clients of an object� pro�
gramming in Charm�� is less cumbersome because message passing is built into
the language � as chare invocation�

The ubiquity of C�� has given rise to a variety of approaches to parallel pro�
gramming based on that language �Wilson�Lu 	��� most of them integrative� The
majority tries to avoid explicit message passing so that the object model is not
blurred by a di�erent � and lower�level � paradigm�

��� Limitations of the integrative approach

The integrative approach attempts at unifying object mechanisms with parallelism
and distribution mechanisms� Meanwhile� some con�icts may arise between them�
as we will see below�

��

��	�� Inheritance anomaly

Inheritance is one of the key mechanisms for achieving reuse of object�oriented
programs� It is therefore natural to use inheritance to specialize synchronization
speci�cations associated with a class of objects� Unfortunately� as we have seen in
several examples�
�� synchronization is di"cult to specify and even more di"cult to
reuse� because of the high interdependency between the synchronization conditions
for di�erent methods�
�� various uses of inheritance
inheriting variables� methods�
synchronizations� may con�ict with each other� as noted in �McHale 	�� �Baquero
et al� 	��� In some cases� de�ning a new subclass� even only with one additional
method� may force the rede�nition of all synchronization speci�cations�

Speci�cations along centralized schemes turn out to be very di"cult to reuse�
and often must be completely rede�ned� Decentralized schemes� being modular by
essence� are better suited for selective specialization� However� this �ne�grained de�
composition� down to the level of each method� may also fail to solve the problem�
This is because synchronization speci�cations� even if decomposed for each method�
may still remain interdependent� we have seen in ����� that for intra�object synchro�
nization with synchronization counters� adding a delete method in a subclass forces
the rede�nition of the remove guard�
See �Matsuoka�Yonezawa 	�� for a detailed
analysis and classi�cation of the possible problems��

Recent directions proposed for minimizing the problem include the following�

�� specifying and specializing independently condition and exclusion synchroniza�
tion �Thomas 	�� and autonomy�asynchrony �L�ohr 	���
�� shunning synchroniza�
tion counters�
�� allowing the programmer to select among several schemes �Mat�
suoka�Yonezawa 	�� and
�� generic synchronization policies
������ as an alternative
to inheritance for reusing synchronization speci�cations �McHale 	���

��	�� Compatibility of transaction protocols

It is tempting to integrate transaction protocols for concurrency control into ob�
jects� Thus one may locally de�ne� for a given object� the optimal concurrency
control or recovery protocol� For instance� commutativity of operations enables the
interleaving
without blocking� of transactions on a given object� Unfortunately� the
gain in modularity and specialization may lead to incompatibility problems �Weihl
�	�� Broadly speaking� if objects use di�erent transaction serialization protocols
i�e�
serialize the transactions along di�erent orders�� global executions of transactions
may become inconsistent� i�e� non serializable� A proposed approach to handle this
problem is de�ning local conditions� to be veri�ed by objects� in order to ensure
their compatibility �Weihl �	� �Guerraoui 	���

��	�� Replication of objects and communications

The communication protocols which have been designed for fault�tolerant distributed
computing
see Sect� ������ consider a standard client�server model� The straight�
forward transfer of such protocols to the object model leads to the problem of
unexpected duplication of invocations� An object often acts both as a client and as
a server� Thus an object which has been replicated as a server may in turn invoke

��

other objects
as a client�� As a result� all replicas of the object will invoke these
other objects several times� This unexpected duplication of invocations may lead�
in the best case� to ine"ciency� in the worst case to inconsistencies� A solution� pro�
posed in �Mazouni et al� 	��� is based on pre�
ltering and post�
ltering� Pre��ltering
consists of coordinating processing by the replicas
when considered as a client� in
order to generate a single invocation� Post��ltering is the dual operation for the
replicas
when considered as a server� in order to discard redundant invocations�

��	�� Factorization vs� distribution

Last� a more general limitation
i�e� less speci�c to the integrative approach�
comes from standard implementation frameworks for object factorization mecha�
nisms� which usually rely on strong assumptions about centralized
single memory�
architectures�

The concept of class variables� supported by several object�oriented program�
ming languages� is di"cult and expensive to implement for a distributed system�
Unless introducing complex and costly transaction mechanisms� consistency is hard
to maintain once instances of a same class are distributed among processors� Note
that this is a general problem for any kind of shared variable� Standard object�
oriented methodology tends to forbid the use of shared variables� but may advocate
using class variables instead�

In a related problem� implementing inheritance on a distributed system �Wol�
	�� leads to the problem of accessing remote code for superclasses� unless all class
code is replicated to all processors� which has obvious scalability limitations� A
semi�automatic approach consists of grouping classes into autonomous modules so
as to help with partitioning the class code among processors�

A rather di�erent approach replaces the inheritance mechanism between classes
with the concept�mechanism of delegation between objects� This mechanism has ac�
tually been introduced in the actor concurrent programming language Act � �Lieber�
man �
�� Intuitively� an object which does not understand a message will then del�
egate it
i�e� forward it�� to another object� called its proxy� The proxy will process
the message in place of the initial receiver� or it can also itself delegate it further
to its own designated proxy� This alternative to inheritance is very appealing as it
only relies on message passing� thus it blends well with distributed implementation�
Note� however� that the delegation mechanism needs some non�trivial synchroniza�
tion mechanism to ensure the proper handling
ordering� of recursive messages�
prior to other incoming messages� Thus� it may not o�er a general and complete
alternative solution �Briot�Yonezawa �
��

��
 Evaluation of the integrative approach

In summary� the integrative approach is appealing because it merges concepts from
object�oriented and distributed programming� It thus presents a minimal number
of concepts and a single conceptual framework to the programmer� Nevertheless�

�Note that� in order to handle recursion properly� the delegated message will include the initial
receiver�

�

as we discussed in Sect� ���� this approach unfortunately su�ers from limitations in
some aspects of the integration�

Another potential weakness is that a too systematic uni�cation�integration may
lead to a too restrictive model
�too much uniformity kills variety �� and to inef�
�ciencies� For instance� stating that every object is active
or that every message
transmission is a transaction� may be inappropriate for some applications not nec�
essarily requiring such protocols and their associated computational load� Last but
not least� we may have a legacy problem� di"culties with reusing standard sequential
programs� Encapsulation of sequential programs into active objects may look like a
straightforward solution� But note that cohabitation of active and passive objects
may require the observance of certain methodological rules �Caromel 	���

� The Re�ective approach

As we discussed earlier� the library approach helps with structuring concurrent pro�
gramming concepts and mechanisms� due to encapsulation� genericity� class� and
inheritance concepts� The integrative approach minimizes the amount of concepts
to be mastered by the programmer and makes mechanisms more transparent� but
at the cost of possibly reducing the �exibility and the e"ciency of the mechanisms
o�ered� Indeed programming systems built from libraries are often more extensible
than languages designed along the integrative approach� Libraries help at structur�
ing and simulating various solutions� and thus usually bring good �exibility� whereas
brand new languages may freeze their computation and communication models too
early� In other words it would be interesting to keep the uni�cation and simpli��
cation advantages of the integrative approach� while retaining the �exibility of the
applicative�library approach�

One important observation is that the library approach and the integrative ap�
proach actually address di�erent levels of concerns and use� the integrated approach
is for the application programmer� and the library approach is for the system pro�
grammer� In other words� the end user programs his or her applications with an
integrative
simple and uni�ed� approach in mind� The system programmer� or the
more expert user� builds or customizes the system� through the design of libraries
of protocol components� following the library approach�

Therefore� and as opposed to what one may think at �rst� the library approach
and the integrative approach are not in competition� but rather complementary� The
issue is then� �How can we actually combine these two levels of programming ���
and to be more precise� �How do we interface them ��� It turns out that a general
methodology for adapting the behavior of computing systems� named re�ection�
o�ers such kind of a �glue��

��� Re�ection

Re�ection is a general methodology to describe� control� and adapt the behaviour of
a computational system� The basic idea is to provide a representation of the impor�
tant characteristics�parameters of the system in terms of the system itself� In other

��

words�
static� representation characteristics� as well as
dynamic� execution charac�
teristics� of application programs are made concrete into one
or more� program
s��
which represents the default computational behaviour
interpreter� compiler� exe�
cution monitor� � � �� Such a description�control program is called a meta�program�
Specializing such programs allows for customizing the execution of the application
program� by possibly changing data representation� execution strategies� mecha�
nisms and protocols� Note that the same language is used� both for writing ap�
plication programs� and for meta�programs controlling their execution� However�
the complete separation between the application program and the corresponding
meta�programs is strictly enforced�

Re�ection helps at decorrelating libraries specifying implementation and exe�
cution models
execution strategies� concurrency control� object distribution� from
the application program� This increases modularity� readability and reusability of
programs� Last� re�ection provides a methodology to open up and make adaptable�
through a meta�interface�� implementation decisions and resources management�
which are often hard�wired and �xed� or delegated by the programming language to
the underlying operating system�

In summary� re�ection helps at integrating protocol libraries tightly within a
programming language or system� thus providing the interfacing framework
the
�glue�� between the integrative and the library approaches�levels�

��� Re�ection and objects

Re�ection �ts especially well with object concepts� which enforce a good encapsula�
tion of levels and a modularity of e�ects� It is therefore natural to organize the con�
trol of the behaviour of an object�oriented computational system
its meta�interface�
through a set of objects� This organization is named a Meta�Object Protocol �MOP�
�Kiczales et al� 	��� and its components are called meta�objects �Maes �
�� as meta�
programs are represented by objects� They may represent various characteristics
of the execution context such as� representation� implementation� execution� com�
munication and location� By specializing meta�objects we may extend and modify�
locally� the execution context of some speci�c objects of the application program�

Re�ection may also help with expressing and controlling resources management�
not only at the level of an individual object� but also at a broader level such as sched�
uler� processor� name space� object group� � � � such resources also being represented
by meta�objects� This allows for a very �ne�grained control
e�g� for scheduling and
load balancing� with the whole expressive power of a full programming language
�Okamura�Ishikawa 	��� as opposed to some global and �xed algorithm
which is
usually optimized for a speci�c kind of application or an average case��

�This meta�interface enables the client programmer to adapt and tune the behaviour of a soft�
ware module� independently of its functionalities� which are accessed through the standard �base	
interface� This has been named the concept of open implementation
Kiczales ��
�

�	

��� Examples of meta�object protocols �MOPs�

The CodA architecture �McA�er 	�� is a representative example of a general object�
based re�ective architecture
i�e� a �MOP�� based on meta�components�� CodA
considers by default seven

� meta�components� associated to each object� corre�
sponding to� message sending� receiving� bu�ering� selection� method lookup� exe�
cution� and state accessing� An object with default meta�components behaves like
a standard
sequential and passive� object�� Attaching speci�c
specialized� meta�
components allows to selectively changing a speci�c aspect of the representation or
execution model for a single object� A standard interface between meta�components
supports composing meta�components from di�erent origins�

Note that some other re�ective architectures may be more specialized and may
o�er a more reduced
and abstract� set of meta�components� Examples are the
Actalk and GARF platforms� where a smaller amount of meta�components may be
in practice su"cient to express a large variety of schemes and application problems�
The Actalk platform �Briot �	� �Briot 	�� helps at experimenting with various syn�
chronization and communication models for a given program� by changing and spe�
cializing various models�components of�
�� activity
implicit or explicit acceptance
of requests� intra�objet concurrency etc�� and synchronization
abstract behaviours�
guards etc���
�� communication
synchronous� asynchronous etc��� and
�� invoca�
tion
time stamp� priority etc��� The GARF platform �Garbinato et al� 	��� for
distributed and fault�tolerant programming� o�ers a variety of mechanisms along
two dimensions�components�
�� object control
persistence� replication etc�� and

�� communication
multicast� atomic etc���

More generally speaking� depending on the actual goals and the balance expected
between �exibility� generality� simplicity and e"ciency� design decisions will dictate
the amount and the scope of the mechanisms which will be �opened�up� to the
meta�level� Therefore� some mechanisms may be represented as re�ective methods
while belonging to standard object classes� that is� without explicit and complete
meta�objects�

Smalltalk is a representative example of that latter category� In addition to
the
meta��representation of the program structures and mechanisms� as �rst class
objects
see Sect� ����� a few very powerful re�ective mechanisms o�er some con�
trol over program execution� Examples are� rede�nition of error handling message�
reference to current context� references swap� changing the class of an object etc�
Such mechanisms facilitate building and integrating various platforms for concur�
rent� parallel and distributed programming� such as Simtalk� Actalk� GARF� and
CodA itself�

�Note that meta�components are indeed meta�objects� In the following� we will rather use the
term meta�component in order to emphasize the pluggability aspects of a re�ective architecture
�MOP	 such as CodA� Also� for simpli�cation� we will often use the term component in place of
meta�component�

�To be more precise� as a standard Smalltalk object� as CodA is currently implemented in
Smalltalk�

��

��� Examples of applications

To illustrate how re�ection may enable us to map various computation models and
protocols onto user programs� we will quickly survey some examples of experiments
with a speci�c re�ective architecture�
We chose CodA� See �McA�er 	�� for a more
detailed description of its architecture and libraries of components��

Note that� in the case of the CodA system� as well as for almost all other examples
of re�ective systems further described� the basic programming model is integrative�
while re�ection enables the customization of parallelism and distribution aspects
and protocols� by specializing libraries of meta�components�

����� Concurrency models

In order to introduce concurrency for a given object
by making it into an active
object� following the integrated approach�� two meta�components are specialized�
The specialized message bu�ering component	 is a queue which will bu�er incoming
messages� The specialized execution component associates an independent activity

thread� with the object� This thread executes an in�nite loop that accepts messages
from the bu�ering component�

����� Distribution models

In order to introduce distribution� a new meta�component is added for marshaling
messages� In addition� two new speci�c objects are introduced which represent the
notion of a remote reference
to a remote object� and the notion of a
memory�name�
space� The remote reference object has a specialized message receiving component
which marshals the message into a stream of bytes and sends it through the network
to the actual remote object� This object has another specialized message receiving
component which reconstructs and actually receives the message� Marshaling deci�
sions� e�g�� which argument should be passed by reference� by value
i�e� a copy�� up
to which level etc�� may be specialized by a marshaling descriptor supplied to the
marshaling component�

����� Migration and replication models

Migration is introduced by a new meta�component which describes the form and
the policies
i�e� when it should occur� for migration� Replication is managed by
adding two new dual meta�components� The �rst one is in charge of controlling
access to the state of the original object� The second one controls the access to
each of its replicas� Again� marshaling decisions such as which argument should
be passed by reference� by value� by move
i�e�� migrated� as in Emerald�� with
attachments etc�� may be specialized through the marshaling descriptors supplied by
the corresponding component� Also one may specialize aspects such as which parts
of the object should be replicated� and various management policies for enforcing
the consistency between the original object and its replicas�

	The default bu�ering component is actually directly passing incoming messages on to the
execution component�

��

��� Other Examples of re�ective architectures

We will brie�y mention other related examples of representative re�ective architec�
tures and their applications� not trying to be exhaustive�

��
�� Dynamic installation and composition of protocols

The general MAUD methodology �Agha et al� 	�� focuses on fault tolerance proto�
cols� such as server replication� checkpoint etc� Its speci�city lies in o�ering a frame�
work for dynamic installation and composition of specialized meta�components� The
dynamic installation of meta�components allows the installation of a given protocol
only when needed� and without stopping the program execution� The possibility to
associate meta�components� not only to objects� but also to other meta�components

which are �rst�class objects�� enables the layered composition of protocols�

��
�� Control of migration

The autonomy and self�containedness of objects� further reinforced in the case of
active objects� makes them easier to migrate �as a single piece�� Nevertheless� the
decision to migrate an object is an important issue which often remains with the
programmer� As mentioned in ������ it may be interesting to semi�automate such a
decision� along various considerations such as processor load� ratio of remote com�
munications etc� Re�ection helps with integrating such statistical data
residing for
physical and shared resources� and with using them by various migration algorithms
described at the meta�level �Okamura�Ishikawa 	���

��
�� Customizing system policies

The Apertos distributed operating system �Yokote 	�� represents a signi�cant and
innovative example of a distributed operating system� completely designed with an
object�based re�ective architecture
MOP�� In addition to the modularity and the
genericity of the architecture of systems like Choices or Peace� re�ection opens up
another dimension of
possibly dynamic� customization of the system towards ap�
plication requirements� For example� we can easily specialize the scheduling policy
in order to support various kinds of schedulers� e�g� a real�time scheduler� An�
other gain is in the size of the micro�kernel obtained� which is particularly small�
as it is reduced to supporting the basic re�ective operations and the basic resources
abstractions� This facilitates both the understanding and the porting of the system�

��
�� Re�ective extension of an existing commercial system

A re�ective methodology has recently been used in order to incorporate extended�

transaction models into an existing commercial transaction processing system� It
extends a standard transaction processing monitor in a minimal and disciplined
way
based on �upcalls��� to introduce features such as lock delegation� dependency
tracking between transactions and de�nition of con�icts� and to represent them

�
That is� relaxing some of the standard ��ACID�	 transaction properties�

��

as re�ective operations �Barga�Pu 	��� These re�ective primitives are then used
to implement various extended transaction models� such as split�join� cooperative
groups etc�

��� Related techniques for customizing behavior

We �nally mention two examples of customizing computational behavior that are
closely related to re�ection�

��	�� The composition��lters model

The SINA language is based on the notion of a
lter� a way to specify arbitrary
manipulation and actions for messages sent to
or from� an object �Aksit et al�
	�a�� In other words� �lters represent some rei�cation of the communication and
interpretation mechanism between objects� By combining various �lters for a given
object� one may construct complex interaction mechanisms in a composable way�

��	�� Generic run�time as a dual approach

The boundary between programming languages and operating systems is getting
thinner� Re�ective programming languages have some high�level representation of
the underlying execution model� Conversely� and dual to re�ection� several dis�
tributed operating systems provide a generic run time layer� as for instance the
COOL layer for the Chorus operating system �Lea et al� 	��� These generic run
time layers are designed to be used by various programming languages� �upcalls�
are used to delegate speci�c representation decisions to the programming language�

��
 Evaluation of the re�ective approach

Re�ection provides a general framework for the customization of parallelism and
distribution aspects and protocols� by specializing and integrating
meta��libraries
intimately within a language or system� while separating them from the application
program�

Many re�ective architectures are currently proposed and evaluated� It is too
early to �nd and validate a general and optimal re�ective architecture for parallel
and distributed programming
although we believe that CodA is a promising step
in that direction�� Meanwhile� we need more experience in the practical use of
re�ection� to be able to �nd good tradeo�s between the �exibility required� the
architecture complexity� and the resulting e"ciency� One possible
and currently
justi�ed� complaint is about the actual relative complexity of re�ective architectures�
Nevertheless� and independently of the required cultural change� we believe that this
is the price that has to be paid for the increased� albeit disciplined� �exibility that
they o�er� Another signi�cant current limitation concerns e"ciency� a consequence
of extra indirections and interpretations� Partial evaluation
also called program
specialization� is currently proposed as a promising technique to minimize such
overheads �Masuhara et al� 	���

��

� Conclusion

Towards a better understanding and evaluation of various object�based parallel and
distributed developments� we have proposed a classi�cation of the di�erent ways
in which the object paradigm is used in concurrent environments� We have identi�
�ed three di�erent approaches which convey di�erent� yet complementary� research
streams in the object�oriented concurrent systems community�

The library approach helps with structuring concurrent programming concepts
and mechanisms through encapsulation� genericity� classes and inheritance� Its prin�
cipal limitation is that the solution of an application problem is represented by
unrelated sets of concepts and objects� The library approach can be viewed as a
bottom�up approach and is directed towards system builders�

The integrative approach minimizes the amount of concepts to be mastered by
the programmer and makes mechanisms more transparent� by providing a uni�ed
concurrent high�level object model� However� this is at the cost of possibly reducing
the �exibility and e"ciency of the mechanisms� The integrative approach can be
viewed as a top�down approach and is directed towards application builders�

Finally� by providing a framework for integrating protocol libraries within a
programming language or system� the re�ective approach provides the interfacing
framework
the �glue�� between the library and the integrative approaches� It also
enforces the separation of their respective levels� In other words� re�ection provides
the meta�interface through which the system designer may install system customiza�
tions and thus change the execution context
parallel� distributed� fault�tolerant�
real�time� adaptive� � � � with minimal changes in the application programs�

The re�ective approach also contributes to blurring the distinction between pro�
gramming language� operating system and data base� and at easing the development�
adaptation and optimization of a minimal computing system which is dynamically
extensible� Nevertheless� we should always keep in mind that this does not free us
from the necessity of a good basic design and a sound set of fundamental abstrac�
tions�

��

References

�Achauer 	�� Achauer� B�� ���	� The Dowl distributed object�oriented language�
Comm� ACM ������ ��$���

�Ada ��� Ada ��
	� The Programming Language Ada Reference Manual� LNCS
���� Springer�Verlag�

�Ada 	�� Ada ����� Ada �� Rationale� Intermetrics Inc� Cambridge� Mass�

�Agha ��� Agha� G�� ��
�� Actors	 A Model of Concurrent Computation in Dis�
tributed Systems� Series in Arti�cial Intelligence� MIT Press�

�Agha et al� �	� Agha� G�A�� Wegner� P�� Yonezawa� A�� Eds�� ��
�� Proc�
ACM Sigplan Workshop on Object�Based Concurrent Programming� ACM
Sigplan Not� ������

�Agha et al� 	�� Agha� G�A�� Hewitt� C�� Wegner� P�� Yonezawa� A�� Eds��

����� Proc� OOPSLA�ECOOP ��� Workshop on Object�Based Concurrent
Programming� ACM OOPS Messenger �����

�Agha et al� 	�a� Agha� G�A�� Wegner� P�� Yonezawa� A�� Eds�� ���	� Re�
search Directions in Concurrent Object�Oriented Programming� M�I�T� Press�

�Agha et al� 	�b� Agha� G�A�� Fr
lund� S�� Panwar� R�� Sturman� D��

���	� A linguistic framework for dynamic composition of dependability pro�
tocols� Dependable Computing for Critical Applications III �DCCA���� IFIP
Transactions� Elsevier� �	
$��
�

�Aksit et al� 	�a� Aksit� M�� Wakita� K�� Bosch� J�� Bergmans� L�

Yonezawa� A�� ����� Abstracting object interactions using composition
�lters� In �Guerraoui et al� 	��� ���$����

�Aksit et al� 	�b� Aksit� M�� Bosch� J�� van der Sterren� W�� Bergmans�

L�� ����� Real�time speci�cation inheritance anomalies and real�time �l�
ters� Proc� European Conf� on Object�Oriented Programming �ECOOP �����
LNCS ���� Springer�Verlag� ���$��
�

�America �
� America� P�H�M�� ��
�� Pool�T� a parallel object�oriented lan�
guage� In �Yonezawa�Tokoro �
��

�America ��� America� P�H�M�� ��

� De�nition of Pool�� a parallel object�
oriented language� ESPRIT project ����A� report ���� Philips Research Lab�
oratories�

�America �	� America� P�H�M�� ��
�� Issues in the design of a parallel object�
oriented language� Formal Aspects of Computing �� �������

�America�van der Linden 	�� America� P�H�M�� van der Linden� F�� �����

A parallel object�oriented language with inheritance and subtyping� Proc�
OOPSLA�ECOOP ���� ACM Sigplan Not� ������� ���$����

�Andersen 	�� Andersen� B�� ����� A general� �ne�grained� machine�
independent� object�oriented language� ACM Sigplan Not� ������ �
$���

�Andler
	� Andler� S�� ����� Predicate Path Expressions� Proc� �� ACM Symp�
on Principles of Programming Languages� ��������

��

�Andrews�McGraw

� Andrews� G�R�� McGraw� J�R�� ����� Language fea�
tures for process interaction� Proc� ACM Conf� on Language Design for Re�
liable Software� ACM Sigplan Not� ������ ������
�

�Andrews 	�� Andrews� G�R�� ����� Concurrent Programming � Principles and
Practice� Benjamin�Cummings�

�Andrews�Olsson 	�� Andrews� G�R�� Olsson� R�A�� ���	� The SR Program�
ming Language� Benjamin�Cummings�

�Arnold�Gosling 	�� Arnold� K�� Gosling� J�� ����� The Java Programming
Language� Addison�Wesley�

�Atkinson 	�� Atkinson� C�� ����� Object�Oriented Reuse� Concurrency and Dis�
tribution� Addison�Wesley�

�Atkinson et al� 	�� Atkinson� C�� Goldsack� S�J�� Di Maio� A�� Bayan�

R�� ����� Object�oriented concurrency and distribution in Dragoon� J� of
Object�Oriented Programming� March�April ����� ��$���

�Bahsoun et al� 	�� Bahsoun� J�P�� Feraud� L�� Betourn�e� C�� ����� The
�two degrees of freedom� approach for parallel programming� Proc� �� Int�
Conf� on Computer Languages� IEEE� ���$�
��

�Bal et al� 	�� Bal� H�E�� Kaashoek� M�F�� Tanenbaum� A�S�� ����� Orca� a
language for parallel programming of distributed systems� IEEE Trans� on
Software Engineering ������ �	�$����

�Balter et al� 	�� Balter� R�� Lacourte� S�� Riveill� M�� ����� The Guide
language� The Computer Journal ������ ��	$����

�Baquero et al� 	�� Baquero� C�� Oliveira� R� Moura� F�� ����� Integra�
tion of concurrency control in a language with subtyping and subclassing�
USENIX COOTS Conference �COOTS����� Monterey� CA�

�Barga�Pu 	�� Barga� R�� Pu� C�� ����� A practical and modular implementa�
tion of extended transaction models� Technical Report 	������ CSE� Oregon
Graduate Institute of Science % Technology� Portland� OR�

�Barnes 	
� Barnes� J�� ����� Ada �� Rationale	 The Language� The Standard
Libraries� Springer�Verlag�

�Bergmans 	�� Bergmans� L�� ����� Composing Concurrent Objects� Ph�D� thesis�
Universiteit Twente�

�Bernstein et al� �
� Bernstein� P�� Hadzilacos� V�� Goodman� N�� ��
��
Concurrency Control and Recovery in Database Systems� Addison�Wesley�

�Bershad et al� ��� Bershad� B�N�� Lazowska� E�D�� Levy� H�M�� ��

�

PRESTO� a system for object�oriented parallel programming� Software �
Practice and Experience ������
��$
���

�B�ezivin �
� B�ezivin� J�� ��
�� Some Experiments in Object�Oriented Simulation�
ACM Conf� on Object�Oriented Programming Systems� Languages and Ap�
plications �OOPSLA ����� �	�$����

��

�Birtwistle et al�
�� Birtwistle� G�M�� Dahl� O��J�� Myhrhaug� B�� Ny�

gaard� K�� ���	� Simula Begin� Petrocelli Charter�

�Black et al� �
� Black� A�P�� Hutchinson� N�� Jul� E�� Levy� H�� Carter�
L�� ��
�� Distribution and abstract types in Emerald� IEEE Trans� on Soft�
ware Engineering ������ ��$
��

�Black 	�� Black� A�P�� ����� Understanding transactions in the operating sys�
tem context� Operating Systems Review ���
�$

�

�Black�Immel 	�� Black� A�P�� Immel� M�P�� ���	� Encapsulating Plurality�
Proc� European Conf� on Object�Oriented Programming �ECOOP����� LNCS

�
� Springer�Verlag� �
$
	�

�Boles 	�� Boles� D�� ���	� Parallel object�oriented programming with QPC���
Structured Programming ������ ���$�
��

�van den Bos�La�ra 	�� van den Bos� J�� Laffra� C�� ����� Procol � a con�
current object�oriented language with protocols� delegation and constraints�
Acta Informatica ��� ���$����

�Brandt�Lehrmann Madsen 	�� Brandt� S�� Lehrmann Madsen� O�� �����

Object�Oriented Distributed Programming in BETA� In �Guerraoui et al�
	��� ���$����

�Briot�Yonezawa �
� Briot� J��P�� Yonezawa� A�� ��
�� Inheritance and syn�
chronization in concurrent OOP� Proc� European Conf� on Object�Oriented
Programming �ECOOP����� LNCS �
�� Springer�Verlag� ��$���

�Briot �	� Briot� J��P�� ��
�� Actalk� a testbed for classifying and designing actor
languages in the Smalltalk��� environment� Proc� European Conf� on Object�
Oriented Programming �ECOOP����� Cambridge University Press� ��	$��	�

�Briot et al� 	�� Briot� J��P�� Geib� J��M�� Yonezawa� A�� Eds�� ����� Proc�
France�Japan Workshop on Object�Based Parallel and Distributed Computa�
tion� LNCS ���
� Springer�Verlag�

�Briot 	�� Briot� J��P�� ����� An experiment in classi�cation and specialization
of synchronization schemes� Proc� �� Int� Symp� on Object Technologies for
Advanced Software �ISOTAS����� LNCS� Springer�Verlag�

�Bruin et al� 	�� de Bruin� H�� Bouwman� P�� van den Bos� J�� ����� Taming
concurrency in Smalltalk� the Procol approach� Object�Oriented Systems
����� ��$�	�

�Buhr et al� 	�� Buhr� P�A�� Ditchfield� G�� Stroobosscher� R�A��

Younger� B�M�� ����� �C��� concurrency in the object�oriented lan�
guage C��� Software � Practice and Experience ������ ��
$�
��

�Campbell�Habermann
�� Campbell� R�H�� Habermann� A�N�� ����� The
speci�cation of process synchronization by path expressions� In Gelenbe�
E�� Kaiser� C�� Eds�� Operating Systems� LNCS ��� Springer�Verlag� �	$����

�Campbell et al� 	�� Campbell� R�� Islam� N�� Raila� D�� Madany� P�� ���	�
Designing and implementing Choices� an object�oriented system in C���
Comm� ACM ������ ��
$����

�

�Capobianchi et al� 	�� Capobianchi� R�� Guerraoui� R�� Lanusse� A��

Roux� P�� ����� Lessons from implementing active objects on a parallel
machine� Usenix Symp� on Experiences with Distributed and Multiprocessor
Systems� ��$�
�

�Caromel �	� Caromel� D�� ��
�� Service� asynchrony and wait�by�necessity� J�
of Object�Oriented Programming ����� ��$���

�Caromel 	�� Caromel� D�� ����� Concurrency and reusability� from sequential
to parallel� J� of Object�Oriented Programming ����� ��$���

�Caromel 	�� Caromel� D�� ���	� Towards a method of object�oriented concur�
rent programming� Comm� ACM ������ 	�$����

�Chandra et al� 	�� Chandra� R�� Gupta� A�� Hennessy� J�L�� ����� COOL�
an object�based language for parallel programming� IEEE Computer ������
��$���

�Chandy�Kesselman 	�� Chandy� K�M�� Kesselman� C�� ���	� CC��� a
declarative concurrent object�oriented programming notation� In �Agha et
al� 	��� ��������

�Chien 	�a� Chien� A�A�� ���	� Concurrent Aggregates� MIT Press�

�Chien 	�b� Chien� A�A�� ���	� Supporting modularity in highly�parallel pro�
grams� In �Agha et al� 	���

�Ciancarini et al� 	�� Ciancarini� P�� Nierstrasz� O�� Yonezawa� A�� Eds��
����� Object�Based Models and Languages for Concurrent Systems
ECOOP
�	� Workshop�� LNCS 	��� Springer�Verlag�

�Colin�Geib 	�� Colin� J��F�� Geib� J��M�� ����� Ei�el classes for concurrent
programming� Proc� TOOLS��� ����� Prentice�Hall� ��$���

�Corradi�Leonardi 	�� Corradi� A�� Leonardi� L�� ����� PO constraints as
tools to synchronize active objects� J� of Object�Oriented Programming �����
��$���

�Decouchant et al� 	�� Decouchant� D�� Le Dot� P�� Riveill� M�� Roisin� C��

Rousset de Pina� X�� ����� A synchronization mechanism for an object�
oriented distributed system� Proc� ��� Int� Conf� on Distributed Programming
Systems� IEEE� ���$��	�

�Feldman et al� 	�� Feldman� J�A�� Lim� C��C�� Rauber� Th�� ���	� The
shared�memory language pSather on a distributed�memory multiprocessor�
Proc� �� Workshop on Languages� Compilers and Runtime Environments for
Distributed�Memory Multiprocessors� ACM Sigplan Not� ������ �
$���

�Finke et al� 	�� Finke� S�� Jahn� P�� Langmack� O�� L�ohr� K��P�� Piens� I��
Wolff� Th�� ���	� Distribution and inheritance in the HERON approach
to heterogeneous computing� Proc� ��� Int� Conf� on Distributed Computing
Systems� IEEE� �		$����

�Fr&lund 	�� Fr
lund� S�� ����� Inheritance of synchronization constraints in con�
current object�oriented programming languages� Proc� European Conf� on
Object�Oriented Programming �ECOOP ����� LNCS ���� Springer�Verlag�
���$�	��

��

�Fr&lund 	�� Fr
lund� S�� ����� Coordinating Distributed Objects� MIT Press�

�Garbinato et al� 	�� Garbinato� B�� Guerraoui� R�� Mazouni� K�R�� �����

Distributed programming in GARF� In �Guerraoui et al� 	��� ���$��	�

�Gehani�Roome ��� Gehani� N�H�� Roome� W�D�� ��

� Concurrent C���
concurrent programming with class
es�� Software � Practice � Experience
������� ���
$��

�

�Goldberg�Robson �	� Goldberg� A�� Robson� D�� ��
�� Smalltalk���� The
Language� Addison�Wesley�

�Grimshaw et al� 	�� Grimshaw� A�S�� Strayer� W�� Narayan� P�� ���	� Dy�
namic� object�oriented parallel processing� IEEE Parallel and Distributed
Technology� ��$���

�Guerraoui et al� 	�� Guerraoui� R�� Capobianchi� R�� Lanusse� A�� Roux�
P� ����� Nesting actions through asynchronous message passing� the
ACS protocol� Proc� European Conf� on Object�Oriented Programming
�ECOOP����� LNCS ���� Springer�Verlag� �
�$����

�Guerraoui et al� 	�� Guerraoui� R�� Nierstrasz� O�� Riveill� M�� Eds��

����� Proc� ECOOP ��� Workshop on Object�Based Distributed Program�
ming� LNCS
	�� Springer�Verlag�

�Guerraoui�Schiper 	�� Guerraoui� R�� Schiper� A�� ����� The transaction
model vs virtual synchrony model� bridging the gap� In Birman� K�� Cris�
tian� F�� Mattern� F�� Schiper� A�� Eds�� Distributed Systems	 From Theory
to Practice� LNCS 	��� Springer�Verlag� ���$����

�Guerraoui 	�� Guerraoui� R�� ����� Modular atomic objects� Theory and Prac�
tice of Object Systems ����� �	$		�

�Gunaseelan�LeBlanc 	�� Gunaseelan� L�� LeBlanc� R�J�� ����� Distributed
Ei�el� a language for programming multi�granular distributed objects� Proc�
�� Int� Conf� on Computer Languages� IEEE� ���$����

�Halstead ��� Halstead� R�H�� ��
�� Multilisp� a language for concurrent sym�
bolic computation� ACM Trans� on Programming Languages and Systems
����� ���$����

�Hamelin et al� 	�� Hamelin� F�� J�ez�equel� J��M�� Priol� T�� ����� A multi�
paradigm� object�oriented parallel environment� Proc� �� Int� Parallel Pro�
cessing Symposium� Canc�un�

�Harbison 	�� Harbison� S�P�� ����� Modula��� Prentice�Hall�

�Holmes et al� 	
� Holmes� D�� Noble� J�� Potter� J�� ����� Aspects of syn�
chronization� Proc� TOOLS Paci
c ���� IEEE�
$���

�Huang 	�� Huang� S�� ����� Developing distributed applications by semantics�
based automatic replication� Proc� �� Asia�Paci
c Software Engineering
Conf�� Tokyo �		�� ��$�	�

�Ishikawa et al� 	�� Ishikawa� Y�� Tokuda� H�� Mercer� C�W�� ����� An
object�oriented real�time programming language� IEEE Computer �������
��$
��

�	

�Issarny 	�� Issarny� V�� ���	� An exception handling mechanism for parallel
object�oriented programming� J� of Object�Oriented Programming ����� �	$
���

�J�ez�equel 	�a� J�ez�equel� J��M�� ���	� EPEE� an Ei�el environment to program
distributed�memory parallel computers� J� of Object�Oriented Programming
����� ��$���

�J�ez�equel 	�b� J�ez�equel� J��M�� ���	� Transparent parallelization through reuse�
between a compiler and a library approach� Proc� European Conf� on Object�
Oriented Programming �ECOOP����� LNCS
�
� Springer�Verlag� ���$����

�J�ez�equel et al� 	�� J�ez�equel� J��M�� Guidec� F�� Hamelin� F�� ����� Paral�
lelizing object�oriented software through the reuse of parallel components�
Object�Oriented Systems ����� ��	$�
��

�Jul et al� ��� Jul� E�� Levy� H�M�� Hutchinson� N�C�� Black� A�P�� ��

�

Fine�grained mobility in the Emerald system� ACM Trans� on Computer
Systems ����� ��	$����

�Kafura�Lee 	�� Kafura� D�G�� Lee� K�H�� ����� Act��� building a concurrent
C�� with actors� J� of Object�Oriented Programming �����

�Kafura et al� 	�� Kafura� D�� Mukherji� M�� Lavender� G�� ���	� Act���
A class library for concurrent programming in C�� using actors� J� of
Object�Oriented Programming� October ����� �
$���

�Kal�e�Krishnan 	�� Kal�e� L�V�� Krishnan� S�� ���	� Charm��� a portable con�
current object�oriented system based on C��� Proc� ACM Conf� on Object�
Oriented Systems� Languages and Applications �OOPSLA ����� ACM Sig�
plan Not� ��� 	�$����

�Karaorman�Bruno 	�� Karaorman� M�� Bruno� J�� ���	� Introducing concur�
rency to a sequential language� Comm� ACM ������ ���$����

�Kiczales et al� 	�� Kiczales� G�� des Rivi�eres� J�� Bobrow� D�� ����� The
Art of the Meta�Object Protocol� MIT Press�

�Kiczales 	�� Kiczales� G�� Ed�� ����� Foil for the Workshop On Open Imple�
mentation� http���www�parc�xerox�com�PARC�spl�eca�oi

�workshop����foil�main�html�

�Lauer�Needham
�� Lauer� H�C�� Needham� R�M�� ���
� On the duality of
operating system structures� Proc� �� Int� Symp� on Operating Systems� IRIA
Rocquencourt� Reprinted in ACM Operating Systems Review ������ �$�	�

�Lea et al� 	�� Lea� R�� Jacquemot� C�� Pillevesse� E�� ���	� COOL� System
support for distributed programming� Comm� ACM ������ �
$�
�

�Lea 	
� Lea� D�� ����� Concurrent Programming in Java� Addison�Wesley�

�Lehrmann Madsen et al� 	�� Lehrmann Madsen� O�� M
ller�Pedersen� B��

Nygaard� K�� ���	� Object�Oriented Programming in the BETA Program�
ming Language� Addison�Wesley�

�Lieberman �
� Lieberman� H�� ��
�� Concurrent object�oriented programming
in Act �� In �Yonezawa�Tokoro �
�� 	$���

��

�Liskov�Shei�er ��� Liskov� B�� Sheifler� R�� ��
	� Guardians and actions� lin�
guistic support for robust� distributed programs� ACM Trans� on Program�
ming Languages and Systems ����� ��
$����

�L�ohr 	�� L�ohr� K��P�� ����� Concurrency annotations and reusability� Report
B�	����� FB Mathematik� Freie Universit�at Berlin�

�L�ohr 	�� L�ohr� K��P�� ����� Concurrency Annotations� Proc� ACM Conf� on
Object�Oriented Systems� Languages and Applications �OOPSLA ����� ACM
Sigplan Not� ������� ��
$����

�L�ohr 	�� L�ohr� K��P�� ���	� Concurrency annotations for reusable software�
Comm� ACM ������ ��$�	�

�Lopes�Lieberherr 	�� Lopes� C�V�� Lieberherr� K�J�� ����� Abstracting
process�to�function relations in concurrent object�oriented applications�
Proc� European Conf� on Object�Oriented Programming �ECOOP����� LNCS
���� Springer�Verlag� ��$		�

�Maas �
� Maes� P�� ��
�� Concepts and experiments in computational re�ection�
Proc� ACM Conf� on Object�Oriented Programming Systems� Languages and
Applications �OOPSLA����� ACM Sigplan Not� ������� ��
$����

�Ma�eis 	�� Maffeis� S�� ����� Run�Time Support for Object�Oriented Distributed
Programming� PhD dissertation� Universit�at Z�urich�

�Malony et al� 	�� Malony� A�� Mohr� B�� Beckman� P�� Gannon� D�� Yang�

S�� Bodin� F�� ����� Performance analysis of pC��� a portable data�
parallel programming system for scalable parallel computers� Proc� �� Int�
Parallel Processing Symposium� Canc�un�

�Masuhara et al� 	�� Masuhara� H�� Matsuoka� S�� Asai� K�� Yonezawa� A��

����� Compiling away the meta�level in object�oriented concurrent re�ective
languages using partial evaluation� Proc� ACM Conf� on Object�Oriented
Programming Systems� Languages and Applications �OOPSLA ����� ACM
Sigplan Not� ������� ���$����

�Matsuoka�Yonezawa 	�� Matsuoka� S�� Yonezawa� A�� ���	� Analysis of in�
heritance anomaly in object�oriented concurrent programming languages� In
�Agha et al� 	��� ��
$����

�Mazouni et al� 	�� Mazouni� K�� Garbinato� B�� Guerraoui� R�� �����

Building reliable client�server software using actively replicated objects�
Proc� TOOLS Europe ���� Prentice�Hall� �
$���

�McA�er 	�� McAffer� J�� ����� Meta�level programming with CodA� Proc� Eu�
ropean Conf� on Object�Oriented Programming �ECOOP����� LNCS 	���
Springer�Verlag� �	�$����

�McHale et al� 	�� McHale� C�� Walsh� B�� Baker� S�� Donnelly� A�� �����

Scheduling Predicates� In �Tokoro et al� 	��� �

$�	��

�McHale 	�� McHale� C�� ����� Synchronization in Concurrent� Object�Oriented
Languages	 Expressive Power� Genericity and Inheritance� PhD thesis�
Dept� of Computer Science� Trinity College� Dublin�

��

�McHugh�Cahill 	�� McHugh� C�� Cahill� V�� ���	� Ei�el''� an implemen�
tation of Ei�el on Amadeus� a persistent� distributed applications support
environment� Proc� TOOLS Europe ���� Prentice�Hall�

�Meseguer 	�� Meseguer� J�� ���	� Solving the inheritance anomaly in concur�
rent object�oriented programming� Proc� European Conf� on Object�Oriented
Programming �ECOOP ����� LNCS
�
� Springer�Verlag� ���$����

�Meyer 	�� Meyer� B�� ����� Ei�el	 The Language� Prentice�Hall�

�Meyer 	�� Meyer� B�� ���	� Systematic concurrent object�oriented program�
ming� Comm� ACM ������ ��$���

�Meyer 	
� Meyer� B�� ����� Object�Oriented Software Construction� �� ed��
Prentice�Hall�

�Moss�Kohler �
� Moss� J�E�B�� Kohler� W�H�� ��
�� Concurrency features
for the Trellis�Owl language� Proc� European Conf� on Object�Oriented Pro�
gramming �ECOOP ����� LNCS �
�� Springer�Verlag� �
�$����

�Mowbray�Zahavi 	�� Mowbray� T�J�� and Zahavi� R�� ���� The Essential
CORBA	 System Integration Using Distributed Objects� John Wiley % Sons
and The Object Management Group�

�Neusius 	�� Neusius� C�� ����� Synchronizing actions� Proc� European Conf� on
Object�Oriented Programming �ECOOP ����� LNCS ���� Springer�Verlag�
���$����

�Nicol et al� 	�� Nicol� J�� Wilkes� T�� Manola� F�� ���	� Object�orientation
in heterogeneous distributed computing systems� IEEE Computer ������ �
$
�
�

�Nierstrasz �
� Nierstrasz� O�M�� ��
�� Active objects in Hybrid� Proc� ACM
Conf� on Object�Oriented Programming Systems� Languages and Applica�
tions �OOPSLA ����� ACM Sigplan Not� ������� ���$����

�Nierstrasz 	�a� Nierstrasz� O�M�� ���	� Composing active objects� In �Agha et
al� 	���

�Nierstrasz 	�b� Nierstrasz� O�M�� ���	� Regular types for active objects� Proc�
ACM Conf� on Object�Oriented Programming Systems� Languages and Ap�
plications �OOPSLA ����� ACM Sigplan Not� ��� �$���

�Okamura�Ishikawa 	�� Okamura� H�� Ishikawa� Y�� ����� Object location con�
trol using meta�level programming� Proc� European Conf� on Object�Oriented
Programming �ECOOP ����� LNCS ���� Springer�Verlag� �		$��	�

�OMG 	�� OMG ����� The Common Object Request Broker	 Architecture and
Speci
cation �Revision ����� Object Management Group� Framingham�
Mass�

�OSF 	�� OSF ����� DCE Application Development Guide �Revision ������� Open
Software Foundation� Cambridge� Mass�

�Papathomas �	� Papathomas� M�� ��
�� Concurrency issues in object�oriented
programming languages� In Tsichritzis� D�C�� ed�� Object�Oriented Develop�
ment� Centre Universitaire d�Informatique� Universit�e de Gen(eve� ��
$����

��

�Papathomas 	�� Papathomas� M�� ����� Concurrency in object�oriented pro�
gramming languages� In Nierstrasz� O�� Tsichritzis� D�� Eds�� Object�Oriented
Software Composition� Prentice�Hall� ��$���

�Parrington�Shrivastava ��� Parrington� G�D�� Shrivastava� S�K�� ��

� Im�
plementing concurrency control in reliable distributed object�oriented sys�
tems� Proc� European Conf� on Object�Oriented Programming �ECOOP�����
LNCS ���� Springer�Verlag� ���$��	�

�Philippsen 	�a� Philippsen� M�� ����� Imperative concurrent object�oriented
languages� TR�	������ International Computer Science Institute� Berkeley�

�Philippsen 	�b� Philippsen� M�� ����� Imperative concurrent object�oriented
languages� an annotated bibliography� TR�	����	� International Computer
Science Institute� Berkeley�

�Robert�Verjus

� Robert� P�� Verjus� J��P�� ����� Toward autonomous de�
scriptions of synchronization modules� Proc� IFIP Congress ����� North�
Holland� 	��$	���

�Rosenberry et al� 	�� Rosenberry� W�� Kenney� D�� Fisher� J�� ���	� Un�
derstanding DCE� O�Reilly�

�Rozier 	�� Rozier� M�� ����� Chorus� Usenix Int� Conf� on Micro�Kernels and
Other Kernel Architectures� �
$���

�Schill�Mock 	�� Schill� A�� Mock� M� ���	� DC��� Distributed object�
oriented system support on top of OSF DCE� Distributed Systems Engi�
neering ����� ���$����

�Schmidt 	�� Schmidt� D�C�� ����� An OO encapsulation of lightweight OS con�
currency mechanisms in the ACE toolkit� TR WUCS�	����� Dept� of Com�
puter Science� Washington University� St� Louis�

�Schr�oder�Preikschat 	�� Schr�oder�Preikschat� W�� ����� The Logical Design
of Parallel Operating Systems� Prentice�Hall�

�She!er 	�� Sheffler� Th�J�� ����� The Amelia Vector Template Library� In
�Wilson�Lu 	��� ��$	��

�Skjellum et al� 	�� Skjellum� A�� Lu� Z�� Bangalore� P�V�� Doss� N�� �����
MPI��� In �Wilson�Lu 	��� ���$����

�Stroustrup 	�� Stroustrup� B�� ���	� The C

 Programming Language�
Addison�Wesley�

�Sun 	�� Sun ����� C

��� Library Reference Manual� Section �� Part No� ����
�������� Nov� �		�� Sun Microsystems Inc�

�Thomas 	�� Thomas� L�� ����� Extensibility and reuse of object�oriented syn�
chronization components� Proc� Int� Conf� on Parallel Languages and Envi�
ronments �PARLE ����� LNCS ���� Springer�Verlag� ���$�
��

�Thomas 	�� Thomas� L�� ����� Inheritance anomaly in true concurrent object�
oriented languages� a proposal� IEEE TENCON ���� ���$����

��

�Thomsen �
� Thomsen� K�S�� ��
�� Inheritance on processes� exempli�ed on dis�
tributed termination detection� Int� J� of Parallel Programming ������ �
$���

�Tokoro et al� 	�� Tokoro� M�� Nierstrasz� O�M�� Wegner� P�� Eds�� �����

Proc� ECOOP ��� Workshop on Object�Based Concurrent Computing� LNCS
���� Springer�Verlag�

�Tomlinson�Singh �	� Tomlinson� C�� Singh� V�� ��
�� Inheritance and syn�
chronization with enabled�sets� Proc� ACM Conf� on Object�Oriented Pro�
gramming Systems� Languages and Applications �OOPSLA ����� ACM Sig�
plan Not� ��� ���$����

�Tripathi�Aksit ��� Tripathi� A�� Aksit� M�� ��

� Communication� scheduling
and resource management in SINA� J� of Object�Oriented Programming �����
��$���

�Wegner 	�� Wegner� P�� ����� Concepts and paradigms of object�oriented pro�
gramming� ACM OOPS Manager �����
$�
�

�Weihl �	� Weihl� W�� ��
�� Local atomicity properties� modular concurrency
control for abstract data types� ACM Trans� on Programming Languages
and Systems ������ ��	$����

�Wilson�Lu 	�� Wilson� G�V�� Lu� P�� Eds�� ����� Parallel Programming Using
C

� MIT Press�

�Wing 	�� Wing� J�� ����� Decomposing and recomposing transaction concepts�
In �Guerraoui et al� 	��� ���$����

�Wol� 	�� Wolff� Th�� ����� Transparently distributing objects with inheritance�
Proc� ��� Hawaii Int� Conf� on System Sciences� IEEE� ���$����

�Yokote�Tokoro �
� Yokote� Y�� Tokoro� M�� ��
�� Experience and evolution
of Concurrent Smalltalk� Proc� ACM Conf� on Object�Oriented Program�
ming Systems� Languages and Applications OOPSLA ����� ACM Sigplan
Not� ������� ���$����

�Yokote 	�� Yokote� Y�� ����� The Apertos re�ective operating system� the con�
cept and its implementation� Proc� ACM Conf� on Object�Oriented Program�
ming Systems� Languages and Applications �OOPSLA����� ACM Sigplan
Not� ������� ���$����

�Yonezawa et al� ��� Yonezawa� A�� Briot� J��P�� Shibayama� E�� ��
��

Object�oriented concurrent programming in ABCL��� Proc� ACM Conf� on
Object�Oriented Programming Systems� Languages and Applications �OOP�
SLA ����� ACM Sigplan Not� ������� ���$����

�Yonezawa�Tokoro �
� Yonezawa� A�� Tokoro� M�� Eds�� ��
�� Object�
Oriented Concurrent Programming� Computer Systems Series� MIT Press�

�Yonezawa et al� 	�� Yonezawa� A�� Matsuoka� S�� Yasugi� M�� Taura� K��

���	� Implementing concurrent object�oriented languages on multicomput�
ers� IEEE Parallel and Distributed Technology� May �		�� �	$���

��

