
SERIE B � INFORMATIK

Dynamic Point Location in General

Subdivisions

Hanna Baumgarten�
Hermann Jung��
Kurt Mehlhorn���

B �����
March ����

Abstract

The dynamic planar point location problem is the task of maintaining a dynamic
set S of n non�intersecting� except possibly at endpoints� line segments in the plane
under the following operations�

� Locate�q� point�� Report the segment immediately above q� i�e�� the 	rst
segment intersected by an upward vertical ray starting at q

� Insert�s� segment�� Add segment s to the collection S of segments

� Delete�s� segment�� Remove segment s from the collection S of segments�

We present a solution which requires space O�n�� has query and insertion time
O�log n loglog n� and deletion time O�log� n�� A query time below O�log� n� was
previously only known for monotone subdivisions and horizontal segments and re�
quired non�linear space�

�Graduiertenkolleg Algorithmische Diskrete Mathematik� Institut f�ur Informatik� Freie Universit�at Berlin�
Arnimallee ���� W ���� Berlin 		� Germany� This work is supported by the Deutsche Forschungsgemeinschaft
under grant WE ���
�����
��Fachbereich Informatik� Humboldt�Universit�at Berlin� PSF ���
� O ���� Berlin� Germany�
���Max�Planck�Institut f�ur Informatik and Fachbereich Informatik der Universit�at des Saarlandes� W ����
Saarbr�ucken� Germany� This work is supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no� 	�

 �project ALCOM�

�

Subdivision Space Locate Insert Delete Reference

horizontal n logn logn loglogn logn loglogn logn loglogn Mehlhorn�N�aher
segments 	�

monotone n log� n log� n log� n Preparata�Tamassia
	�

monotone n logn logn log� n log� n Chiang�Tamassia
	�

monotone n log� n logn logn Goodrich�Tamassia
	�

connected n log� n log� n � Fries�Mehlhorn 	�

connected n log� n log� n log� n Fries 	�

general n logn log� n log� n log� n Bentley 	�

general n log� n logn logn Cheng�Janardan 	�

general n logn logn loglogn logn loglogn log� n this paper� section �
general n logn loglogn logn loglogn log� n this paper� section �

Figure �
 Running Times of Dynamic Point Location Structures

� Introduction

Planar point location is a fundamental geometric searching problem which has been extensively
studied in recent years� In this paper we consider the problem of dynamically maintaining a set S
of n non�intersecting �except possibly at endpoints� line segments in the plane under the following
operations

Locate�q
 point�
 Report the segment immediately above q� i�e�� the �rst segment intersected
by an upward vertical ray starting at q�

Insert�s
 segment�
 Add segment s to the collection S of segments�

Delete�s
 segment�
 Remove segment s from the collection S of segments�

Call a subdivision connected if the graph induced by the set of line segments S �the endpoints
are the vertices� the segments are the edges� is connected� Connected subdivisions include the
monotone subdivisions of 	�
 as a special case�

The locate operation in connected subdivisions is usually required to return the name of the
region containing the query point �and not only the segment immediately above the query point�
and some papers reserve the term dynamic planar point location problem for the searching problem
in connected subdivisions� Overmars 	�
 has shown how to reduce the point location problem in
connected subdivisions to the dynamic planar point location problem �as de�ned above� with only
O�logn� additional cost per operation� On the other hand� there are applications of the dynamic
point location problem� e�g� space sweep� where the connectedness assumption is unnatural�

Table � summarizes our results and compares them to previous work on deterministic point
location structures� We achieve locate and insertion time O�logn loglogn� and deletion time
O�log� n�� the bounds for insertions and deletions being amortized� The space bound is O�n logn�
for our �rst solution �see section ��� and O�n� for our second solution �see section ��� The second
solution is a re�nement of the �rst one� Previously� a query time below O�log� n� was only known
for the special cases of monotone subdivisions 	�
 and horizontal line segments 	�
� respectively� In
both cases non�linear space was needed� Our results leave open the question whether a solution
with query and update time O�logn� is possible� Note however� that there are two randomized
data structures � 	���
� which achieve expected logarithmic query and update time�

We now comment on the algorithmic concepts used in this paper� For the �rst solution we
combine segment trees 	�
 and dynamic fractional cascading 	���
� for the second solution we also

Dynamic Point Location �

use interval trees 	���
 and the interval�priority�search trees of 	�
�
Fractional cascading deals with the following situation
 An undirected graph� in which a linear

list is associated with each node� is given� The lists are all drawn from the same linearly ordered
universe� A query selects a connected subgraph and locates the argument of the query in the
linear list of every vertex of the subgraph� The fractional cascading technique augments the lists
associated with the vertices by bridges� A bridge is an element which is stored in the lists of two
adjacent vertices of the graph� The bridges between two lists divide the two lists into blocks and
speed up the search as follows
 Once a query element is located in the list and hence in a block of
some vertex� the search in any neighbor list can be restricted to a block� Thus the time to locate an
element in an augmented list �except in the �rst� is the time to �nd a closest bridge plus the time
for the binary search in a block� In 	���
 it was shown that block sizes can be kept bounded and
that a closest bridge can be found in time O���� additional time O�loglogn� per vertex is needed
to project the position of the query element in the augmented list of a vertex into its position in
the original list�

In our �rst application of fractional cascading the underlying graph is a �segment�� tree for the
set S of segments� A segment s � S is contained in the segment list S�v� of a tree node v if s
spans the range of v but does not span the range of v�s parent� Fractional cascading as described
above does not apply directly since there is no natural linear order on a set of non�intersecting line
segments� Note that the �above��order is only a partial order and that no linear extension of it is
compatible with insertions and deletions� A solution to this problem was given by 	�
� Bridges are
created by copying elements in root to leaf direction� in this way the augmented segment list of
every vertex is linearly ordered by the �above��relation� As an unpleasant by�product the block
size can only be controlled in the parent nodes but not in the children nodes� The way around this
di�culty is to search bottom up�

Insertions and deletions create additional problems� For deletions the following problem arises�
Fractional cascading copies elements from lists to neighboring lists to create bridges between lists�
In this way an element may have copies in several lists� Suppose now that a segment with many
copies is deleted from the collection S of segments� In standard dynamic fractional cascading � 	�
��
it is possible to leave the copies as ghost elements in the data structure� In the case of segments�
the di�culty arises that ghost segments may intersect with segments inserted later� We allow
intersections� but in a carefully controlled way �e�g�� we guarantee that bridges never intersect
and that no segment intersects more than one bridge�� and show that slightly modi�ed search
techniques can cope with a small number of intersections�

An insertion of a segment s into a segment tree brings about the insertion of at most �h �h �
height of the segment tree� subsegments of s into the segment lists of nodes nearby the search path
for the two endpoint of s �see Figure ��� An O�log� n� insertion time results if each subsegment
is located by binary search� We show that previously inserted elements can guide the insertion
process and that an amortized insertion time of O�logn loglogn� can be obtained�

The second solution in addition uses interval trees 	���
 and interval�priority�search trees 	�
�
The space requirement is reduced to O�n�� insertion� deletion and query time are unchanged� but
the query algorithm becomes more complex� The reason is that the search algorithm in interval�
priority�search trees is more complex than binary search and hence is more di�cult to combine
with fractional cascading� The details are given in section ��

We assume some familiarity with interval and segment trees �cf� 	�� Vol��� sections VIII������
and VIII������
�� Both kinds of trees store a set of non�intersecting line segments and are organized
as augmented binary search trees� We use the following notation� For a node v of the search tree T �
key�v� denotes the x�coordinate which guides the search in node v� L�v� denotes the vertical line
de�ned by x � key�v�� xrange�v� denotes the range of x�coordinates associated with v� range�v�
denotes the set of all points in IR� with x�coordinate in xrange�v�� For a segment s� proj�s� denotes
the projection of s to the x�axis� For a segment s and a node v� let home�s� � v if s � range�v�
and s intersects L�v�� For nodes v and w� let top�w� � v if w can be reached from v by going right
once and then zero or more times to the left �see Figure ��� A segment s is called elementary if
proj�s� � xrange�v� for some node v of T �

�

In section � we discuss our �rst solution which is based on segment trees and fractional cas�
cading� Section � is devoted to the combined interval�segment tree� Section � o�ers a short
conclusion�

� Segment Trees and Fractional Cascading

Let S be a set of pairwise non�intersecting �except at endpoints� non�vertical line segments and let
T be a search tree for the x�coordinates of the endpoints of the segments in S� Let h be the height
of T and let V be the set of nodes of T � We assume that h � O�logn�� As usual� we associate
with each node v � V a segment list as follows

S�v� � fsjs � S� xrange�v� � proj�s� and ��xrange�parent�v�� � proj�s��g

A segment s � S contributes to the segment list S�v� of at most �h nodes� i�e��N �
P

v�V jS�v�j

is less than or equal to �nh� It is well known that segment trees achieve time O�log� n� for locate�
insert and delete� In this section we adapt the fractional cascading method to our problem and
improve the time bounds for locate and insert to O�logn loglogn��

��� The Data Structure

The main idea is to use fractional cascading 	�
� We associate an augmented segment list AS�v� �
S�v� with each node v of T � Every segment s � AS�v� satis�es proj�s� � xrange�v� and is called
proper if s � S�v� and improper otherwise� Two proper segments never intersect since S is a set of
non�intersecting line segments� We maintain this property also for improper segments�

Invariant � For all nodes v of T and distinct improper segments s� s� � AS�v� there is a segment
t � S such that xrange�v� � proj�t� and t separates s and s�� i�e�� t lies between s and s� in
range�v��

Invariant � implies that no two improper segments in AS�v� intersect and that a proper segment
in AS�v� intersects at most one improper segment in AS�v�� The lists S�v�� AS�v� n S�v�� and
AS�v� are ordered according to the y�coordinates of the intersection of the segments with the line
L�v�� In the case of a tie� the slope decides� Note that for lists S�v� and AS�v� n S�v� this order
coincides with the �above��order for segments�

The list AS�v� is partitioned in subsequences which we call S�blocks or simply blocks� For each
block B we maintain a counter pot��B�� which counts the number of insertions into and deletions
from B since the creation or last reorganization of B� A block B of AS�v� is called isolated if it is
the only block in AS�v��

Invariant � For all nodes v of T and all blocks B in AS�v��

�a� pot��B� � a���

�b� jBj � ��a�� � pot��B��

�c� if B is not isolated then jBj � �a��� pot��B��

where a is a parameter to be �xed later �a � ��log� n���

Invariant � implies that jBj � ��a�� always and that jBj � a if B is not isolated� With each
block B we associate a representative rep�B� and store the representatives of non�isolated blocks of
AS�v� also in the lists AS�w� for both children w of v� In this way� representatives serve as bridges
�in the spirit of fractional cascading 	���
� between neighboring lists and facilitate searching�

Invariant �

�a� If B is not isolated in AS�v� then rep�B� � AS�w� for both children w of v�

Dynamic Point Location �

�b� For every improper segment s � AS�v� there is a non�isolated block B of AS�parent�v�� with
rep�B� � s� The two occurrences of s are called a bridge and each occurrence of s is called
a member of the bridge�

It is now easy to bound the total number of segments in T �

Lemma � Let N be the number of elementary segments� i�e�� N �
P

v�V jS�v�j � O�nh�� ThenP
v�V jAS�v�j � O�N � and

P
v�V jAS�v� n S�v�j � O�N�a��

Proof� Let h�v� be the height of node v in T and let h be the height of the root� Obviously
jAS�root�T ��j � jS�root�T �j� Also the number of bridges between AS�v� and AS�w� for a child w
of v is at most jAS�v�j�a �by Invariant ��� We therefore have for i � h

X
h�v��i

jAS�v�j �
X

h�v��i

jS�v�j �
�

a

X
h�v��i��

jAS�v�j

and hence

X
v�V

jAS�v�j �
hX
i��

X
h�v��i

jAS�v�j

�
X
v�V

jS�v�j �
hX
i��

hX
j�i��

���a�j�i
X

h�v��j

jS�v�j

�
X
v�V

jS�v�j �
�

a

X
v�V

jS�v�j

Blocks evolve over time� The representative rep�B� of a block B is chosen by the following
procedure�

procedure new bridge�B�

case �� jB � S�v�j � jB � �AS�v� n S�v��j� i�e�� proper segments prevail� Choose as rep�B� some
segment s with proj�s� � xrange�v� and the property that one half of the segments in
B � S�v� is strictly above s and one half is strictly below s�

case �� j�B � S�v��j � jB � �AS�v� n S�v��j� i�e�� improper segments prevail� Choose as rep�B�
some segment s with proj�s� � xrange�v� and the property that one half of the segments in
B � �AS�v� n S�v�� is strictly above s and one half is strictly below s�

end new bridge�

A representative is called proper if it is chosen in case � of new bridge and improper otherwise�
Of course� the occurrences of a representative of a block of AS�v� in the children of v are always
improper elements of AS�child�v��� This implies that representatives of distinct blocks of AS�v�
do not intersect �by Invariant ��� We also need the following Invariant�

Invariant � Let AS�v� consist of more than one block� let B be a block of AS�v�� and let t �
rep�B�� Then B contains segments s and s� above and s�� and s��� below t and of the same kind
�proper or improper� as t�

This completes the high�level description of the data structure� The low�level description fol�
lows�

�

� For each node we have several balanced search trees� The lists S�v�� AS�v� and AS�v� n
S�v� are stored in balanced trees with constant amortized insertion and deletion time for
updates at speci�ed positions� e�g�� ��� ���trees will do � 	�� Vol��� section III����
�� For each
block B of AS�v� we also have balanced trees for B � S�v� and B � �AS�v� n S�v��� In
addition we keep each augmented node list AS�v� in the dynamic Union�Find�Split�Add�
Erase data structure �UFS�structure� of 	�
� This data structure requires linear space and
supports the following six operations on a list of k items� some of which are marked� in time
O�loglog k� per operation
 Findabove�s� returns the closest marked predecessor of item s�
Findbelow�s� returns the closest marked successor of item s� Split�s� marks s� Union�s�
unmarks s� Add�s� s�� adds the unmarked item s immediately after item s�� and Erase�s�
removes item s� Initialization of the data structure for a list of k items takes linear time
O�k�� In the UFS�structure on AS�v� the marked items are the improper segments of AS�v��
We refer to this structure as the UFS�structure I on AS�v�� A second UFS�structure on
AS�v� will be de�ned in section ������

� All occurrences of a segment are stored in a linear list which is ordered in correspondence to
the in�order of the tree nodes�

� The tree T is organized as a BB	���
�tree for the x�coordinates of the endpoints of segments
in S 	���
� We assume w�l�o�g� that these x�coordinates are distinct �as in 	�
� we may replace
the x�coordinate of an endpoint by a triple consisting of the x�coordinate� the y�coordinate
of the point and the slope of the segment��

��� The Point Location Query

A point location query determines for a query point q � IR� the segment in S immediately above q�
A segment s in some set S� of segments is above q if a vertical upward ray starting at q intersects s
and is immediately above q �or the segment in S� immediately above q� if s is the �rst segment in
S� intersected by a vertical upward ray starting at q� The notions below and immediately below are
de�ned analogously� A segment s is called a best segment in S� i� it is either immediately above
or immediately below q�

The standard query algorithm in segment trees walks along the search path for the x�coordinate
of q and determines in each node of this path the segment in S�v� immediately above q with cost
O�logn� per node� We determine for each node v of the path �in leaf to root fashion� a best
improper segment and in some �but not necessarily all� nodes the proper segment immediately
above q� Our fractional cascading approach improves the search time to O�loglogn� per node�

procedure locate�q�

�� s � NIL and t � NIL

�� �nd the leaf v of T with proj�q� � xrange�v�

�� while v is de�ned

�� do locate�q� v�� v � parent�v� od

end locate�

procedure locate�q� v� �� with global variables s and t ��

case �� t � NIL �� there is only one block in AS�v� or v is a leaf ��

�� s�v� � the segment in S�v� immediately above q �NIL� if there is no such segment�

�� t � a best segment in AS�v� n S�v� if AS�v� n S�v� 	� � and NIL otherwise

Dynamic Point Location

�� s � best�s�v�� s� �� best returns the lowest segment above q ��

case �� otherwise

�� let B be the block in AS�v� with rep�B� � t and let A and C be the neighboring blocks
above and below B�

�� s�v� � the segment in S�v� � �A
B
C� immediately above q �NIL� if there is no such
segment�

�� if �AS�v� n S�v�� � �A
B
C� 	� �

�� then t � a best segment in �AS�v� n S�v�� � �A
B
C�

�� else t � a best segment in fFindabove�s�v��� F indbelow�s�v��g

�� �

 � s � best�s�v�� s�

end locate�

Lemma � Point location takes time O�logn� h loglogn��

Proof� Let q be the query point and xq be the x�coordinate of q� The time bound follows from
the observation that we need O�h� time to �nd the leaf v with xq � xrange�v�� time O�logn� in
leaf v and time O�loga� loglogn� in every other node of the search path�

We next turn to the proof of correctness� We �rst make a useful observation

Observation � At most one improper segment from a block above A can intersect the repre�
sentative of block A and at most one improper segment from a block below C can intersect the
representative of block C�

Proof� Assume for the sake of a contradiction that there are two improper elements p� and p� in
blocks above A which intersect rep�A�� According to Invariant � A contains a segment s above
rep�A�� Thus segments p� and p� intersect s� If s is improper this directly contradicts Invariant ��
If s is proper then let p be the proper segment which separates p� and p� �Invariant ��� s must
intersect p� a contradiction�

Let s� � S be the segment in S immediately above q� We prove inductively that the following
two assertions hold after completion of call locate�q� v��

��� if AS�v� n S�v� 	� � then t is a best segment in AS�v� n S�v� and if AS�v� n S�v� � � then
t � NIL

��� if s� � S�v� then s�v� � s�

Assertions ��� and ��� are obviously true if v is a leaf or AS�v� consists of a single block�
So assume that v is an inner node and AS�v� consists of more than one block� The induction
hypothesis implies that q lies between the representatives of blocks A and C since t � rep�B� is a
best improper segment in a child of v and since representatives do not intersect �Invariant ���

��� We distinguish cases according to the if�statement in case � of locate�q� v�

case �
 There is no improper segment in A
 B
 C� Then s�v� 	� NIL after execution of line
��� of locate�q� v� and s�v� is the segment in S�v� immediately above q� Thus either
Findbelow�s�v�� or Findabove�s�v�� is a best segment in AS�v� n S�v� �by Observa�
tion ���

case �
 There are improper segments in A
B
 C� Since improper segments do not intersect
�Invariant ��� a best improper segment in A
B
C is clearly a best segment in �AS�v�n
S�v�� � �A
B
C��

!

��� Assume that s� � S�v�� If s� � S�v� � �A
 B
 C� then clearly s�v� � s�� So assume
s� � S�v� n �A
B
C�� Then A
B
C can contain no proper segment above q and s� lies
either above or below B� In the former case block A must exist� Also rep�A� lies above q
and A contains two segments of the same kind as rep�A� above rep�A�� These two segments
are either proper or separated by a segment in S �by Invariant ��� a contradiction to the
fact that s� � S�v�� In the latter case block B must exist� Also rep�B� lies below q and the
symmetric argument leads to a contradiction�

Remark� Let sv be the segment in S�v� immediately above q� The query algorithm described
above does not determine sv in all nodes v of the search path� In section ��� it will be important
that the segment sv is determined for all nodes v of the search path� This can be done as follows�
Maintain a second UFS�structure on AS�v� for all v� this time the marked items are the proper
segments in AS�v�� Use Find S above to denote the Find operation in this structure� Also add
the following line ��a to case � of procedure locate�

if s�v� � NIL
then s�v�
� Find S above�t�
�

We claim that s�v� � sv after execution of line ��a� If sv � A
B
C then s�v� � sv after line ����
So assume sv �� A
 B
 C� Then A
 B
 C can contain no proper segment above q and sv lies
either above or below A
B
C� In the former case block A must exist� Also rep�A� lies above q
and A contains two segments of the same kind as rep�A� and above rep�A�� These two segments
are necessarily improper and hence are separated by a segment in S� Thus no proper segment in
a block above A can be below q and hence Find S above�t� � sv in line ���a�� In the latter case�
i�e�� sv would be stored in a block below C and hence S�v� � �A
B
C� � �� Also block C must
exist� rep�C� lies below q and C contains two improper segments below rep�C�� These segments
are separated by a segment in S and hence sv cannot lie in a block below C�

��� Insertions and Deletions

The dynamic behavior of our search tree depends on two components
 the dynamic behavior of
the underlying search tree and the dynamic behavior of the segment lists and augmented segment
lists� We proceed in three steps� For the �rst two steps the search tree T and the parameter a
are assumed to be �xed� In the �rst step we discuss insertions and deletions of segments using
standard methods and arguments and verify the Invariants� In the second step we improve the
insertion time by using additional information about the lists and in the last step we discuss how
to rebalance T and how to adapt the parameter a�

�	�	� A First Solution

We �rst give the insertion and deletion procedures for elementary segments and the procedure to
reorganize blocks�

procedure elementary insert�s� v�

�� insert s into the appropriate search trees and identify the block B into which s has to be
inserted

�� insert s into the search tree for B

�� update the UFS�structure I� i�e�� add s to AS�v� and perform Split�s� if s is an improper
segment

�� jBj � jBj� �� pot��B� � pot��B� � ��

Dynamic Point Location �

�� if pot��B� � a�� then reorganize�B��

end elementary insert�

procedure elementary delete�s� v�

�� delete s from the list AS�v� and from the corresponding search tree

�� delete s from B and from the corresponding search tree of B

�� delete s from the UFS�structure I� i�e�� remove s from AS�v� and perform Union�s� if s is
improper segment

�� jBj � jBj � �� pot��B� � pot��B� � ��

�� if pot��B� � a�� then reorganize�B��

end elementary delete�

procedure reorganize�B�

case �� �a�� � jBj � ��a��

�� elementary delete�rep�B�� lchild�v��� elementary delete�rep�B�� rchild�v��

�� rep�B� � new bridge�B�

�� pot��B� � �

�� elementary insert�rep�B�� lchild�v��� elementary insert�rep�B�� rchild�v��

case �� jBj � ��a��

�� elementary delete�rep�B�� lchild�v��� elementary delete�rep�B�� rchild�v��

�� divide B into blocks B� and B� of approximately the same size

�� build up the internal structures for B� and B�

�� pot��B�� � pot��B�� � �

�� rep�B�� � new bridge�B��� rep�B�� � new bridge�B��

�� elementary insert�rep�Bi�� lchild�v��� elementary insert�rep�Bi�� rchild�v�� for
i � �� �

case �� jBj � �a��

�� elementary delete�rep�B�� lchild�v��� elementary delete�rep�B�� rchild�v��

�� if B is isolated in AS�v�

�� then pot��B� � �

�� else begin

�� let B� be the one of the neighbor blocks of B

�� join B and B� to obtain a new block for B
B� with rep�B��

 � apply either case � or case � to the resulting block

!� end

end reorganize�

��

Lemma �

�a� The cost of line 	 of elementary insert is O�logn� and the cost of lines
 to � is O�loga�
loglogn��

�b� The cost of lines 	 to � of elementary delete is O�loglogn��

�c� The cost of a call of reorganize �not counting recursive calls� is O�a��

Proof�

�a���b� The bounds are obvious�

�c� Note that reorganization of B either leaves B unchanged �case ��� splits B �case ��� fuses B
with a neighbor �case � and then case �� or fuses B with a neighbor and then splits the
union of the two blocks �case � and then case ��� Thus the time for reorganizing a block is
O�a� logn� � O�a��

For the amortized analysis we use the �standard� potential function

pot��T � � c�
X
v�V

X
B block

in AS�v�

pot��B��

where the constant c� is chosen such that c��a��� !� bounds the time for reorganizing a block�

Lemma

�a� The amortized cost of reorganize is non�positive�

�b� The amortized cost of elementary insert is O�logn�� the amortized cost of lines
 to � of
elementary insert is O�loglogn��

�c� The amortized cost of elementary delete is O�loglogn��

Proof�

�a� The cost of reorganizing a block is bounded by c��a�� � !�� So we only need to show that
the potential drop is at least that much� This holds true since a block is only reorganized if
its potential exceeds a��� since all blocks a�ected by the reorganization have potential zero
after the reorganization and since at most two representatives are deleted from and inserted
into both children� The worst case is the application of case � and then case �� In this case
the stated bound is reached�

�b� The amortized cost of an elementary insert is bounded by the sum of the real cost of lines
� to �� the amortized cost of the reorganization process and the potential increase �which is
��� The claim now follows from part �a��

�c� analogous to part �b��

The extension to arbitrary segments is now straightforward� In order to insert segment s into
S �delete s from S� call elementary insert�s� v� �elementary delete�s� v�� for all nodes v
having s associated with them� We obtain

Lemma � A sequence of n insertions and m deletions takes time O�nh logn�mh loglogn��

Dynamic Point Location ��

i=1...n

top(w)=zi

 i=2...n

v and w are relatedi

v

z

w
1

wn

Figure �
 Relations between Nodes

Proof� A non�elementary segment contributes to at most �h segment lists� The amortized time
of an insertion is therefore O�h � logn�� The time for a deletion is O�h � loglogn�� recall that we
postulated that all occurrences of a segment are linked�

We still need to verify the invariants�

Lemma � The update process maintains the invariants�

Proof� For Invariants � and � this is obvious� With respect to Invariant � observe that pot��B� �
a�� always �Invariant �� and that a block contains at least �a��� elements of the same kind as
its representative on either side of the representative at the moment the representative is chosen�
This holds because at this moment the block has size at least �a�� �see procedure reorganize��
Thus at least a��� elements of the same kind lie on both sides of a representative at all times�
Thus Invariant � holds provided that a � ���

It remains to verify Invariant �� Let v be any node of T and assume inductively that Invariant
� holds for parent�v�� �Observe that Invariant � is obviously true for the root of T �� Let b� and b�
be the representatives of distinct blocks B� and B� of AS�v�� By Invariant � there are segments
in AS�v� with

s��� s�� � B� and above b�� s��� s�� � B� and below b��

si� and si� are of the same kind as bi and do not intersect bi �i � �� ��

b�� s��� s��� s��� s��� b� intersect L�v� in that order

We now distinguish cases according to the types of b� and b�� If both are proper representatives
then each of the four segments sij � i� j � f�� �g separates b� and b�� If exactly one is improper� say
b�� then s�� and s�� are representatives of blocks in AS�parent�v�� and are separated by a segment
s� � S �induction hypothesis�� Thus each of the segments s�� s��� s�� separates b� and b�� If both
representatives are improper then a similar argument shows the existence of segments s� and s�
in S separating b� and b��

�	�	� An Improved Insertion Algorithm

Call node v of T the upper relative of node w of T if v is the left child of some node z and w
lies on the left spine of the subtree rooted at the right child of z or if the symmetric situation holds
�cf� Figure ��� We will also simply say that nodes v and w are related� Note that every segment
s � S is associated with two sequences of nodes of T such that neighboring nodes in each sequence
are related �cf� Figure ��� For related nodes v and w let L�v� w� � fs � S� s � S�v� � S�w�g be
the set of segments stored in the segment lists of v and w�

��

The improved insertion algorithm inserts segments bottom�up� So suppose that segment s has
already been added to S�w� and AS�w� and that s has to be added to S�v� and AS�v� next where
v is the upper relative of w� Assume inductively that the segments s�� s�� � L�v� w� immediately
above and below s are known� The idea is to locate s in AS�v� by a simultaneous �nger search
�cf� 	�� Vol�I� section III�������
� starting at the occurrences of s� and s�� in AS�v� and to determine
the neighbors of s in L�z� v�� where z is the upper relative of v� by a Find in an appropriate
UFS�structure� Although the �nger search takes time O�logn� in the worst case we will be able
to show that it takes only time O�d� loglogn� in the amortized sense� where d � dist�v� w� is the
distance of nodes v and w in the underlying search tree T � Summation of this bound along the
insertion path yields an O�logn � loglogn� bound on the amortized insertion cost �Note that the
dist�terms sum up to O�h� � O�logn���

In order to carry out this idea we augment our data structure in two ways

�� For each node w a UFS�structure on AS�w� is maintained where the marked items are
precisely the segments in L�v� w� for v the upper relative of w� We call this structure the
UFS�structure L on AS�w��

�� For each node w the blocks of AS�w� are stored in a �nger search tree TAS �w�� more precisely
a level linked ���!��tree� cf� 	�� Vol�I� section III�������
� In such a tree the insertion or deletion
of an item takes timeO�logn� and a search for an item in distanceD from a �nger �b�a pointer
to a leaf� takes time O�logD�� In TAS�w� the leaves correspond to the blocks of AS�w�� To
simplify reading we use the word vertex for the nodes of the trees TAS and reserve the word
node for the nodes of T �

We are now ready for the details of the insertion algorithm� It �rst determines the two sequences
of nodes into which the new segment has to be inserted� Let w�� � � � � wl with l � h be one of the
sequences where wi is the upper relative of wi�� for i � �� Let i � � and assume inductively that
the segments s� and s�� immediately above and below s in L�wi� wi��� are known and that s has
to be inserted into AS�wi� next�

��� Determine the blocks B� and B�� of AS�wi� containing s
� and s�� respectively�

��� Determine the block B of AS�wi� into which s has to be inserted by simultaneous �nger
search in TAS �wi� starting from B� and B���

��� Insert s into B� reorganize B �if necessary� and update the UFS�structures I and L on
AS�wi��

��� Locate s in Lwi���wi
by a Find�operation in L �this determines s� and s�� for the next step��

The following Lemma is crucial for the amortized analysis of step ����

Lemma
 Let d � dist�wi� wi��� be the distance between nodes wi and wi�� in the underlying
search tree T and let x and y be the vertices of height d in TAS �wi� and TAS�wi��� respectively
into whose subtrees the segment s is inserted� Then either the �nger search for s in TAS�wi� does
not reach a node of height larger than d �and hence the time for step �
� is O�d�� or there is no
segment t � L�wi� wi��� di
erent from s which is stored in the subtrees rooted at x and y�

Proof� Assume that there is a segment t � L�wi� wi��� di�erent from s which is stored in the
subtree of TAS �wi� rooted at x and the subtree of TAS�wi� rooted at y� Then either the segment
s� or the segment s�� has this property� Thus the �nger search for s in TAS�wi� does not leave the
subtree rooted at x�

We next de�ne an essential ingredient for the amortized analysis� Consider any pair �v� w� of
related nodes and let d � dist�v� w� be the distance of nodes v and w in the underlying search tree�
Call vertices x and y in TAS�v� and TAS�w� connected if both of them have height d and there is a
segment stored in the subtrees rooted at x and y� Let con�v� w� be the number of connected pairs
of vertices in TAS�v� and TAS�w��

Dynamic Point Location ��

elementary intervals associated with the leaves of the tree

segment s

The nodes of the tree in whose segment lists
 is stored

s

Figure �
 The segment lists in which a segment s is stored

Lemma � a� con�v� w� � �jAS�v�j � jAS�w�j����da�� where d � dist�v� w�

b�
P

v�w related con�v� w� � O�n � h�a�

Proof�

a� Note �rst that there are at most jAS�v�j���da� vertices of height d in TAS�v� and at most
jAS�w�j���da� vertices of height d in TAS �w�� Observe next that the segments in L�v� w� are
linearly ordered by the above�relation� Thus there can be at most �jAS�v�j� jAS�w�j����da�
connected pairs of vertices in TAS�v� and TAS�w��

b� We sum the bound derived in part a� over all pairs of related nodes� Then every node v
contributes O�h� terms involving jAS�v�j to the bound� As a lower relative the contribution is
at most jAS�v�j�a and as an upper relative the contribution is at most

P
d�	 jAS�v�j���

da� �
jAS�v�j�a� The bound now follows from Lemma ��

We use the following potential function for the amortized analysis

pot�T � � pot��T � � pot��T � � pot	�T �

where pot��T � � c�
X

B block

in T

pot��B�

pot��T � � c� logn
X
v�w

related

�
jAS�v�j � jAS�w�j

�dist�v�w�a
� con�v� w�

�

and pot	�T � � c	jn� n�j logn

We maintain the invariant that jn � n�j � n��� and a � maxf��� blog� n�cg� n� and a are
adjusted whenever n leaves the interval 	n���� �n���
� We �rst extend Lemma ��

Lemma �� The amortized cost of block reorganization is non�positive�

��

Proof� We have argued in the previous section that the actual cost of block reorganization is O�a��
pot� drops by at least c��a���!� and pot	 does not change� It remains to treat pot�� Consider the
reorganization of a block B in TAS�v�� The reorganization of B may cause a splitting of B into
two blocks� a fusing of B with a neighboring block or an exchange of segments with a neighboring
block� Consider any ancestor x of B in TAS�v� and let d be its height� If the reorganization of B
does not propagate to vertex x then the connections of x do not change� If x is split into nodes
x� and x�� then every connection of x becomes a connection of either x� or x�� and hence the num�
ber of connections does not decrease� If x is fused with a neighbor vertex x� then the number of
connections drops by the number of vertices y which have connections with x as well as x�� Since
connections do not �cross� there can be at most two such vertices y� one in the upper relative of v
and one in the lower relative of v with distance d from v� We conclude that the reorganization of
B removes at most two connections for each ancestor of B in TAS �v� and hence increases pot��T �
by at most c��log

� n� For c� large enough the cost of block reoganization is therefore non�positive�

Lemma �� The amortized cost of an insertion is O�logn � loglogn��

Proof� Recall that a segment is inserted into two sequences of nodes w�� � � � � wl� l � h� It su�ces to
show that the amortized cost arising in node wi� i � � is O�d� loglogn� where d � dist�wi� wi����
This is clear for steps ��� and ��� and follows for step ��� from Lemma � and the observation that
pot� and pot� both increase by O��� by the addition of an elementary segment� It remains to con�
sider step ���� Lemma ! implies that either the time for the �nger search is O�d� or con�wi� wi���
increases by �� Since the �nger search time is always at most O�logn� this proves that the amor�
tized cost of step ��� is O�d��

We treat deletions next� In order to remove a segment s� the segment has to be removed from
O�h� augmented node lists� Each deletion of an elementary segment has actual cost O�loglogn�
increases pot� by O��� and increases pot� by O�logn� �Note that the removal of an elementary
segment destroys at most one connection�� Also pot	 increases by O�logn�� We summarize in

Lemma �� The amortized cost of a deletion is O�log� n��

�	�	� Maintaining the underlying search tree T and the parameter a

Up to this point we worked with a �xed search tree T and a �xed value of the parameter a� In this
section we remove both assumptions� Recall that the underlying search tree T is a BB	���
�tree
for the x�coordinates of the endpoints of the segments and that these coordinates are assumed
to be distinct� BB	���
�trees are reorganized by rotations� In 	�� �� �
� cf� also 	�
� it was shown
that the amortized rebalancing cost per update operation is O�logn� provided that a rotation �cf�
Figure �� at a node v takes amortized time O�th�v��� where th�v� is the number of leaves in the
subtree rooted at v�

Lemma �� A rotation at a node v can be performed in amortized time O�th�v���

Proof� We only treat a rotation to the left as shown in Figure � and leave the discussion of
a rotation to the right to the reader� Note �rst that th�v� � �dist�v�w�th�w� for any two nodes
v and w of a BB	���
�tree �cf� 	�
� Lemma ���� Observe next that jS�v�j � th�v� � O�th�v��
for all nodes v since the x�coordinates of the segments are assumed to be distinct� This implies
jAS�v�j � O�th�v�� for all nodes v� For the root this follows from jS�root�j � jAS�root�j and for
the other nodes this follows by induction from jAS�v�j � jS�v�j � jAS�parent�v��j�a�

A rotation changes the S�sets for nodes u� v� w� x� y� cf� Figure �� The following formulae de�ne
the xranges and the segment lists after the rotation �we use primes to denote the situation after
the rotation�

xrange��v� � xrange�u�
 xrange�w�

Dynamic Point Location ��

u

v

z

x

yw u w

yv

x

z

Figure �
 A left rotation at node v

xrange��x� � xrange�v�

S��u� � S�u� n �S�u� � S�w��

S��w� � S�w� n �S�u� � S�w��
 S�x�

S��y� � S�y�
 S�x�

S��x� � S�v�

S��v� � S�u� � S�w�

The new segment list of the involved nodes can be computed according to the formulae above
by a linear scan of the corresponding lists� For the augmented segment lists we proceed as follows�
We �rst remove the representatives of AS�u�� AS�w� and AS�y� from their children� We then set
AS��x� to AS�v� and compute AS��v�� AS��u�� AS��w� and AS��y� from the corresponding S�lists
and the representatives of the blocks of the parent nodes� We also propagate the representatives
of the blocks of AS��u�� AS��w� and AS��y� to their children� All of this takes time linear in
the size of the AS�lists handled plus time O�logn� per representative handled and thus total time
O�th�v� � logn � th�v��a� � O�th�v��� The change in pot� is also clearly bounded by O�th�v���

Next we set up the UFS�structures I and L for the AS�lists of nodes u� v� w� x� y� For both
structures it can be decided in constant time whether an item is marked� This is obvious for the
structure I and follows for the structure L from the fact that all occurrences of a segment are
linked in in�order� We conclude that this step takes time O�th�v���

Finally� we make the required changes to the L�structures of all nodes having a node in
fu� v� w� x� yg as an upper relative� Let p � fu� v� w� x� yg be arbitrary� All nodes having p as
an upper relative lie on the spine of some subtree� e�g�� all nodes z having u as the upper relative
after the rotation lie on the left spine of the subtree rooted at w� For each node z the new L�
structure can be set up in time O�jAS�z�j� � O�th�z��� The total time is therefore O�th�v�� since
the thicknesses of the nodes on a spine form a geometric series�

It remains to estimate the change in pot� and pot	� pot	 does not change� pot� increases due
to two e�ects
 The length of some augmented node lists changes and connections may disappear�
The �rst e�ect increases pot� by at most

O�logn
X
p

involved

jAS�p�j�a� � O�th�v���

In order to estimate the number of destroyed connections we distinguish two cases� A connection
between TAS �i� and TAS�j� can only be destroyed if either i is the upper relative of v or x and
j belongs to the subtree rooted at v or i is one of the nodes u� v� w� x� or y and j belongs to the

��

subtree rooted at v� We consider the former case and here only the case that i is the upper relative
of v� Let j�� j�� j�� � � � be the nodes on the left spine of the subtree rooted at v� v � j�� Also let
d � dist�i� v�� Then the number of removed connections is at mostX

l��

con�i� jl� �
X
l��

jAS�i�j � jAS�jl�j

a � �d�l

where the inequality follows from Lemma ��
Next observe that jAS�jl�j � O�th�jl�� � O�th�v�� and that jAS�i�j � O�th�i�� � O��dth�v���

Thus X
l��

con�i� jl� �
X
l��

O�th�v��

a � �l
� O�th�v��a�

A similar argument shows that the number of destroyed connections of the second kind is also
O�th�v��a�� Thus pot� increases by at most O�th�v� logn�a� � O�th�v���

Altogether we have shown that the amortized cost of a rotation at v is O�th�v���

The parameter a is changed whenever n leaves the range 	n���� �n���
� In this case we set n� to n�
a tomaxf��� blog� n�cg and rebuild the entire structure� All of this has actual cost O�n logn�� pot	
decreases by c	 �n logn �since pot�	 � ��� pot� does not increase �since pot�� � �� and pot� increases
by at most O�n �h � logn�a� � O�n� �since pot�� � O�n �h � logn�a� according to Lemma ��b��� The
amortized cost of adapting a is therefore non�positive�

Putting eveything together we obtain

Theorem �� Augmented segment trees support insertions and point location queries in time
O�logn loglogn�and deletions in time O�log� n�� The time bounds for insertions and deletions
are amortized� Augmented segment trees take space O�n logn��

� The Combined Interval�Segment Tree

In this section we improve the space requirement to linear� while keeping all the time bounds as
in section �� Interval trees and interval�priority�search trees are the additional ingredient�

��� The Combined Data Structure

Let S be a set of pairwise non�intersecting �except at endpoints� non�vertical line segments and let
T be a search tree for the x�coordinates of the endpoints of the segments in S� Let h be the height
of T and let V be the set of nodes of T � We assume h � O�logn�� We associate the segments in
S with the nodes in V as in interval trees� i�e�� the node list of v � V is de�ned as

N �v� � fs � S� home�s� � vg�

We split each segment s at the vertical line L�home�s�� into segments s� and s�� From now on�
we deal only with the segments s� �s � S�� and write s instead of s��

The list N �v� is ordered according to the y�coordinates of the intersections of the segments in
N �v� with the vertical line L�v�� The list N �v� is partitioned into subsequences� which we call
N�blocks or simply blocks� An N�block is called isolated if it the only block of N �v� and non�isolated
otherwise� For an N�block B� let win�B� be the segment in B with the rightmost right endpoint�
Call win�B� the winner of block B and let W be the set of all winners� As in the previous section
we maintain for every N�block B a counter pot��B� which counts the number of insertions into
and deletions from B since the creation or last reorganization of B� We maintain Invariant � also
for N�blocks�

With every node v � V we also associate an auxiliary node list AN �v�� a segment list S�v�� and
an augmented segment list AS�v�� The relation between these lists is governed by Invariants �� �
and �

Dynamic Point Location �

v

w

z

ba

s=win(B)

B N(v)⊆

s AN(w)∈

s S(b)∈s S(a)∈

s AN(z)∈

search path for the −coordinate x

of the right endpoint of s

Figure �
 Propagation of Winners

Invariant

�a� If B is a non�isolated block of N �v� then s � win�B� � AN �w� for all descendants w of v
on the search path to the x�coordinate of the right endpoint of s which are left through their
rchild�pointer�

�b� If s � AN �v� then s � S and s intersects L�top�v�� and L�v� but does not intersect RB�v��
i�e�� home�s� � ftop�v�� top�top�v��� top�top�top�v���� � � �g� Here RB�v� denotes the right
boundary of range�v��

�c� AN �root� � ��

�d� N �v� and AN �v� are ordered according to the y�coordinate of the intersections of the segments
with the line L�v��

Remark� Winners are propagated from their home along the search path to the right endpoint
of the winner �see Figure �� and are stored in the AN�lists of all nodes in this path which are left
through their rchild�pointer� The intuition underlying this propagation process is as follows�

Assume �rst that a point q has to be located with respect to the segments in N �v� for some node
v and that the position of q with respect to the winners of the blocks of N �v� is already known�
say q lies between win�A� and win�B� with win�A� above win�B�� Then only blocks C between
A and B inclusive can contain segments which intersect L�q� between win�A� and win�B�� Also
no block C strictly between A and B contains a segment which intersect L�q� since the winner
of no such block does� Thus locating q in A
 B is tantamount to locating q in N �v�� However�
locating q in A
B takes only time O�log a� � O�loglogn��

Assume next that a point q has to be located with respect to the union of N �z� over all nodes
z on the right spine of T � Let v and w � rchild�v� be two nodes on the right spine and assume
inductively that q lies right of L�w� and has already been located with respect to AN �w� �W �
AN �w� contains all winners of blocks of N �v� which intersect L�w� and also all segments in
AN �v� �W which intersect L�w�� it may also contain other segments �the purpose of the other
segments is explained in the remark following Invariant �� Thus Find�operations in appropriate
UFS�structures on AN �w� �in one� the marked items are the segments in N �v��W �AN �w�� and
in the other� the marked items are the segments in AN �v� �W �AN �w�� identify the two blocks

�!

in N �v� and AN �v� respectively to which the search for q can be restricted� The incremental cost
of locating q in N �v� and AN �v� is therefore O�loglogn��

Consider �nally the general situation that q has to be located with respect to the union of N �v�
over all nodes on the search path for the x�coordinate of q� Let v�� v�� v	� � � � � vl be a subpath of
the search path such that v� and vl are left through their rchild�pointer and v�� � � � � vl�� through
their lchild�pointer� By the argument in the preceding paragraph the incremental cost of locating
q in N �v�� and AN �v�� is O�loglogn� if the location with respect to the segments in N �v�� �W
and AN �v�� �W is known� Every segment in �N �v��
 AN �v��� �W which intersects L�q� �and
hence L�vl�� is also contained in AN �vi� for some i� � � i � l� We may assume inductively that
the position of q with respect to AN �vl� � W is known� For the nodes vi� � � i � l � �� we
use the following observation� Every segment s in �N �v��
 AN �v��� � AN �vi� completely spans
range�vi���� i�e�� would stored at vi�� in a segment tree� We therefore store the segments in the
AN�lists also in the segment tree data structure of section � �cf� Invariant �� and then use the query
algorithm of section ��� to locate q with respect to the segments in �N �v��
 AN �v��� � AN �vi�
for � � i � l � ��

Invariant �

�a� S�root� � �

�b� S�v� � � if v is a right child and S�v� � AN �parent�v�� if v is a left child

�c� Invariants 	 to � hold for S�v� and AS�v��

Remark� A segment s � S�v� satis�es xrange�v� � proj�s� and ��xrange�parent�v�� � proj�s��
i�e�� s would be stored at v in a segment tree for S� The S� and AS�lists form the structure of
section � for the set

S
v S�v�� This set contains the set W of winners and is in general a proper

subset of the set S� The lists AS�v� and S�v� are structured into blocks as described in section ����
By virtue of part �b� of Invariant � this also induces a block structure on AN �parent�v��� As in
section � use L�v� w� to denote S�v� � S�w��

For related nodes v and w we de�ne the following
 An element s � L�v� w� is called a winner�
connection or simply w�connection if s �W and an nw�connection otherwise�

Invariant �

�a� Let v and w be related and dist�v� w� � d� Let x and y be nodes of height d in TAS�v� and
TAS�w� respectively � Then there is at most one nw�connection stored in the subtrees rooted
at x and y�

�b� Each segment s � S�v� either belongs to W or is member of a nw�connection�

Remark� Invariant states that the segment tree part of our data structure may also contain
non�winners� These non�winners connect the S�lists of related nodes and support the insertion
process as described in section ������ Part �a� of Invariant controls the number of non�winning
connections�

We can now derive a bound on the total size of all lists�

Lemma �
 Let N �
P

v jAS�v�j�

�a� The maximal number of connected pairs of vertices in trees TAS is at most � �N�a�

�b�
P

v jS�v�j � n � h�a� � �N�a�

�c� If a � maxf�h� ��g then N � n�

Proof�

Dynamic Point Location ��

�a� This follows directly from Lemma ��

�b� By Invariant � each element of S�v� is either a winner or a member of a nw�connection�
Each element of W belongs to the S�set of at most h nodes� jW j � n�a �by the de�nition
of W �� and the number of members of nw�connections is bounded by twice the number of
connected pairs of vertices in the trees TAS � The bound follows�

�c� We have jAS�v�j � jS�v�j�jAS�parent�v��j�a for all nodes v� Thus �����a�N �
P

v jS�v�j �
n � h�a� � �N�a� For a � � � h and a � �� this implies N � n�

We close this section with a description of the low�level details of the data structure

� All occurrences of a segment are linked in in�order�

� For every node v� N �v� is stored in a balanced tree�

� For every node v� every block of N �v� and AN �v� is organized as described in 	�
� i�e��
is stored in a balanced priority search tree� This gives query� insertion and deletion time
O�log a� � O�loglogn�� The update time is O�log a� instead of O�log� a� as stated in table �
since all segments in N �v� and AN �v� have their left endpoint on the vertical line L�v��
cf� 	�
�

� The segment tree part of our data structure �S� and AS�lists� is organized as described in
section ��

� Also as in section �� T is a BB	���
�tree for the set of endpoints of the segments in S�

� For every vertex v� the list AN �v� is stored in two UFS�structures� In the �rst structure
the marked items are the segments in AN �v� �W � N �top�v�� and in the second structure
the marked items are the segments in AN �v� � W � AN �top�v��� The Find�operations
are called Find N winner above� Find N winner below and Find AN winner above and
Find AN winner below respectively� These structures are called the WN � and WAN �
structure on AN �v� respectively�

� For every vertex w� the list S�w� is stored in an UFS�structure� The marked items are the
nw�connections between S�w� and S�v� where v is the upper relative of w� �Of course� this
is equivalent to a UFS�structure on AN �parent�w��� However� it is more convenient to view
this UFS�structure as a structure on S�w��� We call this the nw�structure on S�w��

Lemma �� The space requirement of the data structure is linear�

Proof� This follows immediately from Lemma �� and the de�nition of the data structure�

In the following two sections we discuss the update and the query algorithms� These sections can
be read independently�

��� Insertions and Deletions

As in section � we proceed in two steps� In the �rst step we assume that the underlying search
tree T and the parameter a are �xed and in the second step we discuss how to rebalance T and
how to adjust the parameter a� For the amortized analysis of insertions and deletions we use the
same potential function pot�T � as in section ������

Consider insertions �rst� Let s be the segment to be inserted and let v � home�s�� We assume
w�l�o�g� that s has its left endpoint on L�v��

��

��� Determine v � home�s�� insert v into N �v� and into the appropriate block A of N �v��

��� if s is the new winner of the block A and A is non�isolated

��� then let t be the old winner of block A� Declare all connections involving t to be non�winning
and remove parallel nw�connections�

��� let w� � v� w�� � � � � wk be the nodes on the search path to the x�coordinate of the right
endpoint of s which are left through their rchild�pointer and for i with � � i � k let xi be
the left child of wi� insert s into AN �wi� and AS�xi� for � � i � k�

��� ��

��� for all N� and AS�blocks B touched

� � do increase pot��B�

�!� if pot��B� now exceeds a�� then reorganize�B� �

��� od

We now discuss lines ���� ��� and ��� to �!� in detail�
Line ��� takes amortized time O�h � loglogn�� This can be seen as follows� First declare all

connections involving t to be non�winning� This is possible in time O�h� because all occurrences
of a segment are linked and t is in at most O�h� AN�lists and thus S�lists� By unmarking t with
Union�t� in time O�loglogn� per list and hence total time O�h � loglogn� update the nw�UFS�
structure for all AN�lists containing t� Then determine whether there are nw�connections parallel
to t and if so remove them as follows� Let v and w with v the upper relative of w be nodes such
that t � L�v� w�� Let t� and t�� be the nw�connections above and below t �t� and t�� can be found
by Find�operations� and let x and y be the vertices of height d � dist�v� w� of TAS�v� and TAS �w�
containing t in their subtrees� Check whether t� or t�� is also stored in the subtrees rooted at x and
y �by a walk of length d towards the root�� If so� t is parallel to either t� or t�� and t is removed�
All of this takes amortized time O�d� loglogn�� Thus all parallel nw�connections involving t can
be removed in amortized time O�h � loglogn�� Note that pot� and pot	 do not change and that
pot� changes by O�h��

For line ��� we use the results of section ������ We �rst add s to AN �wk� and S�xk� and then
to AN �wi� and S�xi� for i � k � � down to �� According to Lemma �� all of this takes amortized
time O�h � loglogn��

It remains to discuss line �!�� i�e�� the reorganization of N�blocks� The reorganization of N�
blocks is similar to the reorganization of S�blocks as described in section ������ As in procedure
reorganize we distinguish � cases� If the blocksize is in the range between �a�� and ��a�� then
we only reset the potential of A� In the other cases we split the block or fuse it with a neighboring
block and then possibly split the fused block� Also the winners of the touched blocks are declared
non�winners and the new winners of the blocks are propagated� All of this takes non�positive
amortized time� Note that pot� drops by "�a�� pot� and pot	 do not change and that the cost
of declaring the old winners to non�winners and propagating the new winners is O�h � loglogn�
according to the preceding two paragraphs�

We summarize in

Lemma �� The amortized cost of an insertion of a line segment into the combined interval tree
is O�h � loglogn� �O�logn loglogn��

Deletions are much simpler to handle� To delete s� remove all copies of s in the data structure�
update the UFS�structures� increase the potentials of all blocks touched� and reorganize if necessary�
This has actual cost O�logn loglogn� and increases the potential by O�h � logn��

Lemma �
 The amortized cost of a deletion is O�h � logn� � O�log� n��

Dynamic Point Location ��

We next turn to the dynamic behavior of BB	���
�tree T � Consider a rotation to the right at inner
node v� cf� Figure �� we leave the treatment of rotations to the left to the reader� As in section
����� our goal is to show that a rotation at node v has amortized cost O�th�v���

We �rst show that the size of all lists stored at a node v is O�th�v��� For the N� and AN�lists this
follows from the observation that s � N �v�
AN �v� implies that the right endpoint of s is stored
in the subtree rooted at v and the assumption that all x�coordinates of endpoints are distinct� For
the S�list this follows from the previous sentence and Invariant �� and for the AS�list this follows
from AS�root� � S�root� and jAS�v�j � jS�v�j� jAS�parent�v��j�a for nodes v di�erent from the
root�

A rotation about v is performed in six steps�

�� Declare the winners of all blocks of N �v� and N �x� to non�winners� As described for line ���
above this takes amortized time O�h � loglogn� per winner and hence O���th�v� � th�x���a� �
h � loglogn� � O�th�v�� total amortized time�

�� Compute new ranges and lists�

xrange��v� � xrange�x�

xrange��x� � xrange�w�
 xrange�y�

N ��v� � N �v�
 fs � N �x�� key�v� � proj�s�g

N ��x� � N �x� n fs � N �x�� key�v� � proj�s�g

AN ��v� � AN �v�
AN �x�

AN ��x� � AN �x�

S��u� � S�u�
 S�v�

S��w� � S�v�

S��y� � S�y� � �

S��v� � S�x�

S��x� � �

All new lists can be computed in time O�th�v�� by linear scans�

�� Make the required changes in the segment tree structure of section �� This takes amortized
time O�th�v���

�� Propagate the new winners of the blocks of N ��x� and N ��v�� As described for line ��� above
this requires only the segment tree structure �which was already updated in step �� and takes
time O�h � loglogn� per winner and hence O�th�v�� total time�

�� Update WN � and WAN �structures� The WN � and WAN �structures change only for the
AN�lists of nodes p which either belong to fu� v� w� x� yg or lie on the spine of the subtrees
with roots u� w or y� For each node p a new WN � and WAN �structure for AN �p� can be
constructed in time O�jAN �p�j� � O�th�p�� since constant time su�ces to decide whether a
segment has to be marked �this follows from the fact that all occurences of a segment are
linked in in�order�� The total time for this step is therefore O�th�v�� since the thicknesses of
the nodes on a spine form a geometric series�

�� Update nw�structures� The nw�structure on S�p� changes only for nodes p which either
belong to fu� v� w� x� yg or lie on the spine of the subtrees with roots u� w or y� Let p be one
of these nodes and let d be the distance from p to its upper relative p�� One can certainly
check in time O�logn� per nw�connection whether it satis�es Invariant and if not remove
the connection� Thus the nw�structure on S�p� can be updated in time O�logn � �jS�p�j �
jS�p��j����da�� � O�logn � th�p��a� � O�th�p��� As for step � we conclude that the total time
for step � is O�th�v���

��

We have now shown that the actual cost of a rotation about v is O�th�v��� The potential
also increases by at most that amount �by the argument used in the proof of Lemma ���� We
summarize in

Lemma �� A rotation at node v takes amortized time O�th�v���

The parameter a is changed as discussed in section ������ Altogether we have shown

Theorem �� The combined interval tree supports insertions in time O�logn loglogn�and deletions
in time O�log� n�� The bounds are amortized�

��� The Query Algorithm

The query algorithm gets a point q � IR� and is supposed to return the segments immediately
above and below q� It works in two stages� In the �rst stage� called the segment tree query� it
determines for all nodes z on the search path to the x�coordinate of q the segments s�z� and t�z�
in S�z� immediately above and below q� In the second stage� called the interval tree query� it uses
the results of the �rst stage and determines the segments in S immediately above and below q�
The �rst stage was already described in section ���� c�f� the remark at the end of that section� The
intuition underlying the second stage was given in the remark following Invariant � in section ����
For the detailed description of the second stage we need the concept of a funnel�

Let w�� w�� � � � � wk be the sequence of nodes in the combined interval tree which are left through
their rchild�pointer during the search for the x�coordinate of q� The algorithm in the second stage
constructs for i � k� k��� � � � � � a funnel Fi� The funnel Fi consists of an upper path UPi and a lower
path LPi� The upper path UPi �and similarly the lower path� consists of a sequence of segments
s�� � � � � sr and a sequence j�� � � � � jr of indices having the following properties �cf� Figure ��

��� j� � i and jl � jl�� for � � l � r�

��� For l� � � l � r� sl � N �wjl�
 AN �wjl� and sl extends at least toL�wjl���� i�e�� intersects
that line �for l � r� let L�wjl��� � L�q���

��� sl intersects L�wjl��� above sl�� for � � l � r and sr is above q

��� there is no segment s � W � �N �wi�
AN �wi�� which extends all the way to L�q� and which
intersects L�wi� between the two boundaries of the funnel�

The funnel Fk is readily constructed� Locate q in AN �wk� and N �wk� and let s and t be the
segments immediately above and below q� respectively� Then UPk � �s� and LPk � �t� has the
desired properties�

We next show how to construct Fi from Fi��� Let

UPi�� � �s�� � � � � sr�� LPi�� � �t�� � � � � tp�

and let j�� j�� � � � and k�� k�� � � � be the associated index sequences� Let

sN � Find N winner above�s���

sAN � Find AN winner above�s���

tN � Find N winner below�t���

tAN � Find AN winner below�t���

Then sN is the lowest segment in AN �wi����W �N �wi� above or equal to si and sAN is the lowest
segment in AN �wi��� �W �AN �wi� above or equal to si� Analogously� tN and tAN are highest
segment below or equal to si� Let Zi be the set of nodes on the path from rchild�wi� �excluding�
to wi�� �including�� If wi�� � rchild�wi� then Zi � �� For every z � Zi let s�z� and t�z� be the
segments in S�z� immediately above and below q �these segments were determined in stage ��� let
sZ be the lowest segment in fs�z�� z � Zig and tZ be the highest segment in ft�z�� z � Zig�

Dynamic Point Location ��

UP

LP

L(w
1

)

q

=UP (s ,s ,s)

LP = (t ,t ,t)

1 2 3

1 2 3

s
1

s
2

t
1

t
2 t

3

s
3

escapes the funnel trough the shaded regions (property (4))

i i
No segment in ∩W (N(w) ∪ AN(w))

2
L(w) L(w

3
) L(w

4
) L(w

 5
)

Figure �
 A Funnel

Lemma �� sZ� tZ � N �wi�
AN �wi�

Proof� Consider any vertex z � Zi� We show s�z� � N �wi�
 AN �wi�� Note �rst that S�z� �
AN �parent�z�� �Invariant �� and that either s�z� � W or s�z� is member of a nw�connection
�Invariant �� If s�z� � W then s�z� � N �wi�
 AN �wi� �Invariant ��� If s�z� is member of a
nw�connection then s�z� � L�u� z� where u is the left child of wi� In particular� s�z� � S�u� and
hence s�z� � AN �wi� �Invariant ���

Let esN be the lowest segment above q in the union of the blocks of N containing sN � tN � sZ
�if in N �wi��� and tZ �if in N �wi�� and let esAN be the lowest segment above q in the union of the
blocks of AN containing sAN � tAN � sZ �if in AN �wi��� and tZ �if in AN �wi��� Finally� let es be the
lowest among the segments esAN � and esN and let l � � be minimal such that es intersects L�wjl�
above sl �l � r � � if es intersects L�q� below sr�� Let UPi � �es� sl� sl��� � � � � sr�� The lower path
LPi is de�ned analogously�

Lemma �� Properties �	� to ��� of the funnel are maintained�

Proof� For properties ���� ��� and ��� this follows from Lemma �� and the construction of the
funnel� We now verify property ���� For the sake of a contradiction assume the existence of a
segment s �W � �N �wi�
AN �wi�� which extends all the way to L�q� and which intersects L�wi�
in the interior of the funnel� We now distinguish two cases�

Case �� s � S�z� for some z � Zi� By de�nition of Fi� UPi is not above s�z� and LPi is not below
t�z� in the vertical strip between L�wi� and L�q�� Also� s�z� and t�z� are adjacent segments
in S�z�� This contradicts the assumption about segment s�

Case �� s �� S�z� for all z � Zi� Since s is a winner and extends to L�q� we conclude s � AN �wi����
If s � N �wi� then the construction of the funnel guarantees that s is not contained in the
same block of N �wi� as either esN or etN � The de�nitions of operations Find N winner above
and Find N winner below guarantee that s cannot intersect L�wi��� in the intervals covered

��

by these operations� Thus s intersects L�wi��� in the interior of the funnel� a contradiction
to property ��� in the induction hypothesis� If s � AN �wi� then use the same argument with
N replaced by AN �

Lemma �� Let s be the segment in S immediately above q� let wi � home�s�� and let s� be the
�rst segment in the upper path of funnel Fi� Then s � s� and s� is the only segment in the upper
path of the funnel Fi�

Proof� Assume otherwise� Funnel properties ��� to ��� imply that s must intersect L�wi� between
s� and t�� Here s� and t� are the �rst segments of the upper and lower path respectively� Also�
s 	� t�� Let B be the block of N �wi� containing s� Then win�B� extends at least as far as s and
hence extends all the way to L�q�� Funnel property ��� now implies that win�B� does not intersect
L�wi� between s� and t�� Thus B must contain either s� or t�� But then block B was inspected
when funnel Fi was constructed from Fi��� Thus es � s and hence s� � s� Also the upper path of
Fi consists of only a single segment�

Lemma �� The query algorithm runs in time O�logn � log logn��

Proof� In each node it takes time O�loga� to �nd et and es� The update of the funnel takes amor�
tized time O��� since the funnel can grow by at most one segment for each node of the search path
and since it takes time O�� � d� to discard a terminal part of lenght d of either the upper or the
lower path�

Putting everything together we obtain

Theorem �
 The data structure of this section supports insertions and point location queries in
time O�logn�loglogn� and deletions in time O�log� n�� The time bounds for updates are amortized�
The space requirement is O�n��

� Conclusions

We close with two open problems� Is there a solution with logarithmic query and update time#
Can the data structure be generalized to intersecting line segments# Note that the solution pre�
sented here does not even detect when a segment to be inserted intersects segments already in the
structure�

References

	A
 Alt� H�
 �Comparing the Combinatorial Complexities of Arithmetic Functions�� Journal of
the ACM � ��� ��!!� pp� �� �����

	B
 Brent� R�P�
 �Fast Multiple�Precision Evaluation of Elementary Functions�� Journal of the
ACM � ��� �� �� pp� ��������

	M
 Mordell� L�J�
 �On the Linear Independence of Algebraic Numbers�� Paci�c Journal of
Mathematics� �� ����� pp� ��������

	Sc
 Sch�onhage� A�
�Schnelle Berechnung von Kettenbruchentwicklungen�� Acta Informatica� ��
�� �� pp� ��������

Dynamic Point Location ��

	ScSt
 Sch�onhage� A�� Strassen� V�
 �Schnelle Multiplikation gro$er Zahlen�� Computing � � �� ��
pp� �!������

	S
 Siegel� C�L�
 �Algebraische Abh�angigkeit von Wurzeln�� Acta Arithmetica� ��� �� �� pp� ���
���

%

