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Abstract

Completely positive, trace preserving (CPT) maps and Lindblad
master equations are both widely used to describe the dynamics of
open quantum systems. The connection between these two descrip-
tions is a classic topic in mathematical physics. One direction was
solved by the now famous result due to Lindblad, Kossakowski Gorini
and Sudarshan, who gave a complete characterisation of the master
equations that generate completely positive semi-groups. However,
the other direction has remained open: given a CPT map, is there a
Lindblad master equation that generates it (and if so, can we find it’s
form)? This is sometimes known as the Markovianity problem. Phys-
ically, it is asking how one can deduce underlying physical processes
from experimental observations.

We give a complexity theoretic answer to this problem: it is NP-
hard. We also give an explicit algorithm that reduces the problem
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to integer semi-definite programming, a well-known NP problem. To-
gether, these results imply that resolving the question of which CPT
maps can be generated by master equations is tantamount to solving
P=NP: any efficiently computable criterion for Markovianity would
imply P=NP; whereas a proof that P=NP would imply that our algo-
rithm already gives an efficiently computable criterion. Thus, unless P
does equal NP, there cannot exist any simple criterion for determining
when a CPT map has a master equation description.

However, we also show that if the system dimension is fixed (rele-
vant for current quantum process tomography experiments), then our
algorithm scales efficiently in the required precision, allowing an un-
derlying Lindblad master equation to be determined efficiently from
even a single snapshot in this case.

Our work also leads to similar complexity-theoretic answers to a
related long-standing open problem in probability theory.
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1 Introduction

Noise abounds in quantum mechanical systems, so it’s no surprise that the
mathematics of open quantum systems permeates many areas of quantum
theory. In quantum information theory, noisy evolution is usually modelled
by completely positive, trace preserving (CPT) maps. CPT maps are often
referred to as quantum channels, as they play the same role in quantum
information theory as classical channels (stochastic maps) play in classical
information theory: they give a discrete, black-box description of how input
states are transformed into output states.

Just as in classical information theory, questions ranging from communi-
cation capacities to error-correction and fault-tolerant computation benefit
from abstracting away the underlying physics in this way [1]. CPT maps also
arise naturally in experimental measurement of quantum dynamics, when a
complete “snapshot” of the dynamics is reconstructed via quantum process
tomography [1]. The reconstructed snapshot is a CPT map describing how
initial states are transformed by the evolution into states at the time of mea-
surement.

Noisy evolution in other areas of quantum physics, on the other hand, is
usually modelled by master equations. These directly describe the underly-
ing physical processes governing the evolution, in the form of a differential
equation for the time-evolution of the density matrix. They are frequently
used to model realistic experimental set-ups, where external noise and dis-
sipation must invariably be accounted for, especially in quantum optics [2]
and condensed-matter physics [3].

In describing a noisy evolution by a master equation, there is an implicit
assumption that the effect of the external environment on the system’s evo-
lution can be described in terms of the system’s degrees of freedom alone.
Given this assumption, the master equation must necessarily be Markovian.
One justification for this is if the underlying physical processes are forgetful—
as they commonly are to a good approximation. Conversely, if the Markovian
assumption doesn’t hold, then there is no way to decribe the evolution phys-
ically without enlarging the system being modelled to include (some of) the
environment degrees of freedom.

Mathematically, a Markovian master equation generates a one-parameter
(time t) semi-group (evolving for time t and then time s is equivalent to
evolving for time t + s) of CPT maps (the evolution must be completely
positive and trace preserving at all times if probabilities of measurement
outcomes are to be positive and sum to one).
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1.1 The Quantum Problem

The connection between these two descriptions of open quantum systems—
the black-box, discrete-time description of CPT maps, and the continuous-
time, physical description of master equations—is a classic topic in mathe-
matical physics. Two questions naturally arise: given a master equation, does
it generate a a completely positive evolution (and if so which CPT maps does
it produce)? Conversely, given one or more CPT maps, is there an underly-
ing Markovian master equation that generates them (and if so which one)?
These questions can equivalently be stated more mathematically: given a lin-
ear operator, does it generate a completely positive semi-group? Conversely,
given one or more CPT maps, are they members of a completely positive
semi-group?

In seminal papers from the 1970’s, Lindblad [4], Gorini, Kossakovski and
Sudarshan [5] gave a complete answer to the first question (for finite dimen-
sional systems∗). They derived the general form—now known as the Lindblad
form—for the generators of one-parameter completely positive semi-groups.
Just as any discrete transformation of quantum states must be completely
positive and trace-preserving if probabilities are to remain positive and nor-
malised for any input state, a master equation must be of Lindblad form if
it is to be physical, since an evolution that is not of this form will necessarily
lead to negative probabilities.†

The converse question, however, has remained open. For the case of
a single CPT map, we will refer to the problem of deciding whether it is
a member of a completely positive semi-group as the Markovianity problem,
since CPT maps that are generated by a Lindblad master equation are said to
be Markovian.‡ The main result of this work is a complexity-theoretic answer
to the Markovianity problem (which will be made more rigorous later):

∗For subtleties invovled in finding the most general form of a generator in infinite-
dimensional quantum systems, see Ref. [6].

†There exists a large literature on “non-Markovian master equations”, which are not
of Lindblad form. These can provide a useful phenomenological description of quantum
evolution. But since they necessarily predict negative probabilities for some physical
measurement outcomes, they are only valid for a restricted set of “allowed” initial states.
If the system is prepared in a state outside of this allowed set, the non-Markovian master
equation becomes invalid.

‡Note that this term is not used consistently throughout the literature. Here, we stick
to the standard use of the term Markovian in the mathematical physics literature to mean
the time-homogeneous Markovianity problem, in which the master equation is assumed to
be time-independent. Sometimes, in particular in the context of condensed-matter physics,
master equations are also referred to as being Markovian if they are of Lindblad form, but
may be time-dependent. One could also adopt the established classical terminology and
call the problem considered in this work the quantum embedding problem.
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Theorem 1 The Markovianity problem is NP-hard.

Our proof easily extends to more general problems, such as deciding whether
a family of CPT maps are members of the same completely positive semi-
group, or computing any “measure” of Markovianity [7–12].

“Hardness” here is in the rigorous complexity-theoretic sense, which will
be explained more precisely below. (See also Refs. [13, 14].) It concerns the
scaling of computational effort as a function of the size of the problem, i.e.
as a function of the total amount of information required to specify the CPT
map. But a more refined analysis can break down the overall problem size
here into two components: the dimension of the system, and the precision
to which the CPT map is specified. We will analyse the complexity of the
Markovianity problem with respect to both these parameters, and show that
the NP-hardness is a consequence of scaling of the dimension.∗ We will also
show—hinted at already in Ref. [7]—that for a fixed dimension, the Marko-
vianity problem can be decided efficiently in the precision. Thus, though the
problem in general is (very likely) intractable, in practical contexts arising
in current quantum experiments, where the dimension is invariably small,
the question of whether a given (family of) CPT map(s) is consistent with
Markovian dynamics can be tested efficiently from even a single snapshot in
time. We will give an explicit algorithm in this case, along with a careful
analysis of its scaling:

Theorem 2 For any fixed physical dimension the Markovianity problem can
be solved in a run-time that scales polynomially (both in the number of digits
to which the entries of the CPT map are specified, and the precision to which
the answer should be given).

Theorem 1 proves that deciding Markovianity is at least as hard as any
problem in the complexity class NP. The algorithm of Theorem 2 reduces
the problem to solving an integer semi-definite program, a problem that is
contained in the class NP. Together, these results imply that:

Corollary 3 Finding an efficiently computable criterion for Markovianity is
equivalent to solving the (in)famous P=NP question; proving P=NP would
imply the algorithm of Theorem 2 is efficient, whereas finding any efficiently
computable criterion for Markovianity would prove P=NP.

∗Note that the relevant parameter here is the system dimension, not the number of
qubits (the base-2 logarithm of the dimension), as the amount of information required to
specify the CPT map—the problem size—scales with the (square of) the dimension. The
time required to perform process tomography scales only polynomially in the dimension,
so is efficient in this context.
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1.2 The Classical Problem

The analogous questions can equally well be posed for classical dynamics.
In fact, the resulting mathematical problems are even older and more exten-
sively studied. The classical analogue of a CPT map is a stochastic map,
which, in the context of information theory, also describes a classical commu-
nication channel. The classical analogue of a master equation is a continuous-
time Markov chain, and the Markov-chain analogue of the Lindblad form can
be found in any good text book on Markov processes (see e.g. Ref. [15]).

However, the converse question: given a stochastic map, can it be gener-
ated by a continuous-time Markov chain, has remained a thorny open prob-
lem in probability theory for over 70 years! It is known as the embedding
problem for stochastic maps, and was first posed at least as long ago as
1937 by Elfving [16]. Though it has been the subject of investigation over
the many intervening decades [17–19], the general embedding problem has
remained open [20] until now.

Although there is a sense in which the classical embedding problem can
be viewed as a special case of the quantum Markovianity problem, mathemat-
ically the two are inequivalent: a result concerning one does not necessarily
imply anything about the other. However, it turns out that very similar tech-
niques can be used to tackle both problems, allowing us to also show that:

Theorem 4 The embedding problem is NP-hard.

This finally resolves the long-standing embedding problem, in the sense
that no efficiently computable (polynomial-time) criterion for embeddabil-
ity can exist unless P=NP; the existence of any such efficiently computable
criterion would imply P=NP. Rather than duplicating everything for the
classical case, we will focus in this paper on the somewhat more complicated
quantum problem, and then point out how the results can be adapted to
the older classical embedding problem. A more detailed exposition of the
classical result can be found in Ref. [21].

1.3 Implications for Physics

The Markovianity and embedding problems are not only of mathematical in-
terest. They are also crucial problems in physics. What is the best possible
measurement data that an experimentalist could conceivably gather about a
system’s dynamics? They could, for example, repeatedly prepare the system
in any desired initial state, allow it to evolve for some period of time, and
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then perform any desired measurement. In fact, by choosing tomographi-
cally complete bases of initial states and measurements, and carrying out
this procedure only a finite number of times, it is already possible to recon-
struct a complete “snapshot” of the system dynamics at any particular time
to arbitrary accuracy. In the quantum setting, this is quantum process to-
mography [1], but the general principle obviously applies equally well in the
classical setting. Remarkably, thanks to the dramatic progress in experimen-
tal control and manipulation of quantum systems over recent years, this is
no longer a theoretical pipe-dream even for quantum systems. Full quantum
process tomography is now routinely carried out in many different physical
systems, from NMR [8, 22–24] to trapped ions [25, 26], from photons [27, 28],
to solid-state devices [29].

Each tomographic snapshot gives us a dynamical map, which tells us
everything there is to know about the evolution at the time t when the
snapshot was taken. If, on the time scale of observation, the discrete evolution
is Markovian (i.e. doesn’t depend on the history of its past) then the snapshot
determines how any initial state of the system will evolve into a state at
time t. This evolution is then described mathematically by a stochastic
map in the classical setting and a CPT map in the quantum setting. In
the quantum case, the indedepence from the history, which is equivalent to
having an uncorrelated joint intial state of system and environment, can for
instance be guaranteed if the tomographic scheme can be carried out with
pure input states. This is certainly possible in principle, as we are assuming
that the experimentalist has full control over the initial state of the system,
and gives the best possible empirical description of the dynamics accessible
by an experiment. The quantum process tomography experiments mentioned
above [8, 22–29] have carried this out to a good degree of approximation in
a variety of different physical systems.

Under this assumption, all physical properties of the system at time t are
then fully determined by the tomographic snapshot. In the quantum case,
the expectation value of any physical observable M is then given by Born’s
rule, whereas in the classical case it is given by a straight-forward average.
Any physical measurement can therefore be viewed as an imperfect version
of process tomography, since it gives partial information about the snapshot,
and with sufficient measurement data the full snapshot can be reconstructed.
Thus the most complete data that can be gathered about a system’s dynamics
consists of a set of snapshots, taken at different times during the evolution.

Given one or more snapshots, understanding the underlying physical pro-
cesses typically amounts to reconstructing the system’s dynamical equations
and Liouvillian. If, over the time-scale of the experiment, the dynamics is de-
scribed to good approximation by Markovian dynamics, then the dynamical
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equations take the form of a Lindblad master equation (in the quantum case)
or a continuous-time Markov process (in the classical case). So to under-
stand the physics underlying an experimental system, we must understand
whether they can be described by a Markovian dynamics, and if so, what
form the Markovian dynamical equations take. Clearly, if we can find a set
of Markovian dynamical equations describing the dynamics whenever these
exist (and there is no a priori way of knowing whether they exist or not), we
can also determine whether they exist. So understanding the physics govern-
ing an experimental system implicitly involves solving the Markovianity or
embedding problem (or their generalisations to a family of CPT or stochastic
maps, in the case of multiple snapshots).

Thus the results of this work have a surprising implication for physics: no
matter how much measurement data we might gather about the behaviour of
a physical system, deducing its underlying Markovian dynamical equations—
if the dynamics can be traced back to such a process—is fundamentally an
intractable problem (assuming P6=NP). Indeed, already deciding whether or
not the Markov approximation is a reasonable one given the experimental
data is intractable. And this extends to various closely related physical prob-
lems, such as finding the dynamical equation that best approximates the
data, or testing a dynamical model against experimental data.

Given their importance to physics, it is not surprising that numerous
heuristic numerical techniques have been applied to tackle the Markovianity
and embedding problems [8–12]. But these methods give no guarantee of
finding the correct answer, or even any indication as to whether the correct
answer has been found. One implication of the results of this work is that
any such technique must necessarily fail in the general case (although for
fixed physical problem dimension, they can of course prove valuable). The
algorithm given in Section 5, which we prove is efficient for fixed dimension,
improves on previous methods in that it guarantees to give the correct answer.
It can also be extended to provide a similarly rigorous measure of the degree
of Markovianity [7].

1.4 Outline

After introducing the necessary notation and recalling basic concepts in Sec-
tion 2, Section 3 develops a careful and rigorous formulation of the Marko-
vianity problem that will allow us to apply tools from complexity theory. Sec-
tion 4 then gives a complexity-theoretic answer to the Markovianity problem:
it is NP-hard. Technically, NP-hardness alone does not prove equivalence to
P=NP; it could be that the Markovianity problem is much harder, so that
even P=NP would not imply an efficient algorithm for Markovianity. Sec-
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tion 5 completes the proof of equivalence by giving an explicit algorithm that
reduces the Markovianity problem to solving an NP-complete problem. We
give a careful analysis of the complexity of this algorithm, thereby providing
an explicit algorithmic solution to the Markovianity problem which would
be efficient if P=NP. Indeed, we show that if the dimension is fixed, the al-
gorithm scales polynomially in the precision. In Section 6 we briefly explain
how these proofs can be adapted to show that the classical embedding prob-
lem, too, is NP-hard (a fuller version appears in Ref. [21]). Finally, Section 7
concludes with a discussion of consequences of these results.

As the full NP-hardness proof described in Sections 3 and 4 is somewhat
involved, we give here an overview of the general structure of the argument,
as an aid to navigating the details of the proof. The proof proceeds by
defining a number of computational problems and proving a sequence of
complexity-theoretic relationships between them, starting from the Marko-
vianity problem itself, and ending with the NP-complete problem 1-in-3SAT.
The computational problems defined in the proof, and the relationships we
will establish between them, are illustrated in Fig. 1.

Markovian
channel

  
AA

AA
AA

AA
AA

AA
AA

AA

++
Markovian

mapkk

Lindblad
generator

>>}}}}}}}}}}}}}}}}

1-in-3SAT

OO

Figure 1: Computational problems defined in the proof, along with the complexity-
theoretic reductions between them. Since 1-in-3SAT is NP-complete, taken together
this sequence of reductions proves NP-hardness of the Markovianity problem.

Just as the dynamics of a closed quantum system governed by a Hamil-
tonian H is described formally by a unitary semi-group Ut = eHt obtained
by exponentiation, the dynamics of an open quantum system governed by a
Liouvillian L of Lindblad form is described formally by a completely-positive
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semi-group Et = eLt obtained by exponentiation of the Liouvillian. However,
unlike unitary dynamics, not every completely-positive map can be generated
by a Lindblad master equation. The Markovianity problem is precisely the
question of determining whether a given CPT map E is generated by some
Lindblad master equation or not. In Section 3, we formulate this question
rigorously as the computational problem Markovian channel. This is the
first of our computational problems, and the one we are seeking to prove is
NP-hard.

It turns out to be helpful for the proof to define another variant of this
computational problem, called Markovian map, in which the map that
we are given is not necessarily CPT. The first step in the proof is to show
that these two problems, Markovian channel and Markovian map,
are computationally equivalent; i.e. Markovian map can be reduced to
Markovian channel (the reduction in the opposite direction is trivial,
since Markovian channel is just a special case of Markovian map).
This is not difficult, and we do so at the end of Section 3.1. This proves
the first (and simplest) of the complexity-theoretic relationships illustrated
in Fig. 1.

For the finite-dimensional systems with which we are concerned, the Li-
ouvillian L is given by a finte-dimensional matrix, and the exponentiation
Et = eLt is the standard matrix exponential. By inverting this relationship
e.g. for t = 1, we obtain an expression for the Liouvillian L = logE1 in
terms of the matrix logarithm. In this way, the Markovianity problem for
CPT map E becomes one of determining whether L = logE is of Lindblad
form. In Section 3.2, we show that there is a simple and computationally
efficient algorithm for determining whether a given matrix L is of Lindblad
form. The difficulty lies in the fact that the logarithm logE is not uniquely
defined. Just as there are infinitely many logarithms log r + iφ + 2πin of
a complex number z = reiφ, parameterised by an integer n ∈ Z, there are
infinitely many branches of the matrix logarithm, parameterised now by a
vector of integers. Thus to solve the Markovianity problem for a map E,
we must check whether any one of the infinitely many possible logarithms
are of Lindblad form. In Section 3.2, we formulate this rigorously as the
computational Lindblad generator.

It is worth pausing at this point to note that, already here, we see a
hint as to why the Markovianity problem might be NP-hard. In terms of
the Liouvillian, the problem is one of checking whether any element of a set
parameterised by integers (the possible logarithms) has a particular prop-
erty (the Lindblad form). There are of course many exceptions, but it is
often the case that integer problems such as this are NP-hard. For exam-
ple, linear programming problems can be solved efficiently, but integer linear
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programming is NP-complete. Indeed, it is trivial to express NP-complete
satisfiability problems such as 3SAT as integer linear programs. Though the
construction is significantly more complicated, the same idea lies behind our
NP-hardness proof for the Lindblad generator problem.

The remainder of Section 3.2 is taken up with proving that the Lindblad
generator problem is computationally equivalent to Markovian chan-
nel. In fact, we first prove that Lindblad generator can be reduced
to Markovian map, implying that Markovian map is computationally
least as difficult as Lindblad generator. Then we prove a reduction from
Markovian channel to Lindblad generator, implying that Lindblad
generator is computationally at least as hard as Markovian map. Since
we have already seen that Markovian channel and Markovian map
are computationally equivalent, this implies equivalence of all three prob-
lems. This is illustrated in Fig. 1.

Having proven that the Markovianity problems are equivalent to the Lind-
blad generator problem, the final stage is to prove NP-hardness of the
latter. We do this in Section 4 by proving a reduction from a well-known NP-
complete problem 1-in-3SAT (a close cousin of the more famous 3SAT prob-
lem), implying that the Lindblad generator problem is at least as hard as
1-in-3SAT. By the sequence of relationships already proven between Lind-
blad generator and Markovian channel, this implies NP-hardness of
the Markovianity problem. The complete sequence of relationships is illus-
trated in Fig. 1.

2 Preliminaries

In what follows, we will restrict our attention to finite-dimensional spaces
and maps. It will be convenient to choose a concrete representation for the
CPT maps. Since a CPT map E is a linear map on the d2–dimensional
vector space Md of operators on a d–dimensional Hilbert space H, it can
be represented by a d2 × d2–dimensional matrix E in the usual way. More
explicitly, if we reshape the density matrix ρ as a vector ‖ρ〉 with elements
〈i, j‖ρ〉 = ρi,j in some orthonormal basis, E has matrix elements

E(i,j),(k,l) = 〈i, j‖E(|k〉〈l|)〉. (1)

The action of the channel E is then given by matrix multiplication, ‖E(ρ)〉 =
E‖ρ〉, and the composition E1 ◦ E2 of two channels E1 and E2 is given in this
linear operator representation by the matrix product E1E2.

The matrix E is also closely related to the more familiar Choi-Jamio lkowski
state representation [30, 31], given by the state σ = (E ⊗ I)(ω) obtained by

11



applying the channel to one half of the (unnormalised) maximally entangled
state ω =

∑

i,j |i, i〉〈j, j|, defined in some fixed orthonormal product basis of
Md ⊗Md (I being the identity map). Define the involution Γ by its action
on this basis,

|i, j〉〈k, l|Γ = |i, k〉〈j, l| . (2)

The Choi-Jamio lkowski and linear operator representations of E are then
related by E = σΓ.

Completely positive semi-groups of CPT maps Et arise naturally as solu-
tions of a Markovian quantum master equation describing the dynamics of
the density matrix ρ (indeed, the continuous semi-group structure is essen-
tially the only possible one if we require the evolution to be describable at
any time t ≥ 0 [32, 33]):

dρ

dt
= L(ρ), (3)

where L is the system’s Liouvillian. If the solutions ρ(t) = Et(ρ(0)) are to be
completely positive for all t ≥ 0, then the Liouvillian L must be of Lindblad
form [4, 5]:

dρ

dt
= L(ρ) = i[ρ,H ] +

∑

α,β

Gα,β

(

FαρF
†
β − 1

2
{F †

βFα, ρ}+
)

. (4)

Here, H is Hermitian, and can be interpreted as the Hamiltonian of the
system, G ≥ 0 and {Fα} describe the decoherence processes, and {A,B}+ =
AB +BA denotes the anti-commutator. A Markovian channel is one that is
a member of such a semi-group, i.e. one that is generated by some L of the
above form.

It will again be convenient to represent the generator L by a matrix, in
the same way as for the channels. In the linear operator representation, a
Markovian channel E = eL is one with a generator L such that eLt is CPT for
all t ≥ 0. Note that we can without loss of generality rescale time such that
E is generated by L at time t = 1. The fact that the generator and channel
are related by standard matrix exponentiation in the linear operator repre-
sentation makes this representation particularly convenient for our purposes.
It is not difficult to translate Eq. (4) into conditions on L (see Section 3.2 or
Ref. [7]).

The classical case is analogous. A stochastic map on a finite d–dimensional
state space is represented by a d×d–dimensional stochastic matrix P , which
acts on d–dimensional probability vectors p. An embeddable stochastic ma-
trix P = eQ is then one with a generator Q such that eQt is stochastic for all
t ≥ 0, i.e. Q defines a continuous-time Markov chain. The conditions on Q
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analogous to the Lindblad form of Eq. (4) (or, more precisely, to Lemma 8)
are given by [15]:

(i). Qi 6=j ≥ 0 ,

(ii).
∑

i Qi,j = 0 .

For consistency with the quantum notation, we are adopting the convention
that probability distributions are column vectors, and maps act on them
to the right. Thus the normalisation condition applies to the column-sums
rather than the row-sums. Note, however, that this runs counter to the
convention in the probability theory literature of representing probability
distributions by row-vectors.

We will also make use of some basic concepts from complexity theory.
(See e.g. Refs. [13, 14] for an introduction to this field.) Complexity theory
is concerned with how the computational resources (typically time or space)
required to solve a problem scale with the problem size, where the size of
a computational problem is the amount of information required to specify
the problem. The most important complexity classes are defined for decision
problems: problems with “yes” or “no” answers. For example, the complexity
class P is defined as the class of all decision problems that can be solved on a
classical computer in a time that scales as a polynomial of the problem size.
We say that such problems can be solved in polynomial time, or efficiently.
The notorious complexity class NP is defined as the class of all decision
problems for which, if the answer is “yes”, there exists a proof that can
be verified in polynomial time. Clearly, any problem in P is also in NP.
It is widely believed that P is a strict subset of NP; this is the famous
P versus NP problem, which remains open to this day. A classic example
of an NP problem that is not known to be in P is the satisfiability problem:
deciding whether there exists an assignment of truth values to a set of boolean
variables for which a given boolean expression evaluates to “true”. Finding
such an assignment may be difficult, but if such an assignment exists, then
there clearly exists a proof of this fact which can be evaluated efficiently:
namely, the list of truth assignments itself.

We say that a decision problem A can be reduced to a decision problem
B if there exists an algorithm that transforms any instance of A into an
instance of B, such that the answer to this B instance gives the answer to the
orignal A instance. To give a meaningful hierarchy of complexity classes, the
computational resources allowed in the reduction must be restricted in some
way. For the complexity class NP, the appropriate reductions are polynomial-
time reductions. ∗ If A has a polynomial-time reduction to B, then B is in

∗Strictly speaking, what we have described here is polynomial-time many-to-one reduc-
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a well-defined sense “harder” than A, since an efficient algorithm for solving
B would also give an efficient algorithm for A. Reduction defines a partial
order on computational problems, and we will write A ≤ B when A has a
polynomial-time reduction to B. A problem A is called NP-hard if every
problem in NP has a polynomial-time reduction to A. An NP-hard problem
that is also contained in NP is called NP-complete. NP-complete problems
are, in the above sense, the hardest problems in NP.

3 The Quantum Problem

3.1 The Computational Markovianity Problem

In order to apply tools from complexity theory to study the Markovianity
problem, we will need to define the problem in such a way that the prob-
lem size—the amount of information needed to specify an instance of the
problem—is well-defined. Even in the finite-dimensional case, this requires a
little care. Since CPT maps form a continuous set, there may exist Marko-
vian and non-Markovian channels that are arbitrarily close (in any distance
measure). Thus, to guarantee an unambiguous answer in all cases, the chan-
nel would need to be specified to infinite precision.

There are essentially two standard ways of dealing with this in complexity
theory. But, before we do so, it is instructive to first take a step back and re-
call some of physical motivation for the problem. In measuring a tomographic
snapshot of a system’s dynamics, there will always be some experimental er-
ror, and it makes little sense to require an answer that is more precise than
this error. Mathematically, this suggests that we should consider the Marko-
vianity problem solved if we can answer the question for some map that is a
sufficiently close approximation to the one we were given.

This is the intuitive idea behind the following weak-membership formula-
tion of the Markovianity problem (cf. Ref. [34], which uses a weak-member-
ship formulation of the separability problem):

Problem 5 (MARKOVIAN CHANNEL)
Instance: (E, ε): CPT map E, precision ε ≥ 0.
Question: Assert either that:

• for some map E ′ with ‖E ′ − E‖ ≤ ε, there exists a map L′ such that
E ′ = eL

′

and eL
′t is CPT for all t ≥ 0;

tion, or Karp reduction, the strongest form of reduction. This is the type of reduction used
to define NP-hardness, and is the only form of reduction with which we will be concerned
in this paper.
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• for some CPT map E ′ with ‖E ′ −E‖ ≤ ε, no such L′ exists.

Here, we do not specify the matrix norm ‖.‖ in the problem definition. How-
ever, given the equivalence of norms on finite-dimensional spaces, with at
most a polynomial prefactor in the dimension relating one norm to the other,
we can leave the choice of norm open for now. Again, we can always without
loss of generality scale time such that, if a suitable L′ exists, E ′ is generated
by L′ at time t = 1.

Note that, if E is close to the boundary of the set of Markovian channels,
then it will be close to both Markovian and non-Markovian maps, and both
assertions will be valid simultaneously. The physical interpretation in such a
case would simply be that the snapshot was not measured to sufficient pre-
cision to allow an unambiguous answer. (There are other ways to formulate
weak-membership problems, but they are essentially equivalent [35].) The
other standard approach would be to restrict E to have rational entries, but
this is less natural in the present context.

Because there are cases in which both answers may be valid, the weak-
membership formulation of Markovian channel is not formally a decision
problem. This by definition rules it out of the decision class NP, where
it by rights belongs. Whilst it is possible to reformulate it as a decision
problem, we will avoid getting bogged down in these complexity theoretic
technicalities here, and accept that Markovian channel is not in NP.
(In fact, the appropriate complexity class for weak membership problems is
known as promise-NP, which is like NP but with an additional promise that
the problem instance will never be in some set. The results of Section 5 show
that the Markovianity problem is indeed in promise-NP, which, together with
the NP-hardness result, implies that it is promise-NP-complete. See Ref. [35]
for a discussion of similar issues in the context of the separability problem.)

Markovian channel carries the implicit promise that E is a CPT map.
It is natural to ask whether this affects the complexity of the problem. After
all, if a tomographic snapshot is measured experimentally, it is very unlikely
to be either precisely trace-preserving or completely positive. This motivates
the definition of the following variant of the Markovianity problem, which
accounts for non-CPT maps E:

Problem 6 (MARKOVIAN MAP)
Instance: (E, ε, ε′): Map E, precision parameters ε > ε′ > 0.
Question: Assert either that:

• for some map E ′ with ‖E ′ − E‖ ≤ ε, there exists a map L′ such that
E ′ = eL

′

and eL
′t is CPT for all t ≥ 0;
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• for some CPT map E ′ with ‖E ′ −E‖ ≤ ε, no such L′ exists;

• no CPT map E ′ exists for which ‖E ′ − E‖ ≤ ε′.

It is not difficult to see that the two problems, Markovian channel and
Markovian map, are in fact equivalent. Clearly, Markovian channel is
a special case of Markovian map, in which the third assertion is always false
(E itself fulfils the requirements of one or other of the first two assertions).
Conversely, complete-positivity of a map E is equivalent to positivity of the
Choi-Jamio lkowski matrix ρ = EΓ, and E is trace-preserving iff the partial
trace of ρ is the identity matrix. So finding the closest CPT map E ′ to E
is equivalent to finding the closest positive-semi-definite, suitable matrix ρ′

to ρ. Indeed, if we fix the norm in Markovian map to be the Frobenius
norm∗ ‖A‖F := (

∑

i,j A
2
i,j)

1/2, then not only do we have ‖E ′ − E‖F = ‖ρ′ −
ρ‖F, but also, if we minimise ‖ρ′ − ρ‖2F subject to the above semi-definite
constraints, the objective function becomes a convex quadratic form. The
problem can therefore be transformed into a semi-definite program using
standard techniques [36], allowing it to be solved efficiently to give E ′ and
‖E ′ − E‖F. (More precisely, we can compute a bound on ‖E ′ − E‖F that
can be made exponentially tight with only polynomial overhead.) Thus,
either we will conclude that the third assertion is valid, or we will succeed
in transforming the problem into a Markovian channel instance. This
proves the following complexity-theoretic (Karp) equivalence†:

Theorem 7 Markovian map = Markovian channel.

3.2 The Computational Lindblad Generator Problem

It is not immediately clear how one would go about solving a Markovian
channel or Markovian map instance. In order to answer this, we will
need to establish certain properties of the generators L of Markovian maps
E = eLt. We will call such L Lindblad generators. The following Lemma
is taken directly from Ref. [7], which in turn is a slight modification of the
argument given in Ref. [4], and gives an efficient criterion for deciding whether

∗The Frobenius norm is convenient for two reasons: firstly, the square of the norm-
distance ‖A−B‖2

F
is strictly convex; secondly, it is invariant under permutation of matrix

elements, in particular ‖AΓ‖F = ‖A‖F.
†Throughout this paper, we will only consider Karp-reductions—i.e. polynomial-time

reductions which transform one problem directly into a single instance of another—and
Karp-equivalence. These are the strongest forms of reduction and equivalence, and are
the ones used to define NP-hardness.
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or not L generates a one-parameter CPT semi-group, i.e. whether it is of
Lindblad form.

Lemma 8 A map L is a Lindblad generator iff all of the following hold:

(i). LΓ is Hermitian.

(ii). L fulfils the normalisation 〈ω| L = 0, where the maximally entangled

state vector |ω〉 =
∑

i |i, i〉/
√
d is expressed in the same basis in

which the involution Γ is defined.

(iii). L satisfies
(1‖ − ‖ω)LΓ(1− ω) ≥ 0 (5)

where ω = |ω〉〈ω|.

Maps LΓ satisfying Eq. (5) are called conditionally completely positive (ccp).
We can assume without loss of generality that the matrix E in a Marko-

vian map or Markovian channel instance is diagonalisable (with respect
to similarity transforms), non-degenerate, and full-rank. (Such matrices are
dense in the set of all matrices, so we can always replace E with a neigh-
bouring map that has these properties, and decrease ε (keeping ε′ fixed in
the case of Markovian map) such that the outcome is unchanged.) The
Jordan decomposition of a diagonalisable channel has the form

E =
∑

r

λr |rr〉〈lr| +
∑

c

λc |rc〉〈lc| + λ̄c F(|rc〉〈lc|). (6)

where r labels the real eigenvalues, c the complex ones, and |rk〉〈lk| are
orthonormal (but typically not self-adjoint) spectral projectors formed from
the left and right eigenvectors 〈lk| and |rk〉 of E associated with the same
eigenvalue λk. The fact that the eigenvalues come in conjugate pairs and that
the corresponding spectral projectors are related via the “flip” operation,

F

(

∑

i,j

ci,j |i, j〉
)

=
∑

i,j

c̄i,j |i, j〉 (7)

extended to operators as

F

(

∑

(i,j),(k,l)

c(i,j),(k,l) |i, j〉〈k, l|
)

=
∑

(i,j),(k,l)

c(i,j),(k,l) |j, i〉〈k, l| , (8)

is a straightforward consequence of Hermiticity of CPT maps. It is easy to
show that all CPT maps are necessarily Hermitian.
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Inverting the relationship E = eL, we obtain a generator L = logE from
any channel E, where the matrix logarithm is defined via the logarithm of
the eigenvalues. Of course, the logarithm is not unique. It has a countable
infinity of branches, since the phase of each eigenvalue is only determined
modulo 2π. E is Markovian iff there exists some branch of the logarithm
that has Lindblad form, i.e. that satisfies Lemma 8. So, to check if a channel is
Markovian, we must check whether any branch of its logarithm has Lindblad
form.

Some of the branches can be ruled out immediately, using the condition
that Lindblad generators must also be Hermitian maps (Condition (i) from
Lemma 8), which imposes that eigenvalues come in conjugate pairs. The
remaining set of possible Lindblad generators for E can be parametrised by

Lm := logE = L0 + 2πi
∑

c

mc

(

|lc〉〈rc| − F(|lc〉〈rc|)
)

= L0 +
∑

c

mcAc, (9)

where L0 is any fixed branch of the logarithm, e.g. the principle branch
(defined by taking the principle branch in the logarithm of each eigenvalue),
and each branch is characterised by a set of at most d2/2 integers mc (one
for each pair of complex eigenvalues). We introduce the matrices Ac, defined
by

Ac := 2πi
(

|lc〉〈rc| −F(|lc〉〈rc|)
)

(10)

for notational convenience.
The Ac are fully determined by L0, or, equivalently, by E. The following

lemma summarises those properties of Ac and L0 that are easy to check, and
follows immediately from the first two conditions of Lemma 8 and Eqs. (9)
and (10):

Lemma 9 If Lm = L0 +
∑

cmcAc parametrise the logarithms of a CPT map
E as in Eq. (9), then L0 and Ac necessarily satisfy the following properties:

(i). L0 and Ac are simultaneously diagonalisable.

(ii). Ac are mutually orthogonal, rank-2 matrices with non-zero eigen-
values ±2πi.

(iii). L0 and Ac satisfy the normalisation 〈ω|L0 = 〈ω|Ac = 0.

(iv). The two eigenvalues of L0 corresponding to the non-zero eigenvalues
of any Ac form a conjugate pair.

(v). The right and left eigenvectors |r1,2〉 and 〈l1,2| associated with a
conjugate pair of eigenvalues are related by |r2〉 = F(|r1〉) and 〈l2| =
F(〈l1|).
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The last two properties of pairs of eigenvalues and eigenvectors can be stated
more concisely as:

(iv’) LΓ
0 and AΓ

c are Hermitian matrices.

Together with the ccp condition of Lemma 8,

(1− ω)LΓ
0 (1− ω) +

∑

c

mc(1− ω)AΓ
c (1− ω) ≥ 0, (11)

this gives a criterion for deciding whether Lm = L0 +
∑

cmcAc generates a
CPT semi-group. Note that it is possible for Lm to be ccp even if L0 is not.

The characterisation of Lindblad generators in Lemma 8 motivates the
definition of a new weak-membership problem:

Problem 10 (LINDBLAD GENERATOR)
Instance: (L0, δ): Map L0, precision δ.

Promise: There exists a map L′
0 with ‖L0 − L′

0‖ ≤ f(δ) such that eL
′

0 is a
quantum channel. (f(δ) is a strictly increasing function of δ which will be
specified later.)
Question: Assert either that:

• for some map L′
0 with ‖L′

0−L0‖ ≤ δ, there exists a set of integers {mc}
such that L′

m as defined in Eq. (9) satisfies Lemma 8;

• for some map L′
0 where eL

′

0 is a quantum channel and ‖L′
0 − L0‖ ≤ δ,

no such L′
m exists.

The bound f(δ) in the promise will be a somewhat complicated monotonically
increasing function of δ whose definition we defer until later (see Theorem 16),
when it will make more sense. But, essentially, the promise guarantees that
L0 is close to the generator of some CPT map. This definition of Lindblad
generator might appear somewhat arbitrary. And indeed it would be,
were we interested in the problem of deciding Lindblad form per se. (In
that case, it would make more sense to replace the promise by an extra
assertion, analogous to the third assertion of Markovian map.) But we will
only use Lindblad generator as a stepping-stone to results concerning
Markovian channel and Markovian map, and the above definition
fulfils this purpose. In a slight abuse of terminology, we will also refer to maps
L0 for which there exists an Lm satisfying Lemma 8 as Lindblad generators,
even if L0 itself is not of Lindblad form.

The preceding discussion suggests that Lindblad generator and
Markovian map are equivalent. Clearly, the map E = eL0 is Markovian
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iff there exists at least one Lm satisfying Lemma 8. However, a little care
is required in order to show that the reductions in both directions can be
performed efficiently. In particular, we must show that appropriate precision
parameters ε and δ can be computed efficiently, as well as accounting for
the fact that the exponential and logarithm can not be computed to infinite
precision. This will require strong continuity properties of the matrix expo-
nential and logarithm, and whilst these are easily established in the case of
the exponential, they are somewhat more complicated to establish for the
logarithm.

A proof of Lipschitz continuity of the exponential can be found in stan-
dard texts (see e.g. Ref. [37, Corollary 6.2.32]).

Lemma 11 For any matrices A and B and any matrix norm ‖.‖
∥

∥eA − eB
∥

∥ ≤ exp(‖A‖) exp(‖A− B‖) ‖A− B‖ . (12)

For the logarithm, we will need the following definition and theorems from
Refs. [38] and [39].

Definition 12 For closed linear operators A,B on a Banach space, define

d(A,B) = max[δ(A,B), δ(B,A)], (13)

δ1(A,B) = sup
0<λ≤1

δ(λA, λB), (14)

d1(A,B) = max[δ1(A,B), δ1(B,A)], (15)

(taken directly from Refs. [38, 39], following the notation of Ref. [39]). δ(A,B)
is Kato’s δ measure [38, IV.§2.4].∗

Note that none of these measures obey the triangle inequality, so none are
proper distance measures (though they can readily be turned into such; see
Ref. [38, IV.§2.2,2.4]). The following theorem shows that, on bounded oper-
ators, the topology generated by δ is equivalent to the norm topology of the
Banach space (see [38, §IV, Theorems 2.13 and 2.14]).

∗The distance-like measure d (which Kato calls δ̂) goes variously by the names “gap”,
“aperture” or “opening”. Here,

δ(A,B) = sup
x

dist((x, Ax), G(B)), (16)

where G(B) is the graph of B, and the supremum is taken over all x in the domain
of A, normalised such that ‖x2‖ + ‖Ax‖2 = 1. This distance-like measure generates
the correspondingly named topology. This topology can equivalently be defined as the
standard graph topology on the graphs of the operators.
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Theorem 13 If A and B are bounded operators on a Banach space with
norm ‖.‖, then

d(A,B) ≤ ‖A− B‖ (17)

and, if in addition d(A,B) < (1 + ‖A‖2)1/2,

‖A− B‖ ≤ (1 + ‖A‖2)δ(A,B)

1 − (1 + ‖A‖2)1/2δ(A,B)
. (18)

Continuity of the logarithm can now be stated in terms of the distance-like
measures of Definition 12 (see [39, Theorem 3.1]).

Theorem 14 If A,B ∈ P1(M) are operators on a Banach space with norm
‖.‖, then for M > 0

d1(logA, logB) ≤ 134(1 + M2)δ1(A,B), (19)

where D = {A | domA dense} and

P1(M) = {A ∈ D | λ ∈ ρ(A) and (1 − λ) ‖R(λ,A)‖ ≤ M for λ ≤ 0} (20)

are subsets of operators on the Banach space, R(λ,A) is the resolvent of A,
and ρ(A) its resolvent set.

For the case of finite-dimensional Hilbert spaces that we are concerned
with here, P1(M) becomes the set of complex matrices whose eigenvalues
do not lie on or close to the negative real axis. This amounts to taking the
branch-cut of the logarithm to be along that axis. (Since this rules out zero
eigenvalues, these matrices are also necessarily non-singular.)

Because we defined our computational problems in terms of norm-distance,
rather than the distance-like measures of Definition 12, we need to transform
Theorem 14 into a statement about norm-distance.

Corollary 15 If A,B are bounded operators on a Banach space with norm
‖.‖, and if kA, kB ∈ P1(M) with

k = min
[

1,
(

1342(1 + M)2‖A−B‖2 − ‖A‖2
)1/2

]

, (21)

then

‖logA− logB‖
≤ 134k(1 + M2)

(

1 + k‖A‖ + k‖A− B‖(1 + k2‖A‖2)1/2
)

‖A−B‖ . (22)
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Proof Assume first that d(logA, logB) < (1 + ‖ logA‖2)1/2, so that the
condition of Theorem 13 holds and Eq. (18) is valid. From Definition 12,
and rearranging Eq. (18), we have

d1(logA, logB) ≥ δ1(logB, logA) = sup
0<λ≤1

δ(λ logB, λ logA)

≥ δ(logB, logA) ≥ ‖logA− logB‖
1 + ‖A‖ + ‖A− B‖ (1 + ‖A‖2)1/2

(23)
and

δ1(A,B) = sup
0<λ≤1

δ(λA, λB) ≤ sup
0<λ≤1

d(λA, λB)

≤ sup
0<λ≤1

‖λA− λB‖ = ‖A− B‖ .
(24)

Using these inequalities in Theorem 14 gives Eq. (22) of the Corollary with
k = 1, under the assumption that d(logA, logB) obeys the condition of
Theorem 14.

Otherwise, we can rescale A and B until they do obey the condition. Let

0 < k <
(

1342(1 + M2)2‖A− B‖2 − ‖A‖2
)−1/2

. (25)

Then, using Eq. (24) and Theorem 14,

d
(

log(kA), log(kB)
)

≤ d1
(

log(kA), log(kB)
)

≤ 134(1 + M2)δ1(kA, kB)

≤ 134|k|(1 + M2)‖A− B‖ < (1 + |k|2‖A‖2)1/2

= (1 + ‖kA‖2)1/2,

so d
(

log(kA), log(kB)
)

does satisfy the condition of Theorem 14, and by the
preceding argument Eq. (22) applies to ‖ log(kA) − log(kB)‖. But

‖ log(kA) − log(kB)‖ = ‖ logA + log(k1) − logB − log(k1)‖
= ‖ logA− logB‖, (26)

which completes the proof. �

Note that if A or B happens to have an eigenvalue on the negative real
axis, we can always rotate the branch-cut, or equivalently the eigenvalues.
Multiplying by a scalar root of unity z rotates the eigenvalues away from the
real axis, without changing the bound in Corollary 15: ‖ log(zA)−log(zB)‖ =
‖ logA− logB‖, but ‖zA− zB‖ = ‖A−B‖.

We are now in a position to prove the main results of this section.

Theorem 16 Markovian map ≥ Lindblad generator.
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Proof Assume first that we are given an instance (L0, δ) of Lindblad gen-
erator that is unambiguous, i.e. either all neighbouring generators of chan-
nels are Lindblad generators, or none are. In that case we know that one or
other of the assertions is valid, but not both. Now, using Corollary 15, we
can calculate (efficiently) an ε such that for logE = L0, logE ′ = L′

0, and
‖E − E ′‖ ≤ ε, we have ‖ logE − logE ′‖ ≤ δ. (Indeed, it is not difficult to
solve Eq. (22) for ε and obtain an explicit expression.) Then the pre-image
of an ε-ball around E = eL0 is contained within the δ-ball around L0 (as
illustrated in Fig. 2). Since a map E ′ = eL

′

0 is Markovian iff L′
0 is a Lindblad

generator, and we are assuming the Lindblad generator instance is un-
ambiguous, any channels within this ε-ball must either all be Markovian or
all be non-Markovian.

L0

exp

2ǫ
3

δ

ǫ

Ẽ
E

Figure 2: The pre-image of an ε-ball around E = eL0 is contained within a δ-ball around
L0. If Ẽ is within ε/3 of E, then everything within a 2ε/3-ball around Ẽ is within the
ε-ball around E.

To deal with the fact that E = eL0 can not be calculated to infinite
precision, let Ẽ be the exponential of L0 calculated to within precision ε/3
(which can be done efficiently [40]); i.e. ‖Ẽ − E‖ ≤ ε/3. If E ′ is within
a 2ε/3-ball around Ẽ, we have ‖E ′ − E‖ ≤ ε. Therefore, assuming for
the moment that there exists some channel within this ball (i.e. assuming
its third assertion is not valid), the Markovian map instance (Ẽ, 2ε/3, ε′)
with any ε′ ≤ 2ε/3 will return its first (second) assertion iff the first (second)
assertion of the original Lindblad generator instance was valid (always
under the assumption that the original Lindblad generator instance was
unambiguous). This is illustrated in Fig. 2.

We must now justify the assumption that the third assertion of the
Markovian map instance (Ẽ, 2ε/3, ε′) is always false. Recall that the
Lindblad generator promise guarantees existence of a generator L′

0 of a
quantum channel within an f(δ)-ball around L0. For the assumption to be

23



justified, this must imply existence of at least one quantum channel within an
ε′-ball around Ẽ. We now take f(δ) to be defined implicitly using Lemma 11,
such that for ‖L0−L′

0‖ ≤ f(δ) we have ‖eL0 − eL
′

0‖ ≤ ε/3. (Once again, sub-
stituting the explicit expression for ε into Eq. (22) and solving for f(δ) would
give an explicit definition for the latter, if so desired.) Then ‖Ẽ−E ′‖ ≤ 2ε/3,
so that E ′ fulfils the requirements with ε′ = 2ε/3. Figure 3 illustrates this.

f(δ)

L0

Ẽ
ǫ
3

E

exp

Figure 3: Everything within an f(δ)-ball around L0 is mapped into an ε/3-ball around E,
which itself is contained within a 2ε/3-ball around Ẽ. (See also Fig. 2.)

Finally, it remains to consider the case of Lindblad generator in-
stances that are ambiguous; i.e. there exist generators of both Markovian
and non-Markovian channels within a δ-ball around L0. In that case, the
Markovian map instance (Ẽ, 2ε/3, ε′ = 2ε/3) could return either assertion.
But the original Lindblad generator instance is also allowed to return
either assertion in this case, which completes the proof of the reduction. �

Theorem 17 Lindblad generator ≥ Markovian channel.

Proof The reduction from Markovian channel to Lindblad gener-
ator is very similar to the proof of Theorem 16, reversing the roles of
Lemma 11 and Corollary 15. The Lindblad generator promise is au-
tomatically fulfilled, since L0 = logE is itself necessarily a generator of a
quantum channel (namely, E). �

Together, Theorems 7, 16 and 17 imply the following corollary:

Corollary 18 Lindblad generator = Markovian map = Marko-
vian channel.
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4 NP-hardness

We are now in a position to consider the computational complexity of the
problems defined in the previous sections. Although the ccp condition of
Eq. (5) is an integer semi-definite program, and it is well known that even
linear integer programming is NP-complete, this by no means proves that
Lindblad generator is NP-hard. Linear programming is the special case
of semi-definite programming in which the coefficient matrices are diagonal.
But the matrices L0 and Ac defining a Lindblad generator instance must
satisfy a number of highly non-trivial constraints, as listed in Lemma 9, which
certainly cannot be satisfied by diagonal matrices. Instead, our approach
will be to restrict to a special case of Lindblad generator, for which the
relation between L0 and LΓ

0 is somewhat easier to analyse, then show that
this special case can be used to encode 1-in-3SAT, a standard NP-complete
satisfiability problem [14], simpler even than its better-known cousin 3SAT
in that it does not require any boolean negation:∗

4.1 Encoding 1-in-3SAT

Problem 19 (1-in-3SAT)
Instance: (nv, nC): nv boolean variables; nC clauses each with exactly 3 vari-
ables.
Question: Is there a truth assignment of the variables such that each clause
contains exactly one true variable?

1-in-3SAT can be transformed into a set of simultaneous linear integer
inequalities in the standard way. Identify each boolean variable with an
integer variable mc, and identify the values 1 and 0 with “true” and “false”.
For each mc, write the inequalities

mc ≥ −1

2
, −mc ≥ −7

6
, (27)

and for each 1-in-3SAT clause involving variables i, j and k, write the
following inequalities:

mi + mj + mk ≥ 1

2
, −mi −mj −mk ≥ −3

2
. (28)

∗Note that the use of the term 1-in-3SAT is not entirely consistent in the literature.
Here we mean the variant that does not involve any negation, as originally formulated in
Ref. [41].
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The non-integer constants are chosen for later convenience. These inequalities
are satisfied for integer mc if precisely one mi from each clause is equal to
one and the others are all zero.

We now restrict the matrices L0 and Ac that define a Lindblad Gener-
ator instance (cf. Eq. (9)) to have the following special forms:

L0 =
∑

i,j

Qi,j |i, i〉〈j, j| +
∑

i 6=j

Pi,j |i, j〉〈i, j| , (29)

Ac = 2π
∑

i 6=j

Bc
i,j |i, i〉〈j, j| , (30)

with

Q =
∑

r

xrx
T
r ⊗

(

1 1
1 1

)

⊗
(

k + λr λr

λr k + λr

)

+
∑

c

vcv
T
c ⊗

(

1 −1
−1 1

)

⊗
(

k −1
3

1
3

k

)

(31)

+
∑

c′

vc′v
T
c′ ⊗

(

1 −1
−1 1

)

⊗
(

k 0
0 k

)

,

Bc = vcv
T
c ⊗

(

1 −1
−1 1

)

⊗
(

0 1
−1 0

)

. (32)

{xr} and {vc,vc′} are two complete sets of mutually-orthogonal, real vectors,
whilst k and λr are real. Note that Q and Bc are normal matrices, as are
L0 and Ac. Since [L0, A

†
c] = 0, the {Lm = L0 +

∑

cmcAc} are also normal.
The factor of 2π in Eq. (30) is for later convenience. Figures 4 and 5 give a
graphical representation of the structure of L0 and Ac.

It is a simple matter to verify that the properties required by Lemma 9
are indeed satisfied by the forms given in Eqs. (29) to (32), as long as

wTQ = 0, (33)

and P = P † is Hermitian, where w = (1, 1, . . . , 1)T/
√
d for d × d-matrix Q.

Furthermore, the ccp condition of Lemma 8 reduces to the pair of conditions

2π
∑

c

Bc
i,j mc + Qi,j ≥ 0, i 6= j, (34a)

(1−wwT )K(1−wwT ) ≥ 0, (34b)

where K denotes the d×d-dimensional matrix with diagonal elements Ki,i =
Qi,i and off-diagonal elements Ki 6=j = Pi,j.
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Figure 4: The structure of L0 from Eq. (29) is most apparent if we reorder the rows and
columns so that all the (i, i), (j, j) elements are in the top, left corner. We can then think
of L0

∼= Q⊕ diagP as being composed of a matrix Q and a vector P .
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Figure 5: Reordered in the same way, Ac from Eq. (30) is composed of just a matrix part:
Ac

∼= Bc ⊕ 0.
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We encode the 1-in-3SAT inequalities of Eqs. (27) and (28) by writing
them directly into the {vc}. We associate a single vc to each boolean variable
of the problem. For each clause l, write a “1” in the l’th element of the three
vc’s corresponding to the variables appearing in that clause, and write a “0”
in the same element of all the other vc. Since there are nC clauses in total,
at the end of this process the vectors each have nC elements. Now for each
vc, write a “1” in its nC + c’th element, writing a “0” in the corresponding
element of all the other vectors. So far, we have defined the first nC + nv

elements of the vectors. Finally, extend the vectors so that they are mutually
orthogonal and all have the same Euclidean norm vT

c vc. This can always be
done, and will require at most a further nv elements, producing vectors with
at most nC + 2nv elements. This procedure encodes the coefficients for the
1-in-3SAT inequalities into some of the on-diagonal 4 × 4 blocks of the Bc.
Specifically, if we imagine colouring Bc in a chess-board pattern (starting
with a “white square” in the top-leftmost element), then the coefficients for
one inequality are duplicated in all the “black squares” of one 4 × 4 block
(see Fig. 6).

Colouring Q in the same chess-board pattern, the contribution to its
“black squares” from the first term of Eq. (31) is generated by the off-diagonal
elements λr:

∑

r

xrx
T
r ⊗

(

1 1
1 1

)

⊗
(

· λr

λr ·

)

= S ⊗
(

1 1
1 1

)

⊗
(

· 1
1 ·

)

. (35)

(The dots emphasise that the “white squares” generated by those entries will
be specified later.) Since {xr} and {λr} can be chosen freely, the first tensor
factor in this expression is just the eigenvalue decomposition of an arbitrary
real, symmetric matrix S. If we choose the first nC diagonal elements of S to
be 1/2, and choose the next nv diagonal elements of S to be 5/6, then it is
straightforward to verify that the equations in the ccp condition of Eq. (34a)
corresponding to the “black squares” in on-diagonal 4× 4 blocks are exactly
the 1-in-3SAT inequalities of Eqs. (27) and (28) (see Figs. 8 and 9). Note
that the off-diagonal elements of S are not specified yet.

We have successfully encoded the correct coefficients and constants into
certain matrix elements of Bc and Q. But all the other elements of these ma-
trices also generate inequalities via Eq. (34a). To “filter out” these unwanted
inequalities, we choose the remaining diagonal elements and all off-diagonal
elements of the symmetric matrix S to be large and positive, thereby ensuring
all unwanted inequalities are slack.

The matrices Ac from Eq. (30) automatically satisfy the normalisation
condition of Lemma 9, but L0, as constructed so far, will not. We use the

28



Bi, Bj , Bk =



























































. . .

1 −1

−1 1

−1 1

1 −1
. . .



























































.

Figure 6: If the n’th 1-in-3SAT clause involves variables i, j, k, the construction encodes
the coefficients from the inequalities of Eqs. (28) into the n’th on-diagonal 4× 4 block of
Bi, Bj and Bk. All other Bc corresponding to variables that do not appear in that clause
will have zeros in that particular block.
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Figure 7: Each Bc contains a unique block of non-zero entries in the second set of on-
diagonal 4× 4 blocks, corresponding to the 1-in-3SAT boolean constraints of Eqs. (27).
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Figure 8: The first set of on-diagonal 4 × 4 blocks of Q contain the constants for the
1-in-3SAT clause inequalities of Eqs. (28). . .
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Figure 9: . . . whilst the second set of on-diagonal 4× 4 blocks of Q contain the constants
for the 1-in-3SAT boolean inequalities of Eqs. (27).
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“white squares” of Q (see Figs. 8 and 9), generated by the diagonal elements
in the third tensor factors of Eq. (31), to renormalise the column sums to zero.
Recall that both {xr} and {vc,vc′} are complete sets of mutually orthogonal
vectors. Rearranging Eq. (31), Q is therefore given by

Q = k1+S⊗
(

1 1
1 1

)

⊗
(

1 1
1 1

)

+
∑

c

vcv
T
c ⊗

(

1 −1
−1 1

)

⊗
(

0 −1
3

1
3

0

)

. (37)

Now, the only requirement on the off-diagonal elements of S is that they
be sufficiently positive. Also, from the form of Eq. (37), the columns in
any individual 4 × 4 block of Q sum to the same value. Thus, by adjusting
the elements of S, we can ensure that all columns of Q − k1 sum to the
same positive value, which we call σ. Choosing k = −σ, the negative on-
diagonal element in each column (generated by the k1 term) will cancel the
positive contribution from the off-diagonal elements, thereby satisfying the
normalisation condition, as required.

Finally, we must ensure that the second ccp condition of Eq. (34b) is
always satisfied, for which we require a simple lemma.

Lemma 20 If D ≥ −σ1 is a diagonal d× d-dimensional matrix, then there
exists a symmetric matrix P such that Pi,i = 0 for all i and

(1−wwT )(D + P )(1−wwT ) ≥ 0, (38)

where w = (1, 1, . . . , 1)T/
√
d.

Proof Choose P = α(1−wwT )+α(1−d)wwT . Then the diagonal elements
of P are

Pi,i = α

(

1 − 1

d

)

+ α(1 − d)
1

d
= 0, (39)

and
(1−wwT )(D + P )(1−wwT ) ≥ (α− σ)(1−wwT ), (40)

which is positive semi-definite for α ≥ σ. �

The coefficients Pi,j in Eq. (29) can be chosen freely, since these coeffi-
cients play no role in either the normalisation or in encoding 1-in-3SAT,
so the matrix P in the ccp condition of Eq. (34b) can be chosen to be any
matrix with zeros down the main diagonal. Eq. (34b) is exactly of the form
given in Lemma 20 with

Di,i = Qi,i (41)

and choosing P accordingly ensures that it is always satisfied.
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4.2 Perturbations

In the discussion preceding the definition of Lindblad generator, we
argued that we need only consider non-singular, non-degenerate channels.
Generators of such channels are necessarily bounded and non-degenerate as
well, and the proof of equivalence of Lindblad generator and Marko-
vian map, leading to Theorem 16, breaks down if these properties do not
hold, since additional branches of the matrix logarithm arise: applying an
arbitrary similarity transformation to a degenerate Jordan block will give
another logarithm. The matrix L0 we have constructed is clearly bounded,
but it is highly degenerate.

We will now slightly modify the above construction, removing the men-
tioned degeneracies. In fact, most of the degeneracies can easily be lifted by
as large a margin as desired by perturbing suitable elements of L0, without
affecting the conditions of Lemma 9. The only ones that require more care
are degeneracies due to the final two terms of Eq. (31), as some of those
matrix elements were used to encode 1-in-3SAT.

It is not difficult to verify that mc will be constrained to the same set of
integer values if the perturbation to any constant in the set of inequalities is
less than 1/6 (the second inequality in Eqs. (27) being the most sensitive).
The constants are given directly by matrix elements of L0, so we are free
to lift the remaining degeneracies in L0 by perturbing each summand in the
final two terms of Eq. (31) by a different amount, as long as we ensure that
no element of L0 is perturbed by more than 1/6. This can be achieved by
perturbing each off-diagonal element∗ of the final tensor factor by a different
integer multiple of

2

9d

(

0 −1
1 0

)

. (42)

No element of L0 is then perturbed by more than 1/18 (this is deliberately
stricter than necessary by a factor of three, for reasons that will become
clearer later), and the minimum eigenvalue separation for the perturbed L0

is 2/(9d).
By construction, L0 is a Lindblad generator iff the original 1-in-3SAT

instance was satisfiable, so we have achieved the first half of the reduction.
It remains to choose a value of δ such that this also holds for any L′

0 in the
δ-ball around L0. As noted above, the inequalities in Eqs. (27) and (28) are
insensitive to small perturbations. Specifically, one can verify that the set
of feasible mc will be unchanged if each coefficient and constant (this time

∗We avoid perturbing the diagonal elements, as that would make satisfying the nor-
malisation condition far more difficult.
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including zero coefficients, i.e. coefficients of variables that do not appear
explicitly in Eqs. (27) and (28)) is perturbed by less than min[1/18(nv +
1), 5/18(2nv + 1)]. (Recall that we already perturbed the constants by (up
to) 1/18 to lift eigenvalue degeneracies. This bound is deliberately stronger
by a factor of two than would appear to be necessary at this stage, but in
any case it is certainly stronger than is strictly necessary.)

The constants in the inequalities are given by matrix elements of L0. If
we choose the norm in Lindblad generator to be the l∞ norm, then is is
sufficient to require

δ ≤ min

[

1

18(nv + 1)
,

5

18(2nv + 1)

]

. (43)

The coefficients in the inequalities are given by matrix elements of Ac, which
are formed from the eigenvectors of L0. Thus, to bound perturbations of the
coefficients, we must bound perturbations of the eigenvectors in terms of the
perturbation to L0, which is less trivial. We will need the following result
from Ref. [42], and a simple corollary.

Lemma 21 Suppose A is a normal matrix, with E an arbitrary matrix of the
same dimension. Let Q = (v1, Q2) be unitary, such that v1 is an eigenvector
of A, and partition the matrix Q†EQ conformally with Q†AQ, so that∗:

Q†AQ =

(

λ1 0
0 A2,2

)

, Q†EQ =

(

E1,1 E1,2

E2,1 E2,2

)

, (44)

where {λi} denote the eigenvalues of A, with λ1 the eigenvalue associated
with v1. Let

∆ = min
i 6=1

|λ1 − λi| − ‖E1,1‖F − ‖E2,2‖F , (45)

where ‖X‖2F =
∑

i,j |Xi,j|2 is the Frobenius (or Hilbert-Schmidt) norm. If
∆ > 0, and

‖E2,1‖F ‖E1,2‖F
∆2

≤ 1

4
, (46)

then there exists a matrix P satisfying

‖P‖F ≤ 2
‖E2,1‖F

∆
(47)

such that v′ = (v1 + Q2P )(1 + P †P )−1/2 is a unit eigenvector of A + E (in
the Frobenius norm).

∗Q†AQ must be of this form, as the Schur decomposition of a normal matrix is diago-
nal.
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Proof This is a slight generalisation of Theorem 8.1.12 from Ref. [43], or
slight restriction of Theorem 4.11 from Ref. [42], to the case of normal A. �

Corollary 22 Suppose A is a normal matrix, with E an arbitrary matrix of
the same dimension. If v is a unit (in Frobenius norm) eigenvector of A as-
sociated with a non-degenerate eigenvalue, and the requirements of Lemma 21
are fulfilled, then there exists a unit eigenvector v′ of A + E such that

∥

∥vv† − v′v′†
∥

∥

F
≤ K ‖E‖F , (48)

with

K =
4
(

d ‖E‖F +
√
d− 1∆

)

∆2 − 4 ‖E‖2F
(49)

and ∆ as defined in Lemma 21.

Proof From Lemma 21, we have

∥

∥v′v′† − vv†
∥

∥

F
=

∥

∥

∥

∥

(v1 + Q2P )(v1 + Q2P )†

1 + P †P
− v1v

†
1

∥

∥

∥

∥

F

(50)

≤ 2‖v‖F‖Q2‖F + ‖P‖F (‖v‖2F + ‖Q2‖2F)

1 − ‖P †P‖F
‖P‖F (51)

≤ 2
√
d− 1 + d‖P‖F
1 − ‖P‖2F

‖P‖F. (52)

in which we have used Lemma 2.3.3 from Ref. [43] to bound (1 + P †P )−1,
and the fact that ‖U‖F =

√
d for any d × d unitary U . The result follows

by substituting the bound on ‖P‖F from Lemma 21, and using ‖E2,1‖F ≤
‖E‖F. �

Now, each Ac is a sum of two eigenprojectors, and L0 happens to be
normal. Applying Corollary 22, and using the fact that ‖X‖∞ ≤ ‖X‖F, we
see that it suffices to restrict

δ ≤ 1

2K
min

[

1

18(nv + 1)
,

5

18(2nv + 1)

]

. (53)

We must also satisfy the two requirements of Lemma 21. Recalling that the
minimum eigenvalue separation of L0 is 2/(9d), we see that it is sufficient to
impose

δ <
1

9d2
and δ ≤ mini 6=j |λi − λj|

4d
=

1

18d
. (54)
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For L0, satisfying the inequalities is equivalent to satisfying the ccp con-
dition of Lemma 8. However, even choosing δ to satisfy Eqs. (43), (53)
and (54), this may no longer be the case for all L′

0 within the δ-ball around
L0. If the inequalities are infeasible, then at least one diagonal element of
any (1 − ω)L′

m
Γ(1 − ω) must be negative, and it is still the case that the

ccp condition is violated (since non-negativity of the diagonal elements is a
necessary condition for a matrix to be positive semi-definite). But if the in-
equalities can be satisfied, the most we can say is that all diagonal elements
of (1− ω)L′

m
Γ(1− ω) are lower-bounded by 1/18.

Now
L′
m = L′

0 +
∑

c

mcA
′
c (55)

with 0 ≤ mc ≤ 1 integer, and the A′
c are perturbations of Ac. The off-diagonal

elements of the latter are zero. Therefore, we can control the magnitude of the
off-diagonal elements of the nv different A′

c by applying Corollary 22 again,
whilst controlling the off-diagonal elements of L′

0 by restricting δ directly, as
before. Putting all this together, we see that imposing

δ ≤ 1

18d
and δ ≤ 1

32Knvd
(56)

ensures that the off-diagonal elements of any L′
m are upper-bounded by

1/(18d). However, this implies that (1−ω)L′
m
Γ(1−ω) is diagonally-dominant,

which is sufficient to guarantee positive-semi-definiteness.
Thus, if δ > 0 is chosen to satisfy Eqs. (43), (53), (54) and (56), then for

any L′
0 within a δ-ball around L0 (in the l∞ norm), satisfying the ccp condi-

tion is equivalent to satisfying the original 1-in-3SAT problem. Comparing
the bounds on δ from Eqs. (43), (53), (54) and (56), we have

δ = O(n−1
v (nC + 2nv)

−3). (57)

Sufficient bounds for any other norm can easily be obtained via equivalence
of norms in finite-dimensional spaces, and will at worst introduce additional
factors polynomial in the dimension (i.e. polynomial in nv and nC). The fact
that δ−1 has to scale only polynomially makes our results far more compelling;
it cannot be claimed that they are a consequence of unreasonable precision
demands. Even this mild scaling may be an artifact of the construction, and
it would be interesting to know if a construction exists in which δ can be
taken constant.

Finally, it remains to consider the promise required in the definition of
Lindblad generator. Assume that the promise is not satisfied. In that
case, L0 itself clearly cannot be the generator of a CPT map. But L0 satisfies

35



the Hermiticity and normalisation requirements of Lemma 8 by construction,
so it must fail to satisfy the ccp condition. Thus failing to satisfy the promise
implies that the 1-in-3SAT instance must have been unsatisfiable. Combin-
ing the arguments used in the proofs of Theorems 7 and 16 gives an efficient
procedure for deciding whether (L0, δ) satisfies the promise, thereby deciding
these instances. This leaves only instances that do satisfy the promise, as
required.

We have reduced satisfiable instances of 1-in-3SAT to Lindblad gen-
erator instances that return the first assertion, and have either efficiently
decided unsatisfiable instances of 1-in-3SAT (because they fail to satisfy the
promise)∗, or reduced them to Lindblad generator instances that return
the second assertion. This completes the proof that

Lemma 23 1-in-3SAT ≤ Lindblad generator

and, since 1-in-3SAT is NP-complete,

Corollary 24 Lindblad generator is NP-hard.

But, by the chain of equivalences proven in Theorem 7 and Corollary 18, this
implies our main result:

Theorem 25 Markovian channel and Markovian map are NP-hard.

Theorem 25 tells us that the Markovianity problem is NP-hard. What of
the more general question of determining whether a given family of maps are
members of the same continuous, one-parameter, completely positive semi-
group? Formulated rigorously, this is a generalised version of Markovian
map, in which a family of maps Et is given, along with their associated
times t (up to some precision), and the answer should assert the existence or
otherwise of a common Lindblad generator for all the maps up to precision
ε > 0 (or assert that at least one of the Et is not CPT up to precision ε′ > 0).

A first trivial observation is that, since we know there exists a special
case of this problem that is NP-hard, namely Markovian map itself, the
general problem is automatically NP-hard. However, this leaves open the
question of whether the complexity depends on the number of maps in the
family. Recalling the physical motivation behind the problem, one might
expect that, given more information about the dynamics (e.g. by taking
many tomographic snapshots), the problem would become easier to resolve.

In fact, in proving the NP-hardness of Markovian map, we have already
done all the work necessary to prove NP-hardness of the general problem for

∗It is amusing, but probably of no practical value, to note that this provides a new
“gadget” for efficiently deciding certain non-satisfiable instances of 1-in-3SAT.
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any number of maps. Instead of computing a single map E = eL to reduce
Lindblad generator to Markovian map, we can compute a family of
any number of maps Et = eLt. (To make this rigorous, the arguments of
Theorem 16 can straightforwardly be extended to the case of a family of maps
Et.) So the problem for an arbitrary (finite) number of maps is essentially no
different to the problem for a single map as far as the worst-case complexity
is concerned.

5 An Algorithm

The NP-hardness proof of Section 4 implies that we are unlikely to find an
efficient algorithm for solving the Markovianity problem. Nonetheless, there
are two reasons to develop an algorithm for solving it, even though it will be
inefficient. The first reason is in some sense a technicality. We would like to
prove that solving the Markovianity problem is equivalent to solving P=NP.
That is, we want to show that (i) any efficient algorithm for solving the
Markovianity problem would imply P=NP, and conversely (ii) if P=NP then
there exists an efficient algorithm for solving the Markovianity problem. NP-
hardness proves (i). But the weak-membership formulations of the Marko-
vianity problem (Markovian Channel/Map) are not technically members
of the class NP, thus it is not clear whether proving P=NP would be sufficient
to provide an efficient algorithm for solving them. Weak-membership prob-
lems do not belong to NP, for the simple reason that NP is a decision class,
but weak-membership problems are not decision problems since they have
instances in which both “yes” and “no” answers are simultaneously valid.
(As mentioned above, the appropriate complexity class for weak-membership
problems is called promise-NP; the additional promise is that the instance
will not be one of the ambiguous ones.) Giving an explicit algorithm for
Markovian Channel which reduces to solving an NP-complete problem
resolves this technicality.

The second reason for developing an algorithm is that the NP-hardness
proof of Section 4 requires the dimension to scale polynomially with the
size of the 1-in-3SAT problem being encoded. So, although the general
Markovianity problem for CPT maps and embedding problem for stochastic
matrices are NP-hard, it is interesting to ask how the complexity scales if
the dimension is fixed (in which case the problem size scales only with the
precision). By giving an explicit algorithm, we show that for fixed dimension
the Markovianity problem can be solved efficiently, i.e. the complexity scales
only polynomially with the precision. This is also the basis for the proposed
measure of Markovianity in Ref. [7].
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One motivation for considering the case of fixed dimension is current ex-
perimental limitations. A snapshot of a quantum evolution is measured by
performing full quantum process tomography. Tomography of a d–dimensional
system requires measuring a total of d4 − d2 different expectation values [1,
§8.4.2], and the expectation value of each observable must be estimated by
averaging over many runs. The experimental overhead for all of this scales
polynomially with the dimension of the system, but a polynomial scaling can
still be prohibitive in practice! Current experiments can only perform full
process tomography for systems up to a few qubits, before the time required
becomes exorbitant. It is quite reasonable in this context to regard dimension
as a fixed parameter.

Since Markovian map is equivalent to Markovian channel by Theo-
rem 7, a Markovian map instance can be solved by first efficiently reducing
it to Markovian channel, then solving the Markovian channel in-
stance. We now describe an algorithm which solves Markovian channel
in polynomial time for fixed dimension. (The present treatment presents a
detailed and rigorous proof of the result already reported in Ref. [7].) It is not
difficult to adapt this algorithm to the classical Embeddability problem of
Section 6. For convenience, we will take the matrix norm in the definition of
Markovian channel to be the Frobenius norm ‖.‖F.∗

Algorithm 26 (MARKOVIAN CHANNEL)
Input: (E, ε): Quantum channel E, precision ε.
Output: One of the two assertions from Problem 5.

1: Calculate approximations L̄0 and Āc to L0 = logE and Ac (cf. Lemma 8)
to any precision κ, so that ‖L̄0 −L0‖F ≤ κ and ‖Āc −Ac‖F ≤ κ (L̄0 and
Āc can be obtained e.g. by calculating the eigenvalues and eigenvectors
of E).

2: Calculate δ̃ by solving

exp
(

‖L̄0‖F + M
∑

c

‖Āc‖F
)

exp
(

κ +
Mdκ

2

)

δ̃ eδ̃ = ε, (58)

where M depends polynomially on ε (discussed in more detail below) and
d is the dimension of E.

3: Calculate approximations λ̃i to the logarithms λi of eigenvalues eλi of E,
and to the eigenprojectors |r̃i〉〈l̃i| of E, to precision sufficient to ensure

∗It is straightforward to generalise these results to other norms.
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that
∥

∥

∥

∥

∑

i

λ̃i |r̃i〉〈l̃i| −
∑

i

λi |ri〉〈li|
∥

∥

∥

∥

≤ δ̃

12d‖1− ω‖3F
, (59)

∥

∥

∥|r̃i〉〈l̃i| − |ri〉〈li|
∥

∥

∥

F
≤ δ̃

24πMd2‖1− ω‖3F
, (60)

|λ̃i − λi| < min
j 6=k

λ̃j − λ̃k

4
. (61)

4: Use the results to calculate L̃0 =
∑

i λ̃i |r̃i〉〈l̃i| and the corresponding Ãc

(cf. Lemma 8).

5: Solve the following mixed integer semi-definite program, in integer vari-
ables mc and real variable t:

minimise t

subject to (1− ω)L̃0
Γ(1− ω) +

∑

c

mc(1− ω)Ãc
Γ(1− ω) + t1 ≥ 0.

6: if t ≤ −δ̃/(6d‖1− ω‖F) then
7: return “Markovian” (1st assertion of Problem 5).
8: else if t > δ̃/(6d‖1− ω‖F) then
9: return “non-Markovian” (2nd assertion of Problem 5).

10: else if t ≤ δ̃/(3d‖1− ω‖F) then
11: return “Markovian” (1st assertion of Problem 5).
12: end if

To prove correctness of Algorithm 26, first note that, from lines 2 to 4,
‖L̃0 − L0‖F ≤ δ̃/(12d‖1− ω‖3F). Also, if maxcmc ≤ M , then from line 3 we
have

‖L̃m − Lm‖F ≤ ‖L̃0 − L0‖F + 2π
∑

c

|mc|‖ |r̃i〉〈l̃i| − |ri〉〈li| ‖F

=
δ̃

6d‖1− ω‖3F
.

(62)

We will assume throughout the following that M is an upper bound on the
values mc returned by the integer program of line 5, i.e. that maxc |mc| ≤
M < ∞, an assumption that will be justified later.

Now consider the three cases in lines 6 to 11. To deal with the first two,
we will need the following simple lemma (see e.g. Ref. [44, Corollary 6.3.4]):
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Lemma 27 Let A be normal, E be an arbitrary matrix. If λ′ is an eigenvalue
of A+E, then there exists some eigenvalue λ of A such that |λ′−λ| ≤ ‖E‖F.

If t ≤ −δ̃/(6d‖1 − ω‖F), then, from the definition of the integer program
in line 5 of Algorithm 26, we know that all eigenvalues of (1 − ω)L̃Γ

m(1 −
ω) are greater than δ̃/(6d‖1 − ω‖F). Also, from Eq. (62), ‖(1 − ω)(L̃Γ

m −
LΓ
m)(1−ω)‖F ≤ δ̃/(6d‖1−ω‖F). Lemma 27 then implies that the minimum

eigenvalue of (1−ω)LΓ
m(1−ω) is non-negative, i.e. Lm is ccp. L0 is therefore

a Lindblad generator by Lemma 8, thus the original channel E must itself be
Markovian. Similarly, if t > δ̃/(6d‖1−ω‖F), then the minimum eigenvalue of
any (1−ω)LΓ

m(1−ω) is strictly negative. Thus all Lm fail the ccp condition
of Lemma 8, L0 is not a Lindblad generator, and the original channel E is
non-Markovian.

Dealing with the final case in line 10 of Algorithm 26 requires the following
result:

Lemma 28 If L is Hermitian and normalised (in the sense of Lemma 8),
and the minimum eigenvalue of (1− ω)LΓ(1− ω) is bounded by λmin ≥ −ε,
then there exists a Lindblad generator L′ such that ‖L′ −L‖F ≤ ε d ‖1−ω‖F,
where d is the dimension of L.

Proof Consider the map L′ = L + ε(d ω − d1). Since L is Hermitian and
normalised in the above sense, we have (L′Γ)† = L′Γ and 〈ω|L′ = 0, so these
properties carry over to L′. But we also have

(1− ω)L′Γ(1− ω) = (1− ω)LΓ(1− ω) + ε(1− ω)(1− d2ω)(1− ω)

= (1− ω)LΓ(1− ω) + ε(1− ω).
(63)

Since (1 − ω)LΓ(1 − ω) has support only on the orthogonal complement of
|ω〉, and (1− ω) acts as identity on that subspace, the minimum eigenvalue

of (1−ω)L′Γ(1−ω) is non-negative. Thus L′ also satisfies the ccp condition,
and, by Lemma 8, is a Lindblad generator. �

If t ≤ δ̃/(3d‖1−ω‖F), then the minimum eigenvalue of (1−ω)L̃Γ
m(1−ω)

is greater than −δ̃/(3d‖1 − ω‖F), thus Lemma 27 and Eq. (62) imply that
the minimum eigenvalue of (1− ω)LΓ

m(1− ω) is lower -bounded by

λmin ≥ −δ̃/(3d‖1− ω‖F) − δ̃/(6d‖1− ω‖F) = −δ̃/(2d‖1− ω‖F). (64)

Applying Lemma 28 to Lm yields a Lindblad generator L′ such that ‖L′ −
Lm‖F ≤ d‖1− ω‖Fδ̃/(d‖1− ω‖F) = δ̃ and, since L′ is a Lindblad generator,
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E ′ = eL
′

is a Markovian channel. But, using Lemma 11, we have

‖E ′ − E‖F ≤ e‖Lm‖Fe‖L
′−Lm‖F‖L′ − Lm‖F

≤ exp
(

‖L0‖F + M
∑

c

‖Ac‖F
)

δ̃ eδ̃

≤ exp

(

‖L̃0‖F + M
∑

c

‖Ãc‖F
)

exp

(

κ +
Mdκ

2

)

δ̃ eδ̃

= ε,

(65)

(with the inequality in the penultimate line resulting from line 1 of Algo-
rithm 26—recall that there are at most d/2 matrices Ãc—and the final equal-
ity from line 2). Therefore, E ′ is a Markovian channel within distance ε of
the original channel E, and the first assertion of Problem 5 is valid.

This proves correctness of Algorithm 26. What of its run-time? All but
a few steps can obviously be performed in polynomial-time. Recall that we
are assuming, without loss of generality, that E is non-degenerate and non-
singular, which, more rigorously stated, requires the condition number of
E to be upper-bounded by some constant. The eigenvalue and eigenvector
calculations of E in lines 3 and 1 can therefore be done efficiently in ε−1 and
also the dimension [43, §7.2], with the eigenvalue and eigenvector condition
numbers of E [43, §7.2.2–5] contributing a (possibly large) constant factor.

A question arises in calculating Ãc: L̃0 is not necessarily a Hermitian
map, so how can the eigenvalue pairs from which to form Ãc (cf. Eq. (10)) be
identified? But L0 is Hermitian, and the bound on |λ̃i − λi| in line 3 ensures
that the 2‖λ̃i − λi‖F-disc around λ∗

i , within which the conjugate partner
of λi must lie, is guaranteed to contain a single λ̃j , allowing approximately
conjugate pairs of eigenvalues to be identified.

The key step in the algorithm is the mixed integer semi-definite program
in line 5. (If Algorithm 26 is adapted to solve the classical Embeddability
problem, this becomes a mixed linear integer program instead.) In a gener-
alisation of a famous result by Lenstra [45] for linear integer programming,
Khachiyan and Porkolab proved that for any fixed number of variables, inte-
ger semi-definite feasibility problems can be solved in polynomial time [46, 47].
In our case, fixing the number of variables corresponds to fixing the system’s
dimension. The integer semi-definite program can therefore be solved by ap-
plying the Khachiyan-Porkolab algorithm to the feasibility problem for given
t, combined with binary search on t. From Corollary 1.3 of Ref. [46], the
run-time of the Khachiyan-Porkolab part scales polynomially with the num-
ber of digits of precision to which the elements of the coefficient matrices are
specified. But the coefficient matrices in our case are L̃0 and Ãc, and their
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description size is independent of the precision to which the original E was
specified, depending only on the precision parameter ε. So the run-time of
the Khachiyan-Porkolab step scales polynomially in ε−1, as required.

We can now also justify the assumption that an upper bound maxcmc ≤
M can be placed on the integers mc resulting from the integer program.
Theorem 1.1 of Ref. [46] proves that such a bound exists and, in the case of
integer semi-definite programming ([46, Corollary 1.3]), that it scales as

log max
c

|mc| = 2O(d4) log l, (66)

where l is the maximum bit-length of the entries of the coefficient matrices L̃0

and Ãc, and we have translated other parameters into our notation. Since we
have already argued that the size of the description of these matrices scales
polynomially with ε−1, this gives a bound M that scales as

max
c

|mc| = ε(2
O(d4))O(1) = M, (67)

i.e. polynomially in ε−1 as claimed.
Since the calculations in each line of Algorithm 26 have run-times that

scale at most polynomially in ε−1, and are independent of the number of digits
to which E was specified, the entire algorithm has run-time polynomial in the
precision and independent of the size of the description of E. This, together
with Theorem 7, proves the main practical result of this section:

Theorem 29 For any fixed dimension, Markovian channel and
Markovian map can be solved in a run-time that scales polynomially in
both the problem size (the size of the description of the channel) and the
precision parameter ε−1.

It is worth remembering that proving an algorithm has polynomial run-
time does not necessarily imply that it is the best algorithm to use in practice.
In fact, considering the first few branches of the logarithm is often sufficient
for practically relevant cases. Indeed, it would be interesting to try to flesh
out heuristics or a proof as to why this simple approach is so successful. If E
is an experimentally measured tomographic snapshot, the truncation errors
in computing logE, that Algorithm 26 expends much effort in accounting
for, will, in all likelihood, be swamped by experimental error. It is probably
reasonable to calculate L0 and Ac numerically, without worrying about nu-
merical errors, and solve the resulting mixed integer semi-definite program
using standard integer programming algorithms (which work well in practise
even though their scaling may theoretically not be polynomial in the preci-
sion). If the t thus obtained is comparable to the estimated error, the most
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reasonable conclusion is that the experimental data simply are not precise
enough to give any definitive answer. In fact, a more sophisticated answer
is to quote the value of t itself, as it is (related to) a natural measure of
“Markovianity”. This is discussed in more detail in Ref. [7].

All the steps of Algorithm 26 also scale efficiently with the dimension of E,
apart from solving the mixed integer semi-definite program in line 5. Since
integer semi-definite programming is in NP, this (together with Theorem 7)
proves the other main result of this section:

Theorem 30 Solving Markovian Channel or Markovian Map is equiv-
alent to solving P=NP: an efficient algorithm for Markovian Channel or
Markovian Map would imply P=NP; conversely, P=NP would imply ex-
istence of efficient algorithms for Markovian Channel and Markovian
Map.

6 The Classical Problem

The classical analogue of the Markovianity problem is called the embedding
problem, but it is much older, dating back to at least 1937 [16]. For a given
stochastic matrix P , the problem is to determine whether or not P can be
embedded into a continuous-time Markov chain, i.e. whether it is a member
of a continuous-time, one-parameter semigroup of stochastic matrices. Equiv-
alently, does there exist a generator Q such that P = eQ and eQt is stochastic
for all t ≥ 0?

There is a long literature on the embedding problem, of which we do
not presume to give a comprehensive account here. (See [21] for a more
extended history.) Simple necessary and sufficient conditions can easily be
derived for 2×2 stochastic matrices (this result seems to originally have been
reported by Kingman [17], who attributes it to Kendall), the 3 × 3 case was
eventually solved [48–50], and certain properties are known for the general
case [18, 19, 51]. However, the problem has remained open in general until
now [20, 52].

In order to discuss the complexity of the problem in a rigorous sense,
it is necessary to formulate the embedding problem as a weak-membership
problem, analogous to Markovian channel or Markovian map, for the
same reasons discussed in Section 3.1 in relation to the quantum problem:

Problem 31 (Embeddability)
Instance: (P, ε): Stochastic matrix P ; precision ε ≥ 0.
Question: Assert either that:
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• for some matrix P ′ with ‖P ′−P‖ ≤ ε, there exists a generator Q′ such
that P ′ = eQ

′

and eQ
′t is stochastic for all t ≥ 0;

• for some stochastic matrix P ′ with ‖P ′ − P‖ ≤ ε, no such Q′ exists.

Again, we could also formulate a variant analogous to Markovian map,
which drops the requirement that the given P be stochastic.

Now, stochastic maps are a special case of CPT maps in the following
sense. The diagonal entries of a density matrix form a probability distribu-
tion, and every stochastic map can be extended to a CPT map whose action
on the subspace of diagonal density matrices is the same as the action of the
original stochastic map on the probability distribution formed by those diag-
onal elements. For example, we can take the composition of the CPT map
that erases all off-diagonal elements of the density matrix, with the original
stochastic map acting on the diagonal elements.

However, it does not follow that NP-hardness of the quantum problem
implies NP-hardness of the embedding problem, as that would require pre-
cisely the opposite: encoding a CPT map into a stochastic map. But nor
would NP-hardness of the embedding problem imply NP-hardness of the
Markovianity problem, since the above argument showing that any stochas-
tic map can be extended to a CPT map does not “preserve” embeddability
(more precisely, it does not map the set of stochastic maps into the set of
Markovian CPT maps, and the set of non-embeddable maps into the set of
non-Markovian CPT maps). The embedding problem for stochastic matrices
and the Markovianity problem for CPT maps are inequivalent problems, and
the complexity of each must be resolved separately.

Fortuitously, it turns out that a proof of NP-hardness for the embedding
problem is already “buried” within the NP-hardness proof for the Markovian-
ity problem. We now give a sketch of the reduction from the NP-complete
1-in-3SAT problem to the Embeddability problem of Problem 31, which
closely follows the analogous reduction to Markovian map. For a full ac-
count, see Ref. [21].

Recall the conditions for Q to be a generator of a continuous-time Markov
chain (a Q-matrix ): (i) Qi 6=j ≥ 0, (ii)

∑

i Qi,j = 0. Comparing these with
the conditions in Lemma 9 and Eqs. (34a) and (34b) satisfied by Q and Bc

from Eqs. (31) and (32), we see that Qm = Q + 2πmcB
c always satisfy the

normalisation condition (ii) for any integers mc. But, from Eq. (34a) and the
discussion thereafter, Qm will satisfy condition (i) for some mc iff the original
1-in-3SAT used to construct Q and Bc was satisfiable. In other words, there
exist integers mc such that Qm is a Q-matrix iff the 1-in-3SAT problem was
satisfiable. But Qm parametrise logarithms of the same matrix P = eQm.
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In fact, the only branches of the logarithm that are missing are branches
that could never generate a continuous-time Markov chain in any case. So,
either P is not stochastic (which can easily be checked), in which case the
1-in-3SAT problem cannot be satisfiable, or P is stochastic, in which case
it is embeddable iff the 1-in-3SAT problem was satisfiable.

To make this reduction rigorous, Lemma 11 and Corollary 15 must be
applied in very much the same way as in the reduction from Lindblad
generator to Markovian map in Theorem 16, to show that a weak-
membership formulation of the Q-matrix problem can be reduced to the weak-
membership formulation of the Embeddability problem (Problem 31). (See
Ref. [21] for a detailed treatment.) Similar arguments to those given at the
end of Section 4 show that the generalisation of the embedding problem to
the problem of determining whether a family of stochastic matrices are all
generated by the same continuous-time Markov process is also NP-hard, for
any number of matrices. Finally, it is clear how to adapt the algorithm of
Section 5 to the classical embedding problem, thereby proving equivalence
to P=NP.

7 Conclusions

We have shown that the Markovianity problem for CPT maps and the anal-
ogous embedding problem for stochastic matrices are both NP-hard and,
indeed, have shown full equivalence between solutions to these problems and
a solution to the famous P=NP problem. Therefore, either P=NP, or there
exists no efficiently decidable criterion for deciding whether a CPT map is
generated by some underlying Markovian master equation, that is, whether
it is a member of a completely positive semi-group. Similarly for deciding
whether a stochastic matrix can be embedded in a continuous-time homoge-
neous Markov process.

An interesting corollary of the NP-hardness proofs for the Markovian
channel and Embeddability weak-membership problems is that:

Corollary 32 Both the set of Markovian and the set of non-Markovian CPT
maps have non-empty interior, hence non-zero measure, as do the sets of
embeddable and non-embeddable stochastic matrices, in any finite dimension.

So a randomly chosen CPT map has a finite probability of being non-Markovian,
but also of being Markovian. The analogous property holds for a randomly
chosen stochastic map. Ref. [7] estimates these probabilities numerically for
the simplest quantum case of qubits, i.e. CPT maps on C2. This fact alone
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may not be so surprising: After all, generators being ccp can have neighbour-
hoods of generators that are ccp, which under exponentiation are mapped
to neighbourhoods of channels, giving rise to a finite volume. The above
corollary makes this argument rigorous.

One consequence of these results to physics is that to decide whether
a given physical process at a shapshot in time—or for many snapshots for
that matter—is consistent with being forgetful cannot be decided efficiently.
This is because there is no a priori way of knowing whether the dynamics of
an open system are Markovian or not, but finding the dynamical equations
(master equations) would answer this question, and we now know this to be
NP-hard for both the classical and quantum cases, requiring infeasibly long
computation time (unless P=NP, of course). Whether this poses more prac-
tical difficulties is less clear. The results of Section 5 show that it at least
does not pose a problem for the current generation of quantum experiments,
since other purely practical limitations on the dimension of the systems be-
ing studied are more significant. More generally, one might argue that the
average-case complexity is more relevant in practice, whereas NP-hardness
only tells us about the worst-case complexity. What is the average-case com-
plexity of the Markovianity and embedding problems? We close with this
intriguing open problem, which we commend to the reader.
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