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The complex spin order of hyperpolarized multispin systems giving rise to anomalous NMR
spectral patterns that vary with the RF excitation angle is analyzed by decomposing its nutation
behavior in a superposition of Fourier harmonics. The product operator formalism is applied to
calculating the spectral contributions of the various mutual alignments of scalar coupled spins.
Two cases are treated, namely systems exhibiting only differences in population of their spin states
and systems showing in addition zero-quantum coherences between states, a situation often seen
at hyperpolarization. After deriving the general solution a number of representative examples are
discussed in detail. The theoretical treatment is applied to analyzing the spin order observed in
a hyperpolarized two-spin system that is prepared in the singlet state by para-hydrogen induced
polarization.

1. Introduction
Nuclear Magnetic Resonance (NMR) provides numerous powerful and informative
spectroscopic methods. Modern NMR developments, most notably, pulsed techniques,
multi-dimensional methods, and Magnetic Resonance Imaging (MRI), have lead to
many useful applications in physics, chemistry, material science, biology, and medicine.
The work of Prof. Limbach is a prominent example of these achievements. Thus, NMR
is a very informative, versatile and multipurpose spectroscopy having many advantages
and only a few disadvantages, the most adverse being its relatively low sensitivity. This
is because Zeeman interaction is weak and the resonance frequency γB0 of nuclear spin
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transitions is small (γ stands for the nuclear gyromagnetic ratio, B0 for the external
magnetic field). Moreover, NMR signals are directly proportional to population differ-
ences of spin levels (spin polarization), which at thermal equilibrium are always low:
they are proportional to f = γ�B0

2kT
(Boltzmann polarization), which is a small number as

the splitting of nuclear spin energy levels in a reasonable field B0 is much smaller than
the thermal energy, kT. For instance, at room temperature and B0 = 7 T (corresponding
to 300 MHz proton NMR frequency) spin polarization is approximately 5×10−5. Low
sensitivity is often a limitation for NMR applications. Although the sensitivity in NMR
was considerably increased during the last decades by using, e.g., higher magnetic
fields, Fourier spectroscopy [1] cross-polarization methods [2,3], INEPT technique [4]
remote detection techniques [5] and cryo-probes [6,7] there is still room for improve-
ment because thermal spin polarization always stays low. Even at the presently highest
usable magnetic field (approximately 23.5 T) and low temperature the factor f remains
small: at a temperature of 4 K it is only approximately 5×10−3 for protons and even
less for other nuclei. Thus, by using thermally polarized spins one always faces the
problem of NMR signal reduction by a factor of f � 1. A remedy to this problem is
using strong non-thermal spin polarization, also termed hyperpolarization. Hyperpolar-
ization methods, such as Dynamic Nuclear Polarization (DNP) [8–10], Spin Exchange
Optical Pumping (SEOP) [11], Optical Nuclear Polarization (ONP) [12–14], Chem-
ically Induced Dynamic Nuclear Polarization (CIDNP) [15–17] and Para-Hydrogen
Induced Polarization (PHIP) [18–22] allow one to shift spin systems from thermal equi-
librium to achieve NMR enhancements of a few orders of magnitude (in the ideal case
of 1/ f ) thus making new NMR and MRI applications possible [23–32].

Spin hyperpolarization can not only lead to NMR signal enhancement but can also
change the appearance of the spectral pattern. This is the case when a hyperpolarized
spin carries multiplet polarization, which is characterized by mutual entanglement of
spins. It is important to note that polarization of such a type can be observed only for
hyperpolarized systems: at thermal equilibrium multiplet polarization is of the order
of f 2 being by a factor of f � 1 smaller than the net polarization of spins, which
is, in turn, also small being equal to f . This makes multiplet polarization practically
non-observable for spin systems at thermal equilibrium. When multiplet polarization is
present in the system it results in different intensity of NMR lines within a spin mul-
tiplet (which is also the reason for its name). Such unusually looking spectra can be
often observed for spins polarized by CIDNP [16] and PHIP [19]. For some other hy-
perpolarization techniques such effects are practically absent as, e.g., SEOP is dealing
specifically with hyperpolarized nuclear spins of noble gases, which are not coupled to
other nuclei and thus carry no multiplet polarization. In the DNP case, except for the
situation of very strong polarization [33], spins are only net-polarized. For this reason,
our treatment is of importance mainly for NMR spectroscopy of spin systems hyperpo-
larized by means of CIDNP and PHIP. The theoretical description of NMR patterns is
nonetheless relatively simple in the case of cw-spectroscopy: the intensity of an NMR
line, which corresponds to a transition between a pair of spin states, |i 〉 and | j〉, is di-
rectly proportional to the difference in the corresponding state populations, Pi and Pj .
However, nowadays cw-NMR spectra are rarely recorded, since modern NMR utilizes
mainly pulsed methods. In pulsed NMR with non-selective excitation the multiplet po-
larization leads to more complicated effects. This is in contrast to thermally polarized
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Fig. 1. Schematic representation of the peculiarities of FT-NMR of hyperpolarized spin systems. In the left
column we show state populations assuming that only one spin state is populated (such population pat-
terns can be obtained in CIDNP and PHIP experiments); ‘parallel’ NMR transitions are indicated by solid
and dashed lines. We also show the cw-spectrum of such a system and spectra of pure net polarization,
( Î1z − Î2z), and multiplet polarization, Î1z Î2z . In the right column we show FT-NMR spectra of the system
obtained for different flip angles: δ (small angle), π/4, π/2, 3π/4, π −δ.

spin systems, for which cw and Fourier Transform (FT) NMR spectral patterns coin-
cide. Even in the case of single-pulse FT-NMR there are new features in the spectra
as has been pointed out by Ernst and coworkers [1,34]. First, the shape of the spec-
trum depends on the magnetization flip angle ϕ = γB1τp (with B1 being the strength of
the oscillating RF-field and τp being the pulse duration) in a non-trivial way. Only for
very small ϕ do cw- and FT-NMR spectra have the same shape. This is demonstrated in
Fig. 1, in which we show FT-NMR spectra of a polarized two-spin system at different
values of ϕ. In the case shown in Fig. 1 the spin system has both net polarization of the
individual spins (of the same amplitude but of the opposite sign) and multiplet polariza-
tion. Such population patterns can, for example, be obtained by means of CIDNP [35]
and PHIP [36]. Spectra exhibiting both types of spin order are also shown; they result in
a dependence on the flip angle ϕ (see below). Second, an an interesting effect reported
earlier [1,34] is that in FT-NMR the intensity of the line, which corresponds to the
|i 〉 → | j〉 NMR transition, is determined not only by (Pi − Pj) but also by population
differences for so-called ‘parallel transitions’. Pairs of the parallel transitions are also
indicated in Fig. 1. In more complex pulse sequences multiplet polarization can lead to
additional features. For instance, in COSY experiments multiplet polarization leads to
the formation of additional cross-peaks, which are absent for thermally polarized spin
systems [37].

In our previous work published in the special issue of Z. Phys. Chem. dedicated
to the 60-year anniversary of Prof. H.-H. Limbach [38] we suggested a new way of
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how to analyze FT-NMR spectra of hyperpolarized spins and the ϕ-dependence of the
NMR lines also termed ‘nutation patterns’. We proposed to present nutation patterns
as a Fourier series with respect to the flip angle, ϕ. We showed that this presentation
enables a separation of different spin orders; the analysis of an experimental example
for CIDNP-polarized multispin system revealed that higher spin orders (mutual entan-
glement of up to 10 spins polarized at low field) can be formed in hyperpolarization
experiments. Although our method allows one to disentangle different spin orders and
simplify the interpretation of the spectra and nutation patterns it requires a further de-
velopment. In particular, we (i) did not establish the exact contributions of different spin
orders to particular Fourier harmonics and (ii) did not analyze in detail the shape of
NMR spectra resulting from specific spin orders. The goal of this work is to find ampli-
tudes of all Fourier harmonics and determine the corresponding NMR lineshapes thus
fully exploiting the potential of our idea of the Fourier decomposition of the nutation
patterns. To reach this goal we will utilize the product operator formalism [1,39,40].
The previous treatment stemming from the density matrix description as suggested by
Ernst et al. [1,34] was unable to give a simple solution to the problems we are going to
solve. Although mathematically both approaches are equivalent, the product operator
formalism (when applicable) gives a much simpler (and mathematically strict) way to
understand the spin dynamics behind pulsed NMR experiments. Here we will consider
only weakly coupled spins, which makes the product operator formalism applicable to
our problem and allows us to obtain analytical results for the spectral patterns of hy-
perpolarized multispin systems. We will not consider strongly coupled spins because
analytical results can be obtained only for two-spin systems (being already quite cum-
bersome), whereas the analytical treatment of higher-spin systems is not feasible.

2. Theory
Let us consider a system of N weakly coupled spins. We will consider only two types
of interactions: (i) the Zeeman interaction with the field of the NMR spectrometer de-
scribed by ωi Îi terms in the Hamiltonian and (ii) the secular part (zz-part) of the scalar
spin-spin interactions, which are given by terms 2πJij Îiz Î jz Hereafter ωi is the Zeeman
interaction of spin i with the field (determined by its chemical shift); Jij is the scalar
spin-spin interaction constant for spins i and j; Îiz and Î jz denote the z-projections of the
corresponding spin operators. Considering only the secular parts of the interactions is
an approximation assuming that the spins are coupled weakly, i.e., 2π

∣∣Jij

∣∣ � |ωi −ω j |.
The full Hamiltonian of the system in the frequency units is then as follows:

Ĥ =
∑

i

ωi Îi +2π
∑
i �= j

Jij Îiz Î jz (1)

Now let us define the initial state of the system by introducing its density matrix,
ρ̂. In general, non-equilibrium spin states can be characterized using Ernst’s classifi-
cation [1,34]. States with non-thermal populations (diagonal elements of the density
matrix in the eigen-basis of Ĥ) of their eigen-states and but no coherences (zero off-
diagonal elements of the density matrix) are termed ‘non-equilibrium spin states of
the first kind’; when spin coherences are present in the system such states are called
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‘non-equilibrium spin states of the second kind’. Here we will consider both situations
starting with the simpler case of non-equilibrium spin states of the first kind. When their
spectroscopy is well understood we will extend our treatment to states of the second
kind. Such a treatment becomes simple after a slight adaptation of the approach used
for the non-equilibrium spin states of the first kind.

2.1 Non-equilibrium states of the first kind

When the spins are weakly coupled their Hamiltonian contains only the z-parts of spin
operators with the consequence that the eigen-states are characterized by z-projections
of all spins. As a result, the density matrix, which is diagonal in the eigen-basis of Ĥ ,
can be expressed in the product operator formalism using only the z-parts, Îiz , of spin
operators. In turn, all spin coherences are expressed via the x- and y-parts of spin oper-
ators (containing at least one operator Îix or Îiy). Let us define the starting density matrix
for the non-equilibrium spin states of the first kind. In contrast to the treatment sug-
gested by Schäublin et al. [34] where the elements of the density matrix, such as state
populations, Pi and Pj , and spin coherences, ρij (i �= j), are specified

ρ̂0 =
∑

i

Pi|i〉〈i|+
∑
i �= j

ρij|i〉〈 j| (2)

we will present ρ̂0 as a sum of the product operators. In the case of the non-equilibrium
spin states of the first kind all off diagonal elements, ρij (i �= j), are zero. In this situation
the spin system is characterized by net polarizations of all spins, multiplet polariza-
tions for each pair of spins, multiplet polarizations for each triplet of spins and so on.
Contributions from net polarization are proportional to the spin operators Îiz; multiplet
polarization of two spins (two-spin order) is given by Îiz Î jz for all pairs {i, j}; three-spin
order is given by products Îiz Î jz Îkz for all possible {i, j, k}; and so on. To write down all
contributions from high-spin orders let us define a tensor Mi1i2...iK in the following way.
Here K denotes the spin order ranging from 1 to N; i1i2. . .iK cover all possible sets of
K spins out of N; each combination of i1i2. . .iK has a different weight described by the
corresponding element of Mi1 i2...iK . This weight gives the K -th spin order for the cor-
responding combination of spins. In the definition of the tensorMi1 i2...iK we use double
indices i1i2. . .iK because there are different possibilities (total amount of them is equal
to the binomial coefficient CK

N ) for choosing K spins out of N. The definition of the ten-
sor that we have chosen covers all these possibilities; however, as a result the indices get
this level of complexity For instance, when N = 3 and K = 2 there are three possible
sets of spins: i1i2 = {1, 2}, {1, 3} or {2, 3}. The tensor gives the multiplet polarization for
each pair of spins: Mi1 i2 = M1,2, M1,3 or M2,3. As a result, there are three contributions
in the expression for the density matrix:

M1,2 Î1z Î2z + M1,3 Î1z Î3z + M2,3 Î2z Î3z (3)

Accordingly, the complete expression for the initial density matrix, which accounts for
all possible spin orders (from net polarization of individual spins to the entanglement of
all N spins) in a weakly coupled spin system prepared in a non-equilibrium state of the
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first kind, has the following form:

ρ̂0 = 1

2N
Ê +

N∑
K=1

∑
i1i2...iK

Mi1 i2...iK Îi1z Î i2z. . . ÎiK z (4)

Finally, the weights, Mi1 i2...iK (being the expectation values of the corresponding product
operators) are determined from the density matrix in the following way:

Mi1i2...iK = 2K Tr
{

Îi1z Î i2z. . . ÎiK zρ̂0

}
(5)

The unity operator Ê is introduced in order to make sure that the trace of the density
operator is equal to 1. Its presence does not affect any NMR property; for this rea-
son it can be omitted in the following analysis. Since all operators, Îi1z, Î i2z, . . ., ÎiK z,
in Eq. (5) commute with each other it is possible to change arbitrarily the order of in-
dices of Mi1i2...iK . In the following analysis we will be usually interested in the shape of
the NMR multiplet belonging to the i-th spin. Therefore, we will set one of the dou-
ble indices to i and place it in the first position; the other (K −1) will remain double
indices.

Let us now describe the evolution of the spin system. We will do it for the K -th spin
order and show the spectral pattern of the spin multiplet of spin i . After that, the results
can be easily generalized to the complete set of spin orders and all spin multiplets. The
initial density matrix changes after a non-selective RF pulse is applied: we assume that
it rotates all spins about the y-axis by an angle ϕ. Pulses are considered ideal, flipping
all spins by the same angle; spin relaxation during the pulse application is neglected. We
will assume that the phases of the RF-excitation (applied along the y-axis of the rotating
frame) and the receiver coincide. As a result, for a spin system at thermal equilibrium
the FT-NMR spectrum, which is obtained by performing the Fourier transform of the
x-component of the spin magnetization, has purely Lorentzian lines. At the same time,
the Fourier transform of the y-magnetization gives purely dispersive lines. Hereafter,
we will name the x-channel as ‘in-phase channel’ and the y-channel as ‘out-of-phase
channel’.

Since the spin operators of different spins commute with each other, the rotation of
magnetization can be applied subsequently to all individual spins. As a consequence,
each Îiz changes to ( Îiz cos ϕ + Îix sin ϕ), hence transverse magnetization components
are created. Since the x- and y-components of the spin operators do not commute with
the Hamiltonian (Eq. 1), coherent evolution of the system starts. We can describe it by
subsequently applying the action of the terms ωi Îi and 2πJij Îiz Î jz because all of them
commute with each other. This can be done because the evolution of the density matrix
in terms of the Hamiltonian is described as follows:

ρ̂(t) = exp(−i Ĥt)ρ̂(0)exp(i Ĥt) (6)

When Ĥ contains two parts, Ĥ1 and Ĥ2, which commute with each other we can rewrite
this expression

ρ̂(t) = exp
(− i Ĥ2t

){
exp

(− i Ĥ1t
)
ρ̂0exp

(
i Ĥ1t

)}
exp

(
i Ĥ2t

)
= exp

(− i Ĥ2t
)
ρ̂′ exp

(
i Ĥ2t

)
(7)
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where ρ̂′ = exp(−i Ĥ1t)ρ̂0exp(i Ĥ1t). Thus, one can first calculate the evolution of the
density matrix under the action of Ĥ1 obtaining ρ̂′ from ρ̂0 and then apply the action of
Ĥ2. This approach is valid for an arbitrary number of terms in the Hamiltonian: it is only
important that all of them commute with each other.

The quantity, which is usually measured in NMR is spin magnetization in the trans-
verse plane, i.e., the expectation values of the Îix and Îiy. Thus, only contributions of
the density matrix, which contain Îix and Îiy, are observed, while all other terms are
non-measurable. Mathematically this can be formulated as follows. The observable
magnetization, for instance, its x-component, is written as

Mx(t) = Tr
{

Îx ρ̂(t)
}

=
N∑

i=1

Tr
{

Îix ρ̂(t)
}

(8)

Only when ρ̂(t) has terms containing single x-operators, Îix , will the Trace and, con-
sequently, the magnetization be non-zero. For instance, the Îix Î jx is non-observable
because { Îix( Îix Î jx)} is proportional to Î jx , which has zero trace. Similarly, the product
of any two or more spin operators is non-observable. For this reason when describing
the spin evolution we need to keep only the terms, which eventually contain pure trans-
verse magnetization and can neglect all other contributions. The latter we will hereafter
denote as Non-Observable Terms (NOT) and omit them in the analysis. The action of
both kinds of interaction in the case under study is well known and can be treated by the
product operator formalism in a very simple way. The Zeeman interaction mixes Îx and
Îy operators for each individual spin and does not affect any of the z-operators [1,39,40].
The spin-spin interaction mixes Îix and Îiy with Îiy Î jz and − Î ix Î jz , respectively, and
does not change the number of Îix and Îiy in the product. More specifically, spin-spin
interactions lead to the following evolution [1,39,40]:

Îix Î jz

2πJij Îiz Î jz t−−−−→ Îix Î jz cos(πJij t)+ 1

2
Îiy sin(πJij t) , (9)

Îiy Î jz

2πJij Îiz Î jz t−−−−→ Îiy Î jz cos(πJij t)− 1

2
Îix sin(πJij t)

As it is usually written in the product operator formalism, above the arrow we specify
a quantum mechanical operator, which leads to the corresponding spin evolution. Thus,
when we start from the Îix Î jz operator spin-spin interaction can produce terms, which
do not contain the Î jz operator, resulting in the formation of the pure spin magnetiza-
tion, Îiy The reason why the action of spin-spin interaction can reduce the number of
the z-operators can be understood from a presentation shown in Fig. 2. The product op-
erator 2 Îix Î jz can be presented as a combination of two magnetization vectors of spin i ,
which are parallel or anti-parallel to the y-axis, each of them representing a different
state of spin j (namely, its z-projections of ±1/2). In this case all magnetization compo-
nents of the i-th spin are equal to zero. Under the action of the coupling 2πJij the state
of the j-th spin does not change, while the i-th spin starts to precess around the z-axis.
The direction of the precession is different depending on the state of the j-th spin. For
this reason at an instant of time t = 1/2Jij both vectors are pointing along the y-axis
meaning that the initial spin order has been converted into the pure magnetization. Thus,
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Fig. 2. Schematic representation of the evolution of the product operator 2 Î1x Î2z under the action of J-
coupling. The starting spin order (t = 0) can be depicted by two arrows (black and grey), which are parallel
and anti-parallel to the x-axis. Each arrow shows the direction of the first spin and corresponds to a par-
ticular state of the second spin (with z-projection of ±1/2) Directions of the precession are shown for both
components. Due to the different directions of the precession, the time evolution creates net polarization,
Î1y, of the first spin along the y-axis. This can be seen for t = 1/4J (angle between the vectors is equal
to 90◦), the effect is maximal for t = 1/2J when both vectors are pointing along the y-axis; spin order at
different instants of time is indicated.

the spin-spin interaction leads to two consequences: (i) the z-part in the product opera-
tor can disappear and (ii) the magnetization phase rotates by 90◦. Disappearance of the
spin operators in the product can occur only for the z-components whereas the num-
ber of the transverse components always remains the same. The fact that J-couplings
lead to terms with a reduced number of z-operators in the product is crucial for our
treatment, since it opens a way to obtain pure transverse spin magnetization from the
starting spin order. Let us demonstrate how spin magnetization can be obtained in our
case.

After the action of the pulse ϕy the starting spin order changes in the following
way [1,39,40]:

Mi1i2...iK Îi1z Î i2z. . . ÎiK z

ϕ Îy−→
K∑

l=1

Mil i2...iK sin ϕ cosK−1 ϕ Îil x Îi2z . . . ÎiK z +NOT (10)

The starting spin order can be converted into the NMR observable in only one way [1,
39,40]: (i) in the product of all terms ( Îiz cos ϕ + Îix sin ϕ) we need to consider only
contributions containing a single x-operator; (ii) we need to select only a single path-
way of the total spin evolution, in which J-couplings subsequently reduce the number
of z-operators to zero. This is the only way how to form pure transverse magnetiza-
tion, which can be measured in a single-pulse NMR experiment; the remaining terms
are NOT. In the evolution under Zeeman interaction we can exclude NOT as well
because they are not mixed with observable product operators [1]. Let us first see
how the action of spin-spin interactions shifts all terms, which contain z-operators to
NMR observables or to NOT. For this purpose let us set i1 = i and analyze the evolu-
tion of a term Îix Îi2z. . . ÎiK z containing Îix , thereby choosing a particular spin multiplet
belonging to the spin i . The results for all other spins will follow directly from the
analysis below by redefining the indices of spins. Let us now analyze how the action
of J-couplings reduces the number of observable terms in the product. The product
operator Mii2...iK sin ϕ cosK−1 ϕ Îix Îi2z. . . ÎiK z will evolve as follows under the action of
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2π
∑
i �= j

Jij Îiz Î jz :

Mii2...iK Îix Îi2z. . . ÎiK z sin ϕ cosK−1 ϕ

2π
K∑

l=2
Jiil Îiz Îil z t; even K

−−−−−−−−−−→ 1

2K−1
(−1)

K
2 −1 M

ii2...iK

× sin ϕ cosK−1 ϕ Îiy

K∏
l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t)+NOT (11)

Mii2...iK Îix Îi2z. . . ÎiK z sin ϕ cosK−1 ϕ

2π
K∑

l=2
Jiil Îiz Îil z t; odd K

−−−−−−−−−−→ 1

2K−1
(−1)

K−1
2 M

ii2...iK

× sin ϕ cosK−1 ϕ Îix

K∏
l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t)+NOT (12)

The formulas have been obtained by subsequently reducing the number of the z-
operators in the product by the action of spin-spin interactions and thus eventually
obtaining pure spin magnetization. Each such ‘annihilation’ of Îiz also causes phase
changes, i.e., Îix → Îiy and Îiy → − Îix ; an odd number of such ‘annihilations’ thus
changes Îix to Îiy; an even number of ‘annihilations’ keeps the starting operator Îix .
In addition, each phase change of the type Îiy → − Îix changes the sign of the product
operator. For instance:

Î1x Î2z Î3z
2πJ12 Î1z Î2z t−−−−−→ 1

2
sin(πJ12t) Î1y Î3z +NOT

2πJ13 Î1z Î3z t−−−−−→ −1

4
sin(πJ12t) sin(πJ13t) Î1x +NOT (13)

This is exactly the way how in Eqs. (11) and (12) we have obtained terms containing no
z-operators. We have also taken into account interactions with other spins, which do not
belong to the chosen group {ii2. . .iK }. They are described by products of cos(πJiim t) for
m �= l. The results, see Eqs. (11) and (12), are thus different for even or odd K : either Îix

or Îiy is left in the formula. Now let us see how the evolution proceeds under the action
of the Zeeman term ωi Î iz for the cases of even and odd K .

2.1.1 Case of even K

The evolution under the Zeeman interaction is as follows:

1

2K−1
(−1)

K
2 −1 Mii2...iK sin ϕ cosK−1 ϕ Îiy

K∏
l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t)

ωi Î iz t−−→ 1

2K−1
(−1)

K
2 −1 Mii2...iK sin ϕ cosK−1 ϕ

(
Îiy cos ωi t − Îix sin ωi t

)
×

K∏
l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t) (14)
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The observed x-magnetization (in-phase magnetization) is written as follows by using
the Euler formulas for the sines and cosines

Mx(t) =
1

2K−1
Mii2...iK sin ϕ cosK−1 ϕ

eiωi t − e−iωi t

2N

∑
±

K∏
l=2

(−1)Qe
±iπJiil t

∏
m �=l

e±iπJ im t (15)

Here the notation
∑

± means a summation over all complex exponential terms with
positive and negative arguments; Q is the number of terms with negative sign in the ex-
ponents coming from the sine terms, sin(πJiil t). Thus, spins from the group {i2. . .iK }
change the phase of NMR lines (A-absorptive or E-emissive) within a spin multiplet
(this is what multiplet polarization is); whereas all other spins only give additional
NMR lines of the same phase. The phase of the NMR line is positive or negative de-
pending on whether Q is odd or even. The observed y-magnetization (out-of-phase
magnetization) is as follows

My(t) = − iMii2...iK sin ϕ cosK−1 ϕ
eiωi t + e−iωi t

2N+K−1

×
∑

±

K∏
l=2

(−1)Qe
±iπJiil t

∏
m �=l

e±iπJim t (16)

2.1.2 Case of odd K

The evolution under the Zeeman interaction is as follows:

1

2K−1
(−1)

K−1
2 Mii2 ...iK sin ϕ cosK−1 ϕ Îix

K∏
l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t)

ωi Î iz t−−→ 1

2K−1
(−1)

K−1
2 Mii2...iK sin ϕ cosK−1 ϕ

(
Îix cos ωi t + Îiy sin ωi t

)

×
K∏

l=2

sin(πJiil t)
∏
m �=l

cos(πJiim t) (17)

The observed x-magnetization (in-phase magnetization) is written as

Mx(t) = 1

2K−1
Mii2...iK sin ϕ cosK−1 ϕ

eiωi t + e−iωi t

2N

×
∑

±

K∏
l=2

(−1)Qe±iπJ iil t
∏
m �=il

e±iπJ im t (18)

The observed y-magnetization (out-of-phase magnetization) is written as

My(t) = − i

2K−1
Mii2...iK sin ϕ cosK−1 ϕ

eiωi t − e−iωi t

2N

×
∑

±

K∏
l=2

(−1)Qe±iπJ iil t
∏
m �=l

e±iπJim t (19)
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The time dependences, Mx(t) and My(t), we have obtained are, in fact, the Free In-
duction Decay (FID) kinetics. In order to obtain the NMR spectrum we only have to
multiply the FIDs by a decaying exponent e− t

T2 (with T2 being the transverse relaxation
time) and perform the Fourier transformation, which is simple because all the results
are already presented as linear combinations of complex exponential terms. However,
before doing this let us find out to what Fourier harmonics in the nutation patterns,
that is the ϕ-dependence, the K -th spin order contributes. Thus, we present the angular
part [1,39,40] in the expressions as a Fourier series:

sin ϕ cosK−1 ϕ =
K∑

l=1

Al sin lϕ (20)

In this expression there are only sine terms; the cosine harmonics are zero. Using the
Euler formulas for sine and cosine and the binomial expansion for cosK−1 ϕ we obtain:

sin ϕ cosK−l ϕ = 1

2K−1

K−1∑
l=0

Cl
K−1e

iϕ(K -1-2l) eiϕ − e−iϕ

2i

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2K−1
C

K−1
2

K−1 sin ϕ+ 1

2K−1

K−3
2∑

m=1

C
K−3

2 −m
K−1 {sin(2m +3)ϕ− sin(2m +1)ϕ}; odd K

1

2K−1

K
2 −1∑
m=0

C
K
2 −m−1

K−1 {sin(2m +2)ϕ− sin 2mϕ}; even K
(21)

Thus, each spin order contributes to several Fourier harmonics, which gives some com-
plications of the nutation analysis. However, our formulas minimize these difficulties,
since coefficients for all contributions are well defined. For instance, the Fourier har-
monics are as follows for small K values:

sin ϕ cosK−1 ϕ = sin ϕ for K = 1 (single-spin order,

net polarization)

sin ϕ cosK−1 ϕ = 1

2
sin 2ϕ for K = 2 (two-spin order)

sin ϕ cosK−1 ϕ = 1

4
sin ϕ+ 1

4
sin 3ϕ for K = 3 (three-spin order) (22)

sin ϕ cosK−1 ϕ = 1

4
sin 2ϕ+ 1

8
sin 4ϕ for K = 4 (four-spin order)

sin ϕ cosK−1 ϕ = 1

8
sin ϕ+ 3

16
sin 3ϕ for K = 5 (five-spin order)

+ 1

16
sin 5ϕ

Thus, the K -th spin order always gives the K -th harmonics; in addition, it can con-
tribute to lower harmonics, but never to higher ones. Odd spin order gives only odd
harmonics; even spin order gives only even harmonics. Thus, the Fourier analysis is
now clear: we have found to what Fourier harmonics each spin order contributes.
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Now let us obtain the NMR spectrum, S(ω), of the polarized spins. The Fourier
transformation of Eqs. (15) and (16) and also of Eqs. (18) and (19) over time gives the
following result for the in-phase and out-of-phase spectra, Sin(ω), and Sout(ω), respec-
tively, obtained by the Fourier transform of Mx(t) and My(t):

Sin(ω) = 1

2N+K−1
Mii2...iK sin ϕ cosK−1 ϕ

∑
±

(−1)Q L

(
ω−ωi +

K∑
l=2

(±πJiil)

)
(23)

Sout(ω) = 1

2N+K−1
Mii2...iK sin ϕ cosK−1 ϕ

∑
±

(−1)Q D

(
ω−ωi +

K∑
l=2

(±πJiil)

)
(24)

Here, as previously, the summation over all configurations of spins 1/2 is taken; we also
introduced the Lorentzian and dispersive lineshapes, which are as follows:

L(ω) = T2

1+ T 2
2 ω

2 , D(ω) = T 2
2 ω

1+ T 2
2 ω

2 (25)

Thus, for non-equilibrium states of the first kind the in-phase spectrum (x-channel) con-
sists of Lorentzian lines, whereas in the out-of-phase spectrum (y-channel) all lines are
dispersive. Spectra for all other spin multiplets can be obtained from our formulas by
assigning i to other spins.

2.2 Non-equilibrium states of the second kind

Now let us describe the effects of coherences in the FT-NMR spectrum, i.e., consider
non-equilibrium states of the second kind. Here we will not treat arbitrary coherences
and describe only effects coming from zero-quantum coherences (ZQC). These are co-
herences between spin states characterized by the same value of Iz (z-projection of the
total spin). ZQCs evolve relatively slowly (with low frequencies equal to frequency dif-
ferences (ωi −ω j) given by chemical shift differences) in contrast to single-quantum
coherences (which evolve with the NMR frequencies, ωi , ω j ). In addition ZQCs can
be formed by hyperpolarization methods, for instance, by PHIP [18,19,41], where the
polarized spin system is prepared in the singlet state and the initial density matrix of
a two-spin system is as follows:

ρ̂0 ∝ 1

4
Ê − (

Î1x Î2x + Î1y Î2y + Î1z Î2z

)
(26)

In the simplest case of two spins it very easy to determine what the actions of the prod-
uct operators Î1x Î2x and Î1y Î2y are. Pulses applied along the y-axis do not affect the
yy-operator (which itself cannot produce observable spin magnetization); the spectrum
coming from the xx-contribution is exactly the opposite of that from the zz-contribution,
which we analyzed before. This is because a system prepared in its singlet state is silent
to non-selective NMR excitation and does not give a spectrum. Since all three contri-
butions to the spectrum are additive and the yy-one is zero, we immediately conclude
that the spectra from the xx- and zz-operators cancel each other giving spectral lines of
the same intensity but of opposite phase. This result can also be obtained in an easy
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way using the product operator formalism. For brevity, we do not perform this treatment
here.

For a spin system prepared in the singlet spin state at high field there is the need to
consider not only spectra determined by the Î1x Î2x and Î1y Î2y product operators but also
by the Î1x Î2y and Î1y Î2x operators. This is because the difference in frequencies (ω1 −
ω2) �= 0 (i.e., the (ω1 −ω2)( Î1z − Î2z) term in the Hamiltonian) causes the following spin
evolution [1,39,40].

Î1x Î2x + Î1y Î2y
δωδ Îz−−→ Î1x Î2y − Î1y Î2x (27)

Here δω = (ωi −ω j) and δ Îz = ( Î1z − Î2z). Thus, when there is a delay between the prep-
aration of polarization and an RF-pulse, it becomes necessary to consider also these
additional terms. As we will show below, they result in dispersive NMR lines in the
in-phase channel and Lorentzian lines in the out-of-phase channel.

Let us consider only two types of coherences: (1) an even number of x-operators
and an arbitrary number of z-operators; (2) an odd number of x-operators, a single y-
operator and arbitrary number of z-operators. The number of the x- and y-operators
must be even to ensure that the coherences are indeed ZQCs: for instance, a single x-
operator will result in single-quantum coherences, which are associated with transverse
magnetization. Including more than one y-operator will result in non-observable spin
evolution because the RF-pulse having y-phase will keep the number of the y-operators
and the combination of two or more y-operators will never give pure spin magnetiza-
tion. For the first type of state the starting spin order is determined in the following
way:

Ri1...i2L j2L+1... jK

2L∏
l=1

Îil x

K∏
l=2L+1

Î jl z (28)

Here we introduce the spin tensor, Ri1...i2L i2L+1...iK , by analogy with the M-tensor intro-
duced earlier:

Ri1...i2L j2L+1... jK = 2K Tr

{(
2L∏
l=1

Îil x

K∏
l=2L+1

Î jl z

)
ρ̂0

}
(29)

This tensor characterizes the spin order in a system where the first 2L spins have a spin
order described by Îil x operators; the states of the remaining (K −2L) spins are charac-
terized by Îil z operators. When an NMR pulse is applied it rotates all spins around the
y-axis. As previously, in the resulting density matrix we need to consider only contri-
butions having a single x-operator; the rest will be NOT. There are two possibilities for
this: (i) all but a single spin from the first group (x-operators) are rotated while all spins
from the second group (z-operators) are not rotated; (ii) all spins from the first group
(x-operators) are rotated while from the second group (z-operators) only a single spin



942 E. A. Nasibulov et al.

is rotated. Thus, the effect of the pulse is as follows:

Ri1...i2L j2L+1 ... jK

2L∏
l=1

Îil x

K∏
l=2L+1

Î jl z

ϕ Îy−→ −
∑

m

Ri1...i2L j2L+1... jK sin2L−1 ϕ cosK−2L+1 ϕδiim Îix

2L∏
l=1
l �=m

Îil z

K∏
l=2L+1

Î jl z

+
∑

q

Ri1...i2L j2L+1... jK sin2L+1 ϕ cosK−2L−1 ϕδijq Îix

2L∏
l=1

Îil z

K∏
l=2L+1

l �=q

Î jl z +NOT (30)

Here δij is the Kronecker delta, which is equal to 1 when its indices coincide and is
zero otherwise. Our previous results for the non-equilibrium states of the first kind have
already described the spin evolution of the product of one x-operator and an arbitrary
number of z-operators; the only difference in this case is the ϕ-part of the result. Thus,
as previously, we will obtain a Lorentzian line in the in-phase channel; they will exhibit
multiplet polarization. In the out-of-phase channel there will be only dispersive lines.
The products sin2L−1 ϕ cosK−2L+1 ϕ and sin2L+1 ϕ cosK−2L−1 ϕ, which determine the flip
angle dependence, can also be presented as a Fourier series in the same way as before in
Eqs. (20) and (21). Thus, the results are clear in this case. In the second situation (single
y-operator) the initial spin order is as follows:

Rii2...i2L j2L+1... jK Îiy

2L∏
l=2

Îil x

K∏
l=2L+1

Î jl z (31)

This tensor describes a spin order, in which the i-th spin is characterized by its y-
operator, while the other spins are characterized by their x-operators in a number of
(2L −1) and their z-operators in a number of (K −2L). To obtain the observable mag-
netization it is necessary to rotate all x-operators and keep all z-operators while the
y-operator is not affected by the y-pulse:

Rii2...i2L j2L+1... jK Îiy

2L∏
l=2

Îil x

K∏
l=2L+1

Î jl z

ϕ Îy−→ −Rii2...i2L j2L+1... jK sin2L−1 ϕ cosK−2L ϕ Îiy

2L∏
l=2

Îil z

K∏
l=2L+1

Î jl z +NOT (32)

The problem can again be reduced to the previous consideration. The only difference
from the previous results for the non-equilibrium states of the first kind is, however,
the need of exchanging the x- and y-indices. As a consequence, what was expected in
the in-phase channel for the non-equilibrium states of the first kind will come out in
the out-of-phase channel in the present case and vice versa. Thus, we can use the pre-
vious results only exchanging the two NMR detection channels. As a consequence, in
the in-phase channel there will be only dispersive lines, while in the out-of-phase chan-
nel there will be Lorentzian lines of different sign. The angular dependence given by
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sin2L−1 ϕ cosK−2L ϕ can also be decomposed in a combination of Fourier harmonics. To
gain a more clear insight into the NMR of such a spin order we will present an example
(see below in the following section).

Now let us discuss representative examples of multiplet-polarized spin systems.
This will serve for a better understanding of the general results that we obtained. We
will mainly focus on the non-equilibrium states of the first kind; however, an example
of an NMR spectrum of a non-equilibrium state of the second kind will close the dis-
cussion section.

3. Discussion

Example 1, single spin: N = 1. In this case there can be only a single-spin order
present, the initial state is thus M1 Î1z . It results in the following spin evolution:

M1 Î1z

ϕ Îy−→ M1 sin ϕ Î i1x

ω1 Î1z t−−→ M1 sin ϕ
(
Î1x cos ω1t + Î1y sin ω1t

)
e
−t/T2 (33)

Thus, the y-pulse forms transverse magnetization, which rotates around the z-axis due
to the Zeeman interaction. In this simplest case there will be only one line in the spec-
trum:

Sin(ω) = 1

2
M1 sin ϕL(ω−ω1), Sout(ω) = 1

2
M1 sin ϕD(ω−ω1) (34)

The line is Lorentzian for the in-phase channel and dispersive for the out-of-phase chan-
nel. The in-phase part of the spectrum is shown in Fig. 3 (spectrum 1).

Example 2, two spins: N = 2. In this case there can be net polarization and second-
order multiplet polarization in the system. Thus, the initial state is M1 Î1z + M2 Î2z +
M12 Î1z Î2z . The second term does not give lines at ω1 and will be omitted for brevity. The
first two terms and the third term correspond to K = 1 and K = 2, respectively. They
can be easily separated because the net polarization contributes only to the first Fourier
harmonics with respect to the flip angle while the multiplet polarization contributes
only to the second harmonics. Let us specify what NMR signals will be obtained from
the two types of spin order.

For K = 1 (net polarization) we obtain the following evolution of magnetization:

M1 Î1z

ϕ Îy−→ M1 sin ϕ Î 1x

πJ122 Î1z Î2z t−−−−−→M1 sin ϕ Î1x cos πJ12t

+2M1 sin ϕ Î1y Î2z sin πJ12t (35)

Here Î1y Î2z is NOT and can be omitted. As a consequence, we obtain the following in-
phase spectrum:

Sin(ω) = 1

2
M1 sin ϕ(L(ω−ω1 −πJ12)+ L(ω−ω1 +πJ12)) (36)
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Fig. 3. FT-NMR spectra for different spin orders; spin multiplet of spin 1 centered at a frequency ω1 is
shown. Number of spins, N, and spin-order, K , are specified. Here we show cases of single spin (N = K =
1, spin order is Î1z , spectrum 1), two-spin system (N = 2, K = 1 and 2, spin order is Î1z and Î1z Î2z , respec-
tively, spectra 2 and 3), three-spin system (for N = K = 3, spin order is Î1z Î2z Î3z , spectrum 4), four-spin
system (for N = K = 4, spin order is Î1z Î2z Î3z Î4z , spectrum 5). Flip angle dependencies for different spin
orders are described in the text. Spin-spin interactions are: J12 = 1 Hz, J13 = 3 Hz; J14 = 9 Hz.

This multiplet of the first nucleus centered at ω = ω1 is shown in Fig. 3 (spectrum 2):
it contains two lines of the same phase (absorptive in our case) and intensity. The spec-
trum is thus an even function of frequency when the origin of the frame placed at ω1.
The flip angle dependence is trivial being the same as that for thermally polarized spins.

For K = 2 (multiplet polarization) we obtain:

M12 Î1z Î2z

ϕ Îy−→ 1

2
sin 2ϕM12

(
Î1x Î2z + Î1z Î2x

)+NOT (37)

Here the first and the second terms are observed at frequencies ω1 and ω2, respectively,
giving the same spectral pattern. Let us consider only the spectrum at the frequency of
the first spin and describe only the evolution of the in-phase magnetization:

1

2
M12 sin 2ϕ Î1x Î2z

2πJ12 Î1z Î2z t−−−−−→ 1

4
M12 sin 2ϕ Î1y sin(πJ12t)

+NOT
ω1 Î1z t−−→ −1

4
M12 sin 2ϕ Î1x sin(ω1t) sin(πJ12t)+NOT (38)

The in-phase spectrum at the frequency of the first spin is as follows

Sin(ω) = 1

8
M12 sin 2ϕ(L(ω−ω1 +πJ12)− L(ω−ω1 −πJ12)) (39)

This spectrum (Fig. 3, spectrum 3) has two lines, which have the same intensity
but opposite phase. Thus, the spectrum exhibits multiplet polarization of the type
absorption/emission (AE). The spectrum is an odd function of frequency when the ori-
gin of the coordinate frame is placed at ω1. The flip angle dependence of the spectrum



FT-NMR of hyperpolarized spins 945

coming from this spin order is simple and is given by sine of 2ϕ in accordance with
previous works [38,42,43].

Example 3, three spins: N = 3. In this case in the system there can be three net polar-
izations, three two-spin orders and one three-spin order. We already know what happens
for K = 1 and K = 2. In the present case the only complication is that the spectrum
coming from the two-spin order is a linear combination of multiplet polarization of dif-
ferent spins: in the NMR multiplet of the first spin contributions from both Î1z Î2z and
Î1z Î3z will appear. However, with the use of our previous results such a generalization
becomes trivial as it requires a straightforward summation of spectra coming from these
spin orders. Thus, let us describe the results for the three-spin order, i.e., for K = N = 3.
Again, it is sufficient to characterize the spin multiplet centered at ω1 as the multiplets
of the other two nuclei can be determined in the same way. The relevant terms in the
spin evolution are as follows:

M123 Î1z Î2z Î3z

ϕ Îy−→ M123 sin ϕ cos2 ϕ
(
Î1x Î2z Î3z + Î1z Î2x Î3z + Î1z Î2z Î3x

)+NOT (40)

Here only the first term contributes to NMR signals of the first spin, thus, the relevant
part of the spin evolution takes the form:

M123 sin ϕ cos2 ϕ Î1x Î2z Î3z
J-couplings−−−−→− 1

4
M123 sin ϕ cos2 ϕ Î1x sin(πJ12t) sin(πJ13t)

+NOT (41)

The in-phase spectrum is as follows:

Sin(ω) = 1

16
M123 sin ϕ cos2 ϕ(L(ω−ω1 +πJ12 +πJ13)− L(ω−ω1 −πJ12 +πJ13)

− L(ω−ω1 +πJ12 −πJ13)+ L(ω−ω1 −πJ12 −πJ13)) (42)

This spectrum is shown in Fig. 3 (spectrum 4). The spin multiplet comprises four lines
of different phase with an equal number of absorptive and emissive lines. The spectrum
of the three-spin order is an even function of frequency because K is odd. The phase of
the lines is given by the factor (−1)Q in Eqs. (15), (18) and (23), which is present in the
general formulas; the spectral pattern is thus of an AEEA type. The flip angle depen-
dence of the resulting spectrum is given by the ϕ-dependent factor sin ϕ cos2 ϕ, which
results in contributions to the first and third Fourier harmonics.

Example 4. Finally, let us describe the spectrum of a four-spin order. We will consider
here a four-spin system with all spins entangled, i.e., N = K = 4. When K < N all re-
sults for this system can be easily obtained from the considerations presented above.
The spectrum coming from the four-spin order is shown in Fig. 3 (spectrum 5). Again
the number of lines with positive and negative phase is the same; the spectrum is an odd
function of frequency with the spectral pattern of the type AEEAEAAE. The flip angle
dependence of the spin order under consideration has two Fourier harmonics, namely,
the second and the fourth harmonics.
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Fig. 4. FT-NMR spectra of a two-spin system in a non-equilibrium state of the second kind, which is Î1x Î2x

(spectrum 1) or ( Î1x Î2y − Î1y Î2x) (spectrum 2). Here the spin multiplet of spin 1 centered at a frequency ω1

is shown. Flip angle dependencies for different spin orders are described in the text; spin-spin interaction
is J12 = 1 Hz.

Spectra of higher-spin orders can be constructed in a similar way. Spin multiplets
are even or odd functions of frequency (which is dictated by the factors (−1)Q) for odd
and even K , respectively. The flip angle dependence of the spectrum is determined by
factors sin ϕ cosK−1 ϕ, which contribute to well-defined sine harmonics in the Fourier
series expansion.

Example 5, (non-equilibrium states of the second kind). We consider a two-spin sys-
tem having ZQCs. In this case there are two possibilities for the ZQCs, which are given
either by xx-operators or by xy- and yx-operators.

Case (a): coherence of an xx-type. The initial state of the system is R12 Î1x Î2x ; its spin
evolution is written as follows (here we omit the evolution of Î1y):

R12 Î1x Î2x

ϕ Îy−→− 1

2
R12 sin 2ϕ

(
Î1x Î2z + Î1x Î2z

)+NOT
2πJ12 Î1z Î2z t+ω1 Î1z t−−−−−−−−−→

− 1

4
R12 sin 2ϕ Î1x sin(πJ12t) sin(ω1t)+NOT (43)

The spectrum is shown in Fig. 4 (spectrum 1); it is just the inversion of the spectrum
coming from the zz-order, which was considered in detail in the previous examples. The
flip angle dependence of the NMR spectrum of the xx-spin order is given by sin 2ϕ as it
was for the zz-spin order.

Case (b): coherence of the xy- and yx-type. The initial state of the system is
R12( Î1x Î2y − Î1y Î2x); spin evolution is written as follows (here we omit the evolution
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of Î1y):

R12
(

Î1x Î2y − Î1y Î2x

)
ϕ Îy−→ −R12 Î1y Î2z sin ϕ+NOT

πJ122 Î1z Î2z t+ω1 Î1z t−−−−−−−−−→
− 1

2
R12 Î1x sin ϕ sin(πJ12t) cos(ω1t)+NOT (44)

The spectrum has only dispersive lines in the in-phase channel (see Fig. 4, spectrum 2).
Interestingly, for the spin order considered the flip angle dependence is not the same
as for the xx- and zz-orders. Although we started with a two-spin order, the result is
proportional to sin ϕ, as it was the case for the single-spin order. Thus, the ZQC of
the type ( Î1x Î2y − Î1y Î2x) behaves quite differently in pulsed NMR as compared to the
longitudinal order.

In principle, further examples for the non-equilibrium states of the second kind
could be shown; however, our treatment already makes the general laws clear that gov-
ern the spin evolution.

4. Experiments
To illustrate and confirm our general theoretical results we performed the analysis of the
nutation patterns for a hyperpolarized system of two protons, which we prepared in the
singlet state by means of PHIP [18,19]. In the PHIP experiment a substrate molecule
catalytically reacts with para-hydrogen (i.e., dihydrogen, H2, in its singlet state); when
the two protons occupy non-equivalent positions in the reaction product its NMR lines
are strongly enhanced. Thus, in principle, PHIP enables the preparation of singlet order
of the two-spins. However, to prepare the desired spin order special care has to be taken
because at high field the singlet state is not an eigen-state of the two spins. As a con-
sequence, in the PHIP experiment the spin system acquires not only non-equilibrium
state populations but also a ZQC. In most cases this ZQC is washed out because of
the finite preparation period, which is typically much longer than the inverse frequency
difference 1/(ω1 −ω2) = 1/δω. Here, to preserve the ZQC we changed the standard
protocol [41] of the high-field PHIP experiment (see Fig. 5). We prepared polarization
under a sufficiently strong resonant RF-field so that the singlet state of the two protons
was an eigen-state of the Hamiltonian under these conditions. As a consequence, we
got rid of the fading of the ZQC because PHIP produced polarized molecules in a spin
eigen-state. When a sufficient amount of polarization was accumulated, we switched
off the strong RF-field instantaneously so that the spin state of the molecules did not
change. This strategy allowed us to form the initial singlet spin order, see Eq. (26).

Immediately after the switching the terms ( Î1x Î2x + Î1y Î2y) start evolving under the
action of δω · δ Îz as it is described in Eq. (27). Thus, the spin order changes with time
and the detected NMR spectrum does not only depend on the flip angle but also on the
delay, τ , between the switch-off of the strong RF-field and the RFpulse used for the
NMR detection. In our experiments we measured how the observed spectrum depends
on both quantities. Using this preparation the spin state under study is a non-equilibrium
state of the second kind, since not only the state populations differ from those at thermal
equilibrium but coherences are present also.

The experiments were performed in the following manner (Fig. 5). To create PHIP
we used the catalytic hydrogenation reaction of ethyl phenylpropiolate, which produces
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Fig. 5. Experimental protocol used for studying nutation patterns of a two-spin system in a non-equilibrium
spin state of the second kind. The protocol comprises 5 steps: bubbling H2 gas enriched in its para-
component through the solvent (step 1); switching on a strong RF-field denoted as RF1 (step 2); free
evolution of the ZQC during a variable time τ (step 3); applying a non-selective RF-pulse denoted as RF2

(step 4); recording the FID (step 5). Duration of step 1 and 2 was 2 s and 5 s, respectively; delay τ was
varied on the millisecond timescale; detecting NMR pulses had a duration of 90 μs (for ϕ = 2π) or less.

O

O

CH3

H

H

O

O

CH3

H2p

1

2

Scheme 1. Scheme of the hydrogenation reaction used; the chemical structures of ethyl phenylpropiolate
and ethyl cinnamate are shown; the polarized protons, H1 and H2 of ethyl cinnamate are indicated.

ethyl cinnamate [44]. The sample containing 200 mM of ethyl phenylpropiolate and
6 mM of the hydrogenation catalyst in deuterated methanol used as a solvent was placed
in the NMR sample tube. We used the same sample tubes as before and performed bub-
bling in the way described earlier [45]. To prepare PHIP we bubbled dihydrogen gas
enriched in its para-component through the solvent for 2 s (step 1). Then a strong RF
field with an amplitude of 10 kHz was switched on for 5 s (step 2). During this time
the dissolved para-hydrogen reacted with ethyl phenylpropiolate to produce ethyl cin-
namate having two protons in the H1 and H2 positions (see Scheme 1) prepared in their
singlet spin state. The chemical shifts of the protons are equal to 6 and 7 ppm; their
scalar spin-spin coupling constant is 12.8 Hz. Then the RF field was switched off during
approximately 100 μs; after that the two polarized protons evolved under the action of
the operator δω · δ Îz (step 3). Then, after a precisely set delay we applied a non-selective
RF-pulse (step 4) to obtain the FID (step 5); the Fourier transform of the FID gave us the
NMR spectrum of the system. The frequency of the evolution of the ZQC is given by
the difference in NMR frequency, δω/2π of the protons, which was about 300 Hz. The
time of switching off the strong RF-field and the NMR pulse length (90 μs for ϕ = 2π

and less for smaller flip angles) are much shorter than a period of the ZQC oscillations,
which enabled the precise setting of the delay τ . Delays were taken relatively short so
that spin relaxation did not affect the evolution of the ZQCs.

Let us first describe how the observed spectrum depends on the delay τ . At τ = 0 the
spin system is in its singlet spin state, hence its NMR spectrum disappears in the case
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Fig. 6. Spectrum of the two-spin system prepared in its singlet state detected at different delays τ after the
preparation. Here τ = n ·T +δτ , with T ≈ 3.3 ms being the period of oscillations of the ZQC, n = 61 being
the number of periods and δτ being equal to: −T/4 (spectrum 1); −T/8 (spectrum 2); δτ = 0 (spectrum 3);
T/8 (spectrum 4); T/4 (spectrum 5). Here, the in-phase spectra are shown; 90◦ pulses were used for NMR
detection.

of non-selective excitation. Indeed, the singlet state is an eigen-state of the Hamiltonian
γB1( Î1y + Î2y), therefore the RF-pulse does not induce any transitions between the spin
states. As the ZQC evolves the situation changes, since the spin order oscillates between
( Î1x Î2x + Î1y Î2y) and ( Î1x Î2y − Î1y Î2x). When the spin system goes from the pure singlet
state to a state

ρ̂0 ∝ 1

4
Ê − Î1z Î2z − (

Î1x Î2y − Î1y Î2x

)
(45)

the NMR spectrum appears. Indeed, the longitudinal Î1z Î2z spin order gives rise to the
so-called PASADENA-type spectrum [41] (see spectrum 3 in Fig. 3; the flip angle de-
pendence is given by sin 2ϕ) while the coherence ( Î1x Î2y − Î1y Î2x) gives a spectrum with
dispersive lines (see spectrum 2 in Fig. 4) and the flip angle dependence is given by
sin ϕ.

Our experimental results are in full agreement with these expectations. In Fig. 6
a series of spectra are shown for various values of τ. Here, ϕ = π/2 detection pulses
are used with the consequence that all components varying with sin 2ϕ are suppressed.
As can be seen from Fig. 6, when the delay δω · τ = 2nπ (here n is an integer number)
the spin system returns back to the singlet state and no NMR signals are seen (cf. spec-
trum 3 in Fig. 6). When δω · τ = (2n ±1/2)π the contributions giving dispersive lines
are maximal in amplitude (see spectra 1 and 5 in Fig. 6).

Now let us consider the flip angle dependence of the spectra and separate spin
orders in the system by performing the Fourier analysis of the nutation patterns. Fig. 7
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Fig. 7. Spectra of the two-spin system prepared in its singlet state detected at different flip angles. Here,
the in-phase spectra are shown; the delay τ was the same as for spectrum 1 in Fig. 6, corresponding to the
maximal contribution from ( Î1x Î2y − Î1y Î2x ).

Fig. 8. Nutation analysis of the NMR of the two-spin system prepared in the singlet state: first Fourier har-
monics (spectrum 1) and second Fourier harmonics (spectrum 2). Here the in-phase spectra are shown;
the delay τ is the same as for spectrum 1 in Fig. 6, corresponding to the maximal contribution from the
( Î1x Î2y − Î1y Î2x) term.

shows the NMR spectra as function of the flip angle ϕ. In Fig. 8 the result of the Fourier
decomposition of the nutation patterns is presented.

The first Fourier harmonics (Fig. 8, spectrum 1) corresponds to the spectrum of the
( Î1x Î2y − Î1y Î2x) spin order. In full agreement with the theory, in this spectrum there are
only dispersive NMR lines although the NMR detection was performed in-phase. Thus,
both spin multiplets have two dispersive lines of the opposite phase as it is expected (see
spectrum 2 in Fig. 4). The contribution from the corresponding spin order is maximal
when ϕ = π/2 is used. The second harmonics (Fig. 8, spectrum 2) gives the spectrum
coming from the longitudinal two-spin order, Î1z Î2z . The spectral shape is standard for
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the PHIP experiments done at high field: there are two AE-multiplets in the spectrum.
Since both types of spin order depend on the flip angle in a different way, the Fourier
analysis enables to separate them and to characterize fully the non-equilibrium state
of the second kind. The experimental results are in full agreement with our theoretical
treatment. Thus, our general theoretical consideration gives a correct description of the
experimentally observed NMR spectra of non-equilibrium spin systems. It reproduces
not only the flip angle dependence of the spectral patterns but also such unusual effects
as dispersive lineshapes in the in-phase detection channel, which are present when the
spin system has ZQCs.

5. Conclusions

Here, we performed a theoretical treatment of FT-NMR spectra of hyperpolarized mul-
tispin systems, which have multiplet polarization of high order. We analyzed in detail
the flip angle dependence of the spectra (so-called nutation patterns) and revealed to
what Fourier harmonics with respect to the flip angle the different spin orders con-
tribute. We also obtained a general expression for the shape of the NMR spectrum
coming from a particular spin order, which allowed us to formulate rules for the spec-
tral patterns, i.e., to understand whether spin multiplets are even or odd functions of
frequency. Bearing in mind the complexity of the problem in its general formulation
we can state that our treatment is still relatively simple. This became possible because
we used the product operator formalism. In addition to the non-equilibrium spin states
of the first kind, which are characterized by longitudinal spin orders, we extended our
treatment to non-equilibrium states of the second kind, in particular, to states with zero-
quantum coherences. We have shown that for certain types of coherences there can
be Lorentzian or dispersive lines resulting from the Fourier transform of the in-phase
channel spin magnetization.

Our treatment makes determination of spin order possible in multi-spin systems
by performing Fourier decomposition of the nutation patterns. First, odd and even
spin orders contribute only to odd and even harmonics. Second, the highest odd/even
observable harmonics will immediately give the highest odd/even spin order in the sys-
tem. This spin order also contributes to lower harmonics; however, this fact does not
create a big problem because the weights of these contributions are precisely known
from Eqs. (21) and (22). Therefore all contributions of high spin order to lower harmon-
ics can be easily separated. As a consequence, it becomes possible to decompose the
nutation patterns in contributions arising from different spin orders. Thus, our strategy
based on the Fourier series expansion of the nutation patterns allows for a straightfor-
ward determination of the full spin order in multispin system.

Taking a two-spin system prepared in its singlet spin state as an example we also
demonstrated that our treatment indeed opens a way to a precise characterization of the
spin order. It is important to emphasize that the system presented is a non-equilibrium
system of the second kind corresponding to a more complicated case as compared to the
non-equilibrium system of the first kind. We studied the evolution of the zero-quantum
coherence in the system caused by the difference in Zeeman interaction of the spins
with the external magnetic field. We presented the NMR nutation patterns as a sum of
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two Fourier harmonics: the first harmonics results from the zero-quantum coherences
and gives dispersive NMR lines, whereas the second harmonics comes from the lon-
gitudinal two-spin order and results in NMR spectra having the standard shape of the
PASADENA-type spectrum with two AE multiplets.

The present treatment allowed us to understand both the flip angle dependence and
the NMR spectral patterns of spin systems carrying multispin order. In fact, our treat-
ment exhausts the theoretical description of both of these problems. We illustrated the
general results by several theoretical and experimental examples, which make our treat-
ment clear and give an impression of how typical NMR multiplet and nutation patterns
look like when they are resulting from high-order multiplet polarization. Our treatment
is particularly important to describe CIDNP and PHIP spectra as for both kinds of po-
larization it is typical that not only net but also strong multiplet polarization is formed.
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