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We use Monte-Carlo Simulations to study the conductance switching generated by gas-induced

electron trapping/-releasing in films of sintered metal oxide nanoparticles by using a site-bond

percolation model. We explore the possibilities of gas sensors based on these mechanisms. In our

study, we model films of different thicknesses where the conductance values of the grains (sites)

and of the contacts (bonds) between these grains depend on the surface density Nr of adsorbed gas

molecules from the ambient atmosphere. Below a critical density Nr ¼ Nr;c, the system is

insulating due to the interruption of current flow, either through the connecting bonds or through

the grain interior. This leads to two competing critical gas covering thresholds N
ðbondÞ
r;c and N

ðsiteÞ
r;c ,

respectively, that separate the insulating from the conducting phase. For N
ðsiteÞ
r;c > N

ðbondÞ
r;c , the

characteristic curve of monodisperse sensors shows a noticeable jump from zero to a finite

conductance at Nr ¼ N
ðsiteÞ
r;c , while for polydisperse sensors site percolation effects modify the jump

into a steep increase of the characteristic curve and thus lead to an enhanced sensitivity.

For N
ðsiteÞ
r;c < N

ðbondÞ
r;c , both mono- and polydisperse systems follow the same curves that show a

smoother characteristic increase / ðNr � N
ðbondÞ
r;c Þ2 which reveals that, despite the occurrence of an

inherent bond percolation effect close to Nr;c, the increase of the bonds is the dominating effect.

VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809572]

I. INTRODUCTION

Gas sensors play an important role in our daily life, e.g.,

to prevent gas explosions or to control the emission of com-

bustion gases.1,2 In this paper, we concentrate on homogene-

ous semiconducting gas sensors. They usually consist of a

polycrystalline oxide layer that changes its electrical conduct-

ance when exposed to the gas that is therefore detected via the

conductance change of the sensor. The preparation of suitable

oxide layers has been considerably improved in recent years to

fabricate nanogranular films by self-organized growth of nano-

structures3 as well as by the replication of nanostructure tem-

plates.4 Besides disordered nanoporous systems, also systems

with long-range order and a high degree of crystallinity5 can

now be used for the design of gas sensors. In addition to poly-

disperse systems with broad distributions of grains sizes also

highly monodisperse systems can be achieved by new prepara-

tion methods. As one example, highly monodisperse granular

oxide layers can now be prepared by gas phase condensation

with electrostatic precipitation.6 Therefore, a large variety of

complex ordered and disordered materials with monodisperse

and polydisperse grain distributions can be fabricated and in

principle be used as a functional film, in particular as a sensor.

Homogeneous semiconducting gas sensors usually are

considered as belonging to two different classes, depending

on their operating temperature. At higher temperatures, e.g.,

more than 500 �C for TiO2; ZnO; SnO2, and WO3, the con-

ductance is basically caused by oxygen vacancies inside the

bulk material that act as n-donors.2,7 At lower temperatures,

typically below 500 �C, surface effects are considered as

more important than reactions in the bulk,7 giving rise to a

“surface sensitive” sensor for detecting reducing gases, as,

e.g., CO; H2, and hydrocarbons that adsorb on the grain

surfaces, thereby also changing the conductance between the

grains (see, e.g., Ref. 8). These surface-sensitive sensor types

are mostly operated between 150�C and 350�C and in this

paper we will concentrate on this class, namely, on the

widely used surface sensitive n-type oxides as, e.g., SnO2.

It is well-known that the grain-sizes in the system play a

major role for the sensing properties.2,4,9–12 When the grains

are exposed to air, according to a standard model2,4 oxygen

is adsorbed, captures electrons from the grain bulks and traps

them at the surface (surface doping) leaving a depletion zone

of thickness k of the order of 10 nm below the surface. When

a reducing gas is offered, the negative surface charge is

reduced and within the Schottky approximation assuming

acceptor/donor compensation, k is given by13,14

k � ðNox � NrÞ=ND; (1)

where Nr and Nox are the surface densities of the reducing

gas and the initially adsorbed oxygen, respectively. ND is the

donor density of the metal oxide bulk material which is

assumed to be constant.9,15 Equation (1) shows that k is the

largest when the grain surface is covered solely by adsorbed

oxygen, i.e., Nr ¼ 0. If k is of the order of the radius of the
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grain, the remaining core becomes too small to host an elec-

tron state and the conductance of the grain vanishes. When

Nr increases, k decreases and more and more grains eventu-

ally become conducting.

The gas sensors considered in this work consist of grains

that are arranged in a disordered sintered layer and form a

network between two electrodes. In this network, not only the

conductance of each grain but also the conductance between

overlapping grains (bonds) matters and there is only a sensing

signal if there exists a conducting path between the electro-

des. Based on simplifying assumptions about the network and

its conducting properties, it has been shown by numerical

simulations13,14 that the conductance of the gas sensor shows

a percolation characteristic curve when plotting it versus Nr.

Below a certain critical gas density Ncrit, the system is insulat-

ing while above Ncrit the structure becomes conducting (for

an overview on percolation phenomena in gas sensors see,

also, Ref. 24).

On the experimental side, the influence of percolation

effects on the electron transport in nanocrystalline semicon-

ducting layers has been investigated (see Ref. 4 and referen-

ces therein), e.g., by transient photocurrent measurements in

nanocrystalline TiO2 solar cells16 and nanoporous TiO2

layers.17 Indications of a possible percolation mechanism

in nanoporous gas sensors have also been found by gas-

sensitivity measurements on randomly oriented single crystal

SnO2 nanowires and on thin layers of pristine SnO2 nanopar-

ticles.8 Other works have investigated the dependence of the

conductance in nanocrystalline semiconducting films on vari-

ous morphological system parameters, as, e.g., on thickness18

and porosity.17 A general dependence of the conductance on

the system morphology has been discussed in Ref. 19.

It is the purpose of this paper to explore the possibilities

of disordered homogeneous gas sensors and the specific shapes

of the characteristic curves analytically and numerically. To

this end, we investigate the different properties that are con-

nected with the disordered structure and in particular with a

possible percolation transition. We extend the work of Ref. 14

considerably by gradually going from a 2D system to a 3D

system, by studying in detail the microscopical features that

determine the shape of the characteristics and by explicitly cal-

culating the bonds between neighboring grains. Thereby, we

arrive at a site-bond percolation model and distinguish the

cases with bonds between two grains being cut even when the

neighboring grains are still conducting and vice versa. As a

result and depending on these two cases, we find that smooth

characteristic curves are possible as well as characteristic

curves that jump to a finite signal at some threshold value.

The paper is organized as follows: In Sec. II, we

describe the underlying model that we use in our simulations

and compare it to the model used in Ref. 14. After this, we

explain in Sec. III how the conductance of the whole system

is estimated for a given concentration Nr of reducing gas. In

Sec. IV, we discuss a simplified monodisperse system that

can be solved analytically. The results can be used as a

guideline for Sec. V, where the results of our numerical sim-

ulations on mono- and polydisperse systems are presented.

In Sec. VI, we discuss our results and their expected rele-

vance to experimental situations and technical applications.

II. MODEL

The nanograin metal-oxide films we are interested in

consist of sintered grains with connections in the shape of

necks between them (see Fig. 1). It is experimentally known

that the mean geometrical neck diameter hD0
ni is proportional

to the mean diameter hDi of the grains hD0
ni ’ HhDi with a

proportionality constant H � 0:76 (sintering parameter).9,10

The coordination number hki of the grains is between 2 and

3. In order to model such a system, we start with a cubic lat-

tice with lattice constant a consisting of N monolayers and

occupy the lattice points i with spheres of diameter DðiÞ (with

probability pðsiteÞ), or leave them empty (with probability

1� pðsiteÞ) (see Figs. 1(a) and 1(b)). The grain diameters DðiÞ

may be all equal, DðiÞ ¼ D (monodisperse), or chosen ran-

domly from an appropriate distribution P(D) (polydisperse).

The lattice constant a is chosen such that neighboring

spheres can overlap fulfilling the constraint hD0
ni ’ HhDi.

For achieving the desired coordination number hki, we use

the occupation probability pðsiteÞ as the tuning parameter. To

generate additional disorder, the center of each grain may be

shifted by a random value up to 10% of the lattice constant a
away from the lattice point. As in realistic experimental sys-

tems, the lattice constant a decreases with hDi, thereby

reducing the total size of the system. After generating the

model grain system, it is straightforward to determine the

individual grain surfaces S
ðiÞ
exp exposed to the ambient atmos-

phere which is a central quantity in calculating the conduct-

ance of the system.

First, to identify the conducting grains for a given sur-

face gas density Nr, we follow Ref. 14: we assume that the

probability p
ðiÞ
e of grain i to be conducting is identical to the

probability that it is occupied by at least one free electron.

The number DN
ðiÞ
freeðNrÞ is the difference between the number

of the donor electrons in grain i and the number of electrons

trapped by adsorbed oxygen molecules

DN
ðiÞ
freeðNrÞ ’ ViND � ðNox � NrÞSðiÞexp; (2)

where Vi is the volume of grain i. From Eq. (1), we obtain

p
ðiÞ
e ðNrÞ within a mean-field type approximation

FIG. 1. (a) and (b) Two-dimensional sketch of a network model of a system

of sintered nanograins with (a) small and (b) large thickness of the depletion

zone k. The conducting core region and the depletion zone are symbolized

by the light blue and the dark blue shading, respectively. (c) Magnification

of a single grain contact with the geometrical neck diameter D0
n ¼ DnðNoxÞ.

The (smaller) diameter DnðNrÞ of the conducting neck is the diameter of the

light blue channel.
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pðiÞe ðNrÞ ¼
0; DN

ðiÞ
freeðNrÞ � 0

DN
ðiÞ
freeðNrÞ; 0 < DN

ðiÞ
freeðNrÞ < 1

1; DN
ðiÞ
freeðNrÞ � 1:

8>><
>>: (3)

Second, by calculating the diameter of the conducting

channel DnðNrÞ between nearest-neighbor grains, we investi-

gate for each pair of connected conducting nearest-neighbor

grains i and j whether at the considered gas value Nr the con-

ducting cores of the two grains are connected. The geometri-

cal quantity D0
n � DnðNoxÞ measures the neck between two

grains when k ¼ 0. If the grains are not connected, we con-

sider the bond between them as cleaved. Otherwise, we

determine the conductance Lij between the grains by the

“neck resistance mechanism,” where the Lij are calculated

from the area AðNrÞ ¼ pðD0
n � 2kðNrÞÞ2=4 of the conducting

channel, the distance dij between the grains and the density

ND of charge carriers, leading to Lij / AðNrÞND=dij. The

neck resistance mechanism seems to be more relevant for

smaller and well-sintered grains than possible conductance

values across grain-boundaries between isolated grains.9 In

the case of rough grain surfaces, the electron hopping across

grain-boundaries would probably be even more suppressed,

due to the confinement of the electron states.20

III. DETERMINATION OF THE CONDUCTANCE

Next we investigate, if a conducting path between oppo-

site sides of the sample exists. If yes, the system is in its

conducting phase and we can proceed to calculate the con-

ductance of the system. To this end, we map the conduction

problem onto the corresponding diffusion problem by defining

jump probabilities pij / Lij along the bonds between nearest

neighbors and calculate the mean square displacement hr2ðtÞi
of many random walkers on the infinite percolation cluster of

the sample (a standard problem analyzed extensively in the

literature, see, e.g., Refs. 21 and 22). According to the Nernst-

Einstein relation, the conductance is proportional to the elec-

tron mobility l and the density n of charge carriers, where

the latter scales with the number of conducting sites. We

can determine l by computing the diffusion constant:

l / Ds ¼ limt!1hr2ðtÞi=ð2dtÞ. As we calculate hr2ðtÞi in the

xy-plane, the dimension d is equal to 2. The time t is counted

by the number of time steps. In all figures of this work, we

present the diffusion constant Ds that is equivalent to the elec-

tron mobility l (in arbitrary units). The conductance can then

obtained by multiplying l with the electron density n.

For each model system, we want to know how the

conductance depends on the surface density of adsorbed gas

atoms or molecules. We therefore decrease Nr stepwise and

compute the diffusion constant for each value of Nr, by

assuming that the gas density in the whole area around the

grain is in equilibrium, i.e., each grain is homogeneously sur-

rounded by the gas. In a real experiment, this would mean

that after the gas release one has to wait for each value of Nr

until equilibrium is reached. The conductance reaches a

maximum when the depletion zone vanishes, i.e., when the

surrounding oxygen is completely replaced by the reducing

gas. When decreasing Nr, more and more oxygen molecules

are adsorbed at the surface of the grains and the conducting

cores of the grains become smaller, according to Eq. (1). As

a result, some of the grains which were conducting before

become insulating and the conductance values of the bonds

decrease steadily, where some of them are even cleaved (see

Fig. 1(b)). Accordingly, when passing from high to small

values of Nr, we expect a dramatic drop of the conductance.

In the following, we want to describe the different scenarios

that finally lead to a detection limit.

IV. THEORETICAL ANALYSIS FOR MONODISPERSE
SYSTEMS

A. The ordered non-diluted lattice

To estimate the conductance via the mobility l, we first

consider the simplest case where all grains have the same di-

ameter D and are located at the sites of a cubic lattice. By

definition, also all individual exposed surfaces S
ðiÞ
exp are iden-

tical, S
ðiÞ
exp � Sexp.

First, we consider grains with large diameter D that are

still conducting (see Fig. 2(a)). The diameter Dn of the con-

ducting neck between two grains depends on the concentra-

tion of reducing gas Nr via k as

DnðNrÞ ¼ D0
n � 2kðNrÞ: (4)

The grain conductances LðNrÞ are proportional to the cross-

section of the conducting overlap of the grains

LðNrÞ � Dn
2ðNrÞ ¼ ðD0

n � 2kðNrÞÞ2: (5)

By definition, the conductance as well as the electron mobil-

ity are proportional to LðNrÞ and thus

lðNrÞ
lðNoxÞ

¼ LðNrÞ
LðNoxÞ

: (6)

According to Eq. (4), the conducting necks (bonds) between

the grains become insulating (cleaved) when 2kðNcritÞ
¼ 2ðNox � NcritÞ=ND ¼ D0

n ¼ HD. This yields the critical

FIG. 2. (a) and (b) Sketch of the two possibilities that may lead to a break-

down of the conductance when k increases: (a) The bonds between large

grains may become interrupted (Dn ! 0) while the cores are still large and

therefore conducting. This leads to N
ðsiteÞ
crit < N

ðbondÞ
crit . (b) The cores of small

grains may become too small to host free electrons (p
ðiÞ
e 	 1) while the

bonds are still conducting, leading to N
ðbondÞ
crit < N

ðsiteÞ
crit . (c) Two-dimensional

sketch for the construction of the relative free surface s for the special case

that next-nearest neighbors just touch each other. One easily recognizes that

H ¼ Dn=D ¼ 1=
ffiffiffi
2
p

.
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gas covering threshold N
ðbondÞ
crit ¼ Ncrit when the conductance

vanishes due to the simultaneous break-down of all bonds

N
ðbondÞ
crit ¼ Nox �

HND

2
D: (7)

Together with Eqs. (1), (5), and (6), we obtain the shape of

the characteristic curve

lðNrÞ ¼
4lðNoxÞ
N2

DH2D2
ðNr � N

ðbondÞ
crit Þ

2; Nr > N
ðbondÞ
crit

0 Nr < N
ðbondÞ
crit :

8><
>: (8)

This means that the normalized conductance D2lðNrÞ=lðNoxÞ
undergoes a phase transition with a universal exponent of 2

that is independent even of the lattice dimension. Also, the

critical value N
ðbondÞ
crit is universal and depends—apart from the

material constants ND; Nox and H—only on the grain size.

(Note that also lðNoxÞ depends on D.)

Second, if the grain diameter D is small (and the donor

density ND not too large), it is possible that at a critical value

N
ðsiteÞ
crit of Nr the conducting cores of the grains become too

small for hosting free electron states (see Fig. 2(b)). In this

case, the conductance of the system is mainly determined by

the disappearance of conducting grains which leads to an

additional cut-off value N
ðsiteÞ
crit of the characteristic curve

that can be estimated in the following way: If according to

Eq. (3) the value of DNfreeðNrÞ is smaller than 1, only the

fraction wpðNrÞ ¼ DNfreeðNrÞ of the grains is conducting. At

a critical fraction p
ðsiteÞ
c ðNÞ which depends on the number N

of monolayers (see Sec. IV B), the conducting pathway is

disrupted. Accordingly, N
ðsiteÞ
crit can be determined from

Eq. (2) by setting DNfreeðNrÞ ¼ p
ðsiteÞ
c ðNÞ

N
ðsiteÞ
crit ¼ Nox �

ND

6s
Dþ p

ðsiteÞ
c ðNÞ

ps
D�2; (9)

with the fixed fraction s ¼ Sexp=ðpD2Þ of the free surface.

In Figs. 3(a) and 3(b), we illustrate the role of the two

critical gas covering thresholds N
ðsiteÞ
crit (Eq. (9)) and N

ðbondÞ
crit

(Eq. (7)) in schematic diagrams. While N
ðbondÞ
crit defines the

shape of the characteristic curve via Eq. (8), N
ðsiteÞ
crit defines an

independent cut-off value, i.e., l ¼ 0 for Nr < N
ðsiteÞ
crit .23 The

conditions for the case N
ðsiteÞ
crit > N

ðbondÞ
crit can be derived by

subtracting Eqs. (7) and (8) yielding

N
ðsiteÞ
crit > N

ðbondÞ
crit for

D < D3
crit; 3hs < 1

D > 0; 3hs > 1

�
(10)

with

D3
crit ¼

6p
ðsiteÞ
c ðNÞ

pNDð1� 3HsÞ : (11)

For N
ðsiteÞ
crit > N

ðbondÞ
crit ; lðNrÞ only follows Eq. (8) for Nr >

N
ðsiteÞ
crit and is zero for smaller values of Nr. In this case, N

ðsiteÞ
crit

marks a threshold value where the mobility jumps to zero

(see Fig. 3(a)). For N
ðsiteÞ
crit < N

ðbondÞ
crit , on the other hand, the

value of N
ðsiteÞ
crit plays no role and the characteristic curve

lðNrÞ follows Eq. (8) for all values of Nr leading to a smooth

curve.

One can best understand the meaning of Eq. (11) on a

special example. Therefore, we calculate Dcrit exactly for a

slightly smaller sinter parameter H ¼ 1=
ffiffiffi
2
p

where next-

nearest neighbor grains just touch each other (see Fig. 2(c)),

so that we can use the standard formula for the surface

Acal ¼ pDðD=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � D2

n

p
=2Þ of a spherical calotte.

We obtain s ¼ 1� 4Acal=pD2 ¼
ffiffiffi
2
p
� 1 in d¼ 2 and

s ¼ 1� 6Acal=pD2 ¼ 3 
 2�1=2 � 2 in d¼ 3 so that 3Hs < 1

in both cases and N
ðsiteÞ
crit > N

ðbondÞ
crit and N

ðsiteÞ
crit < N

ðbondÞ
crit can

both be achieved by choosing ND appropriately. The situa-

tion changes for diluted lattices, where s becomes much

larger so that also the case 3Hs > 1 is possible.

B. The diluted lattice

In the diluted lattice, we occupy the sites with probabil-

ity pðsiteÞ by grains of fixed sizes D or leave them empty with

probability 1� pðsiteÞ. In addition to pðsiteÞ, we again need the

probability wpðNrÞ that a given grain is conducting (at the

gas concentration Nr). Due to a different number of neigh-

bors, the individual exposed surfaces S
ðiÞ
exp may now differ

from each other. As a consequence, according to Eqs. (2)

and (3), the probability of individual grains to be conducting

varies. It is, however, remarkable that according to Eqs. (7)

and (8), D2lðNrÞ=lðNoxÞ is unaffected by this effect and still

has the same universal shape. Only the cut-off value N
ðsiteÞ
crit

differs from the one of the non-diluted lattice as the fraction

of lattice sites that host conducting grains now equals

wpðNrÞ 
 pðsiteÞ. Accordingly, N
ðsiteÞ
crit can now be determined

by the condition wpðNðsiteÞ
crit Þ 
 pðsiteÞ ¼ p

ðsiteÞ
c ðNÞ which leads to

a similar equation as Eq. (9), where p
ðsiteÞ
c ðNÞ now has to be

replaced by p
ðsiteÞ
c ðNÞ=pðsiteÞ. The fraction s of the free surface

depends on pðsiteÞ and the fixed value Sexp has to be replaced

by an effective exposed surface Seff close to the mean value

hSexpi.

FIG. 3. (a) Sketch of the theoretical prediction for the normalized mobility

D2 lðNrÞ=lðNoxÞ versus Nr for (a) N
ðsiteÞ
crit > N

ðbond
crit and (b) N

ðsiteÞ
crit < N

ðbondÞ
crit .

The theoretical curve for N
ðbondÞ
crit (Eq. (7)) is indicated by the dashed curve

and the cut-off value N
ðsiteÞ
crit (Eq. (9)) by the arrow. The expected experimen-

tal values in both cases are shown by the red circles. Note the jump in the

experimental values in case (a).
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While p
ðsiteÞ
c ðNÞ is well-known for one-layer-systems

(p
ðsiteÞ
c ’ 0:5927 in d¼ 2), the corresponding threshold

p
ðsiteÞ
c ðNÞ for an N layer system (N > 1) decreases with the

number of layers N until the system eventually becomes a

3d-system. In order to estimate p
ðsiteÞ
c ðNÞ for higher N-values,

we created percolation lattices of varying thickness N by

Monte-Carlo simulations and counted the number of lattices

that contained an infinite percolation cluster. Figure 4 shows

the fraction of this number (as compared to the number of

investigated systems) as a function of N. The figure shows

that the critical threshold p
ðsiteÞ
c ðNÞ increases rapidly with N

towards the 3d site percolation threshold p
ðsiteÞ
c ’ 0:3116.

With the values of Seff � hSexpi and p
ðsiteÞ
c ðNÞ from

Fig. 4, we can now apply Eqs. (8) and (9) to the diluted lat-

tice. For illustration, we plot in Fig. 5 the critical gas concen-

tration Ncrit versus the mean grain diameter hDi for different

values of N (number of layers) and pðsiteÞ which gives us the

phase diagram between the insulating and the conducting

phases, where the conducting phase lies on the right-hand

side of the respective critical line. The critical lines are com-

binations of the red solid line (that shows N
ðbondÞ
crit of Eq. (7)

and is independent of pðsiteÞ) and the appropriate black

dashed line (that shows N
ðsiteÞ
crit of Eq. (9) and depends on

pðsiteÞ). The symbols show the results of the numerical calcu-

lations (for numerical details see Sec. V) and it can be seen

that they perfectly follow the predicted critical lines.

Figure 5(a) shows the two-dimensional system. For all

curves with pðsiteÞ < 1, we have 3Hs > 1; N
ðsiteÞ
crit > N

ðbondÞ
crit

and the corresponding critical lines are therefore identical

with the appropriate dashed lines. For the case pðsiteÞ ¼ 1, we

have 3Hs < 1 and therefore the solid and the dashed lines

cross at Dcrit to form a combined critical line. Figure 5(b)

shows systems with N¼ 5 that possess much smaller values

of s, due to their higher number of neighbors. Again, we have

3Hs < 1 and the critical line is composed of the full red line

and the appropriate dashed line. Whenever the red line deter-

mines the phase transition, the dependence between Ncrit and

hDi becomes linear, due to the pure linear relation (7). We

assume that this is the underlying reason for the linear de-

pendence of Ncrit on hDi found in former works on polydis-

perse systems14 (except for very small hDi) which had not

been fully understood before.

V. MONTE-CARLO SIMULATIONS

We performed numerical simulations for both the mono-

disperse and the polydisperse systems. The diameters of the

grains are taken from a truncated Gaussian distribution

PðDÞ¼ Cexp �1

2

D�hDi
dD

� �2
" #

; jD�hDij< chDi

0; jD�hDij> chDi

8><
>: (12)

with the width dD and the corresponding normalization con-

stant C. The truncation is introduced in order to exclude certain

unrealistic grain contacts (the center of a grain should not lie

inside another grain). With c � 0:66 and dD ¼ hDi=4 which

we used in our simulations, the truncated tails refer to 18% of

the total Gaussian integral. In addition to the variation of grain

sizes in polydisperse systems, the positions of the grain centers

are randomly shifted away from the lattice points and the indi-

vidual exposed surfaces S
ðiÞ
exp are explicitly taken into account.

Equations (7)–(9) describe the monodisperse systems,

but both equations are quite universal and contain all

FIG. 4. Numerical simulations for the site percolation threshold p
ðsiteÞ
c ðNÞ:

fraction of percolating systems versus occupation probability. The straight

line represents the site percolation threshold for an ideal 2d film and the in-

terrupted lines approximate 3d films of N ¼ 3; 5; 11, and 31 monolayers.

FIG. 5. Critical surface gas density Ncrit versus the mean grain diameter hDi
for systems with (a) N¼ 1 and (b) N¼ 5 layers. In each figure, the full (red)

line represents Eq. (7) with slope HND=2, independent of pðsiteÞ. The dashed

lines show the theoretical predictions of Eq. (9) that depend on pðsiteÞ while

the symbols show the corresponding numerical simulations. The values for

hki (which here depend on N and pðsiteÞ) are: (pink) circles ðpðsiteÞ ¼ 0:65Þ :
hki ’ 2:67 for N¼ 1 and hki ’ 3:65 for N¼ 5, (blue) pluses ðpðsiteÞ ¼
0:70Þ : hki ’ 2:84 for N¼ 1 and hki ’ 3:93 for N¼ 5, (green) crosses

ðpðsiteÞ ¼ 0:75Þ : hki ’ 3:02 for N¼ 1 and hki ’ 4:20 for N¼ 5 and (red)

squares ðpðsiteÞ ¼ 1:0Þ : hki ’ 4 for N¼ 1 and hki ’ 6 for N¼ 5.
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relevant information that can be gained from our model (as

already explained above). We therefore expect the specific

shape of the characteristic curves to be maintained to a large

extent, even in the case of disorder. In the following sections,

we want to see in which way the characteristic curves lðNrÞ
are affected by the disorder and will therefore compare the

monodisperse to the polydisperse systems. Furthermore, we

want to explore in which way useful sensor systems have to

be designed for various purposes, with high or low sensitiv-

ity, with smooth characteristic curves or threshold behavior.

Many applications require a continuous reading without any

threshold value. However, in other cases mentioned in the

introduction, a predetermined threshold is desirable that can

be tuned by a proper choice of H or the system parameters

that determine Dcrit and s. Therefore, we now put our focus

on the dependence of the sensor properties to the different

microscopical parameters that can be designed on purpose:

grain size, number of layers, fragility of the network (perco-

lative structure), and polydispersity. To illustrate the behav-

ior of the various sensors in a most systematic way, we show

in the following sections the characteristic curves by always

varying one system-parameter and keeping the others fixed.

A. Influence of the mean grain size hDi

In Fig. 6, we show the characteristic curves for different

mean grain-sizes hDi by keeping the number N of layers and

the occupation probability pðsiteÞ and thus the coordination

number hki fixed (N¼ 11 and pðsiteÞ ¼ 0:43). The different

symbols (and colors) in the figure refer to different values of

hDi, while open and filled symbols indicate the monodis-

perse and the polydisperse systems, respectively. For the

largest grain size, no gas-induced conductance switching is

present (l is always large) but for all other grain sizes the

conductance switching is clearly visible. As in Fig. 3, N
ðsiteÞ
crit

is indicated by the arrows, while N
ðbondÞ
crit roughly coincides

with the beginning of the appropriate dashed curves (pre-

cisely for l! 0). In accordance with Eqs. (7) and (9), the

critical gas density Ncrit increases with decreasing grain-size

hDi and N
ðsiteÞ
crit > N

ðbondÞ
crit for all monodisperse systems, i.e.,

Ncrit ¼ N
ðsiteÞ
crit . As a result, the characteristics of the monodis-

perse system (open symbols) which lie perfectly on the theo-

retical curve, as proposed by Eq. (8) (dashed lines), do not

follow this line till the bottom, but show a sudden jump at

Nr ¼ N
ðsiteÞ
crit .

The polydisperse systems (filled symbols) show a very

similar behavior. Most remarkably, the conductance switch-

ing takes place close to the value of Ncrit ¼ N
ðsiteÞ
crit of the

monodisperse systems. For large values of Nr far above Ncrit,

the characteristics of both systems approach each other

towards a common asymptotic value lðNoxÞ (on the logarith-

mic scale) that scales with hDi3. Only for small values of Nr,

the filled symbols do not follow the dashed lines, but clearly

lie below. We will show later that site percolation effects

due to variable grain sizes that are absent in monodisperse

systems are responsible for this behavior. This leads to a

much steeper increase of l for the polydisperse systems

close to the detection limit, namely to a much higher sensi-

tivity. Hence, in the case N
ðsiteÞ
crit > N

ðbondÞ
crit , the broad distribu-

tion of the grain sizes is the important parameter to achieve a

large sensitivity. We will see in the following figures that the

differences in the sensitivity between mono- and polydis-

perse systems vanish in the case of N
ðsiteÞ
crit < N

ðbondÞ
crit .

B. Influence of the coordination number hk i

In Fig. 7, we have varied the occupation probability

pðsiteÞ and thus the coordination number hki by keeping all

other parameters fixed (hDi ¼ 15 nm; N ¼ 11). Again, N
ðsiteÞ
crit

is indicated by the arrows, while N
ðbondÞ
crit can roughly be rec-

ognized by the beginning of the dashed curves. While N
ðbondÞ
crit

does not depend on pðsiteÞ (see Eq. (7)), N
ðsiteÞ
crit decreases with

increasing pðsiteÞ (see Eq. (9)) so that both cases, Ncrit ¼ N
ðsiteÞ
crit

and Ncrit ¼ N
ðbondÞ
crit are now possible. Fig. 7 shows that

for systems where pðsiteÞ is small (i.e., close to p
ðsiteÞ
c ðNÞ),

Ncrit ¼ N
ðsiteÞ
crit and therefore a sudden jump of the conductance

FIG. 6. Mobility l (that corresponds to the diffusion constant Ds) versus sur-

face density Nr for various mean grain-sizes hDi for fixed number of layers

N¼ 11 and occupation probability pðsiteÞ ¼ 0:43 leading to the coordination

number hki ’ 2:69. Open and filled symbols represent the numerical simula-

tions of the monodisperse and the polydisperse systems, respectively. The

dashed lines represent the theoretical prediction of Eq. (8). As in Fig. 3(a),

N
ðsiteÞ
crit > N

ðbondÞ
crit where N

ðsiteÞ
crit is indicated by the arrows and N

ðbondÞ
crit by the

beginnings of the dashed curves.

FIG. 7. Mobility l versus surface density Nr for fixed mean grain size

hDi ¼ 15 nm and number of layers N¼ 11 and varying occupation probabil-

ity pðsiteÞ. The meanings of the open (filled) symbols, dashed lines, and the

arrows are the same as in Fig. 6. Note that both cases N
ðsiteÞ
crit > N

ðbondÞ
crit and

N
ðsiteÞ
crit < N

ðbondÞ
crit occur in this figure.
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(start of the symbols) at Nr ¼ Ncrit occurs. Again, the open

symbols of the monodisperse systems follow the dashed lines

(theoretical calculations of Sec. IV), while the filled symbols

of the polydisperse systems lie below indicating site percola-

tion effects. For increasing values of pðsiteÞ, on the other hand,

Ncrit ¼ N
ðbondÞ
crit (which can be seen for pðsiteÞ ¼ 0:7) and all

symbols of the mono- and polydisperse systems follow the

dashed line from the beginning. This indicates that even the

polydisperse system is fully described by the theory for the

simplified systems where no percolation effects have been

taken into account. As we will explain at the discussion of

Fig. 9, the reason of this counterintuitive behavior is that

close to Ncrit the strengthening of the bonds superimposes all

percolation effects.

Fig. 7 also shows that with increasing pðsiteÞ the charac-

teristic curves gradually approach each other towards one

common mastercurve. This behavior is in accordance with

Eq. (8), since lðNoxÞ converges towards the conductance of

a homogenous system for pðsiteÞ ! 1.

C. Influence of the number of layers N

In Fig. 8, we vary the number N of layers, while

pðsiteÞ ¼ 0:65 and hDi ¼ 15 nm are kept fixed. Again, Ncrit is

determined by the competition between N
ðsiteÞ
crit and N

ðbondÞ
crit

where the latter is kept fixed so that, as in the foregoing sub-

section, the ratio N
ðsiteÞ
crit =N

ðbondÞ
crit differs for each curve. For

(very) small N-values, Ncrit ¼ N
ðsiteÞ
crit > N

ðbondÞ
crit , while for

larger N-values N
ðsiteÞ
crit approaches N

ðbondÞ
crit for the chosen pa-

rameters. While in Fig. 7, N
ðsiteÞ
crit has been varied by pðsiteÞ, it

is now modified by N via p
ðsiteÞ
c ðNÞ (see Eq. (9)).

With increasing N, the characteristic curves again col-

lapse onto one mastercurve reflecting the rapid convergence

of p
ðsiteÞ
c ðNÞ towards the 3d percolation threshold (see

Fig. 4). At the same time, also the characteristic curves for

the mono- and polydisperse systems approach each other

which means that again the increase (strengthening) of

the existing bonds (present in both systems) obviously

superimposes the bond-percolation effect of the

polydisperse system. A noticeable deviation from the mas-

tercurve only occurs for the parameter range of

pðsiteÞ=p
ðsiteÞ
c ðNÞ ’ 1. For the systems of fixed values of pðsiteÞ

shown here, this corresponds to very small N-values, most

pronounced for N¼ 1, i.e., for 2d-systems (circles). For

N¼ 1, the shapes of the characteristic curves of the mono-

and polydisperse systems differ strongly. In particular, the

polydisperse system shows the steeper increase and thus a

higher sensitivity. We will see in Subsection V D that again,

this is due to percolation effects.

D. Influence of the polydispersity

In Fig. 9, we explore the influence of the width dD of the

distribution of grain-sizes (Eq. (12)) on the characteristic

curves of the polydisperse systems. For small values of dD,

the systems are expected to approach the monodisperse

systems, while percolation effects could play a role at larger

values of dD. For a systematic viewpoint, we choose two typ-

ical sets of system-parameters which, for the corresponding

monodisperse system (that still serves as a guideline) lead to

the two cases (a) N
ðbondÞ
crit > N

ðsiteÞ
crit and (b) N

ðbondÞ
crit < N

ðsiteÞ
crit . In

order to analyze the role of possible percolation effects in

more detail, we also estimate the percentage of conducting

grains wpðNrÞ and of conducting bonds wqðNrÞ as a function

of Nr for the broadest value of dD ¼ hDi=3 for both cases (a)

and (b) (see insets of Fig. 9). For the chosen parameter sets,

see caption of Fig. 9.

For case (a), where N
ðsiteÞ
crit < N

ðbondÞ
crit holds, we can see in

the corresponding inset (a) that close to Ncrit for the polydis-

perse systems the values of wqðNrÞ (crosses) lie (slightly)

below those of wpðNrÞ (circles) which shows that the bonds

become conducting at a higher values of Nr than the grains.

This means that also for the polydisperse systems the bonds

FIG. 8. Mobility l versus surface density Nr for fixed mean grain size hDi ¼
15 nm and occupation probability pðsiteÞ ¼ 0:65 and varying number of

layers N. The meanings of the open (filled) symbols, dashed lines, and the

arrows are the same as in Fig. 6.

FIG. 9. Characteristics for two different systems with the parameters

hDi ¼ 15 nm, N¼ 11, and pðsiteÞ ¼ 0:7 (a) and hDi ¼ 12 nm, N¼ 3, and

pðsiteÞ ¼ 0:48 (b). The grain sizes are taken from Eq. (12) with dD ¼ hDi=25

(red circles), dD ’ hDi=8 (green diamonds), and dD ’ hDi=4 (blue trian-

gles). While for system (a) the occupation probability pðsiteÞ is much larger

than the critical density pcðN ¼ 11Þ ’ 0:3221, for system (b) pðsiteÞ is very

close to pcðN ¼ 3Þ ’ 0:4266 (see Fig. 4). The dashed line shows the theoret-

ical prediction for monodisperse systems (see Eq. (6)), the arrows mark

N
ðsiteÞ
crit according to Eq. (9). Inset: Fraction wpðNrÞ of conducting grains (full

circles) and fraction wqðNrÞ of conducting bonds (crosses) of the total num-

ber of grains and bonds of the whole structure for dD ’ hDi=3 and for both

systems (a) and (b).
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play the crucial role. Figure 9 shows that in this case, the

characteristic curves for different dD do not show noticeable

changes with increasing dD but collapse onto a single mas-

tercurve. Most interestingly, the symbols of the mono- and

polydisperse systems follow the dashed line over the whole

range of Nr leading to a continuous increase of l over several

orders of magnitude. This data-collapse coincides with the

prediction of Eq. (8) which has been derived for the mono-

disperse system and only takes the strengthening of the grain

contacts into account. This means that the pronounced

increase of l stems from the strengthening of the grain con-

tacts that superimpose possible percolation effects which

therefore do not influence the shape of the characteristic

curve, but only form an inherent feature.

In order to detect percolation effects, we have to focus

on case (b) where for the corresponding monodisperse

system N
ðbondÞ
crit < N

ðsiteÞ
crit applies and the critical gas density

therefore is determined by N
ðsiteÞ
crit , i.e., by the conductance

switching of the grains. The corresponding inset (b) shows

that now, for the polydisperse systems, the values of wpðNrÞ
lie well below those of wqðNrÞ, which shows that the bonds

become conducting at a lower value of Nr than the grains

with the result that site percolation effects should now be

dominant. Several differences to system (a) can be seen in

the figure: First, the symbols start at much higher values of

Nr ¼ N
ðsiteÞ
crit , in full agreement with all results of the fore-

going subsections, where N
ðbondÞ
crit < N

ðsiteÞ
crit applied. Second,

with increasing dD large deviations from Eq. (8) (dashed

line) occur, which means that the occurring site percolation

effects, in contrast to the bond-percolation effects in system

(a), clearly affect the shape of the characteristic curves (see

also Fig. 6). As a consequence, close to Ncrit the conductance

values drop rapidly with increasing dD, leading to an

increase of the measurable lðNrÞ-range and to a better reso-

lution at quite large values of Nr that is not achieved by the

curves of case (a).

In summary, our findings suggest that for the polydis-

perse systems with small mean grain-sizes and high porosity,

i.e., in the case N
ðbondÞ
crit < N

ðsiteÞ
crit , a site percolation effect

takes place close to Ncrit which stems from the loss of grains

due to the lack of charge carriers. For systems with larger

grains and lower porosity where N
ðsiteÞ
crit < N

ðbondÞ
crit , the

conductance switching originates from the influence of the

bonds.

We can compare these findings to the 2d-simulations of

Fig. 3(a) in Ref. 14, where the system parameters for lower

hki-values lead to N
ðsiteÞ
crit > N

ðbondÞ
crit (see Eqs. (7) and (9)). In

this range, also our calculations suggest that site percolation

effects are dominant. For the characteristic curve of Ref. 14

with the highest coordination number hki ¼ 4, on the other

hand, N
ðsiteÞ
crit � N

ðbondÞ
crit holds. Accordingly, this system is

probably already fully described by the variation of the

bonds (see Eq. (8)) and the steep increase of the characteris-

tic curves for hki ¼ 4 is not a site percolation effect, but

reflects the strengthening of the grain contacts which is

attended by an inherent bond-percolation effect. Also, the

slopes in Fig. 3(b) of Ref. 14 can be well explained by the

corresponding parameters HND=2 and ND=ð6sÞ of Eqs. (7)

and (9), respectively (see Ref. 15), explaining the linear

dependence of Ncrit on hDi, except for very small hDi (see

also above).

VI. SUMMARY AND OUTLOOK

We have modeled films of sintered metal oxide nanopar-

ticles and have calculated the conductance (via the electron

mobility) by random walk simulations taking into account

the possibility that ultrasmall nanograins can be insulating

and that bonds between conducting grains can be cleaved

leading to site- and bond-percolation effects, respectively.

Our numerical and analytical analysis reveals that the

characteristic curves are determined by the interplay of two

relevant thresholds for the density of reducing gas, N
ðsiteÞ
crit and

N
ðbondÞ
crit that depend in a well-defined way on the system

parameters. Additionally, the grain size distribution can have

considerable influence on the shape of the characteristic

curves.

So far, all currently available commercial surface sensi-

tive gas sensors show characteristic curves that rise continu-

ously with the target gas concentration. However, in many

automatic applications, legal thresholds have to be obeyed to

release an alarm or prealarm. Up to now, these systems con-

sist of a sensor with a continuous characteristic curve, an am-

plifier, and an electronic comparator to cause an action. Such

automatic systems would become more reliable and easier to

produce and maintain if the sensor element itself had a

switching characteristic at a preset concentration at the corre-

sponding legal threshold value. Up to now, gas sensors with

intrinsic switching behavior are not realized as products.

However, switching due to the percolation effect is realized

in a compound material, a polymer filled with small metal

balls, forming a conductive path. At a predefined threshold

current the thermal expansion of the polymer interrupts the

current flow. Since many years these reversible fuses are pro-

duced in high numbers.

We believe that our findings help to understand the theo-

retical background needed to design high-performing gas

sensors with intrinsic detection thresholds. For systems with

N
ðsiteÞ
crit > N

ðbondÞ
crit where the grains become insulating prior to

the bonds, we show that for monodisperse systems a signifi-

cant jump of the conductance from the basic level to the first

signal value occurs at the threshold value N
ðsiteÞ
crit . In polydis-

perse systems, namely with a broad distribution of grain

sizes, the described conductance jump diminishes by the

site-percolation effect. This means that the characteristic

curve starts at smaller conductance values, but shows a

steeper increase which corresponds to an enhanced sensitiv-

ity. The morphological conditions which lead to the condi-

tion N
ðsiteÞ
crit > N

ðbondÞ
crit are met in highly porous systems

consisting of small grains with strongly sintered bonds. In

order to obtain a high surface to volume rate, it is advanta-

geous to consider films of several monolayers N due to the

lower percolation threshold in these systems in comparison

to 2d-systems.

The condition N
ðsiteÞ
crit < N

ðbondÞ
crit , on the other hand, leads

to a continuous increase of the overall conductance which

mainly reflects the increase of the bonds. This situation can be

achieved by weakly connected grains, larger grains, and
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systems with large coordination number. In these systems, the

exposed surface is hardly big enough to obtain insulated

grains, even when covered with oxygen. Polydispersity in

these systems leads to bond-percolation effects which, at least

for the realistic sintering strength considered in this paper,

have no detectable influence on the characteristic curves.

In summary, we have found that three competing mech-

anisms, namely, site percolation, bond percolation, and the

increasing conductance values of existing bonds are needed

to understand the conductance switching in semiconducting

nanoparticle systems on exposure to a reducing gas. On the

basis of these findings, we proposed a framework to design

gas sensors with intrinsic detection thresholds and sketched

system morphologies necessary to achieve these goals.
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