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Abstract

Hyperspectral radiance measurements in the oxygen A band are sensitive to the ver-
tical distribution of atmospheric scatterers, which in principle allows to retrieve aerosol
height from future instruments like TROPOMI, OCO2, FLEX, and CarbonSat. Dis-
cussed in this paper is a fast and flexible forward operator for the simulation of hy-
perspectral radiances in the oxygen A band and, based on this scheme, a sensitivity
study about the inversion quality of aerosol optical thickness, aerosol mean height, and
aerosol type. The forward operator is based on a lookup table with efficient data com-
pression based on principal component analysis. Linear interpolation and computation
of partial derivatives is performed in the much smaller space of expansion coefficients
rather then wavelength. Thus, this approach is computationally fast and at the same
time memory efficient. The sensitivity study explores the impact of instrument design
on the retrieval of aerosol optical thickness and aerosol height. Considered are signal
to noise ratio, spectral resolution, and spectral sampling. Also taken into account are
surface inhomogeneities and variations of the aerosol type.

1 Introduction

Multiple fields of research can benefit from an accurate and reliable aerosol height
product. Among others are atmospheric sciences, where aerosol vertical distribution
and interaction with clouds and radiation is discussed (e.g. Chin et al., 2009; Lohmann
and Feichter, 2005) as well as long range aerosol transport (e.g. Betzer et al., 1988;
Andreae, 1983) and source attribution (e.g. McConnell et al., 2007; Clarke and Noone,
1985), human health (e.g. Nel, 2005; Harrison and Yin, 2000; Seaton et al., 1995) and
pollution studies (e.g. McMichael et al., 2003; Péschl, 2005), and in remote sensing
of the atmosphere, where its effect on the retrieval of total aerosol optical thickness is
discussed (e.g. Quijano et al., 2000; Duforét et al., 2007; McClain, 2009; Muller et al.,
2007).
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LIDAR measurements (e.g. using EARLINET Amodeo et al., 2007), airborne ex-
periments (e.g. Zieger et al., 2007), or balloon ascends (e.g. Rosen et al., 1975) can
be used to derive aerosol vertical profiles on local scales, while the backscatter LI-
DAR CALIOP onboard the satellite CALIPSO (Winker et al., 2009) is currently the only
instrument which provides information on a global scale. A limitation of CALIPSO mea-
surements is their sparse spatial and temporal resolution (Winker et al., 2010; Amiridis
et al., 2013), which could be improved drastically by deriving aerosol height directly
from passive imaging instruments.

Attempts to use the oxygen absorption bands for an aerosol height retrieval (e.g.
Gabella et al., 1999; Koppers et al., 1997; Corradini and Cervino, 2006; Pelletier et al.,
2008; Sanghavi et al., 2012; Frankenberg et al., 2012; Kokhanovsky and Rozanov,
2010) or cloud top height retrieval (e.g. Heidinger and Stephens, 2000; Preusker and
Lindstrot, 2009; Fischer and Grassl, 1991; Rozanov and Kokhanovsky, 2004) have
been published in the past. For a case study, Dubuisson et al. (2009) and Duforét
et al. (2007) exploited MERIS and POLDER data to derive aerosol height over oceans
from reflectance ratios of channels inside and outside the O,A band. Sanghavi et al.
(2012) discussed to use the O,A and O,B band to derive aerosol vertical distribution
from SCIAMACHY data and applied the technique to a scene above Kanpur (India).
For aerosols over land no operational data product exists to our knowledge, although
hyperspectral measurements within the oxygen A band were and are performed by
operational instruments such as SCIAMACHY, GOSAT, GOME, and GOME2. However,
it is possible to derive the absorbing aerosol index (Torres et al., 1998; De Graaf et al.,
2005) from such type of instruments, which is among other aerosol parameters also
sensitive to aerosol height, but does not retrieve quantitative aerosol vertical distribution
parameters.

In the near and not too distant future, hyperspectral measurements within the oxygen
A band will become widely available from instruments such as OCO2 (Haring et al.,
2004; Crisp and Johnson, 2005), TROPOMI (Veefkind et al., 2012), Sentinel-4 (ESA,
2012), Sentinel-5 (ESA, 2012), or if selected, ESA Earth Explorer (Bézy et al., 2008;
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Meijer et al., 2012) missions like FLEX (Clissold, 2008; Rascher et al., 2008; Stoll,
2003) or CarbonSat (Velazco et al., 2011). Operational aerosol height products are at
least planed for TROPOMI onboard the Sentinel 5 precursor (Veefkind et al., 2012;
Sanders and de Haan, 2013) and for the Sentinels 4 and 5 (ESA, 2012). The aim
of these products is to distinguish between aerosols in the planetary boundary layer
and the free troposphere with desirably estimation of aerosol type, e.g. to constrain
surface concentrations of particulate mater (ESA, 2012). The specifications of these
instruments vary widely with respect to spectral resolution, spatial resolution, temporal
resolution, and signal to noise ratio (SNR); and all mission design parameters might
have an impact on a possible retrieval of aerosol height.

Sanders and de Haan (2013) discussed the possible retrieval accuracy of aerosol
height by propagating measurement and a priori errors trough a locally linearized ra-
diative transfer model using the framework of optimal estimation by Rodgers (2000).
From the perspective of an operational retrieval, a positive result for the retrieval er-
ror with respect to given user requirements fulfills only a necessary condition. A real
world retrieval must in addition converge robustly, treat multiple minima in the used
cost function, deal with deviation of the real and the model atmosphere, and needs to
be computationally fast enough to process and possibly reprocess large amounts of
hyperspectral radiance data.

Aim of this paper is to propose and present a fast and efficient forward operator
based on accurate radiative transfer simulations. It was applied in a simple inversion
scheme, which can represent a generic real world retrieval algorithm. The forward op-
erator is based on a lookup table with efficient data compression based on a prin-
cipal component analysis. Linear interpolation and computation of partial derivatives
is performed in the much smaller space of expansion coefficients, which makes this
approach computationally fast and at the same time memory efficient.

The fast forward operator is described in Sect. 2 while Sects. 3 and 4 cover the setup
of the sensitivity study and the inversion scheme. The applied instrument error model
is described in Sect. 5 and the results of the sensitivity study are discussed in Sect. 6.
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2 Fast forward operator

The following discussion is based on the assumption, that the inversion of radiative
transfer simulations for a complex atmosphere is the most suitable path to retrieve
aerosol height. Radiative transfer simulations numerically map an atmospheric state,
which includes the quantities of interest, with simulated measurements. An inversion
operator, which could include additional prior knowledge is then used as retrieval. This
assumption is emphasized, since this approach requires in general complex modeling,
is prone to errors, requires precise knowledge about the optical properties of the atmo-
sphere, the surface, and the aerosols, and can be computationally very demanding. To
our best knowledge, no simpler approach exists up to now, as it was found e.g. for fluo-
rescence emitted by vegetation, which can be retrieved using Fraunhofer lines without
relying on radiative transfer (e.g. Frankenberg et al., 2011; Joiner et al., 2011).

The design of the fast forward operator was mainly driven by considerations about
computational speed on standard computer hardware and simulation accuracy. This
leads either to the use of the radiative transfer model directly as forward model (e.g.
compare the OCO2 retrieval by Bdsch et al., 2006), or to use the classical approach of
a forward operator based on interpolation within a lookup table populated by radiative
transfer calculations. The following discussion could also be based on neural networks,
but the interpolation approach was chosen since its behavior is easier to understand
and does not depend on tuned neural network parameters.

Using a full scale radiative transfer model as forward operator entails some inherent
advantages, as one does not rely on (linear) interpolation, which can introduce errors
due to the locally nonlinear behavior of solutions of the radiative transfer equation. How-
ever, this approach will always be much more demanding computationally as a simple
lookup table interpolation and thus might be unsuitable for applications on standard
computer hardware systems. A possible solution is to speed up the radiative transfer,
which in general sacrifices simulation accuracy, which could cancel some of the advan-
tages of this approach. On the other hand, populating a high dimensional lookup table
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with hyperspectral radiative transfer simulations is computationally expensive. How-
ever, for the case of the oxygen A band, this obstacle can be lifted by exploiting the
high correlation of the spectrum with respect to variations of the atmospheric state.
Natraj et al. (2005) were using principal component analysis to speed up the calcula-
tion of optical parameters for a radiative transfer model, while Hollstein and Lindstrot
(2013) have presented an approach based on principal component analyses which
can speed up the population of the lookup table by one or more orders of magnitude.
Following the latter approach, a higher speedup is achieved for larger lookup tables.
Hence, the computational aspect of filling up a potentially large lookup table can be
considered as very well under control.

To summarize this approach: it was shown explicitly for the oxygen A band, that
a comparably small, randomly selected subset of spectra is sufficient to compute a set
of principal components, which can be used to reconstruct the total lookup table, where
the reconstruction accuracy is a function of the randomly selected subset of spectra
and the number of used principal components. Then, Hollstein and Lindstrot (2013)
presented an algorithm, which makes it possible to compute the expansion coefficients
of a certain spectrum by simulating only a small subset of spectral channels. This
implies, that for the oxygen A band, a relatively small number of spectral channels
is sufficient to reconstruct the hyperspectral simulation, thus leading to an enormous
speedup. This approach makes it feasible to increase the allowed computation time of
the radiative transfer, e.g. to increase simulation accuracy by using higher vertical and
spatial resolution or by taking 3-D effects into account.

Next to populating the lookup table, its possible huge size can become a major ob-
stacle, especially for hyperspectral applications. As a consequence, the proposed fast
forward operator is also based on principal component analysis. In this way, effective
data compression is used to reduce the size of the lookup table and also to gain com-
putational speedups for the interpolation within that table.

The approach consists of two tables, one which stores the expansion coefficients
of the simulated spectra with respect to the corresponding atmospheric state and
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a second one for the used principal components. Formally: let x € R"* be a state vector
with n, free parameters for the radiative transfer model RT(x) = y € R™, where y is the
simulated spectrum and n, is the number of simulated spectral channels. A generic
lookup table would then consists of a possibly large set with n states: X = (x4,...,x,,)
and a related set of simulated spectra Y = (y4,...,¥,). Principal component analysis
can be used to derive a number of n, < n principal components p; € R™,i=1,.. SNy,
which can be combined in the principal component matrix P,,, € R"*" with [P, ];; =
[p;];- The expansion coefficients for each spectrum ¢; =Pxy;,/ =1,...,n can be com-

puted such that a reconstructed spectrum y; can be expressed as y,; = P~ x Cci=
P' x ¢;. The matrix P,  is orthogonal since the p; are pairwise orthogonal, such that

P~' = P'. The reconstruction residual e =y;-yi,i=1,...,n for a single spectrum
y; generally depends on the number of principal components and the reconstructed
spectrum, while the mean reconstruction residual with respect to the total lookup table
€ = mean(ey,...,€,) only depends on the number of principal components.

In general and with proper computation of P,,, both residuals are strongly decreas-
ing with increasing number of principal components, thus n, can be chosen such that
the mean reconstruction error is sufficiently smaller then the measurement error of
a possible instrument. As a result, the large table Y, which contains simulated spectra
can be replaced by the principal component matrix P,, and a table C =(cy,...,¢,)
with ¢; =P, x y;, which contains only the expansion coefficients for each spectrum
and is by a compression factor nA/np smallerthan Y.

To save large amounts of computation time, the ¢; could be computed using the ap-
proach presented by Hollstein and Lindstrot (2013). The lookup table C should be small
enough to fit easily in the main memory of modern PCs. Not only does this approach
save main memory when compared with an uncompressed table, it also saves much
computation time since the interpolation and computation of partial derivatives can be
computed in the space spanned by the expansion coefficients. This is possible since
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the compression from the principal component analysis is linear, thus compression and
interpolation can be interchanged.

An interpolation scheme /T (X,C, x) = ¢ in the expansion coefficient space must be
implemented from which the desired interpolated spectrum can be computed by multi-
plying with the principal component matrix:

y(x) =P} xIT(X,C,x). (1)

This approach can be implemented to be computationally efficient and enables
a simple path to exploit computation on modern GPGPUs. In an initialization step,
the lookup table C must be copied to the memory of the GPGPU, which is the slow-
est part, then very little data transfer is needed since for a single interpolation only
the two small vectors x and ¢ need to be transferred from and to the main memory,
where the final expansion to the desired spectra could be computed. The spectral res-
olution of the simulations can be adjusted easily and with little extra computational
cost. When the simulations were performed with adequate spectral resolution, it is suf-
ficient to convolve the principal components with the desired response functions to set
up the forward operator for a different instrument. This is numerically cheap and can
be performed on the fly when the program is called. Similarly, spectral shifts as they
occur e.g. for TANSO-FTS onboard GOSAT can be corrected by convolving the prin-
cipal components with response functions which take the spectral shift into account.
Further speedup in an inversion scheme can be achieved by selecting the number of
used principal components with respect to the current value of the cost function. In the
first steps of an iterative optimization scheme, it might be sufficient to reconstruct the
spectra using only a few principal components, since it is sufficient to keep the recon-
struction error well below the difference of actual measurement and simulation. The
number of principal components can then be increased with decreasing cost function
value to improve the reconstruction quality.
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3 Synthetic study setup

Radiative transfer simulations were performed using the MOMO radiative transfer
model (see Fell and Fischer, 2001; Hollstein and Fischer, 2012) which is a matrix
operator model widely used at Freie Universitét Berlin. Gaseous absorption was com-
puted using line parameters from the HITRAN spectral database (Rothman et al., 2009)
and a modified scheme to compute the k-distribution (Bennartz and Fischer, 2000).
The parameter grid for the lookup table is shown in Table 1. The variation of the at-
mospheric state includes surface pressure, aerosol optical thickness, aerosol mean
height, aerosol type, surface reflectance, and the viewing geometry. The surface re-
flectance spectrum is assumed to be a linear function and is modeled using a re-
flectance value at 755nm and at 780nm. The normalized aerosol vertical distribution
v(h,u,o) with respect to height above the surface 7 and mean height 1 is modeled
using a log normal distribution with a width parameter of o = 1.1, which represents
a narrow layer-like distribution:

A (log(h) — log(k))?
v(h,u,o) = WeXp <— > .

2log(0)?

As a result of this setup, the analysis is based on the retrieval of a single aerosol layer
when only a single aerosol layer is present. A constant temperature profile is assumed
throughout this discussion, since the actual profile should be given as background
information. Introducing the temperature profile into this framework poses no specific
difficulties and could be easily implemented as proposed by Lindstrot and Preusker
(2012).

Several randomly selected spectra at three spectral resolutions are shown in Fig. 1.
All spectra within the lookup table were fully simulated and could be used to compute
the principal components, as well as evaluating the reconstruction performance for
a specific set of principal components. The principal component algorithm provided by
the Python package Scikit-learn (Pedregosa et al., 2011) was used to compute the
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actual components. The first six components are shown in Fig. 2. Although it is in
general unclear how to attribute specific physical properties to a single component, the
first two components show a clear signature of the general oxygen absorption features
and the linear model of the surface reflectance.

The uncompressed lookup table contains 2496 000 spectra, each with 4501 chan-
nels, which is too large to efficiently compute principal components. As shown by Holl-
stein and Lindstrot (2013), this is not necessary, since a randomly selected sub sample
of spectra of sufficient size is feasible to compute principal components which are valid
for the complete lookup table. Since all spectra were fully simulated, it is possible to
test the reconstruction accuracy of the total dataset with respect to the number of used
principal components.

Figure 3 shows the dependency of the mean of the synthetic signal to noise ratio for
the whole lookup table with respect to the number of used principal components. The
synthetic signal to noise level was defined as:

SNR = mean(y;)/stdev(y; - ¥,), 3)

and is used as measure throughout this paper. The results show clearly, that the recon-
struction quality increases strongly with increasing number of principal components.
Also, that a number of ten principal components is sufficient to represent the original
data with a mean synthetic SNR of approximately 1000.

Histograms of the reconstruction error for increasing values of np are shown in Fig. 4.
The results clearly show that the reconstruction quality increases dramatically with in-
creasing number of principal components. The histogram for 15 principal components
shows a peculiar dip in the middle of the distribution, which sets this distribution slightly
apart from the other ones, but causes no difficulties since the whole distribution shows
a much better mean reconstruction quality than when using only five principal compo-
nents. This effect shows that it is in principle difficult to establish a physical link between
a principal component and its effect on the overall reconstruction accuracy when it is
added to the reconstruction matrix.
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The aerosol optical models were implemented according to Levy et al. (2007). These
models are also used by the MODIS aerosol retrieval and were specifically designed to
fit observations for different locations on the globe. From the published optical proper-
ties, the urban, neutral, dust, continental, and absorbing types were implemented and
Mie calculations using the implementation provided by Wiscombe (1980) were used
to compute phase functions, extinction, and single scattering albedo. Aerosol phase
functions at 774.5nm with respect to scattering angle and optical thickness are shown
in Fig. 5.

The approach of this study is to expand on the retrieval error analysis as presented
by Sanders and de Haan (2013) and to implement a real world retrieval scheme, where
simulated measurements with realistic random errors are fitted using the fast forward
operator. This approach is suited to realistically discuss the difficulties which can arise
from multiple minima in the cost function, which can be caused by almost linearly de-
pendent partial derivatives of the forward operator.

The dependency of the partial derivative of the forward operator with respect to
aerosol optical thickness and aerosol height is shown in Fig. 6 and for surface re-
flectance and aerosol optical thickness in Fig. 7. The partial derivatives were rescaled
with a specific decimal power and corresponding unit, such that both rescaled spectra
carry the unit radiance and are of comparable magnitude. By neglecting non-linearity,
one can interpret the scaling factors as the specific quantity for both compared param-
eters, which causes a similar radiance change.

Figure 6 shows the partial derivatives with respect to aerosol height and aerosol op-
tical thickness, which rather strongly depend on the aerosol model and can be largely
described by almost linear sections with alternating signs of the slope. This behavior
could potentially lead to multiple minima in the least squares cost function. But, their
differences could help to discriminate between aerosol types. Figure 7 shows that the
partial derivatives with respect to aerosol optical thickness and surface reflectivity are
strongly linearly correlated, with a strong dependency on aerosol type. This indicates
one of the main theoretical problems with deriving the aerosol height from the oxygen
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A band alone. Crucial for the retrieval accuracy will be the proper discrimination of sur-
face reflectivity and aerosol optical depth. Both parameters are highly variable in space
and time on short scales, such that prior knowledge with sufficiently small uncertainty
will likely be unavailable.

4 Inversion scheme

The fast forward operator was implemented in FORTRAN, parallelized using OpenMP,
and run on a standard desktop computer with 8 GB of main memory and an Intel i7-
3770 CPU with 4 cores running at 3.2 GHz. The linear interpolation was implemented in
FORTRAN such that the Jacobean of the interpolated function is computed analytically
without much computational overhead. Results for a simple benchmark are shown in
Table 2. Each benchmark result is based on the computation of 50000 randomly se-
lected states. The benchmark shows that the run time of the forward operator is almost
independent from spectral resolution and sublinearly increases with increasing number
of principal components.

The Levenberg Marquardt optimization routine /Imder from the MINIPACK project
provided by Moré et al. (1984) was used to minimize the sum of least squares be-
tween simulated measurements and results of the fast forward operator. As discussed
in Sect. 3, no prior knowledge is assumed since for the crucial variables aerosol type,
aerosol height, aerosol optical thickness, and surface reflectance, prior knowledge will
likely not be available with sufficiently small error.

The Imder routine is implemented for an unbounded problem. To ensure that the
search range stays within the bounds of the lookup table, the computed next itera-
tion step was modified such that the bounds of the lookup table can only be reached
asymptotically. The modification replaces the computed stepsize to half of the distance
between the actual position and the boundary. A certain minimum step size for aerosol
optical depth was chosen as convergence criterion for the iteration.
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5 Noise model

Scope of this paper is the simulation of general hyperspectral radiometers with arbi-
trary spectral resolution, spectral sampling, and signal to noise level. As generic noise
model, a random noise vector n was added to a forward operator simulation to produce
a synthetic measurement y .

Ym=y+n(y), n(y)=r_; ;mean(y)/SNR, (4)

where r_, ; is a vector with the dimension of the simulations which contains random
numbers between —1 and 1 and SNR is the prescribed signal to noise ratio. With
this definition, the synthetic SNR of a spectral fit is approximately the prescribed SNR
number.

Although this is a very simple noise model, it is sufficiently close to a realistic noise
model (e.g. see Aiazzi et al., 2006) and avoids the problem of almost zero relative error
for small measurements when using pure multiplicative noise.

6 Synthetic retrieval results

The sensitivity study is based on a Monte Carlo approach. A number of 5000 retrievals
with randomly selected state vectors is performed for a given setting of spectral res-
olution, spectral sampling, signal to noise ratio, prior aerosol type information, and
surface inhomogeneity. Surface inhomogeneity is modeled by applying the indepen-
dent column approach, where the mean value over N, = 9 simulations using a range
of different surface reflectances is taken. The resulting set of prescribed state vectors
and inversion results is then analyzed by means of scatter plots and mean values.
Two named cases are distinguished throughout the analysis, the best case and the
realistic case scenario. The best case scenario is characterized by a retrieval with
known aerosol type and simulations with homogeneous surface reflectance, while for
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the realistic case the aerosol type is a free inversion parameter and surface inhomo-
geneity is taken into account. The two cases can be used to study the effect of an
unknown aerosol type, which is believed to have only minor effects (compare Sanders
and de Haan, 2013), and also the effect of the finite spatial resolution of a hypothet-
ical sensor. In general, spectral resolution, spectral sampling, and spatial resolution
are competing factors for an instrument with given external constraints. Increasing the
spectral resolution decreases the amount of energy within each channel, which can be
compensated with more sensitive detectors, longer integration time, or a larger footprint
on the surface of the Earth. The realistic case is therefore more realistic for hyperspec-
tral instruments such as TROPOMI or TANSO-FTS, where an instrument with lower
spectral resolution such as FLEX offers much higher spatial resolution.

It is of great importance for the general applicability of the inversion results that
the scheme robustly finds the global minimum of the cost function. This is ensured
by a large number of random starting values and a comparison of the resulting syn-
thetic SNR value with the prescribed one. If the achieved residual is in the order of
the prescribed noise, the inversion is successful and different schemes might only be
more efficient in the needed computational burden or memory use. Figure 8 shows
the mean inversion signal to noise ratio with respect to spectral resolution, prescribed
signal to noise ratio, and the best case and realistic case scenario. The results show
clearly that the inversion succeeds and is capable of finding a minimum in the cost
function which can be completely explained by noise. This is also highlighted in Fig. 1,
where several simulated spectra, inversion results, and resulting residuals are shown
for three spectral resolutions. The general inversion residual is within the prescribed
noise, which indicates that an improvement above the results presented here is only
possible by introducing further measurements or additional prior knowledge. However,
such an analysis is beyond the scope of this paper.

As discussed above, the methodology of this study is purely Monte Carlo like and
an overview about results for the best case, realistic case, and spectral resolution is
shown in Fig. 9. The top row of subfigures shows the effect of unknown aerosol type
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and surface inhomogeneity for constant signal to noise ratio, spectral resolution, and
spectral sampling. While the results for the aerosol height retrieval even slightly im-
prove, the retrieval of aerosol optical depth is affected by relaxing these constraints.
The aerosol height retrieval is almost unaffected, its bias is slightly reduced and the
slope is closer to one. The scatter for aerosol optical depth retrieval increases and the
slope deviates more from one. In this respect, the aerosol height retrieval is more sta-
ble with respect to aerosol type and surface inhomogeneity than the retrieval of aerosol
optical depth. The bottom row of the figure shows the effect of decreasing the spectral
resolution and spectral sampling to 0.1 nm. As for the case with higher spectral reso-
lution and sampling, the retrieval of aerosol height is more stable, while the retrieval of
aerosol optical depth is more strongly affected.

The presented scatter plots can be seen as an best estimate for a real world valida-
tion of a retrieval scheme. Its success can be measured in terms of absolute accuracy,
but also relative to given user requirements, which in general strongly depend on a spe-
cific application. Aim of this paper is to be rather general and not to base the discussion
on a certain user requirement and application. Hence, throughout this paper the abso-
lute retrieval accuracy is taken as measure.

Visible in all scatter plots are minor artifacts which are caused by the grid points of
the tabulated aerosol optical depth and aerosol height. The artifacts are horizontal lines
of increased occurrence for a parameter value which is a grid point in the lookup table
(compare also with Table 1). A real world retrieval could simply avoid these artifacts
by using a finer grid in the lookup table, which would then better represent the nonlin-
ear response of the simulations with respect to these parameters. These artifacts are
shown in Figs. 9 and 10 to highlight the effects of a finite resolution in the lookup table,
but are excluded in the further analysis.

Similar scatter plots, but for a prescribed signal to noise ratio of 250 are shown in
Fig. 10. The general distribution of scatter points is much wider than in Fig. 9, although
the regression lines are only slightly affected. It will depend on the desired application
whether such scatter can be accepted.
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In contrast to other shown inversion results, each subfigure of Figs. 9 and 10 is based
on the inversion of 10000 randomly selected state vectors. lts computation on a stan-
dard PC with Intel i7-3770 CPU took approximately 30min (see also the benchmark
results in Sect. 4). Each inversion for a single spectrum was repeated 20 times with
randomly selected starting values to ensure convergence to the global minimum of the
least squares cost function.

The discussed results provide evidence that the retrieval of aerosol height will de-
pend on instrumental parameters like spectral resolution, spectral sampling, and signal
to noise ratio, but also on the scene itself. This is included in the discussion by prescrib-
ing or removing the aerosol type information and introducing surface inhomogeneities.
Results regarding this assumption are shown in Fig. 11, which compiles the inversion
success for surface pressure, aerosol optical thickness, and aerosol height. Inversion
success was defined as the mean absolute residual for the 90 % best cases in rescaled
units as they were used in Figs. 9 and 10. Zero indicates a perfect mean inversion while
one indicates that the mean residual is in the order of the maximum of the range of the
retrieved quantity. Surface pressure is shown merely as reference, its retrieval success
depends almost only on signal to noise error and decreases only slightly with increas-
ing spectral resolution.

The results for aerosol optical depth and aerosol height behave quite differently.
While being sensitive to spectral resolution, the inversion success strongly depends
on the signal to noise level. The strongest increase for aerosol optical thickness can
be seen when decreasing the spectral resolution from 1nm to 0.1 nm. From that on,
only minor improvements in the retrieval can be achieved by increasing the spectral
resolution of the instrument. Again, it will depend on user requirements whether a pos-
sibly small gain in retrieval accuracy from increasing the spectral resolution is feasible.
Similar, but weaker behavior can be seen for the retrieval of aerosol height. Depend-
ing on the signal to noise level, the retrieval of aerosol height could become worse for
increased spectral resolution. It should be noted, that these results describe the inver-
sion success with respect to spectral resolution at constant signal to noise range. When
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increasing the spectral resolution, one automatically increases the dynamic range of
the signal since the fine oxygen absorption lines become better and better resolved.
While these features carry information about the aerosol height, they are strongly af-
fected by noise, which can lead to a decrease in retrieval accuracy. For a real instru-
ment, increasing the spectral resolution will affect the signal to noise level or other
parameters such as spatial resolution.

For the shown results, the realistic case background information parameters were
used. Figure 12 shows the behavior of the aerosol type and aerosol height with re-
spect to spectral resolution, aerosol type information, and surface inhomogeneity. All
combinations of known/unknown aerosol type and homogeneous/inhomogeneous sur-
face are shown. The overall effect is minor and is more pronounced for the aerosol
optical thickness. A conclusion is, that the retrieval of aerosol height is robust against
variations in aerosol type and surface homogeneity. This conclusion is valid for the total
physical space which has been discussed here. It could be exploited in much more de-
tail, e.g. by analyzing it with respect to specific aerosol optical parameters and surface
conditions, but is left as subject for future research.

Although beyond the scope of this paper and likely of any aerosol retrieval based
purely on the oxygen A band, the presented scheme allows to investigate to what ex-
tent possible aerosol type information can be retrieved. Results of such an analysis
are shown in Fig. 13, which shows the fraction of correcitly retrieved aerosol type with
respect to spectral resolution, prescribed signal to noise ratio, and surface inhomo-
geneity. In general, the fraction of correctly retrieved aerosol type is increasing with
increasing spectral resolution and is decreasing with increasing signal to noise ratio
and increasing surface inhomogeneity. Although far from being the best approach of
retrieving the aerosol type, hyperspectral radiance measurements in the oxygen A band
could potentially contribute to a better retrieval of aerosol type.
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7 Conclusions

A fast forward operator for the simulation of hyperspectral radiances in the oxygen
A band was described, benchmarked on a standard computer, and applied for a sensi-
tivity study concerning the retrieval of aerosol optical depth and aerosol height. Study
parameters were spectral resolution, spectral sampling, signal to noise ratio, aerosol
type information, and surface inhomogeneity. The study showed that the retrieval gen-
erally benefits from higher spectral resolution, with the strongest increase in retrieval
accuracy above a spectral resolution of 0.1 nm. Signal to noise ratio strongly affects the
retrieval and is a key parameter when designing an instrument and a retrieval scheme.
The retrieval of aerosol height seems to be robust even when aerosol type information
is missing and when surface inhomogeneity is introduced. These conclusions hold for
the retrieval of a single aerosol layer when a single aerosol layer is present. More com-
plex vertical profiles should be subject to future research. Evidence was found that the
oxygen A band contains valuable information about the aerosol type, which could be
used in an aerosol retrieval which utilizes additional spectral bands. The dependency
with respect to the temperature profile was not discussed here and might be subject to
future research.

Acknowledgements. We wish to thank our colleague Rasmus Lindstrot for fruitful discussions
and for his help when preparing the manuscript.

References

Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Marcoionni, P., Pippi, I., and Selva, M.: Noise
modelling and estimation of hyperspectral data from airborne imaging spectrometers, Ann.
Geophys., 49, 1, doi:10.4401/ag-3141, 2006. 10523

Amiridis, V., Tsekeri, A., Marinou, E., Wandinger, U., Kazadzis, S., Giannakaki, E.,
Mamouri, R., Kokkalis, P,, and Herekakis, T.: Lidar Climatology of Vertical Aerosol Struc-
ture for Space-Based Lidar Simulation Studies, Final Report, ESA-ESTEC Contract RFQ/3-

10528

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

L

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4401/ag-3141

10

15

20

25

30

13301/11/NL/FF/fk, 2013, available at: http:/lidar.space.noa.gr:8080/livas/ (last access:
November 2013), 2013. 10513

Amodeo, A., Pappalardo, G., Bésenberg, J., Ansmann, A., Apituley, A., Alados-Arboledas, L.,
Balis, D., Bdckmann, C., Chaikovsky, A., Comeron, A., Freudenthaler, V., Gustaffson, O.,
Hansen, G., Mitev, V., Nicolae, D., Papayannis, A., Perrone, M., Pietruczuk, A., Pujadas, M.,
Putaud, J., Ravetta, F, Rizi, V., Simeonoy, V., Spinelli, N., Stoyanov, D., Trickl, T., and Wieg-
ner, M.: A European research infrastructure for the aesorol study on a continental scale:
EARLINET-ASOS, Proceedings of the SPIE, 6745, 67450Y, doi:10.117/12.738401, 2007.
10513

Andreae, M. O.: Soot carbon and excess fine potassium: long-range transport of combustion-
derived aerosols, Science, 220, 1148-1151, doi:10.1126/science.220.4602.1148, 1983.
10512

Bennartz, R. and Fischer, J.: A modified k-distribution approach applied to narrow band water
vapour and oxygen absorption estimates in the near infrared, J. Quant. Spectrosc. Ra., 66,
539-553, 2000. 10519

Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, N. W., Uematsu, M.,
Costello, D. K., Young, R. W.,, Feely, R. A., Breland, J. A., Bernstein, R. E., and
Greco, A. M.: Long-range transport of giant mineral aerosol particles, Nature, 336, 568-571,
doi:10.1038/336568a0, 1988. 10512

Bézy, J.-L., Bensi, P, Berger, M., Carnicero, B., Davidson, M., Drinkwater, M., Durand, Y.,
Héliere, F., Ingmann, P, Langen, J., Lin, C., Meynart, R., Rebhan, H., Silvestrin, P,, and
Thompson, A.: ESA Future Earth Observation Explorer Missions, Proc. of SPIE, 7081,
70810S, doi:10.1117/12.797159, 2008. 10513

Bosch, H., Toon, G. C., Sen, B., Washenfelder, R. A., Wennberg, P. O., Buchwitz, M.,
de Beek, R., Burrows, J. P, Crisp, D., Christi, M., Connor, B. J., Natraj, V., and Yung, Y. L.:
Space-based near-infrared CO, measurements: testing the Orbiting Carbon Observatory re-
trieval algorithm and validation concept using SCIAMACHY observations over Park Falls,
Wisconsin, J. Geophys. Res.-Atmos., 111, D23302, doi:10.1029/2006JD007080, 2006.
10515

Chin, M., Kahn, R. A., and Schwartz, S. E.: CCSP 2009: Atmospheric Aerosol Properties and
Climate Impacts, A Report by the US Climate Change Science Program and the Subcom-
mittee on Global Change Research, National Aeronautics and Space Administration, Wash-
ington, D.C., USA, 2009. 10512

10529

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

L

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://lidar.space.noa.gr:8080/livas/
http://dx.doi.org/10.117/12.738401
http://dx.doi.org/10.1126/science.220.4602.1148
http://dx.doi.org/10.1038/336568a0
http://dx.doi.org/10.1117/12.797159
http://dx.doi.org/10.1029/2006JD007080

10

15

20

25

Clarke, A. D. and Noone, K. J.: Soot in the Arctic snowpack: a cause for perturbations in ra-
diative transfer, Atmos. Environ., 19, 2045-2053, doi:10.1016/0004-6981(85)90113-1, 1985.
10512

Clissold, P.: ESA SP-1313/4 Candidate Earth Explorer Core Missions — Reports for Assess-
ment: FLEX — FLuorescence EXplorer, ESA Communication Production Office, 2008. 10514

Corradini, S. and Cervino, M.: Aerosol extinction coefficient profile retrieval in the oxygen A-
band considering multiple scattering atmosphere, Test case: SCIAMACHY nadir simulated
measurements, J. Quant. Spectrosc. Ra., 97, 354-380, doi:10.1016/j.jgsrt.2005.05.061,
2006. 10513

Crisp, D. and Johnson, C.: The orbiting carbon observatory mission, Acta Astronaut., 56, 193—
197, doi:10.1016/j.actaastro.2004.09.032, 2005. 10513

De Graaf, M., Stammes, P,, Torres, O., and Koelemeijer, R.: Absorbing aerosol index: sensitivity
analysis, application to GOME and comparison with TOMS, J. Geophys. Res.-Atmos., 110,
D01201, doi:10.1029/2004JD005178, 2005. 10513

Dubuisson, P, Frouin, R., Dessailly, D., Duforét, L., Léon, J.-F.,, Voss, K., and Antoine, D.: Es-
timating the altitude of aerosol plumes over the ocean from reflectance ratio measurements
in the O, A-band, Remote Sens. Environ., 113, 1899-1911, doi:10.1016/j.rse.2009.04.018,
2009. 10513

Duforét, L., Frouin, R., and Dubuisson, P.: Importance and estimation of aerosol vertical struc-
ture in satellite ocean-color remote sensing, Appl. Optics, 46, 1107-1119, 2007. 10512,
10513

ESA: GMES Sentinels 4 And 5 Mission Requirements Traceability Document, issue
1, revision 0, Tech. rep., European Space Research and Technology Centre, avail-
able at: http://esamultimedia.esa.int/docs/EarthObservation/S4_5_5p_MRTD_issue_1.0_
authorised.pdf (last access: 22 October 2013), 2012. 10513, 10514

Fell, F. and Fischer, J.: Numerical simulation of the light field in the atmosphere-ocean
system using the matrix-operator method, J. Quant. Spectrosc. Ra., 69, 351-388,
doi:10.1016/S0022-4073(00)00089-3, 2001. 10519

Fischer, J. and Grassl, H.: Detection of cloud-top height from backscattered radiances within
the oxygen A band — Part 1: Theoretical study, J. Appl. Meteorol., 30, 1245-1259, 1991.
10513

10530

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/0004-6981(85)90113-1
http://dx.doi.org/10.1016/j.jqsrt.2005.05.061
http://dx.doi.org/10.1016/j.actaastro.2004.09.032
http://dx.doi.org/10.1029/2004JD005178
http://dx.doi.org/10.1016/j.rse.2009.04.018
http://esamultimedia.esa.int/docs/EarthObservation/S4_5_5p_MRTD_issue_1.0_authorised.pdf
http://esamultimedia.esa.int/docs/EarthObservation/S4_5_5p_MRTD_issue_1.0_authorised.pdf
http://esamultimedia.esa.int/docs/EarthObservation/S4_5_5p_MRTD_issue_1.0_authorised.pdf
http://dx.doi.org/10.1016/S0022-4073(00)00089-3

10

15

20

25

30

Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chlorophyll fluorescence from atmo-
spheric scattering effects in O, A-band spectra of reflected sun-light, Geophys. Res. Lett.,
38, L03801, doi:10.1029/2010GL045896, 2011. 10515

Frankenberg, C., Hasekamp, O., O’Dell, C., Sanghavi, S., Butz, A., and Worden, J.: Aerosol
information content analysis of multi-angle high spectral resolution measurements and its
benefit for high accuracy greenhouse gas retrievals, Atmos. Meas. Tech. Discuss., 5, 2857—
2885, doi:10.5194/amtd-5-2857-2012, 2012. 10513

Gabella, M., Kisselev, V., and Perona, G.: Retrieval of aerosol profile variations from
reflected radiation in the oxygen absorption A band, Appl. Optics, 38, 3190-3195,
doi:10.1364/A0.38.003190, 1999. 10513

Haring, R., Pollock, R., Sutin, B. M., and Crisp, D.: The Orbiting Carbon Observatory Instrument
Optical Design, Current Developments in Lens Design and Optical Engineering V, 2004.
10513

Harrison, R. M. and Yin, J.: Particulate matter in the atmosphere: which particle properties are
important for its effects on health?, Sci. Total. Environ., 249, 85-101, doi:10.1016/S0048-
9697(99)00513-6, 2000. 10512

Heidinger, A. K. and Stephens, G. L.: Molecular line absorption in a scattering atmosphere
— Part 2: Application to remote sensing in the O, A band, J. Atmos. Sci., 57, 1615-1634,
doi:10.1175/1520-0469(2000)057<1615:MLAIAS>2.0.CO;2, 2000. 10513

Hollstein, A. and Fischer, J.: Radiative transfer solutions for coupled atmosphere ocean systems
using the matrix operator technique, J. Quant. Spectrosc. Ra., 113, 536-548, 2012. 10519

Hollstein, A. and Lindstrot, R.: Fast reconstruction of hyperspectral radiative transfer simula-
tions by using small spectral subsets: application to the oxygen A band, Atmos. Meas. Tech.
Discuss., 6, 8339-8370, doi:10.5194/amtd-6-8339-2013, 2013. 10516, 10517, 10520

Joiner, J., Yoshida, Y., Vasilkov, A. P, Yoshida, Y., Corp, L. A., and Middleton, E. M.: First
observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeo-
sciences, 8, 637-651, doi:10.5194/bg-8-637-2011, 2011. 10515

Kokhanovsky, A. A. and Rozanov, V. V.: The determination of dust cloud altitudes from a satellite
using hyperspectral measurements in the gaseous absorption band, Int. J. Remote Sens.,
31, 2729-2744, 2010. 10513

Koppers, G. A. A, Jansson, J., and Murtagh, D. P.: Aerosol optical thickness retrieval from
GOME data in the oxygen A-band, ERS symposium on space at the service of our environ-
ment No3, Florence, Italy, 14 March 1997, 1997. 10513

10531

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2010GL045896
http://dx.doi.org/10.5194/amtd-5-2857-2012
http://dx.doi.org/10.1364/AO.38.003190
http://dx.doi.org/10.1016/S0048-9697(99)00513-6
http://dx.doi.org/10.1016/S0048-9697(99)00513-6
http://dx.doi.org/10.1016/S0048-9697(99)00513-6
http://dx.doi.org/10.1175/1520-0469(2000)057<1615:MLAIAS>2.0.CO;2
http://dx.doi.org/10.5194/amtd-6-8339-2013
http://dx.doi.org/10.5194/bg-8-637-2011

10

15

20

25

30

Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application
to moderate resolution imaging spectroradiometer aerosol retrieval over land, J. Geophys.
Res.-Atmos., 112, D13210, doi:10.1029/2006JD007815, 2007. 10521

Lindstrot, R. and Preusker, R.: On the efficient treatment of temperature profiles for the es-
timation of atmospheric transmittance under scattering conditions, Atmos. Meas. Tech., 5,
2525-2535, doi:10.5194/amt-5-2525-2012, 2012. 10519

Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5,
715-737, doi:10.5194/acp-5-715-2005, 2005. 10512

McClain, C. R.: A decade of satellite ocean color observations, Annual Review of Marine Sci-
ence, 1, 19-42, doi:10.1146/annurev.marine.010908.163650, 2009. 10512

McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S,
Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th-century indus-
trial black carbon emissions altered arctic climate forcing, Science, 317, 1381-1384,
doi:10.1126/science.1144856, 2007. 10512

McMichael, A., Campbell-Lendrum, D., Corvalan, C., Ebi, K., Githeko, A., Scheraga, J., and
Woodward, A.: Climate change and human health, WHO Library Cataloguing-in-Publication
Data, 2003. 10512

Meijer, Y., Ingmanna, P.,, Léscher, A., and the CarbonSat Mission Advisory Group Team: Car-
bonSat: ESA’s Earth Explorer 8 Candidate Mission, Geophys. Res. Abstr., EGU2012-2474-1,
EGU General Assembly 2012, Vienna, Austria, 2012. 10514

Moré, J. J., Sorenson, D. C., Garbow, B. S., and Hillstrom, K. E.: The MINPACK project, in:
Sources and Development of Mathematical Software, 88—111, 1984. 10522

Muller, J.-P., Preusker, R., Fischer, J., Zuhlke, M., Brockmann, C., and Regner, P:
ALBEDOMAP: MERIS land surface albedo retrieval using data fusion with MODIS BRDF
and its validation using contemporaneous EO and in situ data products, Geoscience and
Remote Sensing Symposium, 2007, IGARSS 2007, IEEE International, 2404—2407, 2007.
10512

Natraj, V., Jiang, X., lie Shia, R., Huang, X., Margolis, J. S., and Yung, Y. L.: Application of
principal component analysis to high spectral resolution radiative transfer: a case study of the
band, J. Quant. Spectrosc. Ra., 95, 539-556, doi:10.1016/j.jgsrt.2004.12.024, 2005. 10516

Nel, A.: Air pollution-related iliness: effects of particles, Science, 308, 804-806,
doi:10.1126/science.1108752, 2005. 10512

10532

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2006JD007815
http://dx.doi.org/10.5194/amt-5-2525-2012
http://dx.doi.org/10.5194/acp-5-715-2005
http://dx.doi.org/10.1146/annurev.marine.010908.163650
http://dx.doi.org/10.1126/science.1144856
http://dx.doi.org/10.1016/j.jqsrt.2004.12.024
http://dx.doi.org/10.1126/science.1108752

10

15

20

25

30

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P, Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E.: Scikit-learn: machine learning in Python, J. Mach. Learn.
Res., 12, 2825-2830, 2011. 10519

Pelletier, B., Frouin, R., and Dubuisson, P.: Retrieval of the aerosol vertical distribution from
atmospheric radiance, Proc. SPIE, 7150, 71501R, doi:10.1117/12.806527, 2008. 10513

Péschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects,
Angew. Chem. Int. Edit., 44, 7520-7540, doi:10.1002/anie.200501122, 2005. 10512

Preusker, R. and Lindstrot, R.: Remote sensing of cloud-top pressure using moderately re-
solved measurements within the oxygen A band — a sensitivity study, J. Appl. Meteorol.
Clim., 48, 1562—1574, 2009. 10513

Quijano, A. L., Sokolik, I. N., and Toon, O. B.: Influence of the aerosol vertical distribution on
the retrievals of aerosol optical depth from satellite radiance measurements, Geophys. Res.
Lett., 27, 3457—3460, 2000. 10512

Rascher, U., Gioli, B., and Miglietta, F.: FLEX — Fluorescence Explorer: a remote sensing ap-
proach to quantify spatio-temporal variations of photosynthetic efficiency from space, in:
Photosynthesis, Energy from the Sun, edited by: Allen, J. F, Gantt, E., Golbeck, J. H., and
Osmond, B., 1388—-1390, Springer Netherlands, doi:10.1007/978-1-4020-6709-9_299, 2008.
10514

Rodgers, C. D.: Inverse Methods for Athmospheric Sounding, World Scientific Publishing Co.
Pte. Ltd., 2000. 10514

Rosen, J. M., Hofmann, D. J., and Laby, J.: Stratospheric aerosol measurements
Il The worldwide distribution, J. Atmos. Sci., 32, 1457-1462, doi:10.1175/1520-
0469(1975)032<1457:SAMITW=>2.0.C0O;2, 1975. 10513

Rothman, L., Gordon, ., Barbe, A., Benner, D., Bernath, P.,, Birk, M., Boudon, V., Brown, L.,
Campargue, A., Champion, J.-P,, Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S,,
Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, |., Lacome, N., Lafferty, W.,
Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O.,
Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M.,
Simeckova, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., and
Auwera, J. V.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc.
Ra., 110, 533-572, doi:10.1016/j.jgsrt.2009.02.013, 2009. 10519

10533

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1117/12.806527
http://dx.doi.org/10.1002/anie.200501122
http://dx.doi.org/10.1007/978-1-4020-6709-9_299
http://dx.doi.org/10.1175/1520-0469(1975)032<1457:SAMITW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1975)032<1457:SAMITW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1975)032<1457:SAMITW>2.0.CO;2
http://dx.doi.org/10.1016/j.jqsrt.2009.02.013

10

15

20

25

Rozanov, V. V. and Kokhanovsky, A. A.: Semianalytical cloud retrieval algorithm as applied
to the cloud top altitude and the cloud geometrical thickness determination from top-of-
atmosphere reflectance measurements in the oxygen A band, J. Geophys. Res.-Atmos.,
109, D05202, doi:10.1029/2003JD004104, 2004. 10513

Sanders, A. F. J. and de Haan, J. F: Retrieval of aerosol parameters from the oxygen A
band in the presence of chlorophyll fluorescence, Atmos. Meas. Tech., 6, 2725-2740,
doi:10.5194/amt-6-2725-2013, 2013. 10514, 10521, 10524

Sanghavi, S., Martonchik, J. V., Landgraf, J., and Platt, U.: Retrieval of the optical depth and
vertical distribution of particulate scatterers in the atmosphere using O, A- and B-band
SCIAMACHY observations over Kanpur: a case study, Atmos. Meas. Tech., 5, 1099-1119,
doi:10.5194/amt-5-1099-2012, 2012. 10513

Seaton, A., Godden, D., MacNee, W., and Donaldson, K.: Particulate air pollution and
acute health effects, The Lancet, 345, 176—-178, doi:10.1016/S0140-6736(95)90173-6, 1995.
10512

Stoll, M.: The FLEX — Fluorescence Explorer mission project: motivations and present status
of preparatory activities, Geoscience and Remote Sensing Symposium, 2003, IGARSS '03,
Proceedings, 2003 IEEE International, 1, 585-587, 2003. 10514

Torres, O., Bhartia, P, Herman, J., Ahmad, Z., and Gleason, J.: Derivation of aerosol proper-
ties from satellite measurements of backscattered ultraviolet radiation: theoretical basis, J.
Geophys. Res.-Atmos., 103, 17099-17110, 1998. 10513

Veefkind, J., Aben, I., McMullan, K., Foérster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.,
de Haan, J., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J.,
Snel, R., Tol, P, Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P.
TROPOMI on the ESA Sentinel-5 Precursor: a {GMES} mission for global observations of
the atmospheric composition for climate, air quality and ozone layer applications, Remote
Sens. Environ., 120, 70-83, doi:10.1016/j.rse.2011.09.027, 2012. 10513, 10514

Velazco, V. A., Buchwitz, M., Bovensmann, H., Reuter, M., Schneising, O., Heymann, J.,
Krings, T., Gerilowski, K., and Burrows, J. P.: Towards space based verification of CO, emis-
sions from strong localized sources: fossil fuel power plant emissions as seen by a Carbon-
Sat constellation, Atmos. Meas. Tech., 4, 2809—-2822, doi:10.5194/amt-4-2809-2011, 2011.
10514

10534

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

OO

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003JD004104
http://dx.doi.org/10.5194/amt-6-2725-2013
http://dx.doi.org/10.5194/amt-5-1099-2012
http://dx.doi.org/10.1016/S0140-6736(95)90173-6
http://dx.doi.org/10.1016/j.rse.2011.09.027
http://dx.doi.org/10.5194/amt-4-2809-2011

10

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A, Liu, Z., Hunt, W. H., and
Young, S. A.: Overview of the CALIPSO mission and CALIOP data processing algorithms, J.
Atmos. Ocean. Tech., 26, 2310-2323, doi:10.1175/2009JTECHA1281.1, 2009. 10513

Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R.,
Flamant, P, Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Le Treut, H., McCormick, M. P,,
Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO
mission: a global 3-D view of aerosols and clouds, B. Am. Meteorol. Soc., 91, 1211-1229,
doi:10.1175/2010BAMS3009.1, 2010. 10513

Wiscombe, W. J.: Improved Mie scattering algorithms, Appl. Optics, 19, 1505-1509, 1980.
10521

Zieger, P, Ruhtz, T., Preusker, R., and Fischer, J.: Dual-aureole and sun spectrometer system
for airborne measurements of aerosol optical properties, Appl. Optics, 46, 8542-8552, 2007.
10513

10535

AMTD
6, 10511-10550, 2013

Aerosol height
retrieval from oxygen
A band

A. Hollstein and
J. Fischer

Title Page

L

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

il


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1175/2009JTECHA1281.1
http://dx.doi.org/10.1175/2010BAMS3009.1

AMTD
6, 10511-10550, 2013

Jaded uoissnosig

Aerosol height
retrieval from oxygen

A band
O
(2} q
Table 1. Parameter grid of the lookup table. The table contains 4-5-3-5-2-2.13-8-20 = 2496000 & A. Hollstein and
states and corresponding spectra. 7 J. Fischer
o)
-}
surface pressure p n,=4 p =800hPa, 950 hPa, 1013 hPa, 1050 hPa Q')U
aerosol optical thickness n,=5 7=0.0,0.3,0.6,0.9,1.2 '8 Title Page
aerosol center height n,=3 h =500m,2500m,4500m = 9
aerosol type n,=5 t =1,2,3,4,5 (dust, urban, continental, neutral, absorbing) - )
surface reflectance at 755nm n, =2 a;=0.1,0.7
surface reflectance at 780nm n, =2 @, =0.1,0.7 @, X
viewing zenith angle u n,=13 1 =0.00,7.44, 13.63, 19.76, 25.88, 31.99, 38.10, 44.21, 50.32, g
56.42, 62.53, 68.63, 74.74 in ° S :
solar zenith angle ug n, =8 ug=0.00,7.44,13.63, 19.76, 25.88, 31.99, 38.10, 44.21 in ° (23
relative azimuth angle ¢ ne=20 ¢ =0.00,9.47, 18.95, 28.42, 37.89, 47.37, 56.84, 66.32, 75.79, =
85.26, 94.74, 104.21, 113.68, 123.16, 132.63, 142.11, 151.58, T g g
161.05, 170.53, 180.00 in ° >
. -
O
(2]
2. Full Screen / Esc ‘
(2}
28
o
=) Printer-friendly Version
-
Q
5
.


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/10511/2013/amtd-6-10511-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 2. Benchmark results of the fast forward operator on an Intel i7-3770 with respect to the
number of used principal components n,, spectral resolution SR, spectral sampling SS, and for
the pure interpolation result y and the interpolations result and corresponding Jacobean y,Vy.
Spectral resolution and spectral sampling were chosen to be the same per run and carry the
unit of nm. The unit for the benchmark results is spectras™. Eight threads were used for the
multithread run.

single thread multi thread
SR:SS nP y y’v.y .y y!v.y

01 5 5780 1580 26694 7213
0.01 5 5777 1574 26734 7221
0.001 5 5768 1581 26694 7222
0.1 15 4129 845 20100 4072
0.01 15 4125 845 19997 4089
0.001 15 4120 844 20141 4105
0.1 30 3020 500 14213 2325
0.01 30 2974 497 13862 2343
0.001 30 3002 501 13866 2402
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Fig. 1. Random selection of synthetic spectra and inversion results for spectral resolution and
sampling of 0.01nm, 0.1 nm, and 0.4nm. The synthetic signal to noise ratio was set to 100 (see
Sect. 5 for a definition of the noise model) and the thin lines around the zero line show the fit
residual.
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Fig. 6. Several scatter plots of the partial derivative of the fast forward operator with respect to
aerosol height and aerosol optical thickness. Both partial derivatives were scaled with a specific
decimal power with appropriate unit, such that the unit of the resulting quantity is radiance and
that both spectra have similar magnitude. Shown in the top left of each panel is the base
aerosol optical thickness and aerosol height. Different colors indicate results for the different
aerosol types. From the left to right panel, the aerosol height is kept constant and the aerosol
optical thickness increases, while from top to bottom panel the aerosol height is changing. The
baseline parameters are, solar angle ug = 10°, viewing angle u = 20°, relative azimuth angle
@ = 30°, surface reflectance is a = 0.2, and surface pressure was set to p = 1013hPa.
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Fig. 9. Overview about inversion runs for various scenarios. Each figure is a combined scatter
plot of a retrieved and prescribed parameter for 10000 randomly selected cases. A scenario
is defined by signal to noise level, spectral width, spectral sampling, number of surface re-
flectances, and aerosol type background information. These background settings are shown
in the top left of each figure. Also in the top left shown are line parameters for a linear fit per
parameter and the true parameter interval is shown in the bottom right. Shown are retrieval
results for the aerosol optical thickness (red), aerosol height (green), and aerosol type (blue).
The left column shows results for the the best case (aerosol type information known, homoge-
neous surface with N, = 1) and the right column for the realistic case (unknown aerosol type,
inhomogeneous surface with N, = 9) scenario. From top to bottom the spectral resolution (SR)
and sampling (SS) is decreased from 0.01 nm (top) to 0.1 nm (bottom). The color scale follows
an inverse power distribution to enhance the visibility of low density bins.
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Fig. 11. Inversion success of surface pressure (cyan), aerosol optical depth (red), and aerosol
height (green) with respect to spectral resolution and prescribed signal to noise ratio (dashed,
solid, dot dashed). Shown is the mean absolute residual of the 90% best inversion results
in rescaled units (compare with Figs. 9 and 10). Spectral sampling for each point is equal to
spectral resolution. The realistic case background settings were used.
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Fig. 12. Similar as Fig. 11 but only for aerosol optical thickness and aerosol height, but with
respect to aerosol type information and surface inhomogeneity. Shown are the best case and
the realistic case scenario and also the free type scenario where the aerosol type is unknown
to the retrieval but the surface is homogeneous and also the surface mixing scenario where the
aerosol type information is given but the surface is assumed to be inhomogeneous.
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Fig. 13. Fraction of correctly retrieved aerosol type with respect to spectral resolution, pre-
scribed signal to noise ratio (solid/dashed lines), and surface inhomogeneity (red, blue, green

color).
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