
Precisely Timing Dissipative Quantum Information Processing

M. J. Kastoryano,1,2 M.M. Wolf,3 and J. Eisert1

1Qmio Group, Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

3Department of Mathematics, Technische Universität München, 85748 Garching, Germany
(Received 21 September 2012; revised manuscript received 3 December 2012; published 11 March 2013)

Dissipative engineering constitutes a framework within which quantum information processing

protocols are powered by system-environment interaction rather than by unitary dynamics alone. This

framework embraces noise as a resource and, consequently, offers a number of advantages compared to

one based on unitary dynamics alone, e.g., that the protocols are typically independent of the initial state

of the system. However, the time independent nature of this scheme makes it difficult to imagine precisely

timed sequential operations, conditional measurements, or error correction. In this work, we provide a

path around these challenges, by introducing basic dissipative gadgets which allow us to precisely initiate,

trigger, and time dissipative operations while keeping the system Liouvillian time independent. These

gadgets open up novel perspectives for thinking of timed dissipative quantum information processing. As

an example, we sketch how measurement-based computation can be simulated in the dissipative setting.
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One of the main goals in quantum information science
and in quantum technologies in general is to understand the
information processing power available within the frame-
work of quantum mechanics. Several quantum computa-
tional models have been proposed and analyzed, and each
has its strengths and weaknesses. Every such model will
suffer severely from the problem of decoherence due to
noise from a practically inevitable environment, so that a
lot of effort has been invested in developing methods for
isolating systems from their destructive environment. In
such a picture, quantum noise and dissipation are seen as
necessarily being detrimental for coherent quantum state
manipulation. Recently, however, a new avenue has been
suggested for addressing this issue: actively exploiting the
dissipation into the environment. In a number of recent
studies, it has been shown both experimentally [1,2] and
theoretically [3–11] that several of the basic tasks in quan-
tum information science (quantum computation [3], state
preparation [3–5,7,8], distillation [9], storage [10], and
cooling [11]) can be performed by engineering the system
environment coupling instead of isolating a subsystem and
performing coherent controlled unitary dynamics on it.

The most counterintuitive application of such a para-
digm might be dissipative quantum computing (DQC) [3],
a model of quantum computation in which one assumes a
system-environment interaction described by a Markovian
master equation, where the computation is encoded in the
Lindblad operators and the outcome of the computation is
encoded in the unique stationary state of the open system.
The main benefit with this approach (that under appropri-
ate conditions the unique stationary state is reached rapidly
starting from any initial state) appears to imply a poten-
tially severe disadvantage: that operations cannot be per-
formed sequentially in time. Steps of a procedure cannot be

conditioned on previous steps, it is not clear how to ‘‘stop
preparing’’ a state, and it is far from clear how to incorpo-
rate error correction into any such scheme.
In this work, we open up new perspectives for dissipa-

tive quantum information processing by introducing and
analyzing a number of dissipative ‘‘gadgets.’’ They can be
combined to act as time triggers for various dissipative
operations; i.e., they allow a certain dissipative process to
start (or stop) acting after a very specific point in time:
They serve as convenient ‘‘clocks’’ in a framework with
time independent Liouvillians. The functioning of these
tools is based on a counterintuitive property of classical
Markov chains called the ‘‘cutoff phenomenon’’ [12],
which can be lifted up into the quantum setting [13].
We also show how such gadgets can be used in order to
‘‘translate’’ any scheme involving unitary dynamics,
measurements, and conditional dynamics into a time inde-
pendent dissipative setting. We then outline how these time
triggers can be used to perform dissipative measurement-
based quantum computation [14]. The timer gadgets can be
used to show that DQC is universal also for geometrically
local interactions (6-local if embedded in a 3D lattice). In
the original proof of DQC [3], the interactions were made
5-local but in a way which cannot be embedded in a lattice
geometry. We show that timed dissipation-driven quantum
information processing is indeed possible.
The Letter is set up as follows. We first introduce an

initialization gadget which allows us to prepare a given
state for a finite amount of time. Next, we combine the
initialization gadget with a special behavior from Markov
chain mixing to construct a rudimentary timer gadget,
which allows us to trigger a dissipative operation at a
specific point in time. Rigorous error estimates for these
gadgets are given in Supplemental Material [15]. We go on
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to outline an application of these gadgets: a dissipative
one-way quantum computation (D1WQC) scheme.

Basic building blocks.—The basic conceptual building
blocks for the dissipative gadgets considered here are an
idea for initialization and a particular mixing behavior
called the ‘‘cutoff phenomenon.’’ Throughout, we will
assume that the open system dynamics are properly mod-
eled by a Markovian master equation with local terms in
the Liouvillian L, so that

d

dt
� ¼ Lð�Þ ¼ X

j

�
Lj�L

y
j � 1

2
fLy

j Lj; �g
�
;

where each Lindblad operator Lj has a local support which

is independent of the system size. This amounts to local
interactions and local heat baths. From this point on, we
will not invoke the heat baths explicitly but assume that all
of the Lindblad operators are derived from the interaction
with the environment.

The initialization gadget.—For initialization to be suc-
cessful, (i) the qubit must be prepared in the desired state in
a time which scales at most polynomially in the gadget size
M while the error decreases exponentially with M, and
(ii) the state preparation must stop acting after a timewhich
is specified by the desired dissipative process. We show
how to initialize a single qubit in j0i, with a preparation
time logarithmic in the gadget size. For this, consider a
star-shaped graph as in Fig. 1(a), and label the central qubit
as c and the auxiliary qubits as j ¼ 1; . . . ;M [16]. The
central qubit—the one wewant to initialize—is surrounded
byM auxiliary qubits. The Liouvillian of the gadget can be
written Lini ¼ Lad þLcp, where Lad represents a collec-
tion of amplitude damping channels acting independently
on the M auxiliary qubits with rate !:

Lad
k ¼ ffiffiffiffi

!
p j0kih1kj; (1)

for k ¼ 1; . . . ;M, andLcp represents the preparation of the
central qubit in state j0cih0cj, at a rate �, conditioned on the
auxiliary qubits being in the state j1kih1kj:

L
cp
k ¼

ffiffiffiffi
�

p
j0cih1cj � j1kih1kj: (2)

Intuitively, after a time tM ¼ OðlogM=!Þ, theM auxiliary
qubits will all have relaxed to j0i to within an exponentially
small error, so that the state preparation essentially stops
acting. We set out to show that, for all but an exponentially
small fraction of input states, the central qubit will be in the
desired state j0ci after the time tM with an error that is
exponentially small in M. Importantly, note that the dy-
namics of the initializer gadget acts exclusively on the
diagonal elements of the system’s density matrix. This
implies that no off-diagonal element contributes to the
mixing time analysis.
Theorem 1 (initialization).—Let � be an arbitrary input

state, and let Lini be the Liouvillian for the initialization
gadget. If there exist �, c > 0 and a subset S � f1; . . . ;Mg,
with jSj ¼ cM such that h1jj�jj1ji> � for all j 2 S, then

for any " > 0, there exists a � ¼ Oð logðMÞÞ such that, for
all t > �,

h1cj�cðtÞj1ci � Me��M þ ";

where �j is the restriction of � to subsystem j, �cðtÞ ¼
trauxe

tLinið�Þ is the partial trace over the auxiliary qubits,
and � is some positive constant which depends on
fc; �;!;�g.
The precise form of � is given in the Supplemental

Material [15]. The theorem states that if a sufficient num-
ber of auxiliary bits have a nonzero overlap with the j1i
state, then the stationary state of the central qubit will be
exponentially close to j0ci. It also states that the system
equilibrates in a time Oð logðMÞÞ. It becomes clear in the
proof that the assumptions on the initial state can be further
weakened, without affecting the result too severely.
The timer gadget.—We will now show how to trigger a

dissipative operation at a particular point in time and, by
concatenation, how to perform sequential dissipative op-
erations. Intuitively, one might be tempted to introduce
time scales by simply imposing different decay rates
�1 � �2 � � � � � �N before each desired dissipative
operation Lj. But it becomes evident that either the con-

vergence time or the error of such a process will scale
poorly inN. Away around this problem is to further exploit
the cutoff phenomenon [12]. A dissipative process is said
to exhibit cutoff-type behavior [13] if there exists an initial
state which does not converge to stationarity for a long
time and converges exponentially fast (in the number of
qubits) after a specific time.
We provide perhaps the simplest example of a timer

gadget: a line of N qubits such that the last one exhibits
a cutoff from j1Ni to j0Ni in a timeOðNÞ. Each qubit of the

(a)

(b)

FIG. 1 (color online). (a) Depiction of an initialization gadget.
The central circle depicts the target qubit, the outer circles the
auxiliary qubits. The full red lines connecting the timer qubit to
the auxiliary ones illustrate the conditional state preparation
local Liouvillians Lcp

j , and the dotted circles around the auxil-

iary qubits illustrate unconditional amplitude damping
Liouvillians Lad

j ; i.e., Lini ¼ Lcp þLad. (b) Depiction of the

linear timer gadget. The circles represent the timer qubits, the
lines connecting the timer qubits are the local Liouvillians Lcut

j ,

and the boxes illustrate the initialization devices from (a).
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timer must first be initialized in the state which will lead
the chain to exhibit a cutoff. As depicted in Fig. 1(a), the
timer gadget consists of a main line of N ‘‘timer’’ qubits,
connected by (N � 1) local Liouvillians Lcut with
Lindblad operators: Lcut

j ¼ ffiffiffiffi
�

p j0jih0jj � j0jþ1ih1jþ1j, for
j ¼ 1; . . . ; N � 1. The local Liouvillian Lcut

j acts as an

amplitude damping channel with rate � on qubit jþ 1 if
qubit j is in j0ji and acts trivially otherwise. The initiali-

zation gadget guarantees that we start in the desired state

vector j�0i :¼ j0i � j1i�ðN�1Þ; i.e., the first qubit is in j0i
and all of the other qubits are in j1i. The qubit which will
act as a trigger is the last one, so we want to estimate how
long it will take before the Nth qubit is in j0i, assuming
proper initialization. This can be calculated explicitly. Let
trN�1 be the partial trace over the first N � 1 qubits, and
then the following proposition proves cutoff behavior of
the timer gadget in arguably the strongest possible sense.

Theorem 2 (timing).—Let N be the number of timer

qubits, and then for tNðxÞ ¼ ðN þ x
ffiffiffiffi
N

p Þ=�,
1

2
jjtrN�1½etNðxÞLcutð�0Þ� � j0Nih0Nj jj1
¼ 1��ðxÞ þ �ð1= ffiffiffiffi

N
p Þ;

where �ðxÞ ¼ R
x
�1 e�t2=2dt=

ffiffiffiffiffiffiffi
2�

p
is the cumulative nor-

mal distribution function.
For any real c > 0, it follows from Theorem 2 that

lim
N!1h0NjtrN�1½ectNð0ÞLcutð�0Þ�j0Ni ¼ 0; for c < 1;

lim
N!1h0NjtrN�1½ectNð0ÞLcutð�0Þ�j0Ni ¼ 1; for c > 1;

which is the definition of a cutoff given in Ref. [13].
However, Theorem 2 makes a stronger statement yet. It
gives us a cutoff time (tN ¼ N=�), as well as the accurate

cutoff window (�tN ¼ ffiffiffiffi
N

p
), and the deviation away from

the cutoff time in the form of the cumulative distribution
function. This last piece of information is especially useful,
as it allows us to estimate the inaccuracy of the timer and
analyze the error propagation for multiple uses of the
gadget.

It follows that if the state of the lattice is properly
initialized to j�0i, then an operation conditioned on the
last qubit will start taking place only after a time of order
tN ¼ N=�, while it is exponentially suppressed before that.

The trigger will operate on a time scale of order
ffiffiffiffi
N

p
, and

the error in the triggering will be given by the tail of a
normal distribution. In practice, this means that a polyno-
mial number of dissipative operations can be triggered
each in linear time, with a linear time interval between
them, while accurately triggering each operation with
exponential precision. Rigorous error analysis is given in
the Supplemental Material [15]. We note that the above
linear timer gadget displays three dissipative time scales,
given by �, the rate decay of the timer Lindblad operators,
�, the decay rate of the initialization Lindblad operators,

and !, the decay rate of the amplitude damping operators
on the auxiliary qubits of the initialization gadget. All of
these time scales are constant in the size and in the number
of the gadgets, so we can choose them in such a way that
they clearly separate active dissipative processes. For opti-
mal functionality we then want � � ! � �, so that the
timer Lindblad operators effectively do not start acting
before j�0i is initialized. We now turn to applications.
Dissipative one-way quantum computation.—We sketch

how to perform D1WQC by using the timer and initializa-
tion gadgets. Before we start, let us emphasize that one
does not need to have any coherent unitary control over the
quantum system but instead merely makes use of dissipa-
tive dynamics exhibiting quantum and classical features.
Still, it is the very point of our schemes that, at the end of
the day, the statistics of the measurement outcomes are
exactly as if one had performed this unitary transformation.
We need to be able to perform the following three main
steps: (i) initialize a two-dimensional lattice in a cluster
state [14], (ii) perform conditional projective measure-
ments in a time-ordered fashion on the cluster state which
simulate a universal gate set, and (iii) propagate the clas-
sical boolean phase information from one measurement to
another. All three of these steps have to be performed
purely dissipatively, in such a way that the stationary state
is essentially unique and that it is reached in a time which
scales polynomially in the system size. It turns out that the
obvious bottlenecks in the program—initialization of
the cluster state and timing of operations—are solved by
the timer and initialization gadgets introduced above. It can
also be seen that, by construction, every Lindblad operator
is geometrically local.
Indeed, a graph state [17] of N qubits can be prepared

dissipatively in a time which scales at most as OðlogNÞ
[13], using 5-local Liouvillians in case of a 2D lattice.
Moreover, the state can be initialized by conditionally
controlling each Lindblad operator of the graph state
preparation with an initialization gadget. In particular, we
can use the star geometry above, as the graph state can be
prepared in time OðlogNÞ.
Projective measurements can also be very naturally cast

into a dissipative setting. Let fj	kig be the orthogonal basis
associated with a projective measurement on subsystem s,
and let r denote the classical registry storing the measure-
ment; then the master equation describing the measure-
ment is

L measð�Þ ¼ X

k

h	kj�sj	ki1s � j	kih	kj � �:

Note that measurement is on the same footing as logical
gates in this model, and, again, all resources are treated
equally.
In D1WQC it is also necessary to performmeasurements

conditional on the previous measurement outcomes. This
can be performed by keeping track of the pseudomeasure-
ments on a classical information bus which is updated by
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conditioning. This bus only needs to keep track of two bits
per measurement and can be fed into future measurements
by conditioning. This can be performed locally on a three-
rail bus. Here, each step in the D1WQC is triggered by a
global clock (timer gadget). A logical CNOT gate can be
performed by simultaneous measurements on nine qubits
with two input and two output qubits [14]. Arbitrary one-
qubit measurements can be performed on a line of five
qubits, but the measurements have to be performed sequen-
tially with feedback [14].

Rather than performing a full analysis of the dissipative
versions of these schemes, which is beyond the scope of
this Letter, we will give a detailed analysis of a subroutine,
which already contains essentially all of the main ingre-
dients of this model: qubit state transfer along a line.
Consider a 1D chain of odd-n spins, where we want to
transfer the state of the first spin to the last spin by directed
measurements. We assume that the initial state is already
encoded in the cluster state at the input. In the standard
setting, this is done by first preparing the chain in the state

j’ini � jþi�ðn�1Þ, where j�i :¼ ðj0i � j1iÞ= ffiffiffi
2

p
, and then

applying an entangling unitary operation Sj ¼ j0jih0jj þ
j1jih1jj � 
z

jþ1 onto the state. The cluster state with j’ini
encoded in the input will be denoted j’iniC :¼ Sj’ini.

Now, in the standard state transfer by measurement, one
would measure qubits 1 through n� 1 in the 
x basis and
obtain measurement outcomes fs1; . . . ; sn�1g where sj 2
f0; 1g, and sj ¼ 0 corresponds to the jþji projection and

sj ¼ 1 corresponds to the j�ji projection. The final state

vector after n� 1 measurements is j�outi ¼ js1i � � � � �
jsn�1i � j’outi. Indeed, j’outi ¼ Ust

�j’ini, where Ust
� ¼


s1þs3þ���þsn�2
x 
s2þ���þsn�1

z . In order to recover the original
state, one needs to perform the inverse unitary ðUst

�Þy onto

j’outi. In order to illustrate the analogous dissipative con-
struction, we show here how to perform the transfer of a
state along a three qubit chain (for the n qubit state transfer,
see the Supplemental Material [15]).

Consider a chain of three qubits, labeled f1; 2; 3g,
together with two auxiliary qubits, labeled f4; 5g. As in
the standard measurement-based state transfer, we prepare
the cluster state of three qubits with j’ini encoded in the
first: i.e., j’iniC. We will then act on the five qubits of the

system with two maps sequentially: i.e., act with etL
A
until

equilibrium is reached, and then act with etL
B
. Both of

these semigroups can be seen to mix rapidly, as they are
conditional depolarizing semigroups with few condi-
tioners. The sequential application of the maps can be
performed by attaching each to a timer qubit which pre-
scribes a specific starting time to each map. The
Liouvillians LA and LB are defined by LA

1;j ¼
ffiffiffiffi
!

p jþji	
hþjj � j0jþ3ih1jþ3j and LA

2;j ¼
ffiffiffiffi
!

p j�jih�jj � j1jþ3i	
h0jþ3j, respectively, where j ¼ f1; 2g. The second

Liouvillian has Lindblad operators LB
1 ¼ ffiffiffiffi

!
p


z
3 � j0; 0i	

h0; 1j, LB
2 ¼ ffiffiffiffi

!
p


x
3 � j0; 0ih1; 0j, and LB

3 ¼ ffiffiffiffi
!

p

z

3

x
3 �

j0; 0ih1; 1j, where the bras and kets with zeros and ones
always refer to the auxiliary qubits. These maps will do the

following: etL
A
takes j’iniC to an even superposition of

jþ;þi�j’ini�j0;0i; jþ;�i�ð
zj’iniÞ�j0;1i;
j�;þi�ð
xj’iniÞ�j1;0i; j�;�i�ð
x
zj’iniÞ�j1;1i:
In other words, it performs a measurement on qubits one
and two but keeps a record of each outcome (on the

classical registry f4; 5g). The second map etL
B
acts as the

unitary correction Ust
� by rotating the superposition of

states above onto the vector j�outih�outj ¼ 11;2 � j’ini	
h’inj � j0; 0ih0; 0j, from which j’ini can be read off
directly. The CNOT and single qubit rotation are performed
in much the same way with a slightly more involved
classical bus for measurement and feedback. Likewise,
concatenation of elementary gates can be handled effi-
ciently, as the classical bus only ever has to keep two bits
of information per updated qubit.
Summary and outlook.—In this work, we have intro-

duced a basic toolbox for timing dissipative operations
with a time independent Liouvillian. We have shown that
dissipative operations can be performed sequentially with
only a polynomial overhead in qubits or in Lindblad
operators. We also show how to initialize (i.e., switch on
and off) dissipative operations, which then leads to full
dissipative state initialization. We have provided the nec-
essary error analysis to show that these gadgets can be
applied sequentially while remaining efficient. We outlined
how these gadgets can be used to perform a dissipative
version of one-way computation, holding the promise of
geometrically local dissipative computation. The gadgets
proposed here give rise to a versatile toolbox for
constructing novel schemes of dissipative quantum infor-
mation processing, opening up avenues for dissipative
engineering. Finally, we mention a very promising appli-
cation for our gadgets: dissipative error correction, where
the interplay between active and passive operations
become critical. A fully passive error correction scheme
remains elusive, but clues suggest that dissipative engi-
neering might be the right framework (see Supplemental
Material [15]).
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