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In this study, the importance of air temperature from different aspects 

(e.g., human and plant health, ecological and environmental processes, 

urban planning, and modelling) is presented in detail, and the major 

factors affecting air temperature in urban areas are introduced. Given 

the importance of air temperature, and the necessity of developing high-

resolution spatio-temporal air-temperature maps, this paper 

categorizes the existing approaches for air temperature estimation into 

three categories (interpolation, regression and simulation approaches) 

and reviews them. This paper focuses on high-resolution air 

temperature mapping in urban areas, which is difficult due to strong 

spatio-temporal variations. Different air temperature mapping 

approaches have been applied to an urban area (Berlin, Germany) and 

the results are presented and discussed. This review paper presents the 

advantages, limitations and shortcomings of each approach in its 

original form. In addition, the feasibility of utilizing each approach for 

air temperature modelling in urban areas was investigated. Studies into 

the elimination of the limitations and shortcomings of each approach 

are presented, and the potential of developed techniques to address 

each limitation is discussed. Based upon previous studies and 

developments, the interpolation, regression and coupled simulation 

techniques show potential for spatio-temporal modelling of air 

temperature in urban areas. However, some of the shortcomings and 

limitations for development of high-resolution spatio-temporal maps in 

urban areas have not been properly addressed yet. Hence, some further 

studies into the elimination of remaining limitations, and improvement 

of current approaches to high-resolution spatio-temporal mapping of 

air temperature, are introduced as future research opportunities.  
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1. Introduction 

 

2m air temperature (thermodynamic temperature or kinetic temperature) is the temperature of the air, 

measured at a height of 2 meters above the land surface by an in situ thermometer. It is also called 

surface air temperature or, more accurately, air temperature at shelter height [1], that hereinafter it is 

named ‘air temperature’. 

Air temperature is an essential component of the terrestrial environment conditions all over the world, 

and is involved in many important ecological processes (e.g., actual and potential evapotranspiration, 

net radiation or species distribution) [2-9], aerosol scattering coefficient [10], atmospheric boundary 

layer [11, 12], remote sensing processes (e.g., atmospheric correction algorithms for the estimation of 

land surface temperature [13], land surface energy balance [14], the generation of several crop stress 

indices (e.g., Stress Degree Day or Crop Water Stress Index) [15, 16] and thermal indices (e.g., 

physiological equivalent temperature, PET) [17-22]. Hence, the air temperature is required as an input 

variable for the calculation of these processes and indices, and it is very difficult to identify these 

processes and indices properly without fine-scale, continuous temperature monitoring [14]. 

Furthermore, accurate air temperature is needed to decrease the error of numerical models when air 

temperature is an important input parameter of a model [23]. 

Scientists believe that air temperature can influence both human and plant health. Air temperature is 

also an important parameter in the modelling of some diseases, and extreme temperature has a role on 

mortality. In 2010, about 216 million persons had Malaria and World Health Organization [24] estimated 

more than 655000 deaths by Malaria in the world. Studies have shown that there is a link between air 

temperature and malaria and have determined the relation between air temperature and malaria 

transmission (e.g., [25-28]). Low temperature during the growing season causes stress, which may lead 

to lethal damage of tissue or whole tree seedlings [29-31]. Also the knowledge of the spatial variability 

of air temperature is needed for the efficient implementation of frost protection and the evaluation of 

the risk of frost [32, 33].  

The population of the world that is living in urban areas is increasing. In 1950, around 29 percent of the 

global population was living in urban areas. This proportion had grown to 47 percent by the year 2000, 

and it is predicted that this proportion will grow to 69 percent by the year 2050 [34]. Thus, urban areas 

are continuously growing [35] and the number of people exposed to air temperature impact is expected 

to increase [36]. In western societies, the combined effects of growing urbanization and demographic 

change (e.g., population aging) increase the risk of heat stress and mortality rates [37-40]. The relation 

between elevated air temperature and mortality has been reviewed by Basu and Samet [41]. The studies 

on the effects of elevated air temperature on the increase of mortality in Europe due to 2003 heat waves 

showed excess deaths in the different urban areas in different countries such as France [42], Spain [43], 

Italy [44], England and Wales [45], the Netherlands [46] and Switzerland [47]. Most studies on the 

relationship between the air temperature and mortality have shown that elder people are greatly affected 

by the increase in temperature, because the ability of their bodies for thermoregulation has decreased 

[48, 49]. Children are another sensitive group to air temperature [50], because their bodies do not have 

sufficient thermoregulation capacity [51]. Another disadvantage of growing urbanization is population 

density, which increases the exposure level and thus the vulnerability to heat stress [52-55]. Elevated air 

temperature in urban areas influences the atmospheric boundary layer dynamic [56], which is important 

for investigation of the greenhouse gases [57] and it also can influence the CO2 diurnal cycle [58]. In 
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addition, elevated air temperature in urban areas generated by the urban landscapes can influence the 

comfort and health of inhabitants as well as energy consumption and air quality [59-61]. Therefore, it is 

very important for urban planners to determine the effects of different land uses on air temperature and 

the spatial distribution pattern of air temperature is a suitable tool for evaluation of the correlation 

between air temperature and land uses and/or urban structures [60, 62]. 

 

Although, high-resolution data of air temperature is a pre-requisite for any approach towards the 

mitigation of elevated air temperature in urban areas [63, 64] and it is very important for urban planning 

and local climate investigation [60, 64], it has very high spatio-trmporal variations and complicated 

calculation [65]. The thermal properties of urban elements have significant spatial variations [65] and 

spatio-temporal variations of air temperature in different cities are not similar [66]. For example, 

radiation absorption can highly influence daytime elevated air temperature in equatorial climate in calm 

and clear sky conditions. However, anthropogenic heat release can be a factor of nighttime elevated air 

temperature in high-rise and dense metropolitan areas in cloudy conditions [66]. Hence, standard 

meteorological measurements, even supplemented by special-purpose measurements often prove 

insufficient to describe the high spatial variability of air temperature in urban areas [67] and it is 

necessary to estimate the high-resolution spatio-temporal air temperature maps in urban areas [68]. If 

so, these high-resolution estimations will be extremely useful for urban planning, building design, 

efficient design and operation of urban infrastructures (e.g., energy systems) and human thermal comfort 

[66, 69]. However, spatio-temporal air temperature mapping in urban areas is a complicated task, 

because there are too many factors that influence air temperature in urban areas. The major factors, 

which affect air temperature, can be categorized in three groups:  

1) Temporal effect variables, such as land surface temperature [4], [70-76], wind speed [77-82] and 

cloud cover [79], [82-85];  

2) Permanent effect variables (Spatial variables), such as land use/land cover [35], [63], [86-97], urban 

morphology [98-103], and building material and albedo [78], [98], [104-108]; and,  

3) Cyclic effect variables, such as solar radiation [78], [106], [109, 110] and anthropogenic heat [111-

117]. 

 

Based on our knowledge, a review on the different approaches of air temperature estimation in urban 

areas with emphasize on high-resolution mapping has not been performed. Given the importance of the 

air temperature and development of high-resolution spatio-temporal air-temperature maps (spatial 

resolution: less than 100 m; temporal resolution: one hour), this paper classifies the existing approaches 

for the air temperature estimation to three categories (interpolation, regression and simulation 

approaches) and reviews them. The limitations and shortcomings of each approach are also outlined. In 

this paper, it is emphasized on the high-resolution air temperature mapping in the urban areas, which is 

difficult due to the strong temperature gradients. In addition, the different air temperature mapping 

approaches have been applied on an urban area (Berlin, Germany) and the results have been presented 

and discussed. 
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2. Air temperature mapping techniques 

 

2.1.  Interpolation techniques 

 

The interpolation techniques are well-known as the simplest approach for air temperature distribution 

modelling. The source datasets for interpolation techniques are the temperature observations in the 

automatic meteorological stations and the non-static manual observations. Myers [118] reviews the basic 

statistical methodologies that are the base of most interpolation techniques. The general interpolation 

function is expressed as equation 1: 

 

𝑇𝑎 = 𝑓(𝑥, 𝑦)          (1) 

 

where, 𝑥 and 𝑦 are the longitude and latitude, respectively and 𝑓 is the interpolation function that 

determines the relation between air temperature (𝑇𝑎) and the location (𝑥 and 𝑦). There are a number of 

deterministic and geostatistical interpolation functions and they are ranged from the relatively simple 

nearest point method to more complex techniques such as Kriging, Cokriging, Splines [119], and 

Artificial Neural Networks (ANN) [120]. Unfortunately, there is no criterion to predict the best one 

among interpolation techniques for a region, and we must evaluate the different interpolation techniques 

and then select the best one [120]. 

Many studies have employed interpolation techniques for the spatial estimation of climate parameters 

(e.g., [121-123]) and air temperature (e.g., [120], [124-128]). The studies have shown that spatial 

interpolation of temperature data can lead to considerable uncertainties and errors in the resulting 

temperature maps [129, 130]. Jarvis and Stuart [131] showed that the inclusion of some guiding 

variables within interpolation techniques using multi-variate linear regression technique could decrease 

the uncertainty and error of the interpolation techniques. They employed this technique for spatial 

distribution modeling of maximum and minimum daily air temperature in Wales and England. This 

approach is also a promising approach for development of air temperature maps in urban areas with 

fewer uncertainty and error. 

The accuracy of the interpolation techniques is highly dependent on the number and the geographical 

distribution of the stations [132]. A small number of stations with irregular distribution lead to high 

estimation error. However, the density of air temperature measurements required to observe the 

spatial distribution of elevated air temperature in urban areas is not a constant, but takes on a 

different value in different cities [133]. In the planning stage of designing an air temperature 

network, choosing the optimal number of monitoring stations and their distribution is very 

important [134]. Bilonick [135] pointed out that at least 50 stations are necessary for the stable 

estimation of monthly semi-variogram in New York State. A small number of stations are 

insufficient for a reliable estimation of spatial heterogeneity. Although the meteorological 

parameters in urban scale have higher level of spatial heterogeneity than the regional scale, often in the 

cities, there is an insufficient number of meteorological stations providing climatic data, and they have 

an irregular geographical distribution [137]. Hence, it seems that interpolation methods are not so useful 

for the estimation of air temperature with high accuracy and resolution, especially in urban areas with 

miscellaneous surface materials, roughness height, vegetation and water fraction as well as low station 

density and irregular distribution.  
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We developed an air temperature map for Berlin by using the interpolation techniques. Figure 1 shows 

one sample of an air temperature map in Berlin, generated by optimized inverse-distance weighting 

technique. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The location of air temperature monitoring stations (triangles) with the results of 

interpolation of hourly air temperature data (°C) (10:00, 06 May, 2012) using inverse-distance 

weighting technique. 

 

The interpolation result was compared with the land use map of Berlin (Figure 2). During the daytime 

in May, the air temperature of water bodies, forests and green urban areas in Berlin is lower 

than that of residential, commercial and industrial areas. It is clear that the interpolation results 

have no compatibility with the urban features because the interpolation techniques often only consider 

the position of stations as the input variables for the estimation and these techniques do not consider the 

major factors on air temperature. Although, interpolation techniques present high-resolution spatio-

temporal air temperature mapping, they have no acceptable accuracy level. 

 

 

Figure 2. The land use map of Berlin and its surrounding areas (the red line shows the boundary 

of Berlin in metric coordinate system). 
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To improve the spatial modelling of air temperature in urban areas using interpolation 

techniques, it is useful to increase the amount of air temperature data and/or utilize the site 

selection technique to cover inner-city air temperature variations appropriately.  

A dense monitoring network is very advantageous in retrieving the spatial pattern of air 

temperature in urban areas using interpolation technique, and a dense monitoring network 

provides valuable information for the monitoring of elevated air temperature in urban areas 

[138]. Hence, Smoliak et al. [138] used a dense monitoring network to reveal the spatio-

temporal pattern of air temperature in Minneapolis St. Paul and Minnesota. They used two 

interpolation techniques (kriging and cokriging). Honjo et al. [134] studied air temperature in 

the Tokyo metropolitan area using a dense air temperature monitoring network. They found 

that it is possible to achieve a 30 % reduction in the number of stations required if (in place of 

random sampling) a suitable clustering technique is employed to select the stations. They used 

IDW technique for interpolation. Site selection technique, as presented by Honjo et al. [134], 

leads not only to better performance with the same number of stations, but also sustains the 

same level of performance with fewer monitoring stations. The findings of Honjo et al. [134] 

are valuable for the optimization of air temperature monitoring networks in urban areas. Future 

studies should pay specific attention to the importance of optimizing monitoring networks and 

site selection techniques. Although a dense monitoring network is beneficial, it is expensive 

[68]. Hence, the idea of applying low cost air temperature sensors has been introduced and 

employed to provide near real-time air temperature data (e.g., [68], [139, 140]). The field 

investigation showed that these low cost sensors have excellent performance (RMSE= 0.13 °C) 

[68]. This approach is very useful for developing spatio-temporal air temperature maps in urban 

areas. 

In addition, crowdsourcing has proved to be a valuable tool in the preparation of a large amount 

of air temperature data, and many different crowdsourcing projects for temperature data 

collection have been implemented [141]. Drobot et al. [142, 143] and Anderson et al. [144] 

used vehicles sensors for air temperature measurements. Mobile phone application is also 

utilized for the measurement of weather data using mobile phone sensors (wathersignal.com). 

Cassano [145] used low cost sensors installed on bicycles for temperature measurements. 

Overeem et al. [69] used a simple heat transfer model to convert battery temperature, measured 

by smart phones, to daily air temperature in eight urban areas. The MAE (Mean absolute error) 

and R2 (coefficient of determination) of estimation of air temperature during summer and winter 

were 1.52 °C and 0.81, respectively. MAE and R2 for autumn and spring were 1.75 °C and 0.84, 

respectively. Although it is difficult to obtain accurate data from built-in smart phone sensors, 

calibration techniques can be employed to improve the accuracy of smart phone measurements 

[146]. In conclusion, crowd sourcing is a suitable and cost effective tool for generating a large 

database of air temperature observations in urban areas, and it can be employed not only in air 

temperature retrieval algorithms (e.g., interpolation and regression techniques), but also for data 

assimilation in simulation models [69], [141]. Although appropriate calibration, validation and 

quality control techniques must be adopted to increase the potential of crowdsourcing to provide 

a valuable source of high spatio-temporal resolution and real-time data, only a few studies have 



7 

 

been performed [141]. Therefore, specific guidelines, standards and protocols are necessary to 

quantify the reliability of crowdsourcing data [141].  

 

3. Regression techniques 

 

In some studies, researchers tried to find the statistical relationships between air temperature and some 

of the climatological, geographical and landscape variables using multi-variate Linear and Non-linear 

Regression Techniques (Equation 2) (e.g., [147-154]). 

 

𝑇𝑎 = 𝑔(𝑥1,⋯ , 𝑥𝑚)          (2) 

 

where, 𝑥1,⋯ , 𝑥𝑚 are the 𝑚 input variables which are the effective factors on the air temperature 𝑔 is a 

linear or non-linear function that relates the input variables to the air temperature (𝑇𝑎).  

Rigol et al. [120] employed Artificial Neural Networks as a non-linear multi-variate regression 

technique for daily minimum air temperature estimation in UK. They showed that the employment of 

air temperature observations as input variables with the other effective factors on the air temperature 

has significant effects on the improvement of the results of multi-variate regression technique. RMSE 

(Root Mean Square Error) decreased from 3.15 °C to 1.15 °C and R2 (Coefficient of determination) 

increased from 0.62 to 0.95. 

Basically, multi-variate regression techniques can be used to simplify complex climatological 

relationships (model reduction) [154]. However, the statistical methods have a problem in that they may 

require many observations to reveal the pattern between the studied phenomenon and explanatory 

variables, especially when the modelling phenomenon has high spatial variation such as air temperature 

in the urban areas [155, 156]. This is one of the major limitations of the multi-variate regression 

techniques.  

Although the preparation of required observations is time and cost consuming, employing a 

suitable experimental design technique [157] can lead to an optimum database of air 

temperature and explanatory variables which consider the effects of static and dynamic (spatial 

and temporal) parameters on air temperature. In addition, a well-designed measuring campaign, 

which suitably covers the domain of representative spatial variables, will avoid incidental 

collinearity [158]. Furthermore, as it was explained in previous section, data collection by 

crowdsourcing or utilization of low cost sensors are promising techniques for preparing the 

required data for regression techniques. 

In some studies, researchers have tried to derive air temperature maps by linear correlation between air 

temperature and remotely sensed land surface temperature (LST) map [14], [70], [159-167]. We found 

that the typical range of errors in the studies on the linear correlation between LST and air 

temperature is about 2-3 K. 

Although global spatio-temporal variability of LST and air temperature is similar, local LST and air 

temperature are significantly different [1]. They showed that the air temperature is higher than LST 

during the nighttime, but it is lower than LST during the daytime. It means that there is no linear 

correlation between LST and air temperature under high spatial and temporal resolutions. Other studies 

showed that the correlation between air temperature and LST depends on land cover and sky conditions 

[168, 169] and sometimes the linear relation between air temperature and LST data shows high level of 
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error [170]. Therefore, linear correlation between LST and air temperature cannot be a reliable method 

for direct estimation of air temperature in high spatial and temporal resolutions.  

Hence, employment of advanced non-linear regression approaches such as Modified Active Learning 

Method [171], Support Vector Regression [172, 173], Adaptive Network-based Fuzzy Inference System 

[174, 175], and Multi-variate Adaptive Regression Splines [176, 177] are proposed for further studies 

on the modelling of high-resolution air temperature in the urban areas using multi-variate regression 

techniques. In the previous studies, the combination of collinearity reduction and feature 

selection/reduction techniques has not often utilized for the elimination of the disadvantages of collinear, 

redundant and irrelevant input variables in the modelling of air temperature in the urban areas.  

In addition, utilization of two major pre-processing on data (1- collinearity reduction, 2- Feature 

selection/reduction) before the implementation of non-linear regression approaches is also suggested for 

improvement of the results.  

Severe non-orthogonality in the input variables or high linear correlation among the input variables is 

named ‘Collinearity’ [158], [178]. The results of regression analysis using collinear variables are 

ambiguous, sensitivity analysis and determination of the effects of individual variables is impossible, 

and the developed regression model is not robust and it is sensitive to small changes in the data [158], 

[178]. Before any feature selection technique, the collinearity must be reduced, because application of 

feature selection procedure on the collinear input variables can lead to inappropriate feature selection 

and model development [179, 180]. For more details about collinearity diagnostic and reduction 

techniques, refer to Dormann et al. [158] and Chatterjee and Hadi [178]. 

When there are many irrelevant and redundant input variables in the multi-variate modelling, the 

knowledge extraction is very hard for the modelling technique. There are two approaches to deal with 

the mentioned problems in the modelling using the high dimensional input variables: 1- Feature 

reduction [181-183], 2- Feature selection [184-186].  

In the previous studies, the combination of collinearity reduction and feature selection/reduction 

techniques has not often utilized for the elimination of the disadvantages of collinear, redundant and 

irrelevant input variables in the modelling of air temperature in the urban areas. In addition, the 

combination of collinearity reduction and feature selection/reduction techniques has not often utilized 

for the elimination of the disadvantages of collinear, redundant and irrelevant input variables in the 

modelling of air temperature in urban areas.  

Some studies tried to retrieve air temperature from the combination of LST and vegetation maps, derived 

from satellite images (e.g., the temperature/vegetation index (TVX)) [4], [71- 74], [187-189]. The 

studies showed that the TVX method is a suitable technique for the estimation of air temperature for 

large regions with gradual temperature changes (e.g., [160], [165], [190, 191]) but not suitable for urban 

areas [77]. Furthermore, this technique show typically a root mean square error about 3-4 °C for air 

temperature estimation [192]. 

Multi-variate linear and non-linear regression using the satellite derived LST and other effective factors 

on air temperature are other techniques for the estimation of air temperature (e.g., [77], [193-197]). We 

extracted air temperature from MODIS products using a multi-variate non-linear regression technique, 

entitled Active Learning Method [172, 198]. The results of hourly air temperature estimation have been 

presented in Figure 3. The input variables were the satellite-derived data (LST, emissivity, radiance, 

view angle, water vapour). The comparison between Figure 3 and Figure 1 implies that the Figure 3 has 
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better compatibility with land use (Figure 2) than interpolation techniques and multi-variate regression 

technique seems better than interpolation technique. However it‘s resolution (1 km) is not so high. 

One of the major sources of error in the thermal remote sensing techniques is related to the uncertainties 

of LST estimation. Cloud contamination, due to a failure of the cloud detection algorithm, surface 

emissivity, view angle, carbon dioxide, water vapor, relative humidity, wind speed, and soil moisture 

are known as the major sources of uncertainties of LST (e.g., [1], [199, 200]). In addition, satellite 

images make a trade-off between the temporal and the spatial resolution. For example, the images of 

thermal band of MODIS have daily temporal resolution and 1 km spatial resolution, but thermal images 

of LANDSAT-TM/ETM+ have 16-day temporal resolution and 60 m spatial resolution. The higher 

temporal resolution leads to low spatial resolution and vice versa [36]. However, several studies have 

been performed for the downscaling of LST, derived of geostationary satellites (e.g., [201, 202]), the 

results typically show more than 2 K error.  

In addition, the thermal remote sensing approach is not applicable under cloudy conditions and 

development of continuous air temperature with high temporal resolution in the mostly cloudy urban 

areas (e.g., Berlin, median cloud cover: 85 %) is difficult. This is the major limitation of the thermal 

remote sensing approach for the development of continuous air temperature maps with high accuracy 

and resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hourly air temperature map of Berlin (°C) (10:00, 06 May, 2012), derived from 

MODIS image using a non-linear multivariate regression technique.  

 

4. Simulation techniques 

 

Another approach for air temperature estimation is the simulation using mathematical simulation 

models, which attempt to consider the processes involved in air temperature. Generally, four groups of 

simulation techniques have been developed for air temperature estimation, which are Energy Balance 

Models, Micro-scale Computational Fluid Dynamic (CFD) models, Mesoscale numerical weather 

prediction (NWP) models and coupled models.  

The energy balance budget for a building canyon was first suggested by Oke [203]. The energy balance 

modelling approach considers air temperature to be controlled by the radiation balance, and this 

approach uses the energy conservation equation for a given control volume. The effects of atmospheric 

phenomena, turbulence fluctuations and velocity field are presented as the heat fluxes in the energy 
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conservation equation and these fluxes are generally defined by analytical or empirical equations and in 

the other words, the temperature and velocity fields are separated in energy balance models [6], [78], 

[204, 205]. The urban canopy models (UCM) are derived from the energy balance equation. Grimmond 

et al. [35] have presented a review of 33 urban energy balance models and their performances in urban 

cases. In addition, Best and Grimmond [206] compared 16 energy balance models and attempted 

to determine the dominant physical processes. A coupled model of single layer UCM and SCM 

(Single Column Model) was employed to predict urban surface energy and water budget with 

improved accuracy in Phoenix, Arizona [207]. SCM [208, 209] is able to predict the spatio-

temporal variations of temperature in the atmospheric boundary layer [207]. The utilized UCM 

includes an urban hydrological model to improve latent heat prediction, developed by Wang et 

al. [210]. This coupled model showed robust results and the studied scenarios using the coupled 

model demonstrated that cool and green roofs have a significant impact on the mitigation of 

elevated temperature in urban areas [207]. Although the heat exchange among urban elements 

are often considered in the UCMs, vegetation and its interaction with urban elements has only 

been considered in a few models (e.g., [211, 212]). 

Energy balance models generally have high spatial and temporal resolutions [35]. These models need 

three groups of input variables: 1) urban parameters to describe the details of urban area, such as surface 

morphology and albedo; 2) time series of boundary conditions; and 3) initial conditions. About 150 

different parameters and state variables are needed in the energy balance models [35]. 

Although some methods have been presented to reduce to computational cost of parametrizations ([e.g., 

[213], appropriate parameterization of building canopies and urban structures and increase of resolution 

in a city is very expensive in terms of computational time and cost [214], and comprehensive spatially-

distributed parameters are rarely available at the high resolution [192]. Hence, the city has been replaced 

with homogeneous columns of similar buildings in some studies [215], but it decreases the spatial 

resolution of the model and the model cannot be applicable for study of the thermal comfort at pedestrian 

level [35].  

Future studies on simulation using UCM must focus on quantifying the model uncertainties and 

developing suitable parametrization techniques and efficient numerical procedures [207]. 

However, the precision of UCM is highly related to the urban database [216]. Combining the 

coupled model with numerical weather prediction models will be useful when running the 

model for prediction, and will be particularly applicable to the future development of 

sustainable cities [207]. These activities will improve the performance and accuracy of UCM 

for spatio-temporal modeling and prediction of air temperature in urban areas. 

In addition, absence of high air velocity fields in energy balance models is their major weakness. The 

latter are necessary to consider the effects of flow patterns (e.g., eddy circulation, wake region and 

turbulence), to study the formation of the atmospheric phenomena (e.g., precipitation and stratification), 

and to determine the sensible and latent heat fluxes [66]. Also, the assumption of these fluxes with 

empirical correlations does not appropriately represent the interaction between velocity and temperature 

fields [66].  

Integrated urban land models (IUM) have recently been developed, which integrate the energy 

balance model with water balance model, (e.g., [217]). Further studies are necessary to develop 

more sophisticated models, which can appropriately incorporate land-atmosphere interactions. 
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IUM will also be coupled with weather prediction models in the near future, making a promising 

prediction model for urban areas [217].  

Micro-scale CFD models simultaneously solve the conservation of mass, potential temperature, 

momentum, and species (water vapor and chemical reaction). These micro-scale models are not 

applicable for an entire city, with all of its detail, because of the high computational cost. Therefore, the 

simulation in micro-scale is limited to a small domain of some blocks of buildings (a few hundred 

meters, e.g. ENVI-met [218]).  

The mesoscale NWP models such as MM5 [219], RAMS [220] and ARPS [221, 222] and COSMO-

CLM [223] have smaller domain than synoptic-scale and larger domain than micro-scale models. The 

horizontal resolution of these models is approximately ranged from one to several-hundred kilometers. 

Figure 4a presents the spatial distribution of air temperature in Berlin, estimated by COSMO-CLM. 

Figure 4b not only has low resolution (1 km) but also its pattern is not compatible with urban land use 

(Figure 2) and it has presented almost the same air temperature values for all of the land uses inside and 

outside of Berlin. Hence, these models are not suitable for the development of high spatial resolution 

maps in urban areas.  

 

 

                                    (a)                                                                             (b) 

Figure 4. The spatial distribution of nighttime air temperature in Berlin with one km resolution 

(2012/09/01, 22:00 UTC), developed by a: coupled COSMO-CLM with DCEP, b: COSMO-CLM 

without DCEP [224]. 

 

 

The coupled models (often coupled a mesoscale model with energy balance model) is the fourth 

approach toward air temperature calculation. The coupled model have been applied to major 

metropolitan regions around the world (e.g., Nanjing, Houston, Beijing, Guangzhou/Hong Kong, 

Athens, Tokyo and Berlin) to better understand the contribution of urbanization in air temperature, urban 

heat island, boundary layer structure and heat wave events (e.g., [98], [225-231]). A common concern 

with the use of these complex models is the high level of uncertainty in the specification of surface cover 

and geometric parameters [232]. The spatial resolution of coupled models is often 1 km and more than 

1 km. Figure 4a shows the results of air temperature simulation using the coupled COSMO-CLM model 

with an urban canopy model (DCEP: Double Canyon Effect Parametrization [98]). Although the 

coupled model (Figure 4a) has exhibited more compatibility with land use map (Figure 2) than the 
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mesoscale model (Figure 4b), but it has no high resolution. It has been pointed out that the increase in 

the spatial resolution of the models increases the complexity of the model and CPU time because of 

need to the detailed parametrization of urban land use for determination of morphological and thermal 

characteristics of the urban area [230]. In total, a huge amount of urban details is required in order to 

achieve a suitable high-resolution urban model, and the increased cost and computational time of the 

simulation approaches has led to the exploration of new methods [233].  

 

5. Summary and Conclusions 

 

This study presented the importance of the air temperature and its different effects. Then, the methods 

that have been widely used to estimate air temperature, especially in the urban areas (interpolation 

techniques, regression and simulation techniques) were introduced and the application of these 

approaches for high-resolution air temperature mapping with emphasis on the urban areas was reviewed 

and the advantages and limitations of the current approaches were presented. In addition, different air 

temperature modelling approaches were applied to Berlin, and the results of different techniques were 

evaluated. 

Utilizing interpolation techniques is very easy and straightforward, and interpolation techniques can 

produce high-resolution spatio-temporal maps of air temperature. There are no criteria, however, to 

predict the best among different interpolation techniques for a region. Different interpolation techniques 

must be evaluated, and the best one selected. Although spatial interpolation of temperature data may 

lead to considerable uncertainties and errors, the inclusion of some guiding variables within 

interpolation techniques using multi-variate linear regression technique can decrease the uncertainty and 

error of the interpolation techniques. In addition, the utilization of a small number of stations with 

irregular distribution in interpolations may lead to high estimation error. A number of solutions have 

been developed to combat this problem. Some studies have attempted to employ dense observation 

networks, but this is not cost effective, so site selection techniques have been introduced to minimize 

the required number of observations. Low cost air temperature sensors have been suggested to decrease 

the observation cost. Furthermore, crowdsourcing has been used as a suitable and cost effective tool to 

generate a big database of air temperature observations in urban areas. Crowdsourcing can be employed 

not only in air temperature retrieval algorithms (e.g., interpolation and regression techniques), but also 

for data assimilation in simulation models. Although appropriate calibration, validation and quality 

control techniques must be adopted to increase the potential of crowdsourcing data to provide a valuable 

source of high spatio-temporal resolution and real-time data, only a few studies have been performed. 

Therefore, further studies into the calibration and validation of crowdsourcing data, as well as the 

preparation of specific guidelines, standards and protocols, are necessary to improve accuracy and 

quantify the reliability of crowdsourcing data. Utilization of the above techniques is a promising 

approach to achieving a suitably high-resolution spatio-temporal mapping of air temperature. 

Regression using linear techniques is very easy and it produces high-resolution spatio-temporal maps, 

but these techniques are problematic in that they may require many observations to reveal the pattern 

between the air temperature and explanatory variables. A well-designed measuring campaign can 

decrease the amount of required data. Crowdsourcing data collection techniques can also be beneficial. 

Furthermore, utilizing air temperature data in a representative station as an input variable, and employing 

non-linear techniques with preprocessing on input variables (e.g., feature selection/reduction and 
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collinearity reduction techniques), can increase the accuracy and performance of regression technique. 

In some studies, the remotely sensed LST data, retrieved from thermal images, have been used in the 

regression techniques. The major limitations in the regression techniques using remotely sensed LST 

are the uncertainties of LST estimation, non-linear relationship between LST and air temperature, trade-

off between the temporal and the spatial resolution. In addition, the thermal remote sensing approach is 

not applicable under cloudy conditions. Accordingly, the regression techniques using remotely sensed 

LST is not suitable for continuous high resolution mapping of air temperature in the urban areas. Several 

studies have recently been performed into the downscaling of LST, and the generation of high-resolution 

spatio-temporal maps of LST, but the results typically show more than 2 K error. Hence, further studies 

are necessary into the extraction of accurate high-resolution spatio-temporal maps of LST from remotely 

sensed data. Future studies on non-linear regression techniques using accurate and high-resolution LST 

data will then be promising approaches to developing suitable high-resolution air temperature maps in 

urban areas. 

Four groups of simulation techniques have been developed for air temperature and UHI (Urban 

Heat Island) estimation: Micro-scale Computational Fluid Dynamic (CFD) models, Mesoscale 

numerical weather prediction (NWP) models, Energy Balance Models, and coupled models. 

The micro-scale CFD models have high spatio-temporal resolution but they are limited to a small 

domain of some blocks of buildings and they are not applicable for an entire city. Although the 

mesoscale models have high temporal resolution, they have no high spatial resolution. These models do 

not consider the urban structures, so these models present non-suitable air temperature patterns in urban 

areas. Energy balance models have high spatio-temporal resolution. These models are complicated and 

they need too many parameters and variables. In addition, there is a high level of uncertainties in the 

parametrizations. Appropriate parameterization of building canopies and urban structures in a city is 

very expensive in terms of time and computer load. Therefore, future studies into simulations using 

energy balance models must focus on quantifying the model uncertainties and developing 

suitable parameterization techniques and efficient numerical procedures. In addition, a model 

integrating the energy balance model and water balance model (IUM: Integrated Urban land 

Model) has recently been presented, and is a promising new approach to suitable air temperature 

modeling in urban areas. However, further studies are necessary to develop more sophisticated 

models to appropriately incorporate land-atmosphere interactions in IUM. Coupled models 

(often a mesoscale model coupled with an energy balance model) can present suitable spatial 

air temperature patterns in urban areas, and have high temporal resolution. However, increasing 

the spatial resolution of a coupled model requires a huge amount of urban data and 

computational cost. IUM will be coupled with weather prediction models in the near future, and 

will be a promising new approach to air temperature prediction in urban areas.  
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