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The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain
complete dynamic information about the viscoelastic properties of the embedding medium and—if
present—macromolecular constructs connecting the two beads. To quantitatively interpret the spec-
tral properties of the measured signals, a detailed understanding of the instrumental characteristics
is required. To this end, we present a theoretical description of the signal processing in a typical
dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and
discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a max-
imum likelihood method based on the statistical properties of the stochastic signals is derived. In a
first step, the method can be used for calibration purposes: We propose a scheme involving three
consecutive measurements (both traps empty, first one occupied and second empty, and vice versa),
by which all instrumental and physical parameters of the setup are determined. We test our approach
for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres.
The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics
emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid.
For more complex experimental scenarios, where macromolecular constructs are tethered between the
two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory
will in a second step allow one to determine the viscoelastic properties of the tethered element con-
necting the two beads. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753917]

I. INTRODUCTION

Recent years have seen an ever increasing use of optical
tweezers as sensitive tools for the manipulation and obser-
vation of single molecules,1 including a number of studies
focusing on the mechanical properties of nucleic acids
and proteins.2, 3 As a result of technological development,
spatial resolution with subnanometer precision and sampling
rates reaching the MHz range4 are by now possible and
allow unprecedented insights into molecular structure and
dynamics. Similarly to micro-rheological studies,5 dual trap
optical tweezers exhibit a number of advantages, including
a higher “signal-to-noise” ratio and a minimized influence of
instrumental drift6 and therefore are preferred to single trap
setups, when high precision is a concern.

Typical extension traces recorded in equilibrium single-
molecule experiments display fluctuating trajectories with
discrete jumps of the extension trace baseline: standard anal-
ysis consists of computing the moving average of the time
series to identify distinct molecular conformations, their
average extension, equilibrium probabilities and inter-state
kinetics.3 The thermal fluctuations of the tethered beads—
often referred to as “noise“—are thus generally disregarded,
although their spectral properties are a signature of the vis-
coelastic properties of the experimental construct and there-
fore interesting by themselves. In fact, based on coarse
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grained simulations of such a single-molecule experiment, the
contributions of the experimental handles, of hydrodynamic
interactions, and—most importantly—of the molecule under
study to the measured fluctuations of the beads in their respec-
tive traps, could be disentangled.7

Within this paper, we provide a framework for the quan-
titative spectral analysis of data from actual dual trap optical
tweezer experiments. As will be shown, this involves a de-
tailed understanding of instrumental characteristics as well as
a controlled way of inferring undetermined parameters from
experimental data.

The manuscript is organized as follows: We start with a
description of our experimental setup in Sec. II. The fluctua-
tion dissipation theorem (FDT) relating thermal equilibrium
fluctuations and linear force response of mechanical objects
is reviewed in the general context of optical tweezer experi-
ments in Sec. III A, while the more specific case of two uncon-
nected beads is treated in Sec. III B. Low Reynolds number
hydrodynamics and the resulting frequency dependence of
self- and cross-mobilities are covered in Secs. IV A and IV B,
respectively. We model the signal processing in a dual trap op-
tical tweezer setup including polarization crosstalk, (parasitic)
filtering, and instrumental noise and discuss the influence of
the finite sampling rate on self- and cross power spectral den-
sities (PSDs) in Secs. V A and V B. The statistical properties
of auto- and cross-periodograms8 of the experimental time
series in Sec. VI A form the basis for the maximum likelihood
method presented in Sec. VI B, which by Bayesian inference
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allows to determine optimal values for the model parame-
ters. Judging whether the theoretical model used is indeed
adequate may be done by quantifying the deviations between
fit and experimental data as explained in Sec. VI C. The
overall procedure for the spectral analysis is summarized in
Sec. VI D. As an application of the maximum likelihood
method, we suggest a calibration scheme for dual trap optical
tweezers based on three measurements in Sec. VII; it can be
viewed as a generalization of a calibration technique, which
for single trap setups is by now standard.9–13 We consider
a pair of unconnected, but hydrodynamically interacting
beads trapped in their respective laser foci in Sec. VIII and
explicitly demonstrate the influence of instrumental effects
and of finite statistics on the auto- and cross-periodograms of
the measured signals. For a carefully calibrated setup, PSDs
estimated from experimental data agree with the theoretical
predictions taking into account the frequency dependence
of hydrodynamic interactions (HI) arising from the finite
time for vortex diffusion in the fluid.14 Our main findings
are summarized in Sec. IX, while more technical aspects are
found in the appendices: Details concerning the notation are
provided in Appendix A, various filter effects are discussed in
Appendix B, statistical properties of auto- and cross-
periodograms are explicitly calculated in Appendix C, basic
characteristics of the discrete Fourier transform (DFT) are
reviewed in Appendix D, and the properties of normal dis-
tributed random variables on logarithmic plots are discussed
in Appendix E.

For more complex experimental situations, where a pair
of trapped beads are, e.g., tethered via double stranded DNA
handles to a protein, we suggest a two-step procedure to re-
liably determine the viscoelastic properties of the molecular
tether: (i) a calibration run as described in Sec. VII without
the tethering macromolecular construct to fix the instrumen-
tal parameters, and (ii) a production run with the tether con-
struct to determine the tether parameters. In both steps, the
same maximum likelihood method (Sec. VI B) can be used,
the only difference lying in the thermal PSDs (Sec. III A) and
in the set of parameters to be determined.

II. DUAL TRAP OPTICAL TWEEZERS

The experimental setup used for trapping and tracking
micron-sized beads is a custom-built high-resolution dual trap
optical tweezer with back-focal plane detection (see Fig. 1(a))
similar to setups described elsewhere.6, 12, 15 The light of a 4W
linear polarized diode pumped Nd:YVO4 solid state continu-
ous wave laser system emitting at 1064 nm (Spectra-Physics,
California, USA) passes a Faraday isolator (Electro-Optics
Technology, Inc., Michigan, USA) before getting expanded
and collimated by the first telescope. A first computer con-
trolled and motorized λ/2-plate followed by a polarizing beam
splitter (PBS) cube (order number PTW 2.10 or PTW 2.20,
Bernhard Halle, Germany) controls the overall laser power
passing into the successive optical parts. A second λ/2-plate
sets the relative laser power in the two orthogonally polarized
trapping beams separated by a second PBS. One of the beams
is reflected by a mirror mounted on a two axis piezoelectric
tip/tilt actuator (Mad City Labs, Wisconsin, USA) provid-

ing lateral displacement of the corresponding trap in the
specimen plane. The other beam is frequency shifted using
an acousto-optical modulator (Gooch & Housego, Great
Britain) to reduce interference artifacts.16 After recombina-
tion of the two trapping beams with a third PBS a second
telescope expands the beams to overfill the back aperture
of the focusing objective (63x/1.20 W Corr, C-Apochromat,
Zeiss, Germany). The objective focuses the beams to two
diffraction-limited spots in the sample chamber. The use of
a water-immersion objective permits trapping deep inside the
sample chamber: the distance from the cover slip is set to
20 μm and therewith is much larger than typical inter-bead
distances; the influence of the cover-slip surface on the hy-
drodynamics is therefore neglected in Sec. IV. After passing
the sample chamber placed on a piezoelectric table (Physik
Instrumente, Germany), the forward scattered light of the
trapped beads is collimated with a second identical objective.
The beams are split by polarization and imaged onto two posi-
tion sensing devices (DL100-7PCBA3, Pacific Silicon Sensor
Inc., California, USA). Due to depolarization in the optical
path and the intrinsic non-perfect separation and conservation
of polarization upon transmission through and reflection by
the PBSs, each of the detector signals to a certain degree also
reflects the motion of the bead in the “wrong” trap; this effect,
known as polarization crosstalk,17 is explicitly considered in
the signal processing described in Sec. V A. All components
are mounted on a vibration isolated optical table (M-ST-46-
12, Newport Corporation, Irvine, USA). Optical paths are en-
closed to minimize the effect of air fluctuations. Custom-built
electronics are used for processing the analog position signals
including an individual offset correction, normalization, and
amplification for each channel.9, 18 Before recording, all sig-
nals are filtered with an eighth order Butterworth filter with
3 dB-frequency set at 200 kHz and further amplified (Model
3384 Filter, Kron-Hite, Massachusetts, USA). For real-time
steering and data acquisition a custom-written LABVIEW pro-
gram runs on a field-programmable gate array (FPGA)-board
(NI PCI-7833R 3M, National Instruments, Texas, USA). Data
is recorded with a sampling rate of 100 kHz. Measurements
are performed at a temperature of 22.6 ± 0.3 ◦C using silica
beads with 1.0 μm in diameter (Bangs Laboratories, Indiana,
USA) diluted in phosphate buffered saline (P4417, Sigma
Aldrich, St. Louis, USA). The sample chamber consists of
two cover slips separated by stripes of Nescofilm (Bando
Chemical Industries Ltd., Japan) forming a channel, which
is sealed with vacuum grease after filling. The dimensions of
the sample chamber are about 9 × 18 × 0.1 mm3.

III. FORCE RESPONSE AND THERMAL MOTION

A. General formulation

In a dual trap optical tweezer experiment, the thermal
motion of the two beads in their respective traps reflects the
viscoelastic properties of the experimental construct. For sim-
plicity, we restrict the following discussion to the case, in
which all spatial components decouple; the necessary condi-
tions for this to happen are detailed in Sec. III B. The thermal
cross-correlation function of the bead coordinates ri and rj is
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defined as

S th
ij (t) ≡ 〈ri(0)rj (t)〉 = 〈ri(t

′)rj (t ′ + t)〉t ′

≡ lim
T →∞

1

T

∫ T/2

−T/2
dt ′ ri(t

′)rj (t ′ + t), i, j = 1, 2, (1)

where the equivalence of equilibrium average 〈. . . 〉 and tem-
poral average 〈. . . 〉t ′ holds in ergodic systems and where the
measurement time is denoted by T. Correlation functions in
thermal equilibrium are of interest because they reflect the lin-
ear force response properties of the system; in fact, the FDT19

states

Jij (t) =
{−(kBT )−1 dS th

ij (t)/dt for t ≥ 0,

0 for t < 0,
(2)

where kBT denotes the thermal energy and Jij the correspond-
ing response function. In the past, the interplay of (instanta-
neous) HI and the harmonic laser trap potential20 as well as
the relaxation dynamics of DNA21 were measured resolving
auto- and cross-correlation functions of the bead’s positions.

Here, working in frequency space turns out to be more
convenient for the following reasons: (i) Retardation/memory
effects in the (integro-differential) equations of motions cause
difficulties when calculating temporal correlation functions,
while they are easily taken into account in frequency space as
shown in Sec. III B, (ii) relevant instrumental effects such as
crosstalk, signal filtering, and instrumental noise can be ac-
counted for as detailed in Sec. V, and (iii) the maximum likeli-
hood method presented in Sec. VI B makes it straightforward
to quantitatively evaluate experimental estimates for auto-
and cross-PSDs, defined as the Fourier transformations (cf.
Appendix A) of the corresponding thermal correlation
functions

S th
ij (ω) ≡

∫ ∞

−∞
dt S th

ij (t)eiωt , i, j = 1, 2. (3)

Note that if time reversal symmetry holds, temporal correla-
tion functions S th

ij (t) as well as their Fourier transformations,
the PSDs S th

ij (ω) are real and even functions. According to the
cross-correlation theorem, PSDs and the Fourier components
of the stochastic motion are related via

S th
ij (ω) 2π δ(ω − ω′) = 〈ri(ω)r�

j (ω′)〉, (4)

and PSDs can thus directly be estimated experimentally by
calculating averaged auto- and cross-periodograms from the
stochastic trajectories as detailed in Sec. VI A.

For simple systems as the one in Sec. III B, thermal PSDs
can be obtained easily from the stochastic equations of mo-
tion; for more complex constructs, it may be easier to calcu-
late linear response functions Jij relating average oscillation
and external driving force amplitudes on the linear level

〈ri(ω)〉 =
2∑

j=1

Jij (ω) f ext
j (ω), i = 1, 2. (5)

Overall, the experimental object of study—two micron-sized
beads in optical traps potentially connected via a molecular
tether and embedded in a fluid—is completely characterized
by two self-response functions J11 and J22 relating forces and

displacements on the same bead and, in the absence of time
reversal breaking, one cross-response function J12 = J21 re-
lating force and displacement amplitudes of different beads.
Dynamic (de-) convolution theory7 provides a framework for
iteratively calculating these three response functions from the
mechanical response characteristics of the individual compo-
nents, i.e., the beads in the optical traps, the elements of the
molecular tether and HI between the various components. The
corresponding thermal PSDs are then obtained using the FDT
in frequency space

S th
ij (ω) = 2kBT

ω
Im[Jij (ω)], (6)

where Im[. . . ] denotes the imaginary part. Because of causal-
ity (Jij(t) = 0 for times t < 0), real and imaginary parts of the
response functions in frequency space are related by Kramers-
Kronig relations.19 Recording the equilibrium fluctuations of
the system and estimating the PSDs S th

ij is therefore sufficient
for completely characterizing the system’s force response via
Eq. (6).

B. Hydrodynamically interacting beads

The stochastic, thermal motion of two unconnected beads
in the trapping potentials of two laser foci is described by a
set of differential equations, which in the frequency domain
reads

−i ω

(
r1(ω)

r2(ω)

)
=

(←→
μ 11(ω) ←→

μ 12(ω)
←→
μ 21(ω) ←→

μ 22(ω)

)

·
(

f trap
1 (ω) + f ext

1 (ω) + m1 ω2r1(ω)

f trap
2 (ω) + f ext

2 (ω) + m2 ω2r2(ω)

)

+
(

vst
1 (ω)

vst
2 (ω)

)
. (7)

Here, the 3 × 3 mobility tensors ←→
μ ij relate the forces on

bead j, i.e., forces due to the trapping potential f trap
j , external

forces f ext
j , and inertial ones (m1 and m2 denoting the beads’

masses), to the velocity −iωr i of bead i; the stochastic con-
tribution to the motion of bead i is denoted by vst

i .
The motion along the individual spatial coordinates in

Eq. (7) decouples if the main axis of the elliptic laser foci
coincide with the cartesian coordinates9 and if the mobility
tensors are diagonal. While the first condition can be achieved
via careful alignment of the instrument,22 the second require-
ment is satisfied in an unbounded fluid if the axis connecting
the trap centers is parallel to one of the coordinate axes (cf.
Sec. IV B). To simplify the notation, we restrict ourselves to
two identical beads (m ≡ m1 = m2) in the following; we dis-
tinguish motion along the optical axis (o) as well as along
(‖) and perpendicular (⊥) to the inter-trap axis as shown in
Fig. 1(b).

The thermal motion of the two beads held in harmonic
traps along the spatial coordinate γ is then described by the
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FIG. 1. (a) Schematic of the experimental setup described in Sec. II.
(b) Zoom-in into the sample chamber: The notation for the coordinates of
the beads (blue) relative to the trap centers (gray) is used throughout the
manuscript.

simpler set of equations of motion

−i ω

(
r1,γ (ω)

r2,γ (ω)

)
=

(
μself(ω) μ

γ
cross(ω)

μ
γ
cross(ω) μself(ω)

)

·
(

(−κ1,γ + m ω2)r1,γ (ω) + f ext
1,γ (ω)

(−κ2,γ + m ω2)r2,γ (ω) + f ext
2,γ (ω)

)

+
(

vst
1,γ (ω)

vst
2,γ (ω)

)
, γ = o, ‖,⊥, (8)

where the trap strengths κ i, γ and, in particular, the cross-
mobilities μ

γ
cross in general depend on the spatial coordinate

γ . The frequency dependence of self- and cross-mobilities is
a consequence of the hydrodynamic flow field created around
a moving sphere discussed in Sec. IV. The stochastic velocity
contributions vst

i,γ in Eq. (8) are due to thermal kicks of sol-
vent molecules and are normal distributed random variables
with vanishing mean〈

vst
i,γ

〉 = 0, i = 1, 2, γ = o, ‖,⊥,

and correlations〈
vst

i,γ (ω)vst
j,γ

�(ω′)
〉 = 4π kBT Re

[
δijμself(ω)

+ (1 − δij )μγ
cross(ω)

]
δ(ω − ω′),

where (. . . )� denotes the complex conjugate and Re[. . . ] the
real part. Equation (8) being linear, solving for ri, γ is straight-
forward; for each of the spatial directions γ , thermal PSDs
S

γ,th
ij can then be either calculated directly using Eq. (4) or

by identifying response functions J
γ

ij defined via Eq. (5) and
using the FDT (Eq. (6)).

Though being in general characterized by a weaker trap-
ping strength, the coordinate o is equivalent to the coordinate
⊥ from a hydrodynamic point of view due to symmetry, cf.
Sec. IV. Since bead displacements along ⊥ are easier to ac-
cess experimentally than the ones along o,23 we restrict the
following discussion to the coordinates ‖ and ⊥.

Note that for tethered beads, motion along o and ⊥ will
in general couple to the equations of motion for ri, ‖ even in
a perfectly aligned setup. These non-linear contributions can
however be suppressed using longer tethers and smaller bead
sizes.6, 7

IV. LOW REYNOLDS NUMBER HYDRODYNAMICS

A. Flow-field around an oscillating sphere

The Reynolds number characterizing the relative
importance of inertial compared to viscous forces in a hy-
drodynamic flow is typically small for the thermal motion of
micron-sized objects in water: for a bead of radius a moving
with velocity v through a fluid of kinematic viscosity ν

≡ η/ρ, with the fluid’s shear viscosity being denoted by η and
its mass density by ρ, one has Re ∼ av/ν. The equipartition
theorem kBT ∼ m〈v2〉, where the bead’s mass is denoted by
m, allows to estimate the Reynolds numbers for the thermal
motion of a micron-sized bead in water, Re ∼ √

kBT/m a/ν

∼ 10−3 � 1. Hydrodynamics are thus adequately de-
scribed by the linearized Navier-Stokes (or transient Stokes)
equation, which for an incompressible fluid reads

ρ ∂u/∂t = η 
u − ∇p, ∇ · u = 0, (9)

where u denotes the velocity and p the pressure field in the
fluid. Taking the curl of Eq. (9) yields a diffusion equation
for the vorticity � ≡ ∇ × u: vortices due to forces or torques
acting on objects in a viscous fluid thus diffusively propagate
in space, the characteristic time scale for diffusion over a
distance R being τR ≡ R2/ν. A prominent consequence of
the finite time scale for vortex diffusion is the frequency
dependence of the self-mobility μself (the inverse of the
sphere’s drag coefficient): For a no-slip sphere of radius a
in an unbounded and incompressible fluid, the exact result
found by Stokes24 reads

μStokes
self (ω) = μ0/(1 + αa + α2a2/9). (10)

where α denotes the inverse penetration depth

α ≡
√

− iω

ν
=

√−iωτa

a
, Re[α] > 0, (11)

and τ a ≡ a2/ν is the characteristic time scale for vortex
diffusion on length scales comparable to the bead’s radius
a; the self-mobility thus deviates from the quasi-stationary
self-mobility μ0 ≡ 1/(6πηa) for frequencies ω � τ−1

a .
Though theoretically known for over a century, the frequency
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FIG. 2. Cross sections of the flow field around an oscillating no-slip sphere in an incompressible fluid for various driving frequencies: (a) ω = 10−4/τ a, (b) ω

= 10−2/τ a, (c) ω = 1/τ a. Streamlines indicate the direction of the velocity field and the color coding its magnitude, where F0 is the driving force amplitude and
μ0 = 1/(6πηa) the quasi-static sphere mobility. Spatial coordinates are given in units of the sphere radius a, frequencies in units of τ−1

a = ν/a2, the kinematic
viscosity of the fluid being denoted by ν. Amplitudes of the driving force acting on and the velocity of the sphere are shown as red and blue arrows within the
spheres. The figures above show the configuration of the flow-field, when the sphere velocity is maximal; animations showing the time evolution of these flow
fields are available online.27

dependence in Eq. (10)—responsible for power law tails in
the velocity autocorrelation function and resonances in power
spectral densities—is of ongoing interest.4, 25

The velocity field around an oscillating sphere with no-
slip boundary condition on its surface is calculated employing
a standard singularity ansatz involving the Green’s function
for a force Stokeslet.24, 26 For a sphere in an incompressible
fluid, cross sections of the velocity field for various values of
ωτ a are shown in Fig. 2; animations visualizing the time evo-
lution of these velocity fields are available online.27 The direc-
tion of the velocity field is denoted by streamlines (black lines
with arrow heads), its amplitude by the color coding, which
is the same in all snapshots and movies, emphasizing the
attenuation of the velocity field at higher frequencies. At low
frequencies the time dependence in Eq. (9) can be neglected:
in the “creeping flow” limit, forces are instantaneously
propagated through the fluid. The animations for values
ω � 10−4/τ a indeed show a flow-field that is almost im-
mediately built up all over the displayed cross section;
the flow-field in Fig. 2(a) is long-ranged decaying as 1/R
with corrections accounting for the finite bead size at small
separations R ∼ a. In contrast, retardation/memory effects
become noticeable, when the time scale τR for vortex diffu-
sion over a distance R becomes comparable to the oscillation
period: the flow direction changes and the velocity magnitude
is attenuated as seen in Fig. 2(b). For further increasing
frequency, vorticity effects not only appear at the edges of the
displayed cross section, but also in the sphere’s vicinity. For
ω = 1/τ a (Fig. 2(c)), the subsequent creation of vortices and
their diffusion towards the sides is best seen. For even larger
frequencies (ωτ a � 10) shown in the series of animations,27

the flow-field is completely changed: it is now dominated
by the dipole contribution with magnitude decaying like
1/R3 and with frequency as 1/ω, while vorticity effects are
restricted to the direct proximity of the sphere. The external
force acting on and the velocity of the sphere are related
by the frequency-dependent self-mobility given in Eq. (10).
Their amplitudes are shown as red and blue arrows within
the spheres in Fig. 2 and in the animations;27 the phase shift

and the decrease of the sphere’s self-mobility are clearly
discernible in the regime ωτ a � 1.

Similarly to the sphere’s self-mobility (Eq. (10)), the
strength of HI, i.e., the entrainment of objects by the flow
fields shown in Fig. 2, also depends on the driving fre-
quency as discussed in Sec. IV B. For the spheres of ra-
dius a = 500 nm used in our experiment, the vorticity time
scale in water is τa ≈ 0.26 μs; in the snapshots (Fig. 2) and
animations,27 ω = 10−2/τ a thus corresponds to a driving fre-
quency f ≈ 6 kHz.

B. Frequency dependence of self- and
cross-mobilities

Calculating the HI between two spheres of radius a at
radial distance R constitutes a challenging problem from a
mathematical point of view, because the no-slip boundary
conditions on the sphere’s surfaces have to be fulfilled simul-
taneously. Since no closed-form solution is known, one has
to rely on approximations of varying complexity and accu-
racy, which are discussed in the following. A series expansion
of self- and cross-mobilities in powers of a/R and αa by van
Saarloos and Mazur28 (vSM) yields self-mobilities

μvSM
self (ω) = μ0

(
1 − αa + 8

9
α2a2 − 7

9
α3a3

)
, (12)

and cross-mobilities

μ
γ,vSM
cross (ω)

μ0
= 3a

4R
e−αR

(
1 + 5

9
α2a2 + 1

6
α3a3

)
[1 + δγ,‖]

−
[

1

3
− δγ,‖

]
×

(
a3

R3
+ 9a

2α2R3

− (5α2a2 + 9)(α2R2 + 2αR + 2)a

4α2R3
e−αR

)
,

(13)
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resolved in our experiment (f � 100 kHz).
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FIG. 4. Frequency dependence of cross-mobilities parallel (γ = ‖) and per-
pendicular (γ = ⊥) to the inter-bead axis for different ratios of inter-bead
separation R to bead radius a: (a) R/a = 20, (b) R/a = 3. Cross-mobilities
for spheres of finite radius (solid lines, Eq. (13)) are compared to the Oseen
result for point-like particles (dashed lines, Eq. (15)) and to quasi-static HI
(horizontal arrows, Eq. (14)). Cross-mobilities are given in units of the quasi-
static Stokes self-mobility μ0 ≡ 1/(6πηa) for a sphere of radius a in a fluid of
viscosity η; the angular frequency is rescaled by the characteristic time scale
τ a for vortex diffusion over the length scale of the bead’s radius a, the upper
frequency scale corresponds to experimental conditions (τa ≈ 0.26 μs).

where δ‖, ‖ = 1 and δ⊥, ‖ = 0. A comparison of the approxi-
mate expression for the spheres’ self-mobility (Eq. (12)) and
the exact result by Stokes (Eq. (10)) is shown in Fig. 3: both
nicely match over the entire frequency range accessible in our
experiment (f � 100 kHz).

The frequency dependence of the cross-mobilities paral-
lel and perpendicular to the inter-bead axis are shown for dif-
ferent ratios of inter-bead separation R to bead radius a as
solid lines in Fig. 4. In the low-frequency limit ωτR → 0, the
cross-mobilities in Eq. (13) reduce to the principal compo-
nents of the Rotne-Prager (RP) tensor29 commonly employed
in Brownian hydrodynamics simulations30

μ
γ,RP
cross

μ0
= 3a

4R
[1 + δγ,‖] + 3a3

2R3

[
1

3
− δγ,‖

]
, (14)

with dominant 1/R-scaling and corrections accounting for the
finite bead size a. These quasi-stationary cross-mobilities are
indicated by horizontal arrows in Fig. 4.

The finite time scale τR for the vorticity to diffuse over
length scales comparable to the bead separation R is reflected
in the frequency dependence of real and imaginary parts of
the cross-mobilities as can be seen in Fig. 4; corrections to
the quasi-static limit denoted by horizontal arrows, set in at
frequencies ω ∼ 1/τR and thus become apparent at smaller
frequencies for the case of large separations R/a = 20 as
compared to R/a = 3. In contrast, corrections accounting for
the finite size of the beads are important at small separations
(R/a = 3) and become irrelevant at larger ones (R/a = 20):
as expected, in the limit a/R → 0 the expressions for the
cross-mobilities (Eq. (13)) reduce to the Oseen result for
point-forces31, 32

μ
γ,Oseen
cross

μ0
= 3a(1 − e−αR(αR + 1))

α2R3
δγ,‖

+ 3a

2

e−αR(α2R2 + αR + 1) − 1

α2R3
[1 − δγ,‖],

(15)

shown as dashed lines in Fig. 4. In the frequency and distance
range, in which |α|R � 1, but still |α|a � 1, Eq. (13) reduces
to28

μ
γ
cross(ω)

μ0
≈ −

(
9

2

a

α2R3
+ a3

R3

) [
1

3
− δγ,‖

]
, (16)

revealing the existence of a second dynamic regime, in which
HI are considerably weakened and decay as 1/R3. Note that
since |α|a � 1, in the above expression the first term ∝ ω−1

dominates over the second one accounting for the finite size
of the beads.

As discussed in the last paragraphs, the strength of HI
depends on the relative distance and orientation of the two
beads, making the equations of motion (Eqs. (7) and (8))
non-linear. The fact that the bead’s positional fluctuations—in
our setup on the order of

√
kBT/κ ≈ 5 nm—are relatively

small compared to the average inter-bead separation R

∼ 1.5 − 10 μm justifies the pre-averaging33 of the equations
of motion, i.e., replacing the actual cross-mobilities by the
(constant) cross-mobilities for the average bead configuration.
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Previous experimental studies have mostly focused on
the quasi-stationary limit (Eq. (14)): The interplay of in-
stantaneous HI and the finite relaxation times in the har-
monic trapping potentials of optical tweezers are responsible
for time-delayed anti-correlations in the beads’ positions.20

Similarly, translation-rotation coupling, though decaying as
1/R2 and therefore weaker, is equally observable combin-
ing optical tweezers with polarization microscopy.34 The fre-
quency dependence of HI has been addressed in a series of
experiments14 based on the point-particle limit derived by Os-
een (Eq. (15)), thereby neglecting corrections for the finite
size of the beads.

V. SIGNAL PROCESSING IN A DUAL TRAP OPTICAL
TWEEZER EXPERIMENT

The electric signals recorded in a dual trap optical
tweezer setup as described in Sec. II in general differ from
the actual trajectories of the two beads due to various instru-
mental effects9, 17, 35 including polarization crosstalk, filtering
of the position sensing device and amplification electronics
as well as instrumental noise; the consequences of these in-
strumental effects on the PSDs are discussed in Sec. V A.
Experimentally, PSDs are estimated based on discretely sam-
pled and finite trajectories: resulting effects are addressed in
Sec. V B.

Notation: The following discussion equally applies to the
signals corresponding to both spatial coordinates (γ = ‖, ⊥);
however, to avoid an overloaded notation, indices, and super-
scripts γ are omitted.

A. Crosstalk, (parasitic) filtering, and noise

The use of a single laser for both optical traps induces
polarization crosstalk between the channels,17 meaning that
changes in the positions r1 and r2 of both beads contribute to
each of the detected signals

z̃i(t) ≡
∫ ∞

−∞
dt ′ fi(t − t ′)

2∑
j=1

εij rj (t ′) i = 1, 2, (17)

with amplitudes ε11 � ε12 and ε22 � ε21 and where fi
denotes the filter kernel in channel i. Filtering can be due
to the position sensing device detecting the centroid of the
laser spot intensity,11, 35 the amplification electronics or
other factors, which are discussed in detail in Appendix B.
In addition, the recorded signals are affected by stationary
additive and independent instrumental noise

zi(t) = z̃i(t) + ηi(t), i = 1, 2, (18)

with vanishing mean

〈ηi(t)〉 = 0, (19)

and correlations

〈ηi(t)ηj (t ′)〉 = Snoise
ij (t − t ′), 〈ηi(t)zj (t ′)〉 = 0. (20)

In the actual experimental setup, contributions to the noise
ηi include vibrations of the optical components in the optical
path, electronic noise in the detectors as well as shot noise.

Using Eqs. (17) and (18) and the above statistical properties
of the instrumental noise, the PSD of the electric signals,
defined by

〈zi(ω)z�
j (ω′)〉 = 2πδ(ω − ω′)Sij (ω), (21)

can be related to the thermal PSDs S th
ij defined in Sec. III A

and the noise PSDs Snoise
ij ,

Sij (ω) ≡ fi(ω)f �
j (ω)

2∑
k,l=1

εikεjlS
th
kl (ω) + Snoise

ij (ω). (22)

Due to crosstalk, filter and noise characteristics, these PSDs
Sij may dramatically differ from the thermal PSDs S th

ij , in
particular: (i) The cross-PSD S12 can be dominated by S th

11 or
S th

22 due to crosstalk, if ε21S
th
11 � ε22S

th
12 or ε12S

th
22 � ε11S

th
12,

which is always true for zero crossings of S th
12, (ii) although

all thermal PSDs S th
ij (i, j = 1, 2) are real (cf. Sec. III A),

the cross-PSD S12 may have a non-vanishing imaginary
part, if the filter characteristics of the two position sensing
devices and electronics differ such that Im[f1f

�
2 ] �= 0, see

Appendix B for details, and (iii) auto-PSDs Sii are generally
more affected by instrumental noise than cross-PSDs, since
the instrumental noise in the two channels is (almost)
independent, Snoise

ii � Snoise
ij , i �= j .

B. Finite time resolution and measurement time

Discretely sampled experimental signals form the basis
of the spectral analysis and are used to estimate auto- and
cross-PSDs applying a DFT on the recorded time series. The
use of a DFT instead of a continuous Fourier transform in-
troduces systematic artifacts as detailed in Appendix D. Most
prominently, due to the finite sampling interval 
t one obtains
estimates for the aliased PSDs

Sal.
ij (ωn) ≡

∞∑
m=−∞

Sij

(
ωn + m

2π


t

)
, (23)

at discrete frequencies

ωn ≡ 2πn

T
, (24)

where T = N
t is the length of the time series and n is an
integer. The double-infinite sum over all integers m in Eq. (23)
is in practice approximated numerically using suitable lower
and upper cutoffs, see Appendix D for details.

VI. RELATING EXPERIMENT AND THEORY

In equilibrium optical tweezer experiments, the recorded
signals reflect the stochastic, thermal fluctuations of the beads
in the setup; periodograms calculated from experimental time
series are therefore random variables, the statistical properties
of which are discussed in Sec. VI A, while the explicit calcu-
lations are found in Appendix C. Based on these statistics, a
maximum likelihood method is proposed in Sec. VI B, which
allows to determine unknown parameters by a global fit of
auto- and cross-PSDs to the periodogram values. Quantifying
the deviations between fit and experimental data may serve

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

160.45.66.20 On: Mon, 10 Mar 2014 12:25:23



095116-8 von Hansen et al. Rev. Sci. Instrum. 83, 095116 (2012)

to validate the underlying model as shown in Sec. VI C. The
overall spectral analysis is summarized in Sec. VI D.

A. Statistical properties of auto- and
cross-periodograms

The thermal motion of the beads being stochastic, the sig-
nals zi(t) recorded over a time window T, their Fourier com-
ponents zi(ω) as well as real and imaginary parts of the peri-
odograms

Pij (n) ≡ zi(ωn)z�
j (ωn)

T
(25)

are stochastic quantities. Leakage effects (cf. Appendix D 1)
being negligible in the present case9 as long as the window
time T is much larger than all relevant time scales in the sys-
tem, the expectation values of real and imaginary parts of the
periodograms by definition (cf. Eqs. (21) and (25)) coincide
with the corresponding real and imaginary parts of the PSDs

〈Re[Pij (n)]〉 = Re[Sij (ωn)], (26)

〈Im[Pij (n)]〉 = Im[Sij (ωn)]. (27)

However, the values of individual periodograms are broadly
distributed around these expectation values as is seen from the
variances of these quantities. From the explicit calculations in
Appendix C resulting in Eqs. (C7) to (C9), one obtains8

�2[Re[Pij ]] = 1

2
(SiiSjj + Re[Sij ]2 − Im[Sij ]2), (28)

�2[Im[Pij ]] = 1

2
(SiiSjj − Re[Sij ]2 + Im[Sij ]2), (29)

where �2[. . . ] ≡ 〈. . . 2〉 − 〈. . . 〉2 denotes the second cen-
tral moment and the frequency arguments have for simplicity
been omitted. For auto-periodograms (i = j), which by def-
inition are real and positive, �2[Re[Pii]] = S2

ii since Im[Sii]
≡ 0 in Eq. (28); the statistical uncertainty thus coincides
with the expectation value Sii. More specifically, one can
show that the values of the periodogram Pii are exponen-
tially distributed;9, 36 note that periodogram values are non-
self-averaging, meaning that increasing the signal length T
yields periodogram estimates for a larger set of discrete fre-
quencies and reduces leakage effects (cf. Appendix D 1), but
has no influence on the periodogram statistics.

For the real and imaginary parts of the cross-
periodograms (i �= j), the situation is even worse, since
the statistical uncertainties will in general exceed the ex-
pectation values due to the dominance of the term SiiSjj in
Eqs. (28) and (29); in the general case where Sij �= 0, the form
of the probability distribution functions (PDFs) for real and
imaginary parts of the cross-periodograms are not simple.8

The previous statements, which are based on the use
of the continuous Fourier transformation, also apply to the
periodograms based on the DFT of discretely sampled time
series, if the PSDs Sij in Eqs. (26)–(29) are replaced by their
aliased equivalents Sal.

ij defined in Eq. (23), see Appendix C
for details.

The way to deal with the above mentioned statistical
uncertainties is of course to average periodograms over Nw

statistically independent time windows and (possibly) over
blocks of Nb discrete, neighboring frequencies, yielding av-
eraged periodograms

P̄ij (n) ≡ 1

NwNb

Nw∑
k=1

∑
l

P
(k)
ij (l), (30)

where the superscript (k) discriminates the periodogram val-
ues of different time windows and the index l runs over the
block of Nb frequencies around ωn. Note that “blocking” may
cause artifacts: for a single trap blocking effects are negligible
as long as Nb � κμ0T/(2π ), see Ref. 9 for further details.
According to the central limit theorem, the statistical uncer-
tainty � of the averaged periodograms is reduced by a fac-
tor 1/

√
NwNb with respect to the periodograms of individual

time windows; the values of P̄ij thus represent statistically
more reliable experimental estimates of the PSD Sij.

Clearly, not the individual values of the auto- and cross-
PSDs Sij are of interest, but the values of the parameters in the
theoretical model, which yield the best agreement between
theory and experimental data, namely the values of averaged
auto- and cross-periodograms P̄ij at the discrete frequencies
ωn resolved experimentally. A controlled way of inferring
these parameters from the data taking into account the statisti-
cal aspects discussed in this section is given by the maximum
likelihood method described in Sec. VI B.

A schematic summarizing the signal processing de-
scribed in Sec. V and the relationship between periodograms
and PSDs is found in Fig. 5.

B. Maximum likelihood fits of PSDs

The theoretical auto- and cross-PSDs Sij of the electric
signals involve parameters both on the level of the thermal
motion of the experimental object (trap strengths, particle
radii, etc., cf. Secs. III and IV) as well as on the level of
the signal processing in the instrument (amplification, po-
larization crosstalk, parasitic filtering, etc., cf. Sec. V and
Appendix B). For averaged periodograms P̄ij (Eq. (30))
calculated from experimental time series, optimal parameter
values can be obtained by Bayesian inference, which thus
constitutes the missing link between theory and experiment
in Fig. 5. The strength of the method consists in the fact that
the statistical aspects discussed in Sec. VI A are inherently
taken into account.

In general, given some measured data, the most likely pa-
rameters (params) are those maximizing the conditional prob-
ability P (params|data). Using Bayes’ theorem

P (params|data) = P (data|params)P (params)

P (data)
, (31)

and assuming a uniform prior distribution of the parameters,
i.e., P (params) = const., maximizing P (params|data) turns
out to be equivalent to maximizing the conditional probability
P (data|params) of observing some data given a set of param-
eters. In the present case, the data consists of the ensemble of
averaged periodogram vectors

P̄ ≡ (P̄11, P̄22, Re[P̄12], Im[P̄12])T, (32)
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FIG. 5. Visualization of the signals in a typical dual trap optical tweezer experiment as described in Secs. V and VI A. (a) Signal processing as described by
Eqs. (17) and (18); averaged periodograms P̄ij obtained via DFT from the discretely sampled stochastic trajectories yield experimental estimates for the aliased
PSDs Sal.

ij . (b) Relation between auto- and cross-PSDs Sth
ij of the beads’ thermal motion and aliased electrical PSDs Sal.

ij according to Eqs. (22) and (23). Unknown

parameters in the PSDs can be determined via a global maximum likelihood fit to P̄ij as explained in Sec. VI B.

at each of the Nf discrete frequencies resolved in the spectral
analysis. Periodograms of distinct time windows are indepen-
dent random variables drawn from a PDF with finite first and
second moments given in Sec. VI A and Appendix C. Ac-
cording to the central limit theorem, when averaging over a
large number NwNb of realizations, the PDF for an averaged

periodogram vector P̄ converges to a multivariate normal dis-
tribution characterized by the expectation vector

〈 P̄〉 = Sal. ≡ (
Sal.

11, S
al.
22, Re[Sal.

12], Im
[
Sal.

12

])T
, (33)

and the covariance matrix resulting from the periodogram co-
variances calculated in Appendix C,

←→
V al. ≡ 1

NwNb

⎛
⎜⎜⎜⎜⎜⎜⎝

Sal.
11

2
Re

[
Sal.

12

]2 + Im
[
Sal.

12

]2
Sal.

11Re
[
Sal.

12

]
Sal.

11Im
[
Sal.

12

]
Re

[
Sal.

12

]2 + Im
[
Sal.

12

]2
Sal.

22
2

Sal.
22Re

[
Sal.

12

]
Sal.

22Im
[
Sal.

12

]
Sal.

11Re
[
Sal.

12

]
Sal.

22Re
[
Sal.

12

]
1
2

(
Sal.

11S
al.
22 + Re

[
Sal.

12

]2 − Im
[
Sal.

12

]2)
Re

[
Sal.

12

]
Im

[
Sal.

12

]
Sal.

11Im
[
Sal.

12

]
Sal.

22Im
[
Sal.

12

]
Re

[
Sal.

12

]
Im

[
Sal.

12

]
1
2

(
Sal.

11S
al.
22 − Re

[
Sal.

12

]2 + Im
[
Sal.

12

]2)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the (discrete) frequency arguments n and ωn are again
omitted for simplicity. Periodogram values at different fre-
quencies being (approximately) independent,8 the overall
conditional probability of observing a certain ensemble of av-
eraged periodograms given a particular set of parameters is
just the product of the Nf multivariate normal distributions

P(data|params)

=
∏
n

(
4π2

√
det

(←→
V al.(ωn)

))−1

× exp

(
−1

2
( P̄(n) − Sal.(ωn))T · ←→

V al.
−1

(ωn)

· ( P̄(n) − Sal.(ωn))

)
. (34)

For a given ensemble of averaged periodograms, the optimal
set of parameters is obtained by maximizing the above condi-
tional probability with respect to these parameters; by reason
of numerical stability, it is however preferred to minimize the
negative log-likelihood − log (P(data|params)), which up to

constants equals

F ≡
∑

n

1

2
( P̄(n) − Sal.(ωn))T · ←→

V al.
−1

(ωn)

· ( P̄(n) − Sal.(ωn)) + 1

2
log

[
det

(←→
V al.(ωn)

)]
.

(35)

The maximum likelihood method for determining the opti-
mal set of parameters in the theoretical model consists of per-
forming a minimization of Eq. (35) in the (multidimensional)
parameter space; since the second term in Eq. (35) can be ne-
glected if

√
NwNb(n) � 1, one is left with minimizing

F̃ ≡ 1

2

∑
n

( P̄(n) − Sal.(ωn))T · ←→
V al.

−1
(ωn)

· ( P̄(n) − Sal.(ωn)), (36)

which corresponds to a standard multidimensional least-
square fit, for which a handy implementation in C/C++ is
provided by Lourakis.37

Note that in the case of one trap and thus a single sig-
nal, V al. = Sal.

11
2
/(NwNb) and Eq. (35) (again up to constants)
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reduces to

∑
n

NwNb(n)

2

(
P̄11(n)

Sal.
11(ωn)

− 1

)2

+ log
(
Sal.

11(ωn)
)
. (37)

This is the quantity which is commonly minimized for the
calibration of single trap setups.9

C. Deviations of fits and data

Once Eq. (36) has been minimized numerically, the en-
countered minimal value

F̃min ≡ min
params

F̃ , (38)

quantifies the remaining squared deviations between aver-
aged experimental periodograms and theoretical PSDs. The
fit quality can be judged based on the sample average of these
deviations per experimental observable

χ2 ≡ 2

N P̄Nf
F̃min, (39)

where Nf denotes the number of discrete frequencies resolved
in the spectral analysis and N P̄ is the dimension of the peri-
odogram vector P̄ defined in Eq. (32). The expectation value
of χ2 being 1, the encountered value of χ2 is an indicator
for the quality of the theoretical modeling of the experimental
signals: both values χ2 � 1 and χ2 � 1 indicate deficits in
the model and comparing χ2-values may help to discriminate
between various potential models.

In some cases, it may be helpful to restrict the computa-
tion of F̃ and χ2 to a subset of the observables in P̄ to localize
the source of the deviations observed. If for example only P11

and Re[P12] are considered, only the first and third columns
and rows in

←→
V al. are taken into account and one sets N P̄ = 2

in Eq. (39).

D. Power spectral analysis in a nutshell

Overall, the auto- and cross-power spectral analysis
of optical tweezer experiments proposed in this paper in-
volves the following procedure: (i) determine the auto- and
cross-PSDs S th

ij describing the thermal fluctuations of the
beads as parts of the overall experimental construct under
study (Sec. III), (ii) identify the relations between bead
positions and detected signals (Sec. V) and deduce their auto-
and cross-PSDs Sij, (iii) perform the actual experiment and
calculate averaged auto- and cross periodograms P̄ij from the
experimental time series via Eqs. (25) and (30), (iv) perform a
numerical minimization of Eq. (36) to determine the optimal
parameter values compatible with the data, (v) judge on the
validity of the theoretical model based on the deviations
between best fits and the experimental data (Sec. VI C).

In a first step, this procedure allows a precise calibration
of the instrument by three consecutive calibration measure-
ments as shown in Sec. VII; in a second step, additional un-
known parameters of more complex experimental constructs,
characterizing for example the viscoelastic properties of the
molecular tether under study, can be determined.

VII. CALIBRATION OF DUAL TRAP
OPTICAL TWEEZERS

A series of three measurements is proposed for the cal-
ibration of a dual trap optical tweezer setup: (i) both traps
empty, in the following named Cal. I, (ii) first trap occupied,
second one empty (Cal. II), and (iii) second trap occupied,
first one empty (Cal. III). In Cal. I, all thermal PSDs vanish,
S th

ij = 0, ∀i, j , and therefore according to Fig. 5 the recorded
periodograms P̄ij result from the instrumental noise only. In
Cal. II, only the thermal PSD S th

11 is non-zero reflecting the
stochastic motion of a single bead in the first optical trap9 and
similarly S th

22 is the only non-vanishing thermal PSD in Cal.
III; explicit expressions for the thermal PSD of a single bead
in a harmonic trap are for example found in Ref. 9.

Detector output voltages are recorded with 100 kHz
sampling rate over a time window of 60 s for each of the cal-
ibration experiments; the time series are analyzed using 6000
windows of T = 10 ms duration each, and blocking neigh-
boring periodogram values resulting in blocked periodogram
values at 84 distinct discrete frequencies in the range of
100Hz to 50 kHz. The averaged periodograms resulting from
the spectral analysis are denoted as symbols in Fig. 6, where
top and bottom figures show data corresponding to the spatial
direction parallel and perpendicular to the inter-trap axis,
respectively.

The averaged periodograms from Cal. I shown in
Fig. 6(a) reveal that the instrumental noise recorded by the
two detectors is to a major extent independent, demonstrated
by the fact that typical amplitudes of the cross-periodograms
P̄12 are suppressed by one order of magnitude or more with
respect to the auto-periodogram values P̄11 and P̄22. The
functional form of the instrumental noise-PSDs Snoise

ij , the
Fourier transformations of the noise correlation functions in
Eq. (20), can be modeled as a uniform white-noise back-
ground spectrum superimposed by a 1/f-PSD as well as a
number of spikes at well-defined frequencies; given that, ac-
cording to Eq. (22), noise PSDs simply yield an additive con-
tribution to the detected PSDs Sij, we restrict ourselves to di-
rectly use the values of the averaged periodograms in Fig. 6(a)
as reliable estimates of the aliased noise PSDs for the analysis
of the subsequent experiments. Assuming stationarity and sta-
tistical independence of the time windows, the expected sta-
tistical error for the averaged auto-periodograms is in fact on
the order of one percent or below, depending on the block size.

According to Fig. 5(b), one expects contributions of the
thermal motion of the bead in the first trap (S th

11) and of the
instrumental noise (Snoise

ij ) to the measured periodograms of
Cal. II. The averaged periodograms P̄11 (red circles) in
Fig. 6(b) in fact reflect the typical Lorentzian-like shape
of S th

11. Due to polarization crosstalk (ε21 �= 0) the thermal
motion of the bead is also observed in the real part of the
cross-periodograms, Re[P̄12], shown as green symbols,
though reduced in amplitude by a factor ε21/ε11 with respect
to P̄11. The auto-periodogram of the second signal P̄22 (blue
circles) is clearly dominated by the instrumental noise, the
thermal motion of the bead introducing only slight changes
with respect to Cal. I in Fig. 6(a). The imaginary parts of the
cross-periodogram values, Im[P̄12] (orange symbols), result
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FIG. 6. Results of the three calibration measurements described in Sec. VII: (a) no trapped beads, (b) first trap occupied and second one empty, (c) vice versa.
Averaged experimental periodograms P̄

γ

ij are denoted by symbols, theoretical aliased PSDs S
γ al.
ij , based on a global maximum likelihood fit to the data as

described in the text, are shown as lines, where broken lines correspond to negative values of the PSDs; fit values are given in Table I. Results for the spatial
coordinates parallel to the inter-trap axis (γ = ‖) are shown in the upper row, those for the perpendicular direction (γ = ⊥) in the lower one.

from an asymmetry in the signal filtering properties of the
two channels as well as from the statistical uncertainty and
will be discussed later. Up to this point, the undetermined pa-
rameters are the trap strength κ1 in S th

11, the V/nm conversion
factors ε11 and ε21 as well as parameters λi and τ i (i = 1, 2)
reflecting the parasitic filtering properties of the two position
sensing devices and entering the filter functions f1 and f2
(see Appendix B 1 for further details). The situation for Cal.
III is analogous to the previous discussion of Cal. II except
for indices 1 and 2 interchanged, adding three additional
parameters κ2, ε12, and ε22.

Since voltage amplitudes and polarization crosstalk dif-
fer for both spatial directions, we treat the corresponding
data sets separately. We use η = 0.949 × 10−3 N s/m2 and
ν = 0.951 × 10−6 m2/s for the dynamic and kinematic vis-
cosity of water at the experimental temperature T = 22.6 ◦C
and the radius a = 500 nm given by the manufacturer for both
beads. The values of the 10 parameters are determined by a
global maximum likelihood fit to averaged auto- and cross-
periodograms from Cal. II and III as described in Sec. VI B.
Best fits to the data are shown as black lines in Fig. 6, values
of the fit parameters including confidence intervals are found
in Table I. As expected, the fit values for the trap stiffnesses
κ1 and κ2 as well as for the detector properties (λ1, λ2, τ 1, τ 2)
for the two orthogonal spatial directions ‖ and ⊥ in Table I
agree within error.

In Fig. 6, the agreement of experimental data and fits for
the auto-PSDs S11 and S22 and the real part of the cross-PSD,
Re[S12], is excellent over the entire range of frequencies for
both Cal. II and III. As is seen from Table I, the sample av-
erage of the (normalized) squared deviations of the data from
the PSD values χ2 defined in Eq. (39) is relatively large com-
pared to the expectation value of 1, the reasons for which most
likely are: (i) differences in the instrumental noise Snoise

ij in

Cal. I compared to Cal. II or III, (ii) other non-stationary ef-
fects in the experimental setup, which are intrinsically diffi-
cult to model and to quantify, and (iii) an inconsistency be-
tween Cal. II and III concerning the imaginary parts of the
cross-periodograms IP12, which is discussed at the end of this
section. In fact, when restricting the computation of χ2 to the
quantities which are less sensitive to the above mentioned ef-
fects, i.e., P11 and Re[P12] in Cal. II as well as P22 and Re[P12]
in Cal. III, one obtains reasonable values for the squared de-
viations denoted by χ2

red in Table I.
Once the setup is calibrated as described, all instrumental

parameters are set and the link between electric PSDs Sij

and the thermal PSDs S th
ij is thus established, as is seen from

the signal processing summarized in Fig. 5(b). For more

TABLE I. Calibration results: Best fit parameters obtained from global max-
imum likelihood fits to the averaged periodograms in Fig. 6 as described in
Sec. VII.

Quantity Symbol Values ‖ Values ⊥ Units

Trap strength κ1 0.21 ± 0.021 0.21 ± 0.007 pN/nm
κ2 0.21 ± 0.018 0.20 ± 0.012 pN/nm

Amplitudes ε11 32 ± 1.1 61 ± 1.0 mV/nm
ε12 0.93 ± 0.034 0.34 ± 0.021 mV/nm
ε21 0.52 ± 0.025 2.10 ± 0.037 mV/nm
ε22 32 ± 1.2 56 ± 1.0 mV/nm

Pol. crosstalk ε12/ε11 2.9 0.56 %
ε21/ε22 1.6 3.7 %

Fraction of λ1 0.6 ± 0.054 0.63 ± 0.038 unitless
fast electrons λ2 0.6 ± 0.040 0.61 ± 0.023 unitless
Electr. relax. τ 1 5.7 ± 1.5 5.5 ± 1.0 μs
Time scale τ 2 6.1 ± 1.5 6.6 ± 0.8 μs
Normalized sq. χ2 18 8.7 unitless
deviations χ2

red 1.8 2.1 unitless
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complicated experimental constructs, e.g., single molecules
tethered to the beads, additional unknown parameters char-
acterizing the viscoelastic properties of the molecule under
study and entering the thermal PSDs S th

ij of the overall exper-
imental construct,7 can in a second step be determined from
the measured auto- and cross-periodograms P̄ij employing
the same maximum likelihood fitting method. Here, we
demonstrate in Sec. VIII that—without additional adjustable
parameters—the periodograms recorded for two hydrody-
namically interacting beads are in excellent agreement with
the theoretical predictions over the entire resolved range of
frequencies and for different trap separations; we thereby
demonstrate the accuracy of the calibration method and the
influence of the frequency dependence of HI discussed in
Sec. IV on the PSDs.

Finally, some additional comments on the calibration
spectra and the fit results:

� The radii of micron-sized beads used in optical tweezer
experiments may vary from one bead to another due to
finite sample variance. Determining the bead radii us-
ing a standard approach12 involves a low-frequency os-
cillation of the piezo stage and adds the two parameters
a1 and a2 to be determined when calibrating of the in-
strument. Based on the peak amplitudes of P̄11 in Cal.
II and P̄22 in Cal. III at the driving frequency of 30 Hz
(data not shown), we found bead radii 500 ± 5 nm in
perfect agreement with the manufacturer’s specifica-
tions (cf. Sec. II). We therefore choose a fixed bead ra-
dius a1 = a2 = a = 500 nm in all our modeling. Note
that the oscillation of the piezo stage also induces a pe-
riodic signal in the “empty” channel (2 in Cal. II and 1
in Cal. III), the amplitude and relative phase of which
is less straightforward to interpret; values of the cross-
periodogram and the auto-periodogram of the empty
channel at the driving frequency are therefore not con-
sidered when determining a1 and a2. In asymmetric se-
tups, the bead masses m1 and m2 in Eq. (7) would have
to be adjusted and our common radius a in the expres-
sions for the self-mobilities (Eqs. (10) and (12)) would
have to be replaced by a1 and a2, respectively; expres-
sions for the corresponding cross-mobilities replacing
Eq. (13) are found in Ref. 28.

� As is clearly seen from Table I, the polarization
crosstalk amplitudes in the two channels and for the
two spatial directions differ considerably ranging from
0.5% to 3.7%. Moreover, the importance of crosstalk
is larger in channel 1 for the ‖-direction, while it is
dominant in channel 2 for the ⊥-direction. This ob-
served asymmetry is presumably a consequence of the
orthogonally polarized light in the two traps and the
fact that the two spatial directions are detected in dif-
ferent layers of our position sensing devices; see the
supplementary material38 for further details.

� According to our model for the signal processing in
Sec. V, the ratio of real and imaginary parts of the
cross-PSDs results from the filtering properties in the
two channels and is given by Re[f1f

�
2 ]/Im[f1f

�
2 ] and

thus independent of the thermal PSDs S th
ij , which are

purely real (cf. Sec. III A). In contrast, the ratio of real
and imaginary parts of the cross-periodogram values
in Fig. 6—given by the distance of the periodogram
values in the logarithmic plots—differ for Cal. II and
Cal. III. The filtering properties of the detectors thus
seem to slightly differ depending on which of the traps
is occupied and which one is empty. Separate maxi-
mum likelihood fits to the data of Cal. II and Cal. III
yielded marginally better fits (not shown), the fit values
however remained essentially unchanged compared to
the results of the global fit to both experimental data
sets in Table I.

VIII. DISCUSSION

The experimental setup being calibrated as described
in Sec. VII, we now compare theoretical PSDs resulting
from Eqs. (8), (22), and (23) and using the fit parameters
in Table I to averaged, experimental periodograms for two
hydrodynamically interacting beads fluctuating in their
respective laser traps; for trap separations R ranging from
10 down to 1.5 μm, averaged periodograms are calculated
from the four voltage time series (z1, ‖, z2, ‖, z1, ⊥, z2, ⊥) with
an overall duration of 30 s by analyzing time windows of
T = 10 ms length each. The importance of hydrodynamic
retardation effects are highlighted in Sec. VIII A, while the
influence of instrumental effects, i.e., polarization crosstalk,
(parasitic) filtering and instrumental noise, and of finite
statistics is discussed in Sec. VIII B.

A. Retarded vs. instantaneous hydrodynamics

Theoretical PSDs based on frequency-dependent HI be-
tween finite-sized beads described by Eq. (13) (black lines) as
well as averaged periodograms from experimental data (col-
ored symbols) are shown for various distances R between the
trap centers and for motion parallel and perpendicular to the
inter-trap axis in Figs. 7 and 8, respectively. Both auto-PSDs
S11 and S22 and, in particular, the cross-PSD S12 are affected
by the varying strength of HI with changing trap separation
or spatial direction; over the entire resolved frequency range
of 100 Hz − 50 kHz, excellent agreement between theoreti-
cal predictions and experimental data is observed. Note that
no additional fit parameters are used in Figs. 7 and 8, demon-
strating the accuracy of both the modeling of the signal pro-
cessing in Sec. V as well as of the instrumental calibration in
Sec. VII.

To stress the importance of the frequency dependence of
HI discussed in Sec. IV B, we also plot theoretical predic-
tions based on instantaneous HI described by the components
of the Rotne-Prager tensor (Eq. (14)) as light blue lines in
Figs. 7 and 8: the comparison reveals that the frequency de-
pendence of the cross-mobilities shown in Fig. 4 arising from
the finite time of vortex propagation in the fluid is essential for
a quantitative match of theory and experiment. As expected,
the influence of the frequency dependence is more prominent
at large separations than at smaller ones, where the idealized
picture of instantaneous HI constitutes a better, though still
approximate description (cf. Sec. IV B).
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FIG. 7. Auto- and cross-PSDs of the fluctuations parallel to the inter-trap
axis for various trap separations R: Symbols denote averaged experimental
periodograms P̄

‖
ij , lines the theoretical predictions for the aliased PSDs S

‖al.
ij

according to Eqs. (22) and (23): black lines include the full frequency depen-
dence of HI (Eq. (13)), light blue lines correspond to instantaneous HI (Eq.
(14)). Positive values of the averaged experimental periodograms are denoted
by circles, negative ones by squares; similarly, solid and broken lines, respec-
tively, denote positive and negative PSD values.

Remaining deviations between theoretically predicted
and recorded spectra are mainly attributed to uncertainties
in the calibration fit parameters (see Table I), non-stationary
instrumental effects and slight dependencies of the system
parameters on the trap configuration. In particular, the signal
amplitude ε11 of our mobile trap was found to vary within
some percent when the trap is displaced over length scales of
several μm (data not shown). If a quantitative evaluation of
the spectra is intended, it is therefore recommended to per-
form the calibration measurements in a similar configuration
as the actual experiment is done. In addition, at high frequen-
cies systematic deviations may result from limitations in the
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FIG. 8. Same as Fig. 7 but for the spatial component perpendicular (⊥) to
the inter-trap axis.

model, e.g., for the parasitic filtering covered in Appendix B
1, and for separations R � 3a, the uncertainty in the absolute
distance R and the neglect of higher order corrections for self-
and cross-mobilities32 may play a role. Finally, alignment
inaccuracies of the instrument (cf. Sec. III B) or crosstalk
between the spatial directions within each of the position
sensing devices9 may be responsible for residual deviations;
both effects have been neglected in the present analysis,
but can in principle be accounted for using the full three-
dimensional theory (Sec. III B) and a refined model for the
signal processing involving all four recorded signals (Sec. V).

B. Instrumental effects and finite statistics

As schematically indicated in Fig. 5(b), the electric
PSDs Sij deviate from the thermal PSDs of the beads S th

ij

due to three instrumental effects: polarization crosstalk,
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FIG. 9. Influence of polarization crosstalk: Theoretical PSDs accounting for
polarization crosstalk are shown as black lines (same as in Fig. 8), theoreti-
cal PSDs neglecting polarization crosstalk are denoted as purple lines; since
auto-PSDs are only marginally affected by polarization crosstalk, black and
purple lines for S11 and S22 overlap. Symbols denote experimental data (same
as in Fig. 8).

(parasitic) filtering and instrumental noise. Their influence
on the calibration and hydrodynamic spectra in Figs. 6–8 is
discussed in the following.

The importance of polarization crosstalk for the calibra-
tion process was covered in Sec. VII; its influence on the
PSDs of two hydrodynamically interacting beads is illustrated
by comparing experimental data and theoretical curves from
Fig. 8 to theoretical predictions for the PSDs, which do not
account for crosstalk setting ε12 = ε21 = 0. The correspond-
ing PSDs are shown as purple lines in Fig. 9 together with
the original data and curves of Fig. 8. For a trap separation
R = 10 μm (Fig. 9(a)), where due to weak HI the thermal
cross-PSD S th

12 is small in amplitude compared to the thermal
auto-PSDs S th

11 and S th
22, the observed cross-PSD of the elec-

tric signals S12 is dominated by the thermal auto-PSDs, which
couple in due to polarization-crosstalk; experimental data is
consequently ill-represented when polarization crosstalk is
neglected, as shown in Fig. 9(a). For smaller trap separations
(R = 1.5 μm in Fig. 9(b)), where HI are stronger, the fre-
quency dependence of the thermal cross-PSD S th

12 is better
reflected in S12, though including polarization crosstalk re-
mains necessary for a quantitative agreement between theory
and experimental data. As expected, polarization crosstalk af-
fects the auto-PSDs to a minor extent only. We conclude that
a quantitative analysis of experimental (cross-)periodograms
requires accounting for crosstalk to disentangle the contribu-
tions of thermal auto- and cross-PSDs.

The effects of parasitic filtering of position sensing de-
vices (cf. Appendix B 1) on the auto-periodograms measured
in single trap optical tweezer experiments has been discussed
in detail before.11, 35, 39 For dual trap setups, deviations in the

filter properties of the two devices have as additional con-
sequence a non-vanishing imaginary part of the cross-PSD,
Im[S12], as discussed in Sec. V A and exemplified in Ap-
pendix B 1.

The influence of instrumental noise is seen in the calibra-
tion measurements of Cal. II and III in Figs. 6(b) and 6(c); the
discussion in this paragraph focuses on Cal. II, but equally
applies to Cal. III with indices 1 and 2 interchanged. In the
absence of noise, according to the schematic in Fig. 5(b), one
expects roughly equivalent shapes for P̄11, Re[P̄12], and P̄22,
slight differences being attributed to the individual filter func-
tions f1 and f2 and the relative magnitudes being set by the
ratio ε11/ε21 � 1. However, the averaged periodogram val-
ues P̄22 are mostly dominated by the instrumental noise, since
Snoise

22 � ε2
21S

th
11.

Finally, some comments on the statistical uncertainty
in the data: In Figs. 6(b) and 6(c), one observes a notice-
able larger scatter of the cross-periodogram values Re[P̄12]
around the theoretical estimate Re[S12] compared to the auto-
periodogram values. This effect is best seen for large frequen-
cies in the bottom panel of Fig. 6(c) corresponding to the ⊥
direction, where the polarization crosstalk is the weakest. Ac-
cording to the periodogram statistics discussed in Sec. VI A,
the relative statistical uncertainty of Re[P12] is

√
�2[Re[P12]]

Re[S12]
≈

√
1 + Snoise

11

2ε2
12S

th
22

, (40)

which exceeds the relative statistical uncertainty of auto-
periodogram values (=1, cf. Sec. VI A), whenever the instru-
mental noise in the “empty” signal dominates over the contri-
bution of the thermal bead motion. The instrumental noise in
the two signals z1 and z2 being (mostly) independent, the ex-
pectation value 〈Re[P̄12]〉 = Re[S12] are relatively insensitive
to instrumental noise, the statistical uncertainty in the cross-
periodogram values is however increased. For the case of two
hydrodynamically interacting beads, the contribution of noise
to the observed PSDs is rather small; taking into account in-
strumental noise is thus in the first place important to account
for the increased statistical uncertainty of cross-periodogram
values when calibrating the experimental setup as described
in Sec. VII.

The averaged periodograms P̄ij shown in the Figs. 6–9
result from the spectral analysis of at least 3000 signal win-
dows and from blocking periodogram values corresponding
to neighboring frequencies; for independent samples, the sta-
tistical uncertainty of the averaged periodograms is thus re-
duced by a factor ≤ 1/

√
3000 ∼ 0.02 compared to the bare

periodograms. Nevertheless, for the cross-periodograms the
statistical uncertainty still may be comparable or even ex-
ceed the magnitude of the expectation value (cf. Sec. VI A).
As an example, the periodogram values Re[P̄12] considerably
scatter around the theoretical predictions Re[S12] in the top
panels of Figs. 7 and 8. If the statistical uncertainty exceeds
the magnitude of the expectation value, plotting the absolute
periodogram values on a logarithmic scale leads to a spuri-
ous, smooth frequency dependence, which is a signature of
the statistical uncertainty only and which can easily be misin-
terpreted (see Appendix E for further details). Such a spurious
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behavior is for example observed for the periodogram values
Im[P̄12] in Cal. III shown in Fig. 6(c).

The statistical aspects discussed in the previous two
paragraphs are rather subtle; it is therefore recommended
to fit auto- and cross-periodograms simultaneously rather
than independently by applying the Bayesian inference fitting
method presented in Sec. VI B, which inherently accounts for
the statistical properties of auto- and cross-periodograms and
which was used within this manuscript for the calibration of a
dual trap optical tweezer instrument.

IX. CONCLUSIONS

In summary, we have presented a theoretical description
of the signal processing in a typical dual trap optical tweezer
experiment, and have proposed a maximum-likelihood
method based on the statistical properties of auto- and
cross-periodograms for the power spectral analysis of the ex-
perimentally recorded fluctuations. We have shown how—in
a first calibration step—the method can be used to determine
the instrumental parameters involved in the signal processing
as well as the optical trapping strengths by combining data
from three consecutive measurements. Using two uncon-
nected, but hydrodynamically interacting beads trapped in
the respective laser potentials as simple model system, we
could demonstrate a number of different aspects including:
(i) the frequency-dependence of the hydrodynamic coupling
arising from the finite time of vortex diffusion in the viscous
fluid, (ii) the influence of crosstalk, (parasitic) filtering
and instrumental noise on the recorded periodograms, and
(iii) potential caveats in the interpretation of experimental
data due to finite statistics. We expect the present Bayesian
inference method paired with dynamic (de-)convolution
theory7 to enable experimentalists in a second step to recover
the viscoelastic force response characteristics of the molecule
of study from the measured equilibrium fluctuations of the
overall experimental construct, e.g., the molecule tethered via
handles to the two beads trapped in their respective laser foci.
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APPENDIX A: NOTATION

An overview of frequently used symbols is found in
Table II. Throughout, we use the following definition of the
Fourier transformation F and its inverse F−1 for a general
function f(t)

f (ω) = F[f (t)] ≡
∫ ∞

−∞
dt f (t)eiωt ,

f (t) = F−1[f (ω)] ≡ 1

2π

∫ ∞

−∞
dω f (ω)e−iωt .

(A1)

TABLE II. Overview of the notation used throughout the manuscript; sub-
and super-scripts γ are omitted in the text, if the discussion equally applies
to all spatial directions.

Quantity Symbol Definition

Spatial direction γ =o, ‖, ⊥
Bead/Signal indices i, j =1, 2
Bead coordinate ri

Linear response function Jij Eq. (5)
Thermal correlation function / PSD Sth

ij Eqs. (1), (3), and (4)

(Virtual) filter function fi Eq. (B9)
Electric signal zi Eqs. (17) and (18)
Electric PSD Sij Eq. (22)
Electric DFT component Zi Eq. (D1)
Sampling interval 
t

Sampling rate fsampl =1/
t

Nyquist frequency fNyq = fsampl/2
No. of data points per time window N

Duration of a time window T =N
t

Periodogram Pij Eq. (25)
No. of independent time windows Nw

No. of discr. frequencies per block Nb

No. of blocked frequencies resolved Nf

Averaged periodogram P̄ij Eq. (30)

Functions in time and frequency domain are denoted by the
same variables. Using the above convention the convolution
theorem takes the form

F[f ∗ g (t)] = f (ω)g(ω), (A2)

F[f (t)g(t)] = 1

2π
f ∗ g (ω), (A3)

where the convolution between the two functions f and g is
defined as

f ∗ g (t) ≡
∫ ∞

−∞
dt ′ f (t ′)g(t − t ′). (A4)

APPENDIX B: POSSIBLE FORMS OF FILTERING

Signal filtering can occur due to a number of different
reasons, some of which are discussed in the following. Sub-
sequent application of various filters corresponds to the iter-
ative convolution of the original signal with the various filter
kernels in time domain or, more conveniently, to the multi-
plication with the product of transfer functions in frequency
space (Eq. (A2)).

1. Filtering of the position sensing device

Due to the transparency of silicon to the employed laser
light of 1064 nm wavelength, the electric signal produced by
the position sensing device differs from the actual dynamics
of the centroid of the laser spot intensity.35, 39 This parasitic or
“virtual” filtering can be modeled11, 39 via a transfer function

f
pf
i (ω) = λi + i

1 − λi

i + ωτi

, i = 1, 2,

where λi is the fraction of fast (instantaneously detected) elec-
trons and τ i is the typical relaxation timescale of the slow
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electron fraction in channel i. PSDs thus are modified by
factors

f
pf
i (ω)f pf

j

�
(ω) = λiλj + 1 − λiλj

1 + iω(τj − τi) + τiτjω2

+ iω
λjτj (1 − λi) − λiτi(1 − λj )

1 + iω(τj − τi) + τiτjω2
, (B1)

which for i = j reduces to

∣∣f pf
i (ω)

∣∣2 = λi
2 + 1 − λ2

i

1 + (ωτi)
2 , (B2)

which is purely real. In contrast, even slight asymmetries in
the filtering properties of the two detectors result in a non-
vanishing imaginary part of f

pf
1 f

pf
2

�
as discussed in Sec. VII,

see Fig. 10(a) for typical frequency dependences.

2. Electric filter

The amplification device used in our setup acts as eighth
order Butterworth filter with f3dB = 200 kHz corresponding
to transfer functions

f B8
i (ω) = 1

B8(iω/(2πf3dB))
,

with B8 being the eighth order Butterworth polynomial, such
that

f B8
i (ω)f B8

j

�
(ω) = 1

1 + (ω/(2πf3dB))16 . (B3)

In Fig. 10(b), Butterworth filters are compared to first-order
low-pass filters, for which

f
lp
i (ω)f lp

j

�
(ω) = 1

1 + (ω/(2πf3dB))2 . (B4)

3. Temporal averaging

Temporal averaging represents a form of low-pass filter-
ing: for uniform averaging of a signal over a time window τav,
i.e., a filter kernel

f av
i (t) = 1

τav
�(−t + τav)�(t),

where � denotes the Heaviside step function, one obtains

f av
i (ω)f av

i
�(ω) =

(
2

ωτav
sin

(ωτav

2

))2

, (B5)

in frequency domain. In consequence, PSDs of the time-
averaged signals are reduced in amplitude compared to un-
filtered PSDs for frequencies ω � 1/τav as is shown in
Fig. 10(c).

4. Time delay between channels

The temporal shift of a signal by τdelay,i corresponds to

f del
i (t) = δ(t − τdelay,i),

and thus translates into

f del
i (ω) = exp (iωτdel,i). (B6)
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FIG. 10. Attenuation fif
�
j resulting from various filtering sources as dis-

cussed in Appendix B: (a) parasitic filtering of the position sensing devices
(Eq. (B1)) using the parameters from Table I for the ⊥ direction, (b) different
electric low-pass filters (Eqs. (B3) and (B4)), (c) uniform averaging of signals
over a time window of duration τav (Eq. (B5)), (d) time delay between the two
recorded signals (Eq. (B7)). Positive values of fif

�
j are drawn as solid lines,

negative ones are dashed.

Auto-PSDs thus remain unaffected by time shifts, |fi(ω)|2
= 1, while the cross-PSD are multiplied by a complex factor

f del
i (ω)f del

j

�
(ω) = cos ω
τdeli,j + i sin ω
τdeli,j , (B7)

with relative time delay between the channels


τdeli,j ≡ τdel,i − τdel,j . (B8)

For 
τdeli,j �= 0, cross-PSDs are modified as shown in
Fig. 10(d).
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5. Overall transfer functions

Given the specifications of our signal recording hardware
(Sec. II), time averaging effects as well as temporal delays in
the signal detection are negligible. The overall filter function
for channel i is therefore given by

fi(ω) = f
pf
i (ω)f B8

i (ω), (B9)

accounting for the parasitic filtering of the position sensing
device (Appendix B 1) and for the Butterworth filter of the
amplification device (Appendix B 2); according to Eq. (B1),
the above expression involves two parameters λi and τ i, for
which explicit values are determined in the instrumental cali-
bration in Sec. VII.

APPENDIX C: PERIODOGRAM COVARIANCES

We explicitly derive the periodogram covariances for an
arbitrary number of signals zi(t) recorded over a time window
T, again neglecting leakage effects (cf. Appendix D 1). Ac-
cording to Secs. III B and V, the Fourier components of the
signals

zi(ωn) =
∑

j

Aij (ωn)vj (ωn), (C1)

linearly depend on the stochastic Fourier components vj rep-
resenting thermal forces and instrumental noise, where the
Aij denote complex coefficients resulting from the underly-
ing equations of motion and the signal processing in the in-
strument. For a stationary stochastic process, the real and
imaginary parts of the stochastic Fourier components are as-
sumed to be normal distributed random variables with vanish-
ing mean and with (cross-) correlations

〈Re[vi(ωn)]Re[vj (ωn′ )]〉 = 〈Im[vi(ωn)]Im[vj (ωn′)]〉
= T σ 2

ij (ωn)δnn′ ,

where σ 2
ij denotes the corresponding variance and δnn′ the

Kronecker symbol, meaning that Fourier components corre-
sponding to distinct frequencies are uncorrelated. Real and
imaginary parts of the vi components are independent due to
time reversal symmetry and thus

〈Re[vi(ωn)]Im[vj (ωn′ )]〉 = 0. (C2)

Note that Eq. (C1) is quite general in the sense that it de-
scribes the electric signals in any experimental setup, where
the thermal motion of the compounds is described by lin-
ear integro-differential equations of motion (e.g., Eq. (8)), the
signal processing is linear (Eq. (17)), and instrumental noise
contributing to the signal is additive (Eq. (18)); the number
of stochastic components vi is not restricted. As a result, the
periodograms

Pij (ωn) ≡ zi(ωn)z�
j (ωn)

T
= 1

T

∑
k,l

AikA
�
jlvk(ωn)v�

l (ωn),

are again (complex) random variables, the statistics of which
can be inferred from the properties of the vi components given
above.

In the following, the frequency dependence is implicitly
assumed, though the argument ωn is omitted to keep the
notation simple. Basic algebra and Gaussian statistics yield

〈viv
�
j 〉 = 2T σ 2

ij , (C3)

〈viv
�
j vkv

�
l 〉 = 4T 2

(
σ 2

ij σ
2
kl + σ 2

ilσ
2
jk

)
. (C4)

Real and imaginary parts of a periodogram are given by

Re[Pij ] = 1

2

1

T

∑
k,l

(AikA
�
jlvkv

�
l + A�

ikAjlv
�
kvl),

Im[Pij ] = 1

2i

1

T

∑
k,l

(AikA
�
jlvkv

�
l − A�

ikAjlv
�
kvl).

In the limit T → ∞, their expectation values by definition
(cf. Eqs. (21) and (25)) correspond to the real and imaginary
parts of the corresponding PSDs

〈Re[Pij ]〉 = 2
∑
k,l

Re[AikA
�
jl] σ 2

kl = Re[Sij ], (C5)

〈Im[Pij ]〉 = 2
∑
k,l

Im[AikA
�
jl] σ 2

kl = Im[Sij ]. (C6)

Similarly, making use of the relations in Eq. (C4), higher
moments of real and imaginary parts of the periodograms
can be calculated. Gaussian statistics allow to reformulate the
resulting expressions in terms of real and imaginary parts of
the PSDs yielding covariances

〈Re[Pij ]Re[Pkl]〉 − 〈Re[Pij ]〉〈Re[Pkl]〉

= 1

2
(Re[Sik]Re[Sjl] + Im[Sik]Im[Sjl]

+ Re[Sil]Re[Sjk] + Im[Sil]Im[Sjk]), (C7)

〈Re[Pij ]Im[Pkl]〉 − 〈Re[Pij ]〉〈Im[Pkl]〉

= 1

2
(Re[Sik]Im[Sjl] − Im[Sik]Re[Sjl]

+ Im[Sil]Re[Sjk] − Re[Sil]Im[Sjk]), (C8)

〈Im[Pij ]Im[Pkl]〉 − 〈Im[Pij ]〉〈Im[Pkl]〉

= 1

2
(Re[Sik]Re[Sjl] + Im[Sik]Im[Sjl]

− Re[Sil]Re[Sjk] − Im[Sil]Im[Sjk]). (C9)

Again, these approximations are strictly exact only in the limit
T → ∞. For the case of two detected signals, the variances
(k = i, l = j) resulting from the above expressions are given
and discussed in Sec. VI A; the overall covariance matrix
for the averaged periodograms of two signals is found in
Sec. VI B.

APPENDIX D: DISCRETE FOURIER TRANSFORMS

Consider a continuous signal z(t) of infinite duration,
which is sampled with finite sampling rate fsampl ≡ 1/
t

over a time window of duration T ≡ N
t. Applying a discrete
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Fourier transform (DFT) to z(t) yields N discrete Fourier
components

Z(n) ≡
N−1∑
m=0

z(m
t) ei2πmn/N ≈ z(ωn)


t
, (D1)

where z(ωn) denotes the value of the Fourier transformation
of the original, continuous signal of infinite duration at the
angular frequency ωn ≡ 2πn/(N
t) with n being integer. Due
to the finite time resolution and the overall duration of the
signal, the correspondence between discrete and continuous
Fourier components in Eq. (D1) is only approximate; in
the following, we review the relationship between discrete
and continuous Fourier transformations and point out which
precautions have to be taken when working with DFTs.40

Equation (D1) can be reformulated as

Z(n) =
∫ ∞

−∞
dt Pulse T (t) Comb
t (t) z(t) eiωnt , (D2)

where we defined the functions

Pulse T (t) ≡ �(t + 
t/2)�(−t + T − 
t/2), (D3)

Comb
t (t) ≡
∞∑

m=−∞
δ(t − m
t). (D4)

The discrete Fourier components Z thus correspond to the
continuous Fourier transform of the product of the rectangular
pulse function Pulse T , the Dirac comb function Comb
t and
the continuous and infinite signal z. According to the convo-
lution theorem (Eq. (A3))

Z(n) = (2π )−2 Pulse T ∗ Comb
t ∗ z (ωn), (D5)

involving two convolutions: the first one arises from the finite
window length T and is responsible for spectral leakage of
the DFT, the second one is due to the finite sampling time
interval 
t and causes aliasing; both effects are discussed in
the following.

1. Spectral leakage

The finite window time T causes a convolution with

Pulse T (ω) = 2
sin (ωT/2)

ω
eiω(T −
t)/2, (D6)

a highly oscillating function with side-lobes decaying as 1/ω.
Fourier components around ωn (mainly in a region of width
2π /T) thus contribute to Z(n) defined in Eq. (D1). The ef-
fect of spectral leakage can be reduced by using window
functions,41 which smoothly fade in and out the signal and
thereby reduce the side lobe amplitudes in frequency space
(at the cost of a wider central peak). Spectral leakage causes
prominent artifacts in the DFTs of periodic signals in case of a
mismatch of window time and period of the signal; since ther-
mal PSDs however smoothly depend on frequency, leakage
effects are of minor importance and can be further minimized
by increasing the window length T.

2. Aliasing

The finite sampling interval 
t causes the convolution of
the continuous Fourier transform with

Comb
t (ω) = 2π


t

∞∑
m=−∞

δ

(
ω + m

2π


t

)
. (D7)

According to the sampling theorem, Fourier components with
frequencies |ω| > 2πfNyq ≡ π/
t are mapped onto Fourier
components within the Nyquist interval. In fact, in the limit
of large sample sizes (N → ∞) Eq. (D5) reduces to

Z(n) = 1


t

∞∑
m=−∞

z

(
ωn + m

2π


t

)
≡ 1


t
zal.(ωn), (D8)

the aliased version of the continuous Fourier transform. For
functions which quickly decay beyond the Nyquist interval,
the effect of aliasing is most prominent at its edges (|ω|
� 2πfNyq); aliasing effects and the (mis-)use of anti-aliasing
filters are discussed in detail in Ref. 9.

3. Calculating periodograms via DFT

The cross-PSD of two signals zi and zj is estimated by
calculating the periodogram

Pij (n) ≡ 
t

N
Zi(n)Z�

j (n), (D9)

where Zi and Zj denote the DFTs of zi and zj; in practice, DFTs
of time series are efficiently computed using fast Fourier
transform algorithms. According to Eq. (D5) the expectation
value is

〈Pij (n)〉 = 
t

2π

∫ ∞

−∞
dω Sij (ωn − ω)

1

N

(
sin (Nω
t/2)

sin (ω
t/2)

)2

,

which, using Fejer’s theorem, in the limit of large sample sizes
N, reduces to the aliased PSD defined in Eq. (23)

lim
N→∞

〈Pij (n)〉 =
∞∑

m=−∞
Sij

(
ωn + m

2π


t

)
. (D10)

The double-infinite sum is in our case approximated nu-
merically using upper and lower cutoffs mmax = −mmin = 5,
where cutoff errors are negligible due to the attenuation char-
acteristics of the employed eighth order Butterworth filter (cf.
Sec. II and Appendix B 2).

APPENDIX E: NORMAL DISTRIBUTED VARIABLES ON
LOGARITHMIC SCALES

As discussed in Sec. VI, the values of averaged peri-
odograms P̄ij are normal distributed random variables. The
frequency dependence of periodograms and PSDs is generally
displayed on logarithmic graphs; a short calculation demon-
strates what has to be kept in mind, when interpreting such
graphs.

The PDF for a normal distributed variable x with mean μ

and variance σ 2 is given by

P(x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
,
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and thus random variables x scatter around μ, if a linear axis
is used. However, in a logarithmic plot, the variables shown
are (taking into account the variable’s sign)

y± ≡ log(±x) ⇔ x = ± exp(y±).

This coordinate change affects the form of the PDF, which
have to fulfill

P̃±(y±)|dy±| = P(x)dx.

The PDFs for the variables y± therefore read

P̃±(y±) = P(x)

∣∣∣∣ dx

dy±

∣∣∣∣
= 1√

2πσ 2
exp

(
y± − (± exp(y±) − μ)2

2σ 2

)
.

Note that P is peaked around x* = μ, while the PDFs P̃± are
peaked around

y∗
± = log

(
±μ +

√
μ2 + 4σ 2

2

)
,

with limiting cases (assuming μ positive)

lim
σ→0

exp (y∗
+) = μ, lim

μ→0
exp (y∗

±) = σ.

As long as the statistical uncertainty is much smaller than the
magnitude of the expectation value, random variables accu-
mulate as expected around μ on a logarithmic plot. In the
opposite case, random variables tend to scatter (with vary-
ing sign) around σ . Depending on the ratio of expectation
value and statistical uncertainty, the absolute values of aver-
aged cross-periodograms may therefore reflect the frequency
dependence of the cross-PSD or its statistical uncertainty only
as discussed in Sec. VIII B.
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