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We show in theory, simulations, and experiments that, by applying random metallic nanomeshes, a

broad-band multilayered structure with a 12 nm thick a-Si film as the active layer can absorb 89%

of the total solar energy in the visible range from 400 nm to 700 nm. Such broadness and high

absorption can be attributed to the random scattering introduced by the aperiodic metallic

nanomeshes and the plasmonic-metamaterial design. The broadband and smooth electromagnetic

response, combined with a very high absorption, is desired for solar energy harvesting devices,

making this structure a good candidate for high efficiency photovoltaics with ultra-thin active

layers. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884936]

Since the discovery of the extraordinary optical transmis-

sion,1 the electromagnetic response of periodic arrays of sub-

wavelength holes in metal films and metallic wire networks

have been intensively studied in recent years in the fields of

plasmonics and metamaterials.2–5 A periodic array of holes in

a metallic film allows the external radiation to couple to the

surface plasmon polaritons (SPP), charge density waves prop-

agating along the film. Metal wire-mesh systems, which are

widely used as conducting transparent electrodes and

wavelength-selective filters in different frequency ranges,6–9

can be viewed also as such hole-perforated metal films. As

expected, the array periodicity and the geometry of holes in

these structures play an important role in determining their

optical properties.10 In the scenario of solar energy harvest-

ing, there have been multiple pioneering researches to take

advantage of the metallic wire systems by integrating them

into thin film solar cells.11–13 However, due to the complexity

of fabricating subwavelength periodic structures, the high

cost of these designs has become a main barrier towards com-

mercialization in mass production. In this paper, we show

that, by removing the in-plane long-range order in a metallic

nanomesh and by randomization of the hole shapes, the gen-

erated plasmonic, plasmon polaritonic, or photonic modes

can de-tune and/or de-cohere, leading to a smooth, broad-

band response. Such random metallic nanostructures can be

fabricated in a large scale with low cost and directly inte-

grated into an ultrathin plasmonic-metamaterial absorber

scheme. The plasmonic-metamaterial absorber structure with

only 12 nm thick ultrathin active a-Si layer proves to exhibit

a high absorption of 89% in the total solar energy in the visi-

ble range (400–700 nm).

In periodic arrays (e.g., holes in a metallic film or polar-

izable point-dipoles), plasmonic, polaritonic, or pure

photonic modes can propagate unscattered as a result of the

Bloch theorem, unless the Bragg diffraction prevents their

propagation at the Brillouin zone in the k-space, leading to

gaps in their spectrum (band structure).14,15 Gaps can be gen-

erated also without the help of the Bragg diffraction, by

polaritonic coupling of photons to polarizable charges, which

opens a large gap in the photonic (polaritonic) spectrum of

bulk metals below the plasma frequency.15,16 In this polari-

tonic (or photonic) crystal picture, the spectral response of

the array (e.g., transmission), characterized by multiple max-

ima and minima, corresponds to bands and gaps in the

polaritonic (or photonic) spectrum.14,15 In a random array,

the broken translational symmetry leads to scattering of the

modes as well as to mode localization.17–20 The situation is

analogous to the electronics of crystals transforming into

amorphous solids: gradual deterioration of the long-range

order leads to gradual formation of tails of localized states,

extending from the bands into the gaps. The resulting elec-

tronic spectrum transforms from gapped into gapless. A sim-

ilar situation happens to plasmonic/photonic crystals

gradually losing the long-range order20 and results in the

spectral response becoming increasingly smooth.

To demonstrate this, we compare the optical response of

a periodic (hexagonal) array of circular holes in a gold film

with a random gold nanomesh. Both structures have the

same metal fill factor of 30% (fraction of the surface covered

by metal). The periodic structure was made in a gold film of

50 nm thickness on a sapphire substrate using the nanosphere

lithography,21,22 with the center-to-center nearest neighbor

hole distance of 756 nm and the hole diameter of 663 nm.

The scanning electron microscopy (SEM) micrograph of the

film is shown in Fig. 1(a). To generate the random nano-

mesh, we employed the grain boundary lithography.23,24

65 nm thick SiO2 and 100 nm thick In films were first depos-

ited by magnetron sputtering (ORION-8, AJA international

sputtering system) on a Si wafer and then etched in 20 wt. %
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HNO3 for gap formation. The wafer was then thermal oxi-

dized at 400 �C for 2 h to form In2O3 islands and rinsed in

5 wt. % HF for 12 s, leading to the formation of undercuts.

The random nanomesh is formed in the gaps between In2O3

islands after deposition of 35 nm thick Au by e-beam evapo-

ration. HF was introduced to dissolve the SiO2 and removal

of In2O3 islands, leaving a continuous random Au nanomesh

on the flat silicon surface. The nanomesh was then trans-

ferred to a CaF2 substrate using wedging transfer.25 The

SEM micrograph of the nanomesh is shown in Fig. 1(b). The

metallic coverage was determined to be 31%, by statistically

averaging over a large SEM micrograph. The transmittance

spectra of the periodic structure, shown as a black dotted line

in Fig. 1(c), were obtained at normal incidence with a Perkin

Elmer 950 spectrometer. The corresponding transmittance

(T) spectrum of the random structure is shown in Fig. 1(c) as

a red solid line, obtained at normal incidence with Hitachi

U2001 spectrometer in the wavelength range of

400 nm–1100 nm and with Thermo Scientific iS590 in the

infrared (IR) range. Both spectra have been substrate normal-

ized. The transmission results fully confirm the analysis in

the previous paragraph.

It is clear that the spectrum of the random structure has

fewer spectral features than the one of the periodic array. In

fact, only one feature can be observed on the random array

spectrum at about 520 nm. This is a universal spectral feature

occurring in nanoscopic structures made of gold. It is not

present in a uniform gold film, since the inter-band absorp-

tion (d-p), which occurs in the wavelength range of

250–400 nm, creates the corresponding broad-band reduction

of transmittance below �500 nm, not a narrow minimum at

600 nm.26 Instead, this sharp feature is due to a plasmon

mode excited at sufficiently small nanoscopic geometrical

features of the structures, which provides large momentum

transfer during the photon-electron scattering. For example,

such Mie resonance occurs commonly in sufficiently small

(<50 nm) gold nanoparticles,27–30 and it can be viewed as a

Fabry-Perot like resonance of standing surface plasmon

waves.31,32 At large momentum transfers, the surface plas-

mons are almost not dispersing, with the corresponding fre-

quencies approaching the surface plasmon frequency,31,32

for gold corresponding to the wavelength ksp� 600 nm.33

This feature occurs also in our periodic and random struc-

tures, since both contain large number of small geometrical

confinements/constrictions of the order of 50 nm: narrow

necks between quasi-triangles in Fig. 1(a) and narrow wires

in Fig. 1(b). The additional features in the spectrum of the

periodic sample have been explained in detail elsewhere22

and are due to surface plasmon polaritons excited by grating

effect of the periodic arrangement of holes.1 This mechanism

does not apply to the random nanomeshes, and thus allows

for the smooth, feature-less nature of the spectrum. Both

arrays are quite transparent (�70%), and the differences in

the transmittances are due to slightly different fill factors and

metal thicknesses.

Although random nanomeshes have a rather large metal-

lic coverage (�30% in Fig. 1(b)), they are surprisingly effec-

tive in scattering forward, rather than selectively reflecting

backwards when integrated to thin film structures such as

insulator-metal (IM) layers with a-Si. One example of the

mentioned IM structure consists of 20 nm amorphous silicon

(a-Si) on a 200 nm thick Ag substrate as the back reflector,

deposited by magnetron sputtering. The structure is sche-

matically shown in Fig. 2(a). The dashed blue line in Fig.

2(d) shows the correspondent reflectance (R) spectrum as

measured by the Hitachi U2001 spectrometer: a pronounced

deep minimum (<10%) at about 650 nm, caused by a non-

trivial phase difference between reflected light from the air/

FIG. 1. (a) and (b) are SEM micrographs of the periodic (hexagonal) and

aperiodic Au nanomeshes with the same metal coverage. Scale bars are

500 nm. (c) Transmittance of the periodic (black dotted line) and aperiodic

(red solid line) Au nanomeshes.

FIG. 2. Schematic side views of three multilayer structures: (a) insulator/

metal (IM), (b) metal/insulator/metal (MIM), and (c) aperiodic metallic

mesh/insulator/metal (MeshIM). (d) Reflectance spectra of the three struc-

tures in the visible range. Blue dashed line: 20 nm a-Si/200 nm Ag; red dot-

ted line: 35 nm Ag/20 nm a-Si/200 nm Ag; black solid line: 35 nm aperiodic

Ag mesh/20 nm a-Si/200 nm Ag.
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a-Si interface and the a-Si/Ag interface, as reported in Refs.

34 and 35. In optoelectronic applications, such structures are

often accompanied with a transparent conductive electrode

placed on top of the semiconductor layer. If a continuous

35 nm thick Ag layer is sputtered on the IM sample, a metal-

IM (MIM) structure is formed, schematically shown in Fig.

2(b). Usually, a MIM structure forms a Fabry-Perot cavity,

which is often featured by sharp resonances and used as

selective filters.33 But due to the low transmittance of the

35 nm Ag film and high absorption of a-Si in the visible

range, the corresponding reflectance spectrum, shown as a

red dotted line in Fig. 2(d), shows almost eliminated F-P

action: except for a very shallow, shifted minimum at

�550 nm, the reflectance in the whole range is above 90%.

As depicted in Fig. 1(b), the random Ag nanomeshes cover a

non-negligible 30% of the whole area and have a thickness

of non-negligible 35 nm. If the nanomeshes of the same

thickness (35 nm) are placed on the IM structure (MeshIM

structure, in Fig. 2(c)) by employing the wedging transfer

technique, from the spectra of IM and MIM structures, a

quick guess of the MeshIM reflectance would be around

40% in the visible range. However, the measured reflectance

spectrum (the black solid line in Fig. 2(d)) turns out to ex-

hibit a slightly shifted but even broader and more pro-

nounced minimum than that of the IM structure. This

seemingly contradictive result comes from the broadness and

featurelessness of the random nanomeshes. Though lying out

of the subwavelength limit for the Maxwell-Garnett effective

medium theory,33 the random Ag nanomeshes and the under-

lying a-Si film can be viewed as a single layer of an effective

medium, as suggested in Ref 35. In this picture, the optical

response of the MeshIM structure can be seen as an effective

IM structure, with the “effective a-Si” as the insulator that

governs.

Based on the above discussion, a broad-band metamate-

rial superabsorber could be made using random metallic

nanomeshes, inspired by the structure based on a checker-

board island pattern, whose schematic layout is shown in

Fig. 3(a). This structure has been recently proposed as a basis

for a class of ultra-thin solar cells, and demonstrated by sim-

ulations, requiring a featureless, flat spectral response of the

front electrode.35,36 Since the random nanomeshes offer a

similar response, they have the potential to work as a

replacement of the checkerboard pattern. As proof of concept

for this hypothesis, we have sputtered a 12 nm a-Si film on a

silver coated (200 nm) silicon wafer substrate, followed by

the deposition of a 35 nm thick random Au nanomesh, and

60 nm thick SiO2 film. The layout of the structure is shown

in Fig. 3(b). The structure was prepared using the same tech-

niques mentioned above. The SEM micrograph of this struc-

ture before SiO2 deposition is shown in the inset of Fig. 3(c).

Since the structure is non-transparent, the absorbance (A) is

given by A¼ 1�R and is shown in Fig. 3(c) as a black solid

line. As expected, the absorbance is broad-band and large,

with over 85% in the entire visible domain where the a-Si

interband transitions are most pronounced. In comparison to

the simulated absorbance of the checkerboard island pattern

structure of Ref. 35, shown in Fig. 3(c) as a red dashed line,

the absorbance is only slightly smaller, but just as broad as

in the considered range. Finally, we perform the simulations

of our nanomesh structure by employing the CST

Microwave Studio software package, based on the finite dif-

ference time domain (FDTD) method. The random nano-

mesh pattern in the simulation was modeled directly from a

1500 nm� 1500 nm section of the SEM micrograph, marked

by an orange rectangle in the inset of Fig. 3(c). Dielectric

functions for all materials were taken directly from experi-

mental data.37 The simulation result is shown as a black

dashed line in Fig. 3(c), in good agreement with the corre-

sponding experimental results in the wavelength range of

400–650 nm. For wavelengths above 650 nm, the experimen-

tal absorbance is larger than the simulated one. This discrep-

ancy is due to an insufficient absorption in the modeled

dielectric functions of the metal and possibly a-Si. We point

out that this parameter can vary and depends strongly on a

specific deposition technique, as illustrated by differences in

the experimental results of Refs. 26 and 37.

To estimate the potential for photovoltaic applications,

we have calculated energy absorption partitions in individual

layers of the nanomesh structure, shown as the four lines in

Fig. 4. As can be seen from the blue solid line with circles,

more than 70% of the energy goes into the 12 nm thick a-Si

layer at the maximum around 500 nm. Under solar illumi-

nance of AM1.5 on the earth surface, this spectrum means

57% of the total solar energy from 400 nm to 700 nm is

absorbed by the a-Si layer. As the wavelength increases

towards the bandgap of a-Si around 700 nm, the imaginary

part of the permittivity decreases fast and thus the energy

absorbed in a-Si was overtaken by Au nanomeshes. The

energy dissipation in metallic parts is not favored for solar

FIG. 3. Schematic views of broadband

absorbers based on (a) a checkerboard

structure and (b) aperiodic nanomesh.

(c) Absorptance of structures in the

visible range: red dotted line—check-

erboard simulation; black solid line—

nanomesh experiment; black dashed

line—nanomesh simulation. SEM

micrograph of the Au nanomesh in (b)

can be found in the inset. The scale bar

in the inset of (c) is 2.5 lm.
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cells. Preliminary simulation indicates this problem can be

solved by replacing a-Si with other photovoltaic materials

with a smaller bandgap, such as c-Si and Ge, where absorp-

tion in nanomeshes is much less.

Compared with 250� 300 nm thick a-Si used in com-

mon a-Si solar cells, the nanomesh structure achieves high

absorption with much less material (12 nm vs. 300 nm, only

1/25th). As an estimate, with existing reported conversion ef-

ficiency of 2.5% for 20 nm thick a-Si solar cell and 10.1%

for the best conventional a-Si solar cells,38,39 the same

amount of a-Si could be used to generate 5 times more elec-

tricity in such ultrathin cells than in common cells. In addi-

tion, the connecting metallic nanomesh is proven to be very

conducting, with sheet resistance less than 10 X/�. This cre-

ates the possibility of reducing fabrication costs by removing

the expensive ITO and the full structure such as Fig. 3(b) can

work as a promising platform for a new generation of soft

and flexible solar cells.40

In conclusion, we have demonstrated that a metallic ran-

dom nanomesh has a broad-band and smooth electromag-

netic response and very high transparency, compared with a

periodic structure. Use of the nanomeshes enables a broad-

band solar absorber platform with only 12 nm thick a-Si as

the active layer. The 89% absorption of total solar energy in

the visible range makes such structures an excellent candi-

date for solar energy harvesting.
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