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Using 100 TW laser pulses, we demonstrate that laser-induced nanometric particle generation in air

increases much faster than the beam-averaged incident intensity. This increase is due to a

contribution from the photon bath, which adds up with the previously identified one from the

filaments and becomes dominant above 550 GW/cm2. It appears related to ozone formation via

multiphoton dissociation of the oxygen molecules and demonstrates the critical need for further

increasing the laser energy in view of macroscopic effects in laser-induced condensation. VC 2011
American Institute of Physics. [doi:10.1063/1.3646397]

During the last decades, efforts have been dedicated to

seed clouds with small particles of carbonic ice, AgI, or

salts.1–3 We recently proposed4 an alternative approach rely-

ing on self-guided filaments5–9 generated by ultrashort laser

pulses. Laser filaments result from a dynamic balance between

Kerr self-focusing and defocusing by the self-generated

plasma5–9 and/or negative higher-order Kerr terms.10,11 They

convey a typical intensity of 5� 1013 W/cm2 at kilometer-

range distances,12 generating large amounts of oxidized spe-

cies like O3, NO, and NO2, which subsequently generate

hygroscopic HNO3.13 The latter allows binary HNO3–H2O

condensation well below 100% relative humidity (RH),14 in a

similar manner to the well-known H2SO4–H2O binary

condensation.15–18

However, work up to now was restricted to moderate

laser energies (some hundreds of mJ or less) and powers

(a few TW), which are unable to initiate macroscopic effects

on large atmospheric volumes. Here, we investigate the

effect of a jump by more than one order of magnitude in the

laser energy and power. We show that at such level, the pro-

duction of nanoparticles increases much faster than the

beam-averaged incident laser intensity due to the atmos-

pheric activation not only within the filament volume, but

also in the much wider volume of the photon bath, i.e., the

beam portion surrounding filaments, which conveys a sub-

stantial amount of the beam energy. This result illustrates the

critical need for ultra-high power atmospheric lasers to

induce macroscopic amounts of condensed particles.

Experiments were performed with the DRACO laser of

Forschungszentrum Dresden-Rossendorf, a Ti:Sa chirped

pulse amplification (CPA) chain providing up to 3 J, 100 TW

pulses of 30 fs duration, at a repetition rate of 10 Hz and a

central wavelength of 800 nm. The pulse energy was

adjusted by rotating a half-waveplate associated with a polar-

izer, placed before the grating compressor, while its duration

was controlled by tailoring the pulse using a Dazzler located

at the exit of the pulse stretcher and/or by detuning the gra-

ting compressor. The beam was launched into air as bursts of

several minutes, collimated with a diameter of �10 cm. The

beam-averaged incident intensity was evaluated from the

measured pulse energy, duration, and diameter. The number

of filaments in each experimental condition was character-

ized by single-shot burns on photosensitive paper (Kodak

Linagraph 1895).

After �7.5 m of propagation, up to �900 filaments were

generated.19 From this location, the filamenting beam propa-

gated through an open diffusion chamber (110� 40� 40 cm

inner dimensions)20 filled with ambient air. The temperature

and RH in the chamber were controlled by a heated water

reservoir at its top, and a fluid circulator at a temperature of

�15 �C on its bottom. The RH and temperature were perma-

nently monitored by two independent thermocouples and ca-

pacitance hygrometers, which yielded consistent results

within 0.1%. During the measurements, the RH ranged

within 75%–95%, at a local temperature of 8–12 �C.

The aerosol generation was characterized by a nanopar-

ticle sensor (Grimm Nanocheck 1.320), which counts and

evaluates the median diameter of nanoparticles between 25

and 300 nm. This device was sampling at 2 cm distance from

the laser beam. The size distribution and number density of

larger particles was controlled with an aerosol spectrometer

(Grimm 1.107). Measurement cycles without laser provided

control conditions, while the room background particle con-

centration was monitored outside of the chamber by a second

set of identical devices.

The photon bath contribution to condensation was fur-

ther investigated by recording the production of ozone from

the Helvetera platform, a Ti:Sa CPA chain providing 24 mJ

pulses in 62 fs, centred at 800 nm, at a repetition rate of

100 Hz. Ozone is indeed a key component in the generation

of hygroscopic HNO3 at the root of laser-induced condensa-

tion. The beam, with initial diameter of 2.5 cm, was slightly

focused with an f¼ 3 m lens. The pulses were chirped up to

7.2 ps duration to ensure that no filaments were generated. Aa)Electronic mail: jerome.kasparian@unige.ch.

0003-6951/2011/99(14)/141103/3/$30.00 VC 2011 American Institute of Physics99, 141103-1
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6.5-cm long metal cell of 5 cm diameter, with an air inlet of

7 cm2 on its side and open windows at its two ends (typically

<5 mm diameter, adapted to the beam size), was inserted at

the beam focus, where a beam cross-section of 1.06 mm2

was evaluated from impacts on photosensitive paper. Oppo-

site to the air inlet, the air was continuously pumped through

a polyethylene tube by an ozone analyzer (Horiba APOA-

350 E). When the laser was operating, the ozone concentra-

tions increased by several parts per billion in volume (ppb)

to several tens of ppb above the few-ppb background. How-

ever, these values include a dilution factor of the generated

ozone in our setup, which could not be determined precisely,

so that in the following, ozone generation is discussed in ar-

bitrary units. The intensity and fluence at the cell location

were adjusted by varying the incident energy and the pulse

chirp.

Launching the DRACO 100 TW laser beam into the dif-

fusion chamber results in a steep rise of the nanoparticle den-

sity of 50–60 nm median diameter. Conversely, the

concentration of particles in the 250 nm–32 lm range varies

little, so that laser-induced fragmentation of larger pre-

existing particles or the re-condensation of matter released

by their laser-induced vaporization can only account for

5%–10% of the increase of the nanoparticle concentration of

most of the presented data. This figure never exceeds 30%,

ensuring a net condensation of matter in the process of nano-

particle formation.

Three regimes are observed in the case of Fourier-

limited pulses (Fig. 1). Below �150 GW/cm2, no filaments

are generated at the chamber location, and the nanoparticle

concentration is unaffected by the laser. Above this thresh-

old, the nanoparticle density increases parallel to the filament

number, as expected from a fixed condensation rate in fila-

ments, due to the intensity clamping.21,22 However, above

�500 GW/cm2, the effect of the laser increases faster than

linearly while the filament number saturates due to spatial

constraints.19 These diverging behaviours evidence a sub-

stantial contribution from the photon bath in the high-

intensity regime. Such contribution of the photon bath to a

non-linear process at extreme average incident intensity has

indeed been observed in the case of white-light generation.23

The contribution of the photon bath to laser-induced

condensation is further evidenced by considering the yield of

nanoparticles when increasing the pulse duration at a fixed

fluence (Fig. 1(b)). Substantial particle generation is

observed even for pulses chirped up to 2.3 ps, i.e., for an in-

tensity as low as 10 GW/cm2 preventing filament formation

in the chamber. In this regime, the particle generation

depends on the fluence rather than on the intensity.

Laser-induced condensation therefore appears to stem

from three contributions. The first one originates from the fil-

aments, while the photon bath offers both a non-linear, inten-

sity dependent term and a linear, fluence-driven one at high

fluence and low intensity, i.e., for long pulses. Owing to the

limited number of experimental data points, the precise order

of the non-linear contribution from the photon bath could not

be achieved although it appears to lie between 5 and 8.

Eighth and fifth order processes may respectively be identi-

fied as the ionization of oxygen and its multiphoton dissocia-

tion at the root of ozone production.24,25

The photon bath contribution to condensation is con-

firmed by the observation of ozone generation from filament-

free beams at an intensity as low as 150 GW/cm2. At this

level, a sonometric setup26 detects no ionization of the air.

Ozone generation exhibits the same dual-component depend-

ence on both fluence and intensity as observed for the genera-

tion of nanoparticles in the photon bath of the DRACO laser

beam (Fig. 2). At low intensity, the ozone production is gov-

erned by the incident fluence. Conversely, at high intensity, it

rises non-linearly with the incident intensity, as expected for

multiphoton dissociation of oxygen molecules.24

The fluence-dependent contribution to particle and

ozone production from the photon bath at low intensity may

be due to mid-IR atmospheric photochemistry,27 like the ex-

citation of organic peroxyl radicals (RO2)28 or water-cluster

mediated chemistry.29 These radicals, originating from the

volatile organic compounds present in the atmosphere, sub-

sequently generate hydroxyl (OH) or hydroperoxyl (HO2)

radicals which are known to contribute to ozone formation.

Note that the ppb-levels of ozone detected in the correspond-

ing low-intensity conditions are compatible with this inter-

pretation. Incoherent processes with time constants well

FIG. 1. (Color online) Dependence of

laser-induced condensation on the beam-

average incident intensity at 8–12 �C
and 75%–90% RH. (a) Constant pulse

duration of 30 fs. The solid line extrapo-

lates a linear increase. (b) Constant inci-

dent fluence of 23 mJ/cm2. The black

dashed line displays the filamentation

threshold under the considered

conditions.

FIG. 2. (Color online) Ozone production by non-filamenting ultrashort laser

pulses. The purple dashed line evidences the plateau observed at low inten-

sity, corresponding to the linear, fluence-governed part of the photon bath

contribution. The vertical black dashed line marks the threshold for detecta-

ble ionization.
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beyond the pulse duration, like thermal- or shockwave-

related processes may also contribute. While a detailed study

of these processes active at low intensities is beyond the

scope of the present work, their identification will be crucial

to anticipate the relevance of high-fluence, low-power,

“long” pulses in the picosecond-range and potentially offers

alternative ways to optimize the laser conditions for atmos-

pheric experiments.

From a more general point of view, the efficient conden-

sation induced by the photon bath provides an unexpected

perspective on laser-assisted water vapour condensation over

macroscopic scales. The active volume of the beam includ-

ing the photon bath is typically 103–104 times larger than

that of the filaments only. Such wider activated volume is

favourable to an efficient use of the water vapour available

in the atmosphere for condensing. It therefore demonstrates

the critical need to use the highest possible laser power and

energy available and improves the prospects for macroscopic

effect of laser pulses on precipitation modulation.

As a conclusion, laser-induced nanometric particle gen-

eration occurs well below the filamentation threshold and

increases much faster than the beam-averaged incident inten-

sity due to the contribution of the photon bath, which adds

up to the effect of the filaments. This contribution from the

whole beam volume could offer a perspective to generate

macroscopic effects in laser-induced condensation provided

high energy lasers are used.
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Wöste, and J.-P. Wolf, Nat. Photonics 4, 451 (2010).
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and L. Wöste, Science 301, 61 (2003).
6A. Couairon and A. Mysyrowicz, Phys. Rep. 44, 47 (2007).
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