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Abstract 

For the purpose of preparing TCCs (=transparent and electrical conducting coatings), metallic and ferromagnetic 

nano-additives were dispersed into a transparent varnish and the obtained dispersions were coated on 

transparent plastic substrates. During hardening of the dispersion the magnetic nano-additives were aligned by 

a magnetic field. The resulting coatings have electrical pathways along lines of nano-additive chains and are 

highly transparent in the areas between the lines. Therefore, the electrical conductivity is anisotropic, and it 

depends on the alignment of the nano-additives (i.e. on the distance between the nano-additives within the 

chains and the length of the lines) as well as on the thickness of an oxide and/or solvent shell around the nano-

additives. The transparency depends also on the alignment and here especially on the thickness and the 

distance between the formed lines. The quality of the alignment in turn, depends on the magnetic properties 

and on the size of the particles. We used commercial plastic varnishes, which form electrically isolating (≥ 10
-12

 

S/m) and transparent (about 90 % transparency) coatings, and the following magnetic additives: Co-, Fe-, CoPt3, 

CoPt3@Au- and Fe@Au-nanoparticles as well as CoNi-nanowires. Coatings with Fe@Au-nanoparticles show the 

best results in terms of the electrical conductivity (10
-5

 S/m - 10
-6

 S/m) at transparencies above 70 %. 

Furthermore, in addition to the magnetic nano-additives, transparent additives (Al2O3-particles) and non-

magnetic, but better conducting additives (carbon-nanotubes) were added to the varnish to increase the 

transparency and the electrical conductivity, respectively. 

 

 

Keywords: transparent conductive coatings; magnetic nanoparticles; magnetic nanowires; 
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1. Introduction 

The demand of transparent and electrically conductive coatings (TCCs) is large due to their 

enormous range of applications in numerous industrial fields ranging from microelectronics, 

or medicine to aerospace technology, among others. Admittedly, any application depends 

strongly on the actual value of the transparency and electrical conductivity of these coatings. 

The electrical conductivity can be subdivided into the insulating (≤ 10-11 S/m), antistatic (10-11 

S/m - 10-7 S/m), discharging (10-7 S/m - 10-3 S/m), semiconducting (10-3 S/m- 101 S/m) and 

metallic range (≥ 101 S/m). This subdivision is not sharp and differing limits are found in the 

literature [1]. Antistatic and transparent coatings are for example used on transparent cover 

plates for machinery, where the antistatic behaviour minimises contamination by dust. Here 

the required transparency is not very high. Transparent coatings with discharging capacity 

are used for electromagnetic shielding of mobile phone displays, whereas better conductive 

coatings are used for touch screens and transparent electrodes in solar cells, applications for 

which also the required transparency is high.  

In cases where the requirements for conductivity and transparency are high, indium-tin-

oxide-(=ITO)-coatings are mainly used, although these coatings have some disadvantages. 

The main disadvantage of ITO-coatings is the shortage of tin and especially indium [2]. In 

2009 it had been predicted that the industry will run out of indium in the next 10 to 20 years, 

but in the newer literature - due to newly explored indium ores, indium extracting from by-

products, from residues, slag and tailings and due to reclaiming of ITO targets - it is 

forecasted that the reserves could last for almost 90 years [2-5]. Nevertheless, indium is 

rated to be critical and since a new application of indium in absorber layers of solar panels 

increases the indium demand additionally, the indium market will probably develop more 

narrow [6]. In addition, ITO coatings have small chemical and mechanical resistivity and their 
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fabrication via PVD (physical vapour deposition) techniques is technically not easy, especially 

in the case of big and complicated-shaped parts. Therefore, many research activities are 

focused on finding an alternative or a supplement to ITO coatings [7].  

One approach to reduce the demand of ITO is the use of coatings formed by other thin film 

transparent semiconductors e.g. fluorine-doped tin oxide, antimony-doped tin oxide, 

aluminium-doped zinc oxide or niobium-doped titanium oxide [8-10]. Nevertheless, the 

conductivities and/or the transparencies are generally lower than those for ITO coatings and 

especially antimony-doped tin oxide is not a reasonable alternative for ITO, since antimony is 

rated as even more critical than indium [6]. Another approach is the use of ICPs (intrinsic 

conducting polymers) for the preparation of TCCs, but ICPs are not stable and ICP-based 

coatings show poor transparencies [11,12]. An interesting approach to overcome this 

problem is the use of a non-conducting polymer-foil in which electrical conductivity is 

induced via the formation of carbon clusters by an excimer-laser [13].  

Other TCCs are formed by cross-linking or drying a solvent (e.g. a transparent plastic varnish) 

with conducting additives. Conducting additives can be metallic nanoparticles, metallic 

nanowires or carbon nanotubes (CNTs). To obtain good electrical conductivity the conducting 

particles have to form pathways through the isolating matrix of the coating. This is the case, 

when an alignment of the particles can be adjusted with enough particles in contact with 

each other. The corresponding particle concentration (and the specific alignment) is called 

the percolation limit (fig. 1a). Since most of the conducting particles are black due to light 

absorption by free electrons the transparency of such a coating is low [14,15]. The use of 

nanowires as additives has the advantage that an electrically connected network of 

nanowires can be formed at lower concentration than in the case of isotropic nanoparticles 

(fig. 1b). Therefore, good results have been reported for silver nanowires [16,17] and CNTs 

[18-20] as additives. Moreover, nearly transparent ITO- or ICP-nanoparticles were also used 
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as additives in a plastic varnish to enhance the electrical conductivity without diminishing 

the transparency significantly. Hereby, coatings with a sufficient conductivity for antistatic 

behaviour have been prepared [21]. Higher conductivities cannot be reached with such 

systems and the ITO varnish also has the disadvantage that it still requires the use of indium. 

Networks of CNTs films as well as graphene films (e.g. prepared by chemical vapour 

deposition) attract much interest recently and may help to develop transparent conductive 

coatings [22,23]. A possible alternative is also the formation of self-assembled or printed 

silver arrays in a coating [24,25].    

Beside the aforementioned approaches, combinations of them have also been developed, 

e.g. using antimony-doped tin oxide with CNTs additives [26]. It should finally be noted that 

there are also activities to develop recycling strategies for ITO coatings [27].  

In spite of all these research activities, the main limitation for the use of such materials 

remains that most of the coatings with higher conductivity show reduced transparency and 

vice versa. In the work described here another approach was tested, i.e. the use of magnetic 

nanomaterials as conducting additives within a transparent plastic varnish. The magnetic 

nano-additives have the advantage that they can be aligned by an external magnetic field 

during the coating process of the varnish [28]. Thereby the conducting additives form lines of 

electrically connected chains of particles within the coating, while large spaces between the 

lines present high transparency (fig. 1c).  

Therefore, good electrical conductivity might be achieved at concentrations below the 

percolation limit and correspondingly high transparency of the coatings might be obtained. 

Additionally, the resulting coatings will show anisotropic electric conductivity and could 

consequently be used for other applications like directional sensors, where transparency is 

important. These transparent and conductive coatings might also have the advantages of all 

coatings prepared with a plastic varnish: they can easily be prepared (e.g. spraying, printing 
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or flooding) and the components are inexpensive and not resource-critical, at least as long as 

the nano-additives do not complicate the coating process and do not increase the price and 

the criticality considerable.  

Therefore, in the work presented here, we prepared coatings on the basis of a transparent 

plastic varnish and different magnetic nano-additives. We used different concentrations of 

the particular additive and measured the electrical conductivity and transparency of the 

coatings. Moreover, coatings with additional transparent particles (Al2O3) or with additional 

conducting particles (carbon nanotubes) were prepared. To understand the reasons for the 

obtained electrical conductivity and transparency, the microstructures of all coatings (mainly 

the alignment of the nanoparticles and the composition of them) were also studied. 

Furthermore, the magnetic properties of the magnetic nano-additives within the coatings 

were measured.  

 

2. Materials and Methods  

2.1 Materials  

Coatings that can replace ITO-based coatings should be inexpensive, the components should 

not be resource-critical and easily available. Therefore we used commercial varnishes, 

commercial dispersing agents and nano-additives that are already prepared in large volumes 

or for which the chemical synthesis can easily be up-scaled. 

 

2.1.1 Varnishes 

The requirements on the varnish are that it has to form a transparent coating and that the 

nanoparticles form a stable dispersion. In addition, there must be one step during the 
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coating process of this varnish, which can be modified in such manner that the magnetic 

nano-additives can form a stable alignment within an external magnetic field here.  

Two commercial varnishes were used. The first one was a thermosetting polysiloxane varnish 

(PHC587 from Momentive Performance Materials, Germany). The binder material is a silica 

ester and a mixture of methanol, butanol and isopropanol (2:3:5) was used as solvent. It 

cross-links at a temperature of 130 °C (30 min. heating) and forms scratch-, temperature-, 

UV- and chemical-resistant coatings. The magnetic field was applied during this cross-linking 

process to achieve alignment of the nanoparticles. 

Alternatively, the acrylic resin varnish (ABRASIL FAP-30-MP1 from T_O_P Oberflaechen, 

Germany) with a mixture of 1-Methoxy-2-propanol, 2-Methoxy-1-propanol and 2-

Methylpropan-1-ol as solvent was used. It cross-links by UV-radiation after drying at room 

temperature for 30 up to 60 minutes. The magnetic field was applied during this drying 

process to achieve stable alignments of the nanoparticles. After the cross-linking scratch-, 

temperature-, UV- and chemical-resistant coatings were formed.  

The disadvantages of both varnishes are a high content of water (a few Vol%), which can 

support the oxidation of oxidation-sensitive nanoparticles, and that they form coatings with 

very low electrical conductivity (≥ 10-12 S/m).  

 

2.1.2 Magnetic Nano-Additives 

The magnetic nano-additives should have a high electrical conductivity, they should form 

stable dispersions within the varnish and they have to be ferromagnetic and relatively stable 

against oxidation. Accordingly, commercial Co-nanoparticles with a mean diameter of 28 nm 

and Fe-nanoparticles with a mean diameter of 25 nm (both from IOLITEC, Germany) were 

used. We also worked with passivated Fe-nanoparticles (ø = 35 nm, oxide shell: 4 nm), 

synthesized from the gas-phase by thermal decomposition of Fe(CO)5 in a hot wall reactor 
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and a subsequent passivation process [29,30]. We marked these as Fe(p) within the figures. 

The commercial Fe-nanoparticles react in air explosively with oxygen, whereas the 

passivated Fe-nanoparticles are stable under the same conditions. 

Additionally, we used chemically synthesized and also passivated CoNi-nanowires [ø ≈ (5-8) 

nm, length = (30-50) nm, oxide shell ≈ 2 nm] [31,32].   

Also, nanoparticles stabilised against oxidation by precious metals were used. These were 

chemically synthesised CoPt3- [33] and CoPt3@Au-nanoparticles (which were prepared 

similar to FePt@Au-nanoparticles [34]) and Fe@Au-nanoparticles formed by a laser ablation 

process within a solvent [35-37]. 

 

2.1.3 Further Additives 

In additional experiments, transparent non-conducting Al2O3 particles (marked as “transp. 

additive” within the figures, particle sizes approximately ≤ 1 µm) were added in addition to 

the magnetic nanoparticles to increase the transparency of the formed coatings. Their 

concentration within the dispersions was 10 g/L.  

Furthermore, high-conductive additives like carbon nanotubes (CNTs) were used additionally 

to the magnetic nanoparticles to increase the conductivity of the coatings.  We used multi-

wall CNTs [MWCNT with a diameter < 10 nm and a length of (5-15) µm, from IOLITEC, 

Germany]. The concentration of this CNTs additive was 1 g/L. 

 

2.1.4 Dispersing agents  

As dispersing agents the following compounds were used: sodium-dodecylsulfate, oleic acid, 

lauric acid and Dysperbyk 107. In addition, different ionic liquids of the company IOLITEC 

were used. IOLITEC performed the dispersion experiments. The ionic liquids (IL) consist of 

imidazolium, pyrrolidinium, phosphonium and ammonium-based cations and standard 
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anions from Iolitec’s portfolio (trademark symboles: IOLIDispers®0349-04, IOLIDispers®0349-

10, IOLIDispers®0349-18 and IOLIDispers®0349-20). These cations were differently 

substituted with C2-C18 or longer alkyl side chains and/or contained additional functional 

groups. 

 

2.1.5 Substrates 

For the coatings prepared with the polysiloxane varnish polycarbonate and for the coatings 

prepared with acrylic resin varnish, acrylic glass (polymethylmethacrylat, PMMA) was used 

as substrate. For most of the experiments the substrates had dimensions of 2.5 cm x 2.5 cm x 

3 mm. For up-scaling experiments 10 cm x 10 cm x 3 mm pieces were utilized.  

 

2.2 Preparation Methods 

2.2.1 Preparation of Dispersions 

Firstly, the particular plastic varnish was pipetted within a glass envelope and the particular 

dispersing agent was weighed into the varnish. This mixture was flushed with Argon for 10 

minutes to remove the oxygen. The magnetic nano-additives were then added to the mixture 

within a glove box (with nitrogen atmosphere). We prepared dispersions with nano-additive 

concentrations between 0.5 g/L and 60 g/L (always with similar concentrations of the 

dispersion agent). In some cases we also added a transparent additive (10 g/L) or CNTs (1 

g/L) at this point. 

To enable homogeneous dispersion, most of the mixtures were then physically dispersed in 

an ultra-sonic bath (SONOREX RK-100, Bandelin Electronic GmbH, Germany) for half an hour. 

Directly before the coating process the dispersion was also treated by an ultra-sonic tip 

(Branson Ultrasonic, USA) for 30 seconds. Other physical dispersion experiments were done 
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with a commercial micro wave (AFK, Germany) and a rotation shaking bath (Unimax 1010, 

Heidolph Instruments, Germany). 

 

2.2.2 Preparation of Coatings 

The coating process used here is similar to the flow coating process. The dispersions were 

“flooded” onto the substrate by an Eppendorf pipette. The volume used depended on the 

target thickness of the coating. Most of the coatings were prepared with acrylic resin varnish 

dispersions onto PMMA substrates with an area of 2.5 cm x 2.5 cm and a thickness of about 

(10 ± 2) µm. Therefore, an aliquot of the dispersion of 100 µL was used. However, coatings 

with thicknesses in a wide range between 4 µm and 200 µm were also prepared. The exact 

thickness of the coating depends not only on the volume used, but also on the solid content 

of the dispersion. In addition, the thickness was not completely homogenous within one 

coating, but varied in the range of a few µm. In pre-experiments the coating thicknesses 

were determined by a touch profilometer (Mahr Perthometer, Germany) at different points 

of the coatings and the results of these pre-experiments are the basis for the indicated 

thickness values.   

After flooding, the wet coating was placed between the pole shoes of an electromagnet 

(Bruker, Germany) and the magnetic field was set to 0.8 Tesla.  

In the case of dispersions with polysiloxane varnish an IR lamp was used to cure the samples 

at about 130 °C for 30 minutes within the magnetic field applied. In the case of dispersions 

with the acrylic resin varnish the coatings were only dried within the magnetic field for 40 

minutes at room temperature and afterwards cross-linked by UV (ultra-violet) radiation 

within an UV dryer (Beltron GmbH, Germany).   
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2.3 Characterisation Methods 

2.3.1 Optical Appearance and Transparency of the Coatings 

The optical appearance of the coatings and the length of the formed nano-additive lines 

were investigated and documented with an optical microscope. The transparency was 

measured by the spectrophotometer CM-5 (Konica Minolta, Germany) with the illuminant D 

65, at 10°, in the wavelength range between 360 and 740 nm. To compare the transparency 

of different samples we always used the value at 660 nm.   

 

2.3.2 SEM (scanning electron microscopy) investigations 

The alignment of the nano-additives within the coatings was investigated by a high-

resolution scanning field emission electron microscope (Gemini Supra 55 VP, Zeiss GmbH, 

Germany). In order to do this, the surface of the coatings had to be removed by an ion beam 

(BAL-TEC, Res 101, Germany), since no nano-additives were found directly on the surface. 

 

2.3.3 TEM (transmission electron microscopy) investigations 

The morphology of the nanoparticles and nanowires as well as their alignment within the 

coatings were investigated by transmission electron microscopy with a Tecnai F30 STwin 

electron microscope (300 kV, field-emission gun, spherical aberration coefficient CS= 1.2 mm. 

STEM (scanning transmission electron microscopy) Z-contrast images were recorded using a 

HAADF (high-angle annular dark field) detector and an aberration corrected Titan80-300 

electron microscope operated at 300 kV. STEM images were acquired using a HAADF 

detector. EDX (energy dispersive X-ray spectroscopy) and EELS (electron energy loss 

spectroscopy) analysis was performed in STEM mode using an EDAX (Si/Li detector) EDX 

detector and a post-column Gatan Imaging Filter, GIF-Tridiem. The elemental distribution and 
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the chemical composition of the nanoparticles, nanowires, core-shell structures was studied 

by elemental mapping using the EDX and/or EELS spectroscopic analysis. 

 

2.3.4 Electrical measurements  

The electrical conductivity of the coatings was anisotropic because of the specific alignment 

of the nano-additives forming chains of conducting particles. Therefore the conductivity in 

the direction of the lines was much higher than those perpendicular to them. The specific 

volume conductivity of the coatings was determined in the direction of the lines by a two-

point method using a Keithley 6430 Sub-Femtoamp SourceMeter (Keithley, Germany). 

Voltages up to 210 V could be set using this device In order to process contacts that allow 

measurements perpendicular to the surface, two 60° trenches using a CNC engraving cutter 

were milled. Thereafter, the trenches were covered with a 100 nm thick gold film by using a 

standard vacuum thermal deposition system (tectra GmbH). To verify our conductivity 

measurements, a second method was used in which a custom tool, consisting of two isolated 

parallel metal (electrodes) blades, was pressed into the film. All measurements were 

performed within a glove box, otherwise, in the case of coatings with high resistances, 

adsorbed water would adulterate the measurements.   

Moreover, the surface conductivity was measured by using an annular electrode with a 

precision resistance system set (PRS-801, Prostat; USA).  

 

2.3.5 XRD (X-ray diffraction) measurements 

The composition, possible oxidation and the crystallite sizes of the nano -particles and -wires 

under air and within the coatings were determined by 2theta-scans (D8 Discover 

diffractometer, Bruker axs, Germany). Cu-Kα radiation was used with 40 kV and 40 mA as 

operational conditions and a one-dimensional LynxEye-Detector (Bruker axs) for the analysis. 
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2.3.6 Magnetic hysteresis measurements 

The magnetic properties (M vs. B) of the magnetic nano-additives in air and within the 

coatings were measured by a vibrating sample magnetometer (Oxford, England) at room 

temperature. The diamagnetic contribution of the sample holder was measured separately 

and subtracted from each measurement. To reduce magnetic interactions between the 

nanoparticles, coatings with small concentrations (up to maximum 5 g/L) were prepared and 

the particles were not aligned within a magnetic field for these measurements. 

 

3. Results and Discussion 

3.1 Quality of the Dispersions 

All dispersions with the nano-additives appeared black to the naked eye, due to the 

absorption of the black nano-additives. However, the dispersions looked clear, because light 

scattering was minimal, as to be expected for nanoparticle dispersions [38]. The 

transparency was found to be below 20 % and nearly constant in the visible range 

(approximately 380 nm - 750 nm). Up to concentrations of about 50 g/L or 60 g/L the 

dispersions could be pipetted and coated easily. At higher concentrations, a complete 

dispersing of the nano-additives was not possible anymore. Dispersions with concentrations 

higher than 2 g/L formed a precipitate after about 30 minutes. The proportion of the 

precipitate depends on the particular nano-additive, the dispersing agent and the additive 

concentration. 

The most stable dispersions (even for weeks) were formed with sodium-dodecylsulphate and 

Dyserbyk 107 as dispersing agents. Figure 2 demonstrates this for CoNi-acrylic resin varnish-

dispersions. Unfortunately, sodium-dodecylsulphate has two disadvantages. Besides being 
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very toxic it apparently reacted with the varnish, leading to the formation of very brittle 

coatings. In the case of Co-nanoparticles, stable dispersions could also be prepared using 

oleic acid as stabilizer, but the electrical conductivity of these coatings is smaller (around 

1·10-8 S/m) compared to similar coatings with Dysperbyk 107 (around 3·10-8 S/m). In view of 

this, most of the investigations presented in this work include only Dysperbyk 107 as 

dispersing agent. Besides, the ionic liquids used form very stable dispersions and also 

increase the electrical conductivity compared to coatings with Dysperbyk 107 (see results for 

coatings with CoNi-nanowires in figure 8, marked as “CoNi-IL”). In addition, for the case of 

CoPt3, CoPt3@Au and Fe@Au nanoparticles, stable dispersions were formed even without an 

additional dispersing agent. 

 

In most cases an ultrasonic treatment was used for the physical dispersion of the nano-

additives, but in the case of the CoNi-nanowires, the elongated structures were destroyed 

using this procedure, as shown in figure 3. Moreover, in the case of CNTs as an additional 

additive, agglomerates of these tubes were formed due to the ultrasonic treatment, where 

the sizes of the agglomerates increase with ultra-sonication time. Therefore, other physical 

dispersing methods were tested for these cases. One was the use of a standard household 

microwave at 200 Watt, but the varnish-dispersions coagulate after a few seconds. Another 

approach consisted in the use of a laboratory shaker for several days, but the dispersion 

effect of this method was minimal. Consequently, with CoNi-nanowires as well as with CNTs 

we did not get dispersions of good quality.   

 

3.2 Quality of the Coatings 

Firstly, coatings were prepared with the polysiloxane varnish, but the alignment of the nano-

additives within these coatings were bad, especially using the very small nanoparticles (i.e. 
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CoPt3 with sizes of about 9 nm). Here the nano-additives had to be aligned in the magnetic 

field during the cross-linking process at 130 °C. We assume that at this high temperature the 

magnetisation of the particles is too low and the Brownian forces are too strong, impeding 

the alignment of the nano-additives [39]. Therefore, the UV-hardening system acrylic resin 

varnish was chosen for further coatings, since here the nano-additives aligned during the 

drying process step at room temperature. For each nano-additive acrylic resin-based coatings 

in the concentration range between 1 g/L and 60 g/L were prepared. 

In the following the results of the transparency measurements and the resistance 

measurements for these acrylic resin-based coatings are described and discussed on the 

basis of the characteristics of the specific coatings with different nano-additives.  

 

3.2.1 Transparency of the Coatings 

The transparency of the coatings strongly increased due to the alignment of the nano-

additives within a magnetic field, as demonstrated in figure 4. Even without an external 

magnetic field the magnetic nanoparticles form aggregates due to the interacting of their 

magnetic moments (fig. 4b), but in the presence of the magnetic field the particles form 

chains (fig. 4c), as also found by Townsend et al. and theoretically described by de Gennes 

and Pincus [40,41]. Thereby, the transparency depends on the strength of the applied 

magnetic field. Good transparencies were reached at a magnetic field of ≥ 0.8 Tesla. 

Consequently, all further coatings were prepared at 0.8 Tesla.  

 

The transparency depends also on the concentration of the additive (fig. 5) and on the 

particular additive (fig. 6). In figure 5a the transparency of acrylic resin-based coatings with 

different concentrations of Fe@Au-nanoparticles as a function of the wavelength is shown. 

We found for all prepared coatings with nano-additive a similar behaviour with a nearly 
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constant transparency value in the visible wavelength range (about 380 nm and 750 nm). 

Naturally, a strong dependence of the transparency on the concentration of the nano-

additive was observed (this concentration dependence is visible to the naked eye in figure 

5b). Figure 6a shows the transparency (at 660 nm) as a function of the concentration of the 

nano-additive for most of the prepared coatings. The coatings with Co- and Fe@Au-

nanoparticles showed very high transparencies, while those with CoPt3@Au-nanoparticles 

showed only small ones. Additional transparent additives increased the transparency, e.g. a 

coating with 10 g/L CoNi-nano-additive had a transparency of about 45 %, whereas a coating 

with 10 g/L CoNi-nano-additive and the transparent additive (10 g/L Al2O3) had a 

transparency of about 80 % (black diamond in fig. 6a). In contrast, additional CNTs decreased 

the transparency: for example, a coating with 0.5 g/L CoPt3@Au had a transparency of about 

70 % and a coating with 0.5 g/L CoPt3@Au and 1 g/L multi-walled CNTs had only one of 

about 45 % (black star in figure 6a).  

In figure 6b the dependence of the transparency on the particular nano-additive is shown for 

some selected coatings. From these images and also in the images of figure 5b it can be seen 

that the transparency within one coating is not completely homogeneous, most probably as 

a result of an inhomogeneous thickness of the coatings. 

 

3.2.2 Electrical Conductivity of the Coatings 

Figure 7 illustrates the results for the specific conductivity as a function of the nano-additive 

concentration. As to be expected the conductivity increases with increasing concentration of 

the magnetic and metallic nano-additive. Most of the prepared coatings have antistatic 

conductivities, which is 3 to 5 orders of magnitude higher than that of a pure acrylic resin-

based coating. The best electrical conductivities (within the semiconducting range) were 

obtained when the magnetic nano-additives (e.g. CoPt3@Au) were used together with CNTs. 
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Nevertheless, the latter are responsible for a significant decrease in the transparency of the 

final composite. Good conductivities (within the discharging range) were also found for 

coatings with Fe@Au-nanoparticles.  

However, the surface conductivity of all prepared coatings is only about 1 order of 

magnitude higher than that of a pure acrylic resin-based coating. The reason for this was 

found by SEM investigations: the nano-additives are not directly located at the surface of the 

coatings and therefore the surface is only formed by an acrylic resin varnish film. 

 

3.2.3 Transparency versus Electrical Conductivity 

A combination of high electrical conductivity with high transparency is extremely important 

for the use of these materials in the applications envisaged. Unfortunately, with increasing 

concentration of the additive the electrical conductivity increases while the transparency 

decreases. Figure 8 shows the transparency of prepared coatings versus their specific 

conductivities. Many of the coatings have good transparencies (between 70 and 85 %) and 

also electrical conductivities in the antistatic range (more than 10-9 S/m) as illustrated in 

figure 8. The coatings with Fe@Au-nanoparticles show the best values, with conductivities in 

the discharging range (between 10-7 S/m and 10-5 S/m) and up to 78 % transparency. It can 

also be seen that coatings with ionic liquids as dispersing agent have a better transparency 

and conductivity than those in which Dysperbyk 107 has been used (compare results for 

CoNi and CoNi-IL in figure 8). 

 

3.2.4 Characteristics of the Coatings 

Coatings with Co-Nanoparticles 

Figures 6a, 7 and 8 show that a coating with 4 g/L Co-nanoparticles (violet point in the 

figures) has a transparency of about 88 % and an electrical conductivity in the antistatic 
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range (between 10-8 S/m and 10-9 S/m). In figure 6b a photograph of the coating is shown, 

exemplifying the extremely high transparency of the composite. Figures 9a and 9b show the 

alignment of the nanoparticles in more detail. Accordingly, the nanoparticles (or more 

precisely, agglomerates of the nanoparticles) are aligned within long lines with a thickness of 

about 10 µm. Thereby, some of the lines run completely through the coating. The spaces 

between lines range between 50 µm and 100 µm. In the SEM image in figure 9b it can be 

seen that the nanoparticles are aligned in chains very close to each other and probably in 

direct contact. Such findings (lines running throughout the sample and very close packed 

particles) could account for an even better electrical conductivity than the antistatic one 

measured here. 

 

However, XRD measurements (not shown) and TEM images (fig. 10) show that the Co-

nanoparticles within the coating have an oxide shell of about 10 nm. The size of this oxide-

shell was investigated under atmospheric conditions and within the coatings as a function of 

time (up to several weeks). These investigations show that the oxide shell remains 

unchanged even in air.  

 

Magnetic measurements confirm the existence of the oxide shell, since the saturation mass 

magnetisation of the Co-nanoparticles within the coating is reduced by 37 % [MS(nanoCo-

varnish) = (105 ± 1 ) A∙m2∙kg-1] if compared to that of the bulk [MS(Co) = 166 A∙m2∙kg-1].  

We conclude that due to the oxide-shell the electrical conductivity is reduced. Co-

nanoparticles free of an oxide-shell would give better conductivities in the coating, but this 

cannot be obtained within such coatings, as the varnish has a high concentration of water, 

and the coatings are permeable to oxygen.  

 



19 
 

Coatings with Fe-Nanoparticles 

Both types of Fe-nanoparticles behave similarly within the coatings as can be seen in the 

photographs of coatings with both types of Fe-nanoparticles in figure 6b. Figure 11 shows 

the alignment of passivated Fe-nanoparticles (the results for the commercial Fe-

nanoparticles are nearly identical) in more detail. The Fe nanoparticles form very long lines 

of interconnected particles, which run completely through the coating. Large spacings (50 - 

500 µm) between the lines are observable. Moreover they present thicknesses between 20 

µm and 50 µm, even at low concentrations (1 g/L)]. As a consequence, the transparency of 

the coatings with Fe particles is lower than that obtained with the Co particles (fig. 6a). 

 

XRD investigations show that the commercial Fe-nanoparticles form a thicker oxide shell 

within the coating (about 12 nm thickness) compared to the originally passivated Fe-

nanoparticles (about 6 nm thickness) (fig. 12).  

 

The magnetic measurements confirm the different thicknesses of the oxide shells. The 

saturation mass magnetisation of the coatings with passivated Fe-nanoparticles is only 

reduced by 24 % [MS(nanoFepass-varnish) = (165 ± 2 ) A∙m2∙kg-1], whereas the saturation 

magnetisation of the coatings with Fe-nanoparticles from IOLITEC is reduced by 29 % 

[MS(nanoFe-varnish) = (155 ± 5 ) A∙m2∙kg-1] compared to the bulk value [MS(Fe) = 217 

A∙m2∙kg-1].  

 

According to the thinner oxide shell, coatings with passivated Fe-nanoparticles have a slightly 

better electrical conductivity than coatings with the commercial Fe-nanoparticles (fig. 7). 

Nevertheless, all coatings with Fe-nanoparticles have conductivities in the antistatic range. 
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Coatings with CoNi-Nanowires 

As already shown in figures 3a and 3b the CoNi-nanowires are destroyed within the coatings, 

probably due to the ultra-sonic treatment. Therefore, we tried to disperse the CoNi-

nanowires by microwaves or with the help of a shaking bath, but without success (see 

chapter 3.1).  

However, even though the CoNi-nanowires were broken, the pieces of these nanowires could 

be aligned by a magnetic field, resulting in coatings with good transparencies (figs. 6a and 

6b) and even better electrical conductivities than the coatings with Fe-nanoparticles, but still 

within the antistatic range (fig. 7).  

The aligned lines were thinner (≤ 5 µm) and closer together (spacings around 10 µm) than 

the lines formed by Co- and Fe-nanoparticles. Furthermore, it was not clear, whether these 

lines were running completely through the coatings and whether the particles were very 

close together (fig. 13).   

 

Magnetic measurements show that the saturation magnetisation of the CoNi pieces within 

the coatings is reduced by 38 % [MS(nanoCoNi-varnish) =  (32 ± 1 ) A∙m2∙kg-1] compared to as-

prepared nanowires [MS(nanoCoNias-prepared) =  (52 ± 1 ) A∙m2∙kg-1]. X-ray investigations 

exclude the formation of an oxide-shell of more than 5 nm (the as-prepared nanowires have 

already an oxide-shell of 2 nm), and therefore it can be assumed that a solvent shell formed 

by the dispersing agent exists around the CoNi pieces, reducing their saturation 

magnetisation and influencing the electrical conductivity of the final coatings. This 

assumption is also underlined by the fact that coatings with CoNi and Dysperbyk 107 as 

dispersing agent have lower electrical conductivities than those formed with ionic liquids (fig. 

8).  
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Coatings with CoPt3- and CoPt3@Au-Nanoparticles 

The determination of the concentration of the CoPt3- and CoPt3@Au-nanoparticles could 

only be done by a very inaccurate differential weighing because of an unknown loss of 

particles during the post-synthetic cleaning steps and an unknown weight of the surfactant 

shell. Therefore, the concentration values are not very precise and a comparison of the 

transparency and electrical conductivity values with those of other coatings is difficult. Figure 

6a shows photographs of coatings with CoPt3- and the CoPt3@Au-nanoparticles (both with 

concentrations of about “4 g/L”), and figure 14 shows the alignment of CoPt3@Au-

nanoparticles in a coating with “1 g/L”. Optical micrographs and SEM images of the two 

different coatings with CoPt3-nanoparticles look very similar. Both types of nanoparticles 

form short and very thin (≤ 1 µm) lines within an applied magnetic field. These lines are 

obviously not running completely through the coatings, and they are very close together 

(distances ≤ 10 µm) (fig. 14a). SEM investigations show a relatively close packing of the 

nanoparticles within these lines (fig. 14b) and that the nanoparticles are very small, with 

sizes of approximately 10 nm.  

 

In XRD investigations only reflections of CoPt3 (and also Au in the case of coatings with 

CoPt3@Au-nanoparticles) could be observed, excluding the presence of a well-crystallised 

oxide phase. The crystal sizes of the nanoparticles, calculated from the full width at half 

maximum are in good agreement with results of the SEM investigations (about 10 nm).   

Since the concentration values are very inaccurate, the saturation magnetisations, calculated 

from the hysteresis curves, are also very inaccurate and not specified here. Nevertheless, the 

magnetic measurements allow us to assume that the saturation magnetisations of the CoPt3- 

and CoPt3@Au-nanoparticles within the coatings are below the value of the bulk CoPt3 

[MS(CoPt3) =  18.2 A∙m2∙kg-1]. 
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The transparency and the electrical conductivity of coatings with CoPt3- and with CoPt3@Au-

nanoparticles are very different (figs. 6-8). This divergence may come from the fact that the 

concentration values cannot be accurately measured. Probably the concentration values of 

the coatings with CoPt3-nanoparticles are too low and/or the concentration values of the 

coatings with CoPt3@Au-nanoparticles are too high. This assumption is underpinned by the 

similar dependence between electrical conductivity and transparency for coatings with 

CoPt3- and with CoPt3@Au-nanoparticles presented in figure 8.  

Anyway, coatings with CoPt3- and with CoPt3@Au-nanoparticles have antistatic 

conductivities in the same range as coatings with Fe-nanoparticles and with similar 

transparency values. Therefore, the values of the electrical conductivity and the transparency 

are much worse than what could be expected due to the absence of an oxide shell. The poor 

electrical conductivity of these composites may come from two different sources: the 

alignment only in short lines and the presence of the surfactant shell (about 2 nm thickness), 

which is necessary to control particle size and colloidal stability throughout the preparation. 

 

Coatings with Fe@Au-Nanoparticles 

The coatings with Fe@Au-nanoparticles showed good transparency (70 – 80 %) even for 

coatings with relatively high nanoparticle concentrations (up to 6 g/L, figs. 5-8).  

The nanoparticles formed very thin (≤ 1 µm) lines in the magnetic field (fig. 15a) that ran 

throughout the entire sample and were spaced at distances of about 10 µm. SEM 

investigations showed that the lines were formed by nanoparticles with a very wide size 

distribution (10 nm – 300 nm) and that densely packed nanoparticles were obtained through 

the entire length of the lines (fig. 15b). TEM investigations show also the iron-core gold-shell 

structure of the Fe@Au-nanoparticles (fig. 16a), but gold-core and iron-shell Au@Fe-

nanoparticles (fig. 16c) as well as nanoparticles of Au-Fe-alloys were also found in the 
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coatings (fig. 16b). The fraction of Fe@Au-nanoparticles could be estimated to be about 50 % 

of the total. 

 

The saturation mass magnetisation (16.8 A∙m2∙kg-1) determined from the hysteresis 

measurements, (fig. 17) of this nano-additive within the coatings was about 37% of bulk 

AuFe and only about 8 %  of metallic bcc Fe (218 A∙m2∙kg-1 at 295 K). The reason for this 

discrepancy is probably the fraction of Au@Fe- and Au-Fe-alloy-nanoparticles and a possible 

formation of oxide in these particles. We note that oxide shells thinner than 5 nm are not 

detectable in X-ray investigations.            

Due to the high packing density, the presence of some big and therefore good conducting 

particles (about 300 nm size) and the absence of a solvent shell in the case of the Fe@Au-

nanoparticles, very good electrical conductivities can be expected for coatings containing this 

nano-additive. And indeed, the electrical conductivities of these coatings were in the 

discharging range and 2 to 3 orders of magnitude higher than the conductivities of the 

coatings with the other nano-additives (figs. 7 and 8).  

 

Coatings with CNTs and Transparent Additives 

For coatings with additional transparent particles (Al2O3-particles) we found a higher 

transparency, but accompanied with the reduction of the electrical conductivity (figs. 6-8). 

Coatings with additional conductive additives (i.e. CNTs) and magnetic nano-additives show 

better electrical conductivities (figs. 7-8) than the other coatings with only magnetic nano-

additives, but with much worse transparencies (figs. 6a and 8). 
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4. Conclusions 

All used magnetic nano-additives formed lines of chains of aggregates of the nano-additives 

within the coatings. From the comparison between the magnetic measurements and the 

alignment of the different magnetic-additives within the coatings we conclude: Magnetic 

nano-additives with high saturation magnetisation values (i.e. Co and Fe) formed thick lines 

(10 µm – 50 µm) with large distances between these lines (50 µm – 500 µm) within the 

coatings. Many of these lines were found to be extended completely through the coatings. In 

contrast, magnetic nano-additives with small saturation magnetisation values (i.e. CoNi, 

CoPt3, CoPt3@Au and Fe@Au) formed thin lines (≤ 5 µm) with small distances between the 

lines (≤ 10 µm). In the case of CoPt3- CoPt3@Au-nanoparticles, which had the smallest 

saturation magnetisation, the formed chains were not running completely through the 

coatings. The distance between the nano-additives depends on the size of the saturation 

magnetisation (higher values deliver a closer packing), but as well on the size distribution of 

the nano-additives and on the existence of a solvent shell. Our results show that nano-

additives with a wide size distribution can easily form lines with densely packed 

nanoparticles (i.e. Fe@Au). On the other hand, those nano-additives that present a solvent 

shell cannot align very close to each other (i.e. CoPt3, CoPt3@Au, CoNi). 

The transparency of the coatings depends on the particular alignment. Lines with thicknesses 

of 10 µm to 50 µm are visible by the naked eye, whereas thinner lines downgrade the 

transparency only when their distances are below approximately 10 µm. Also the electrical 

conductivity depends on the particular alignment (probably especially on the fraction of lines 

that expand through the entire sample), but also strongly on the existence or absence of an 

oxide shell.  
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The optimum for transparency and electrical conductivity was found for coatings with 

Fe@Au-nanoparticles. Obviously, the relatively small saturation magnetisation, the wide size 

distribution and the absence of a solvent shell result in an ideal alignment of the 

nanoparticles. The absence of an oxide-shell around the Fe@Au-nanoparticles and the 

presence of big nanoparticles (around 300 nm) also contribute to the good electrical 

conductivity. However, these coatings have only a fraction of approximately 50 % of the 

Fe@Au-nanoparticles since other chemical compositions are also present. Increasing the 

fraction of Fe@Au-nanoparticles should result in an improvement of electrical conductivity 

without affecting the outstanding transparency values.        
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Figure Captions 

Figure 1: Sketch of the formation of electrically conducting pathways of conducting particles 

within an isolating matrix. a) In the case of spherical particles the percolation is reached at 

very high concentrations of the particles. b) In the case of elongated particles the percolation 

can be reached at smaller concentrations. c) In the case of spherical magnetic particles 

conducting pathways can be formed and directed within a magnetic field. d) In the case of 

elongated magnetic particles an alignment along the magnetic field to conducting pathways 

can be also formed, but at lower concentrations than in the case shown in 1c.        
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Figure 2: Dispersions of acrylic resin varnish with CoNi-nanowires (6 g/L) and different 

dispersing agents after ultrasonic treatment for 30 minutes and standing for about 4 hours. 

 

Figure 3: TEM images of a) as-prepared CoNi-nanowires and b) destroyed CoNi-nanowires 

within an acrylic resin-based coating (after ultrasonic treatment). 

 

Figure 4: Photos of dispersions with 4 g/L Co-nanoparticles in acrylic resin varnish on a 

PMMA substrate (with an area of 2.5 cm x 2.5 cm) a) directly after coating and after drying 

for 40 minutes at room temperature b) without a magnetic field and c) within a magnetic 

field. Very thick coatings of 80 µm were prepared for a good clearness. 

 

Figure 5: a) Transparency of acrylic resin-based coatings with different concentrations of 

Fe@Au-nanoparticles. b) Photographs of the corresponding coatings. 

 

Figure 6: a) Transparency (at 660 nm) of acrylic resin-based coatings with different nano-

additives as a function of their concentration. (The lines are only indicating the trend of the 

curve. They do not represent a line fit.) b) Photographs of corresponding coatings with nano-

additive concentrations of about 4 g/L. 

 

Figure 7: Electrical conductivity of acrylic resin-based coatings with different nano-additives 

as a function of their concentration. (The lines are only indicating the trend of the curve. 

They do not represent a line fit.)  

 



32 
 

Figure 8: Electrical conductivity of acrylic resin-based coatings with different nano-additives 

versus the transparency. (The lines are only indicating the trend of the curve. They do not 

represent a line fit.)  

 

Figure 9: a) Light optical microscope image and b) SEM image of an acrylic resin-based 

coating with 4 g/L Co-nanoparticles. 

 

Figure 10: TEM investigations of the oxygen shell of Co-nanoparticles in air.  

 

Figure 11: a) Optical microscope image and b) SEM image of an acrylic resin-based coating 

with 5 g/L passivated Fe-nanoparticles. 

 

Figure 12: XRD theta-2theta-scans of acrylic resin-based coatings with Fe-nanoparticles (red 

curve) and passivated Fe-nanoparticles (black curve). Reflections of cubic iron and magnetite 

are marked. From the line width the crystal sizes of these phases were calculated by the 

fundamental parameter method.  

 

Figure 13: a) Optical microscope image and b) SEM image of an acrylic resin-based coating 

with 4 g/L CoNi-nanoparticles. 

 

Figure 14: a) Light optical microscope and b) SEM and image of an acrylic resin-based coating 

with 1 g/L CoPt3@Au-nanoparticles. 

 

Figure 15: a) Optical microscope and b) SEM image of an acrylic resin-based coating with 2 

g/L Fe@Au-nanoparticles.  
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Figure 16: STEM images and EDX element scans and maps, respectively, of a) an iron-core 

gold-shell, b) a gold-iron-alloy- and c) a gold-core and iron-shell laser-generated 

nanoparticle. 

 

Figure 17: Magnetic hysteresis measurement at room temperature of Fe@Au-nanoparticles 

within an acrylic resin-based coating. 
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