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Rapid mixing implies exponential decay of correlations

Michael J. Kastoryano and Jens Eisert
OMIO Group, Dahlem Center for Complex Quantum Systems, Freie Universitdit Berlin,
14195 Berlin, Germany

(Received 10 May 2013; accepted 12 September 2013; published online 4 October 2013)

‘We provide an analysis of the correlation properties of spin and fermionic systems on
a lattice evolving according to open system dynamics generated by a local primitive
Liouvillian. We show that if the Liouvillian has a spectral gap which is independent of
the system size, then the correlations between local observables decay exponentially
as a function of the distance between their supports. We prove, furthermore, that if
the Log-Sobolev constant is independent of the system size, then the system satisfies
clustering of correlations in the mutual information—a much more stringent form
of correlation decay. As a consequence, in the latter case we get an area law (with
logarithmic corrections) for the mutual information. As a further corollary, we obtain
a stability theorem for local distant perturbations. We also demonstrate that gapped
free-fermionic systems exhibit clustering of correlations in the covariance and in the
mutual information. We conclude with a discussion of the implications of these results
for the classical simulation of open quantum systems with matrix-product operators
and the robust dissipative preparation of topologically ordered states of lattice spin
systems. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822481]

. INTRODUCTION

Recent years have seen enormous progress at the interface between quantum information theory,
condensed matter, and statistical physics. The fundamental formulation of many of our physical
theories describes very completely the behavior of single, or small collections of, objects. But when
many particles act together, there are a number of emergent phenomena which are not encoded in the
fundamental constituents or dynamics in any manifest way. Important examples of these phenomena
are: finite speed of propagation of information, irreversibility, or locality of correlations. Lately, a
number of remarkable results have been obtained which rigorously analyze the consequences of the
locality of interactions of quantum many-body systems described by a Hamiltonian reflecting finite-
ranged interactions. For a long time it has been common folklore in the condensed matter community
that gapped many body systems do not have long range correlations (delocalized excitations). The
absolute difference between the smallest and second smallest eigenvalues of the Hamiltonian remains
fixed as the system size grows. Recently this intuition has been made precise in a number of different
ways for finite dimensional quantum systems. In particular, it has been shown that for a fixed
dimension, the ground state of a gapped local Hamiltonian exhibits clustering of correlations."? An
alternative notion of locality of correlations is related to the amount of correlation that a subsystem
shares with its complement. If these correlations are proportional to the boundary, then the state is
said to satisfy an area law. It has been shown that one dimensional gapped systems, with a not overly
degenerate ground state subspace, satisfy an area law> for the entanglement entropy in the ground
state. In turn, this often allows for an efficient classical description of these quantum states in terms
of matrix-product states.*© It turns out also, that in one dimension, clustering of correlations alone
already implies an area law for pure states.” Rigorous results in two or more dimensions are still
very scarce, with results for free fermionic and bosonic models being an exception.>® Importantly,
it has also been shown that local gapped (frustration-free, local topologically ordered) Hamiltonians
are stable to local perturbations.>”'! Very recently, these stability results have been extended to the
open system setting under appropriate conditions.'?
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In this work, we extend some of the results mentioned previously to a specific class of open
quantum systems (primitive semi-groups), which include as a special case thermal quantum semi-
groups (Davies maps,'® !* see Appendix A). Our work may also be seen as a quantum generalization
of a series of results which analyze the connection between dynamical and static properties of
classical spin systems evolving in time via Glauber dynamics (Metropolis or heat bath).!>-18

In particular, we show how global mixing properties of the semi-group impose strong restrictions
on the types of correlations which can be found in the steady state. The functional methods developed
in Refs. 19 and 20 distinguish between two fundamental convergence behaviors: an asymptotic
convergence rate which decreases with the system size and goes to zero in the thermodynamic limit
(non gapped), and an asymptotic rate which is lower bounded for all system sizes (gapped). We
will focus on the second case, and point out that there are two subclasses in the analysis. The first
(Log-Sobolev constant) allows us to certify that the dissipative system converges in a time of order
log N, where N is the number of sites in the system, whereas the second one (x2 constant) only
allows one to certify that the mixing time is of order N. The main result of this work is a strong
connection between the mixing behavior of rapidly mixing semi-groups of lattice systems, and the
correlations in their steady state. We show that if the semi-group is mixing in the strongest sense
(log N), then the correlations in the stationary state, as measured by the mutual information, decay
exponentially in the distance between observables, whereas if the semi-group mixes in a time (),
then the correlations decay exponentially in the covariance. Mutual information correlation decay
is shown to be much stronger that covariance correlation decay for spin systems. In particular, this
allows us to establish an area law (with logarithmic corrections) in the mutual information. For free-
fermionic systems, there is only one time scale of rapid mixing, in that if the system has a constant
gap, then the correlations decay exponentially in the mutual information. Finally, for the proof of
clustering of correlations in the mutual information for spin systems, we show a stability result for the
stationary state under local Liouvillian perturbations which corroborate the recent results in Ref. 12.
Our results can be seen as a generalization and completion of the sketch presented in Ref. 21, which
first discussed the question of the clustering of correlations due to dissipative Markovian dynamics.
In particular, we provide rigorous tight bounds for the clustering of correlations of stationary states
in the presence of a Liouvillian gap.

Itis worth noting that in the classical setting, a stronger correspondence has been shown; namely
that clustering of correlations implies a Log-Sobolev constant, for suitable boundary conditions.'3~!8
This essentially shows that, within the Glauber dynamics setting, the notions of rapid mixing and
short range correlations are essentially equivalent.

This work is organized as follows: In Sec. I we set the notation for lattice spin systems and
free fermionic models, we also define properties of Liouvillians; in Sec. III we review the basic
mixing properties of primitive semi-groups; in Sec. IV, we define and compare different notions of
clustering of correlations in the open system setting; in Sec. V we state and prove the main results
of this work which prove the relationship between rapid mixing and clustering of correlations; and
finally in Sec. VI we conclude and provide an outlook by discussing the implications of our result
for the robust preparation of topologically ordered states in lattice systems. Throughout, we we will
try to keep the formalism as elementary as possible, focussing on the physical motivations and main
mechanisms underlying the proofs. We will however try to point out whenever generalizations are
possible.

Il. FORMAL SETTING

Throughout, we will consider finite dimensional quantum systems arranged on a lattice. For
clarity of presentation we will consider a square lattice in D < 3 dimensions, but the results presented
here can easily be extended to more general lattice systems. Let A be the collection of lattice sites,
then for any z € A, let H, be the local Hilbert space associated with site z. For some subset A C A
of the lattice, we define the subsystem Hilbert space as

Ha = Q) H.. 1)

z€eA
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The dimension of the entire Hilbert space will be denoted d, while the dimension of the Hilbert space
reduced to subsystem with support on A will be written d4. States are given by density matrices
p, and reduced states are given by the partial trace restricted to a certain subsystem: pq = trac[p],
where A€ is the complement of A. Observables are Hermitian operators f = f' denoted by lower case
roman letters. In a slight abuse of notation and language, we will refer to both the subset of lattice
sites A C A and to the space spanned by the local Hilbert spaces defined on those sited by A. We
also will say that an operator fis supported on A, to mean that f is supported on the Hilbert space
spanned by the lattice sites associated with A.

The (dissipative) dynamics which we consider are described by a quantum dynamical semi-
group, which often accurately approximates weak system environment couplings in the Markovian
limit; as is the case in many quantum optics setups. The Liouvillian (generator) of the semi-group is
given by L(p) := p = i[H, p] + D(p), where

P N
D(P)=Z(Lj,0Lj - E(Lij/)-i-,OLij)) . 2
J
Time evolved states will be written, p, = ¢'“(p), and similarly for observables f; = ¢~ (f), where
L* is the Liouvillian in the Heisenberg picture.
We will say that a Liouvillian has support on a subset V C A of the lattice, if £ acts trivially
on all elements outside of V. L is said to be local if it can be written as a sum of terms with local
support: i.e.,

p= ) ([Ha pl+Dalp)), 3)

ACA

where each D4 has support on a subset A C A independent of the system size (and typically small).
Such local Liouvillians have been in the focus of intense recent research,2!=2%-3! both with respect
to condensed-matter inspired questions and applications in quantum information science.

Throughout this work, we will restrict ourselves to Liouvillians with norm-bounded local
interactions. More specifically, we assume that £ is a sum of local terms with norm bound L :=
supzca £z, maximum range a := supy.., ., diam(Z), and maximum number

Z:;g%HZCAwZ¢QZﬁZ¢®H )

of nearest neighbors, where diam(Z) := max , , ¢ zd(x, y) is the diameter of Z and d( -, - ) is a metric
on the lattice A (typically the manhattan metric), and || - || is the operator norm. A Liouvillian is said
to be primitive,* if it has a unique full rank stationary state. Thermal Liouvillians (see Appendix A)
and generic Markovian noise are examples of primitive Liouvillians. A primitive Liouvillian £
will be called regular if for any bipartite subset AB € A, the Liouvillian £ = £ — Y Z:z00s20 £2
obtained by removing all of the terms intersecting the boundary 945 is also primitive. Although this
assumption might seem odd, it turns out to be very natural when discussing scaling of a dissipative
system with the system size. In particular, primitive translationally invariant systems satisfy this
property.

We also introduce the notion of reversibility? (i.e., detailed balance) for primitive Liouvillians.
To define reversibility, we will need to introduce a family of multiplication operators. Let o > 0 be
a full-rank density matrix, then we define

Lo (f) = %(o”fo“s +o'™ fo?) ©)
for any observable f, and s € [0, 1]. We say that a Liouvillian is s-reversible (with respect to o) if
IS L= LT%. (6)
Note that Eq. (6) is equivalent to {f, £*(g));., = (L*(f), &)s.,» With the inner product

(f. 8)s.0 = t[S(EHg]. (7
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Hence, if L is s-reversible for some s € [0, 1], then its spectrum is real. It is worth mentioning that
thermal (as well as Metropolis**) Liouvillians are s-reversible for all s € [0, 1], as can easily be
derived from the definition of reversibility and Eqs. (A4) and (A5) in Appendix A.

We will specifically also mention free-fermionic Liouvillians, as they prominently feature in
recent studies of noise-driven criticality and topological order by dissipation.?>?>*?6 Such systems
are described by 2N Majorana fermions ry, ..., ryy for N modes, one associated with each lattice
site, where N = |A|. These Majorana operators satisfy the anti-commutation relations {r;, 7}
=36 j,k=1,...,2N, and can be collected in a row vector r = (ry, . .., r2,)7. In free fermionic
open quantum systems the Hamiltonian

H =irThr, 8)

with h = —hT € R?"*2"_is taken to be a quadratic polynomial in these Majorana fermions, while
each of the L, is a linear polynomial. The Liouvillian £ is local if both H are local (in the sense that it
is a sum of terms supported on geometrically local modes) and each of the L; =/ T'r is supported on
a small number of sites only. The stationary states of such Liouvillians are Gaussian fermionic states,
entirely captured in terms of the covariance matrix y € R2Nx2N having entries y;; = itrp[rj, 1 ]).
In the same way, covariance matrices of subsystems can be defined. The covariance matrix satisfies
y = — VT and —]/2 < 1.8,24-26

lll. MIXING TIMES OF SEMI-GROUPS

In this section, we review tools from the theory of mixing times of primitive semi-groups,
which will be necessary for the main results of this work. For a more comprehensive exposition,
consult Ref. 19. The mixing time of a quantum Markov process is the time it takes for the process
to become close to the stationary state, starting from an arbitrary initial state. A huge amount of
effort has been invested in bounding the mixing time of classical Markov processes; especially in
the setting of Markov chain Monte Carlo.’> Recently, a set of functional tools has been developed
for analyzing the quantum analogue of Markov chain mixing for one parameter semi-groups.'*?’ In
particular, trace norm convergence of primitive semi-groups can be very well characterized in terms
of two quantities: the inverse of the smallest eigenvalue of the stationary state ||o ~'||, and one of
two exponential decay rates, the x2 constant 1,2’ or the Log-Sobolev constant «.!° Each of these
quantities has a convenient variational characterization. Let £ be a primitive Liouvillian, then for
any choice of s € [0, 1] define

b= il = loglVar (/) . ©)
o = inf —LloglEnt (£)]] (10)
>0 dt =0
where
Var!, (f) = |t[fT3 (F)] — o], an
Ent; (f) = t[I5(H)log(I; () — log(o))] — tr[ I (H)] log(tr{ T ()], (12)

are variance and entropy functionals, and f; = ¢'*"(f) is the time evolved operator f with respect
to the Liouvillian £. Equations (9) and (10) are generalizations of similar expressions defined in
Ref. 19, where only the s = 1/2 case was considered. Given that I}, is only (completely) positive
for s = 1/2, certain results only hold for that case. Manipulation of the covariance functional is most
convenient for s = 0. When L is s-reversible for some s € [0, 1], its X2 constant is equal to the
spectral gap (the largest non-zero real part of an eigenvalue of £), which is usually associated with
the convergence rate of a process. The largest non-zero real part of an eigenvalue of £. Note that the
real part of £ only takes non-positive values.
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Lemma 1 (Spectral gap). Let L be a primitive Liouvillian with stationary state o, and suppose
that it is s-reversible for some s € [0, 1]. Then ,; = A, where A is the spectral gap of L.

Proof. Given that L is s-reversible, ' £* = LTS . Equivalently,
(o) 2L~ = ()~ 2Lry) 2 = Ly, (13)
where L, is clearly a hermiticity preserving super-operator, given that I is hermiticity preserving.
Because £ and L are related by a super-operator similarity transformation, they both have the same

spectrum, and in particular the same spectral gap. Noting that the fixed point of Ly is /o, the gap
of L can be written in terms of its variational characterization as

" —(f. Lx(H)
f=frutgai=0  (f, f)

Given that (I'$)!/2 is bijective and hermiticity preserving, for each such f there exists a Hermitian g
such that

A= (14)

f=THe. (15)

Therefore, we can formulate the gap as

—((T)Y2(g), L:(T3)*(g))

A= inf (16)
g=¢".trgo]=0 <(Ff,)l/2(g), (Ff,)l/z(g))
That is to say, using the scalar product of Eq. (7),
A= inf u (17)
g=¢"rgol=0 (g, &)s.0
~(3.£:@
g B L@ (18)

e=¢' (8 8o
defining § = g — trgo’], in such a way that trgo ] = O for all g. We now make use of the fact that

— (&, £3@),, = — (8- Li(®), , +tleol(L L), ,

+ tlgol{g, LID),, — t[go |* (1, L (D)), , (19)
= - <gv Ef(g))syﬂ ) (20)
where we have used £7(1) = 0 and s-reversibility. Note also that
(8, 8)s,, = Var,(g), (21)
and
d S *
TV (e)|  =e.L7(9),, - (22)
! =0 '
Hence,
. d ,
A = inf ——logVar} (g;) = Ay, (23)
g=¢' di =0
which proves the claim. O

The same is unfortunately not true about the Log-Sobolev constant, and in general oy # oy
when s # . For the remainder of the paper, whenever we refer to the Log-Sobolev constant without
specifying s, we implicitly assume that we are working with the s = % case, and therefore suppress
the s subscript. The Log-Sobolev constant a1 is also closely related to hypercontractivity of the
semi-group generated by L. It is also worth noting that A > « for primitive reversible semi-groups

of finite dimensional quantum systems. See Ref. 19 for more details.
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As a direct consequence of Egs. (9) and (10), we get that for any s € [0, 1] and any Hermitian
operator f and positive operator g,

Var! (f,) < Vari, (f)e ™, (24)

Ent} (g,) < Ent}(g)e . (25)

Both of these quantities lead to very simple trace norm mixing bounds for s = %, as illustrated in
the following theorem.

Theorem 1 (Ref. 19). Let L be a primitive %—reversible Liouvillian with stationary state o, x>
constant \, and Log-Sobolev constant a. Then, for any initial state p, the following bounds hold:

1. x?bound

o —olly < Vllo=le ™. (26)

2. Log-Sobolev bound

lor —olly < v/2log(llo~"IDe™". 27

It should be clear from Egs. (26) and (27) that if both A and « are independent of the system
size, then the Log-Sobolev bound is much stronger than the x? bound, as ||o ~!| > d, which is
exponentially large in the case of a many-particle system. We will see in Sec. V that this will have
consequences for the nature of the correlations in the stationary state o . Note that the assumption of
reversibility, here and in the remainder of this work, could be relaxed at the cost of defining more
complicated variational expressions for the x2 and Log-Sobolev constants.

It is natural to ask at this point how large ||o —!| typically is. Its value clearly depends on
the specific Liouvillian, and it can certainly be engineered to be as large as desired (in principle).
However, there are a number of natural situations where we can provide good estimates of [jo ~!|.
We outline three below: primitive unital, thermal, and primitive free-fermionic semi-groups. For
primitive unital semi-groups of a d-dimensional system, ¢ = 1/d, and hence |0 ~'|| = d. For thermal
semi-groups of an N-qubit system with Hamiltonian H at inverse temperature 3, the stationary state
will be given by o = e ## /tr. It is a straightforward calculation to see that we have the bound

d< ”0—1” < deﬁ(IIHII—IIH"H")’ (28)

hence, in both cases ||o ~!|| scales as a polynomial of the volume.

Given a free fermionic Liouvillian for which o is a full rank Gaussian fermionic stationary
state, |0 ~!|| can be directly computed from the covariance matrix y. Clearly, the operator norm is
unitarily invariant, so one can look at the normal mode decomposition of ¢. Transforming a vector
of Majorana modes r to a new vector of Majorana modes, r — Kr for K € O(2N) is reflected on the
level of covariance matrices as a transformation y — Ky K. For a suitable orthogonal matrix K,
one finds

. 0 ¢
T _ j
KyK _@[_cj 0], (29)
j=1
withc; € [—1, 1] forallj =1, ..., n. The smallest eigenvalue of the Gaussian fermionic state o is
found to be
R (]
1-1 J
= - 30
llo= "l | | 3 (30)

j=1
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That is to say, one can express the smallest eigenvalue of o in terms of a trace function of the
covariance matrix y as

,1”,1 1—|)/|
2

llo = exp(tr[log

D. €29

Similarly, the gap A of a reversible free fermionic Liouvillian can be directly read off from the
matrices defining the Liouvillian in terms of polynomials of Majorana fermions (see Refs. 24 and 25
for more details). It would be interesting to know how |lo ~ 11| behaves for a perturbed non-primitive
Liouvillian, but that question will not be addressed here.

IV. CLUSTERING OF CORRELATIONS

A state is said to satisfy clustering of correlations if the correlations between two distant
observables decay exponentially in the distance separating them. Correlations can be quantified in
many different ways in many-body systems. Here we will consider three different notions, which
are useful in our setting. Consider the situation of a lattice system and two non-intersecting regions
A and B. We will write p4p to denote a state restricted to subsystems A, B; i.e., where the rest of the
system has been traced out. The dimension of the Hilbert space of the physical systems belonging
to A and B will be denoted as dsp. Now, let us define the following three measures of correlation
between subsystems A and B.

Definition 1 (Correlation measures). Let p be a quantum state defined on the lattice A, and let
A, B C A be non-overlapping, then we define

e The covariance correlation:

Cp(A:B):= sup |tu[f®g(p —pa® ppll, (32)
I fl=lgl=1
where f is supported on region A, and g is supported on region B.
e The trace norm correlation:

T,(A: B) :=|lpap — pa ® pall1- (33)

e The mutual information correlation:

I,(A: B) := S(pagllpa ® pp), (34)
where S(pllo) = tr[p(log p — log o)] is the relative entropy.

We show (in Appendix B) that these three measures of correlations are related in the following
way.

Proposition 1 (Relationship between correlation measures). Let p be a full rank state of the
lattice A, and let A, B C A be non-overlapping subsets. Let dag be the dimension of the subsystem
defined on AB, then the following inequalities hold:

%Tp(A :B)<C,(A:B)<T,(A:B), (35)
2d%,

STH (A B) < I,(A: B) <log(lpsT,(A : B). (36)
Proposition 1 immediately tells us that if A, B are small (independent of the system size) then
clustering of correlations in one of the three quantities implies clustering of correlations in the other
two. However, if A and B are proportional to the system size, then these measures can be vastly
different.

We specifically mention the situation provided by free fermionic models, where the above
relationship can be tightened, as is shown in Appendix C. The operator norm of an observable
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M = ir'mr with m = — m” can then be bounded by that of ||m]||. The covariance matrix y, 3 € R¥'*?"
of psp is a principal sub-matrix of the covariance matrix y of the entire quantum state p. This
covariance matrix y4p as well as the covariance matrix &5 of the uncorrelated reductions can be

cast into the form
Ya  Yc va O
YAB = ,» Eap = , 37)
—Yc VB 0 ys

respectively. Under a transformation r — Kr for K € O(2n), the covariance matrix transforms as
vas — Ky asK'. Using the singular value decomposition, and making use of the definition of the
covariance matrix as the matrix collecting second moments of Majorana fermions, one hence finds
the lower bound

1
Co(A:B) = Slivell (38)

for the correlation measure C,(A: B) in terms of the operator norm of the off-diagonal block of the
covariance matrix. Furthermore, the covariance correlation and the mutual information correlation
can be related.

Proposition 2 (Relationship between correlation measures for free fermionic models). Let p be
a Gaussian fermionic quantum state defined on the lattice A, and let A, B C A with |A| = |B] =n
be non-overlapping subsets. Then the following inequality holds:

I,(A: B) < —4nlog (min (1 — [lyagll, 1 — 1€a51)) Co(A = B). (39)

V. MAIN RESULTS

We now state and prove the main results of this work: clustering of correlation theorems for
regular (and reversible) local Liouvillians with

(i)  a x? constant which is independent of the system size, and

(i)) aLog-Sobolev constant which is independent of the system size. From this point on, we will
simply say x2 (or Log-Sobolev) constant to mean a x2 (or Log-Sobolev) constant which is
independent of the system size.

A very important ingredient in the proof is an open systems Lieb-Robinson bound; a tool for
rigorously bounding the maximal speed of propagation of information through a lattice system.
The speed of propagation implies a light cone, outside of which little information from a local
source can be inferred (in fact no information up to exponentially small corrections). Open system
Lieb-Robinson bounds largely resemble their closed system counterparts, and have been shown by
a number of authors already.?!?%2

We shall invoke a version from Ref. 28, in the form of a “quasi-locality of Markovian dynamics”
theorem. Given a local Liouvillian £ = > zca Lz, we define the Liouvillian restricted to subsets B
of the lattice as Lz = ), 5 L7.

Theorem 2 (Open system Lieb-Robinson bound®). Ler £L =", _, L be a local bounded
Liouvillian, and let Ly be its restriction to the subset B C A of the D-dimensional cubic lattice A.
Let f be supported on Y C B, and write the time evolved observable fwith respect to Ly as f.E. Then
for D .= [d(Y, B)/a],

Ifi — £EI < CDP7Y| flle™ P, (40)

for all t > 0, where v is the Lieb-Robinson velocity of L, B C A is the complement of B, and C > 0
is a constant which might depend upon a and Z.

The theorem says that the time evolution of a local observable fonly depends on the terms in the
Liouvillian which are in the light cone of £, up to an exponentially small error (see Fig. 1). The same
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time
vt

\_Light cone

\ .
A\ /

N\ /

\\ /
00000000000000000

f space

FIG. 1. Depiction of the light cone of observable f. After a time ¢, the “information” of the observer f will have propagated a
distance vt.

theorem can be re-derived for free fermionic dissipative systems in the following form: Observables
are taken to be quadratic in the Majorana fermions, F = ir’ fr, where f, relates to the time evolved
kernel of the time evolved observable F,.

We now prove a corollary of this theorem which will be very useful in the following. The
corollary states that for two distant observables on the lattice, it makes essentially no difference
whether they evolve together or independently, as long as they are outside of each-others light cones.

Corollary 1 (Time evolution of spatially separated observables). Let L =), Lz be a local
bounded Liouvillian. Let A, B C A be two non-overlapping subsets of the D-dimensional cubic
lattice A, let f be supported on A, and let g be supported on B, then

I(fe) — figell < CDPHIf| llgle™ P72, 41)

forallt > 0, where v is the Lieb-Robinson velocity, D := [d(A, B)/a], and C > 0 is a constant which
might depend upon a and Z.

Proof. Let f; denote the time evolution of the observable f with respect to L. Define the semi-
group L which is identical to £ except along a boundary d4p separating A and B, which is chosen
equidistant to the supports of A and B, see Fig. 2. All of the local Liouvillian terms intersecting the

Boundary terms

Boundary

FIG. 2. The subsets of the lattice A, B C A are separated by a boundary which is halfway between the subsets A and B.
Orange crosses are meant to indicate local Lindblad operators. Lindblad operators intersecting the boundary are removed.
The shapes of the regions A, B, and of the Lindblad operators are chosen for illustrative purposes only.
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boundary are removed £ = £ — sza“;so Lz, s0that f;g, = (fg),. We then get

ICf9) — figell < CFQ)e — (f),l + Il frge — fi:ll. (42)

The first term on the right hand side of Eq. (42) can be bounded by Theorem 2. For the second term,
consider

I fige = fi&l < 1 fi& = @I+ IICf = fE (43)

< IFU g =&l +1Lfe = fill ligll, (44)

where we have used that ||f;|| < ||f]l (shown in the appendix of Ref. 28), and the norm Cauchy-Schwarz
inequality. Combining all of the bounds, we get that

I(fe)t) — fF(OHg®) < CDPH £l lglle™ P72, (45)

for some constant C of order O(1). The D/2 in the exponent comes from the fact that the boundary
d4p lies halfway between A and B. The possible contribution from the boundary is absorbed into the
constant C. O

Again, a free fermionic instance of this statement follows, acknowledging that the observables
which are quadratic in Majorana fermions commute. It is still true that F.G, = (FG), for F = ir'fr
and G = ir’gr and their time-evolved instances. Also, ||F,|| < ||f]l is still valid. Along the same lines,
one hence arrives at the following statement.

Corollary 2 (Time evolution of spatially separated free fermionic observables). Let
L =73, Lz bealocal bounded free-fermionic Liouvillian. Let A, B C A be two non-overlapping
subsets of the D-dimensional cubic lattice A, let F = ir'fr be an observable quadratic in the
Majorana fermions supported on A, and similarly, let G = ir’ gr be supported on B, then

I(FG), — F,G,| < CDP7'|I £l llglle™ P/, (46)

forallt > 0, where v is the Lieb-Robinson velocity, D := [d(A, B)/a], and C > 0 is a constant which
might depend upon a and Z.

A. The x2 constant

We are now in a position to prove the first main theorem of this work.

Theorem 3 (2 clustering). Let A, B C A be two non-overlapping subsets of the D-dimensional
cubic lattice A, and let L =7 ,_, L7 be a local bounded regular and (0)-reversible Liouvillian
with stationary state o, gap A, and Lieb-Robinson velocity v. Then there exists a constant ¢ > 0
depending on A, v only such that

C,(A:B)<cDPle v, (47)
where D := [d(A, B)/a].

Proof. Let f, g be Hermitian operators, with f supported on A and g supported on B. Without
loss of generality, assume that tr[o fg] < tr[o gf]. Then, note that

[Cove(f, &)l < [Cove(fi, &)l + |Cove(f, &) — Cove(fi, &), (48)

where Cov, (f, g) := tr[f 1"2 (g)] — trof]tr[o g] defines a positive definite scalar product on Hermitian
operators. We bound the first term:

|Cove (f;. 8| </ Vard(f;)Vard(g,) (49)
</ Var (f)var® (g)e . (50)
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The first inequality follows from Holders inequality, and the second one from Eq. (24). Note that we
omit the s = 0 subscript since Ay = A is the spectral gap of £ by Lemma 1. Now, observe that

VVar? (f) = Vrlo(f — trof])2] (51)
< VI — traf]?|| (52)

< |If —tof]| (53)
< I fIl + ltrof]] < 2|If]|. (54)

Therefore, we get
|Cove (fr, gl < 41 £l liglle™™. (55)

The second term in Eq. (48) can be dealt with by invoking the theorems in Sec. I'V. First, note that
tr[of;] = tr[of] for any observable f, then

|Covy (f. 8) — Cova(fi. gl = %utr[o(fg — fig)]| + ltrlo (gf — gl (56)
= %utr[a«fg)t — fig)ll + o ((gh) — gl (57)
< %(H(fg)f — figill + e f) — g il (58)
<D £l ligle™ P72, (59)

where in the last step we used Corollary 2, and the assumption that the Liouvillian is regular. We now
combine both bounds and optimise for ¢. Setting x := CDP~!, we define the function 4 : R* — R
as

h(t) — efzkt +xev17D/2’ (60)

then the unique solution of /#'(f) = 0 is

: U jog ()42 61)
. = og| — )|+ ——.
vr2n B\ ) T2+ 2

This gives rise to the upper bound

ICovo (fs O = ILF I gl Alz)

2\ w20 \#E
=11 lgl 1+7 S Gy - (62)

For a suitable constant ¢ > 0, the expression can be upper bounded by

Z1y( 2y D
ICovo(f, &)l = el f1 gl DPM(E)ewim (63)
1 2D
<cllfl ligh DPlemw (64)
Taking the supremum over ||f]| = ||g|| = 1 then completes the proof. O

Remark. There exist relevant Liouvillians, like Davies generators, which are s-reversible for all s
€ [0, 1], but this is not true in general. It is easy to find examples of Liouvillians which are reversible
for some s € [0, 1] but not for another. The above theorem only requires (0)-reversibility, which is
often the one which one would consider in practice.*”
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Theorem 3 is particularly meaningful when one considers a class of Liouvillians defined on a
sequence of lattices Ay indexed by some natural number N relating to the size of the system, whose
x? constant can be lower bounded by a value independent of N.

Again, a free fermionic instance is valid here. Cov, (F, G) for observables quadratic in the
Majorana fermions F = ir’fr and G = ir’ gr can be evaluated as before. Equation (51) is replaced by

y Varg (F) < I f1I- (65)

Then the fermionic variant of the previous statement can be formulated as follows.

Corollary 3 (Free fermionic x° clustering). Let A, B C A be two non-overlapping subsets of
the D-dimensional cubic lattice A, and let L= ,_, L7 be a local bounded regular reversible
free-fermionic Liouvillian with stationary state o, x >-constant (spectral gap) X, and Lieb-Robinson
velocity v. Then there exists a constant ¢ > 0 depending on X, v only such that

C,(A:B) <cDPle im, (66)
where D := [d(A, B)la].

Note that the spectral gap of a free-fermionic Liouvillian can be be characterized more simply
by the spectrum of the master equation for the covariance matrix. The formulation has the benefit of
being exact, and only involves matrices of size 2N (instead of 2" in the spin case). For more details
see Refs. 24 and 25.

B. Log-Sobolev constant

We will now consider the situation when the Log-Sobolev constant of the regular Liouvillian
is independent of the size of the system, and see that we get a much stronger form of correlation
decay. We will first need a lemma which says in colloquial terms that “local perturbations perturb
locally.”!! In other words, we consider local Liouvillian perturbations and look at their effect on the
steady state in a region far from the perturbation.

Lemma 2 (Local perturbations perturb locally). Let A, B C A be two non-overlapping subsets
of the D-dimensional cubic lattice A. Let L ="7_,_, Lz be a local primitive and %—reversible
Liowvillian with Log-Sobolev constant o, and let Q4 be a local Liouwvillian perturbation, acting
trivially outside of A. Let p be the stationary state of L, and let o be the stationary state of L + Q4.
Then,

_ _ _aD
lps — oplli < cDP~'(og(llp~"))/?e v, (67)

where D := [d(A, B)la], v is the Lieb-Robinson velocity, and ¢ > 0 is a constant which depends on
v and o only.

Proof. First note that if £ is primitive, then £ + Q4 is also primitive. This follows from the
fact that the Lindblad operators of £ span the entire matrix algebra (by primitivity?), so that adding
more Lindblad operators cannot reduce the algebra spanned by the generator.

We know that there exists some positive operator 0 < fg < 1 such that

lps — oplli = 2|u{(fp ® 1ge)(p — o), (68)
where B¢ is the complement of B. Now note that for any state ¢ and any time ¢, we get
ltrl(fs ® Lpe)(p — )| < [tul(fp ® Lpe)(e'” — e “HV)(@))| (69)

1 1
+ 5 lrsel(o = e Ty + §||tch[e‘ﬁ(¢> — ol
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By assumption, the Liouvillian £ satisfies a Log-Sobolev inequality, so Theorem 1 allows us to
bound the last term as

1 1
Entch[e“(qs) —pllh < zlle":(d)) —plh (70)

1 1/2
< (5 log(Jlp™" ||)) e ', (71)

where the first inequality follows from the monotonicity of the trace norm. For the second term in
Eq. (69), note that for some fp := fp ® 1g (from now on we suppress the 1),

%ntch [eCTeN (@) — o ]ll; = |trlfpe'“T (¢ — )] (72)

< |tr[(e“TN) — ) (Fp)(p — 0)]|
+ltr[e” (fs)(¢p — o). (73)

The second term in Eq. (73) can be bounded by invoking the Log-Sobolev mixing time of L, to
obtain

« 1
|te[e (f)(@ — 0)]| < EIIE’L(¢ =)l (74)

1

=<

1
le (@) — p)lli + zne%) — ol (75)

N

< v2log(llp~"De™". (76)

The first term in Eq. (73) can be bounded using Lieb-Robinson bounds. Let £ 4 be the restriction of
L to terms which do not intersect A, then

|tr[( TN — e“)(Ep) (¢ — o) < I CTFW — )t Il — oIy a7
< 2" C W — ) fa)l (78)
< 2)("EH — i) (fp)ll + 201 (e — e FN( )l (79)
< CDP7 | fylle" ", (80)

where D := [d(A, B)/a], and some constant C from Theorem 2.
Again, the first term in Eq. (69) can also be bounded using Theorem 2, in essentially the same
way as above (after Eq. (77)):

|tr[fp(e's — e TN ($)]| < C|Ifg|DP'e" P, (81)

for some constant C > 0. Now, recalling that ||fz|| < 1, we can combine the bounds in a similar way
as in Theorem 3,

los — ol < 2CI f5I DT~ e =P +2CDP7!| fplle” P (82)
+ Blog(lp ™" 1) 2e™" + (21og(llp ") * 7. (83)

Hence, there exists a constant C; > 0 such that
lpg —oslli < CiDP~1e =P 4 321og(|lp~ |I))"/2e ™", (84)

and choose the optimal 7. Set g : RT™ — R as
g(1) = C1DP~e" =P +32log(llp ) ?e ™", (85)
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then g'(r) = 0 delivers as a unique solution

_ D +log (3aQlog(llp~" )/2/(wC DP1))

t . 86
* p (86)
In this way, one arrives at the bound in Eq. (67) for some constant ¢ which depends on v, «,
and D. O

Remark. Lemma 2 is very reminiscent of Theorem 6.9 in Ref. 12, which was proved indepen-
dently. Both versions of the theorem have their strengths and weaknesses. We provide a specific
setting (characterized by a system-size independent Log-Sobolev constant) which allows for local
stability, whereas the result in Ref. 12 is based on a more abstract notion that the authors call
“global rapid mixing.” However, using the extra assumption of frustration freedom of the Liouvil-
lian, Theorem 6.9 in Ref. 12 provides a bound which is system size independent—a much stronger
statement than ours. Whether the assumption of frustration freedom is necessary for the system size
independent bound is an open question, which we consider important to resolve, but is beyond the
scope of the present paper.

We are now in a position to prove the second main theorem of this work, which gives a much
stronger version of clustering of correlations when the system has a Log-Sobolev constant.

Theorem 4 (Log-Sobolev clustering). Let A, B C A be two non-overlapping subsets of the
D-dimensional cubic lattice A, and let L =", L7 be a local bounded regular and %—reversible
Liouvillian with stationary state p, Log-Sobolev constant a, and Lieb-Robinson velocity v, then

L(A: B) < D2 '(log(||p~" 1)) e %0, (87)

where D := [d(A, B)/a], and ¢ > 0 is a constant depending on v, D, and a only.

Proof. To start with, as in the proof of Corollary 2, define the semi-group £ which is identical
to £ except along a boundary d4p separating A and B, which is chosen equidistant to the supports
of A and B (see Fig. 2). All of the local Liouvillian terms intersecting the boundary are removed
L=L—=Y 0,20 Lz.s0 that f;g, = (fg),. By regularity, the Liouvillian £ is primitive. Now, let
p be the stationary state of £ and let o be the stationary state of £. Note that

S(pllpa ® pg) = —S(p) + S(pa) + S(ps) (38)
< -=S(p)—tr—tr (89)
= S(plloa ® o), (90)

where in the second line we used that S(p4, gllo 4, g) > 0. Recall also that S(p|lps ® pp) = 1,(A: B)
is the mutual information between subsystems A and B. Now, along the same lines as in the proof of
Proposition 1, we get

I,(A: B) = S(pagllpsa ® p) On
< S(pagllos ® op) (92)
< log(lpxgDlloas — s @ oplli. (93)

From this point, we can apply Lemma 2 to the trace norm to get the desired bound, by observing
that the perturbation in this case is at the boundary between A and B, which was constructed to be a
distance D/2 away from A or B. m|

Considering Theorem 4 and Proposition 1, we immediately see that there can in principle be a
large divergence between covariance clustering and mutual information clustering. In the case of the
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stationary states of regular semi-groups, these two situations are characterized by the x? and Log-
Sobolev decay constants, respectively. It is important to point out, however, that for free-fermionic
lattice systems, this separation does not exist. Indeed, if a free-fermionic Liouvillian has a spectral
gap which is independent of the system size, then by Corollary 3 and Proposition 2, the system
also satisfies mutual information clustering. This seems to be a strong indication that x? mixing and
Log-Sobolev mixing are of the the same order for free-fermionic systems.

C. An area law for the mutual information

We will now show an important consequence of the clustering of correlations result for the
mutual information: an area law.>> We say that a system satisfies an area law if for any region
A C A, the mutual information between A and its complement is upper bounded by a term which
scales as the boundary of A. Such a behavior is far from obvious, as a naive bound on the mutual
information will scale not as the boundary but rather as the volume.

Theorem 5 (An area law for the mutual information). Let £ be a regular %—reversible
Liouvillian with stationary state p and Log-Sobolev constant o. Let A C A, then for any € > 0, there
exist constants y 1, y» > 0 such that

I,(A, A%) < (y1 + y2loglog [l o™ DI9al + €. (94)
where |04 is the boundary of A.

Proof. The proof relies on properties of the conditional mutual information. Given a tripartition
of the lattice ABC =: A of mutually exclusive subsets A, B, and C, recall that the conditional mutual
information of p is given by

I,(A:B|C)=1,(A:BC)—1,(A:C) (95)

=1,(AC : B)— I,(B : C). (96)

Note also that /,(A: B) < 2 min {|A|, |B|}. That is to say, for arbitrary suitable such subsets

I,(A: B|C) = I,(AC : B) — I,(B : C) 97)
< I,(AC: B) (98)
< 2min{|AC], |B|}. (99)

Now let A C A be some connected region, let §;(x) be the ball of radius / around the site x and define
B;:={x € A|8;(x) N A # 0, x € A°} to be the “buffer” region of radius / around A. Finally, denote
with C the remainder of the lattice. Then

I,(A:BIC)=1I,(A: B/|C)+ I,(A: C) (100)
< 2B+ 1,(A: C) (101)
< 2¢1114] + 2P Qog(ll o~ ) 2e T, (102)

for some constants ¢y, ¢, > 0. Thus, if we take

—1)\3/2
P Gl B, {log (é) log (—czaog lo="ID )} , (103)

o €
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it follows that

I,(A: A°) = I1,(A: B/C) (104)
<c |3A|M
o
€a ca(log flo ")
X max {—E (—m) , log (f)} + €, (105)

where £(.) is the log-product function (Lambert W-function). Thus relabeling the constant terms y 1,
Y2, We get

I,(A: A9 < (11 + 2 loglog ™" D18l + €. (106)
which completes the proof. O

Note that it is not known whether this bound is tight or not in general. However, one would
expect that in one dimension, the situation would be simpler. Indeed, as shown in Ref. 7 for closed
systems in 1D, clustering of correlations in the variance is already enough to guarantee that the
system satisfies an area law (without logarithmic corrections). This area law reminds of the area law
valid for (mixed) Gibbs states of local Hamiltonians,®3° for which again no logarithmic correction
is found. Finally, we also note that Theorem 5 only guarantees an area law when log ||o ~!|| scales
as a polynomial of the volume. We expect this to be the case quite generally. However, an extensive
characterization of the situations when this is the case is beyond the scope of this article.

VI. CONCLUSION AND OUTLOOK
A. Topological order

An important implication of these results is that, in principle, it is possible for the stationary
state of a regular Liouvillian with a x2 constant to have topological order, while this is not possible
for regular Liouvillians which have a Log-Sobolev constant.

An intuitive argument for the existence of topological order in closed systems goes as follows:
A pure state is topologically trivial if it can be transformed to a classical state by a local unitary
with local finite range, i.e., whose range grows at most as the logarithm of the system size. If this
is not the case, then the state is said to have topological order. One way of extending this notion
to open systems is to say that if a given (mixed) state can be reached from a classical state by a
TCP map of finite local range, then the state is topologically trivial. If this is not possible, then the
state has topological order. Using this definition, it is quite clear from the results in this work that
the stationary state of a regular bounded local Liouvillian with a Log-Sobolev constant cannot have
topological order in this sense, since the stationary state can be reached from any initial state in a
time which scales as the logarithm of the system size. On the other hand, this conclusion cannot
be drawn for the stationary state of a regular bounded local Liouvillian with a x2 constant, since it
can take a time linear in the system size to reach the stationary state, and there is enough time in
principle for topological order to build up.

It is worth mentioning that a very similar notion of topological order for mixed states was
introduced in Ref. 37, where the criterion was instead based on the closed system analysis on a
dilation space. Indeed, any quantum dynamical semi-group can be related to a stochastic dilation,
associated to a given Brownian motion.? If the semi-group is local, then the stochastic dilation will
be so as well, and therefore the range of the unitary dilation will be of the same order as the range
of the semi-group. In this way, one can relate the mixing time of the semi-group to the definition of
topological order given in Ref. 37 in an explicit manner. Note, however, that the ancillary space of
the stochastic dilation in Ref. 38 is continuous, so that further analysis is necessary for establishing
a rigorous equivalence to the results in Ref. 37.
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We conclude this section by stating a conjecture: for a full rank state p > 0, clustering of
correlation in the mutual information excludes the existence of topological order, but clustering of
correlation in the covariance might still allow for it.

B. Classical simulation of stationary states and matrix-product operators

One potential application of the findings presented here is in the classical simulation of open
quantum systems, in particular for one-dimensional models. There are a number of approaches
feasible to pursue such simulations: On the one hand, one can keep track of the open systems
dynamics with a variant of the density matrix renormalisation group (DMRG) approach, either by
evolving the mixed state in time under the Liouvillian, or to resort to a quantum jump approach
unravelling the open systems dynamics. In the former situation, the encountered mixed states can
be captured in terms of matrix-product operators.>’*>*! For the latter, one would formulate time
evolution in terms of a classical stochastic process of matrix-product states. On the other hand,
one can directly turn to stationary states of primitive Liouvillians, and can formulate a variant of
DMRG to determine such states in terms of matrix-product operators. Such simulations should shed
light onto phase diagrams in non-equilibrium. The present work suggests that if one encounters a
stationary state of a primitive Liouvillian with a Log-Sobolev constant, then such a system should
be “easy” to simulate, in that one might conjecture that a constant bond dimension is sufficient to
approximate the stationary state with a matrix-product operator for a given error. Our work should
serve as a guideline for such endeavors.

C. Conclusion

In this work, we have studied the relationship between the rate of convergence to a stationary state
and the clustering of correlations for open quantum systems described by regular local Liouvillians.
We conclude by raising the question of how common the models which we are considering actually
are. Indeed, the assumptions on the semi-group (boundedness, primitivity, reversibility) might seem
very restrictive in view of the applications considered in quantum information theory. This is a
valid point, as it excludes all dissipative protocols with pure or multiple fixed points. However,
it is important to point out the main application which we have in mind: thermal Liouvillians,
are primitive and reversible. Also, pure stationary states can be arbitrarily well approximated by
situations captured by the theorems presented here. Nevertheless, these results are a first indication
that even for very rapidly mixing dissipative processes, there might still be interesting behavior to
be seen. This work also gives further justification that the Log-Sobolev constant might be a better
quantity to consider that the x? constant (spectral gap) when analyzing rapidly mixing quantum
processes. It is the hope that the present results trigger further such studies.
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APPENDIX A: THERMAL SEMI-GROUPS

We call thermal Liouvillians, the subclass of Liouvillians which describe the dissipative dy-
namics resulting from the weak (or singular) coupling limit of a system coupled to a large heat bath.
These Liouvillians are often called Davies generators.'> See Ref. 14 for a clear derivation and a
discussion of when this canonical form can be assumed. Thermal Liouvillians can always be written
as

Ly=Lo+ ) Lok (A1)

w,k
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The individual terms are given by

1
Lo(f) = ilH, f1- 3 > (@S (@)Sk(@). fls. (A2)
w,k
Lo k() = ni(@)S; (@) f Sp(w), (A3)

where w are the so-called Bohr frequencies and the k index reflects the couplings to the environment.
In particular, k can always be chosen such that k < d*. () are the Fourier coefficients of the
two point correlation functions of the environment, and are bounded. The Si(.) operators can be
understood as mapping eigenvectors of H with energy w to eigenvectors of H with energy £ + w,
and hence act in the Liouvillian picture as quantum jumps which transfer energy o from the system
to the bath.

The thermal map can be seen to have a unique (full-rank) stationary state which is given by o g
o e~ PH where B is the inverse temperature of the heat bath. The following useful relations hold for
any k and w and s € [0, 1],

m(—w) = e P ni(w), (A4)

05 Sk(w) = e Si(w)o}, (A5)

where Eqs. (A4) and (A5) are equivalent to the detailed balance condition for L. In physical terms
this means that it is as likely for the system to transfer an amount w of energy to the environment as
it is for the environment to transfer the same amount into the system.

APPENDIX B: PROOF OF PROPOSITION 1

Proof. The lower bound in Eq. (36) is simply Pinsker’s inequality, the upper bound can be
obtained as

D(pllo) < D(pllo) + D(o|1p) (B1)
—t (B2)
<llp—olillogp —logo]| (B3)
< log(max{llo "I, [~ IDlle — o1, (B4)

which together with fact that || p;}, = pgl M pgl || gives us the upper bound in Eq. (36). The upper
bound in Eq. (35) can be obtained by noting that

sup [tr[(caB — oA ® 0B)]| < sup [tr[g(o — pa @ eB)]|
I fall=lfell=1 llgll<t

= T,(A: B). (B5)

And finally the lower bound is obtained by noting that we can decompose any unit norm Hermitian
operator ||f]| < 1l as f = kaz qjxXj ® Yy, where g; ; are some complex amplitudes within the
unit disk, and Xj, ¥; are some (Hermitian) matrix basis of the associated subspaces with || X;]|1, || Y;||1
= 1. Then, noting that 7, (A : B) = |tr| for some P < 1, and writing P = Z;lAkB:l q;xX; ® Y with
Xj<landY; <1, we get

1
S To(A < B) = Itrlg(p — pa ® pp)]| (B6)
dap
=1 qatrl(oas — oa ® 0p)]| (B7)

k=1
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dAB

< Y lgjxlitrl(oas — oa ® op)]| (B8)
k=1

< d3,Cov,(A : B). (B9)

O

APPENDIX C: PROOF OF PROPOSITION 2

Proof. In terms of the covariance matrices y 45 and & 45, the mutual information is found to be
a difference between two trace functions:

1,(A : B) = tr[s(iéa)] — tr[s(yaB)], (C1H
with s : [—1, 1] — R being defined as
1+ 1+
s(x) = — 2xlog2< 2x>. (€2)

This expression can be easily derived: For a single mode the covariance matrix 7 is a skew symmetric
real 2 x 2 matrix with eigenvalues =*ic, c € [ —1, 1], while the spectrum of the corresponding
Gaussian fermionic quantum state is found to be {(1 4+ ¢)/2, (1 — ¢)/2}. The von-Neumann entropy
of this single-mode state is therefore given by

1 1 1-— 1-—
5(0)+5(-0) = —— log, ( ;C) — ——log, ( . C) = trs(i). (©3)

The general result is then deduced from this by making use of a normal mode decomposition,
bringing the covariance matrix y4p into the form of Eq. (29). Note that s : [—1,1] — R as it is
defined here is not an even function.

The mutual information will now be related to the correlation measure C,(A: B). One can make
use of Weyl’s perturbation theorem to see how different the spectral values of iy 45 and i§ 4p can
possibly be. We denote the eigenvalues of iy 45 as {11, .. ., A2, } and the eigenvalues of i& 4p as {1,

.., Mg }; they come in pairs of positive and negative values, so that

)"] = _)“j+na Hj = —WKj+tn, (C4)
forj =1, ..., n. We find, using the mean value theorem and the fact that the spectral values of
covariance matrices come in pairs,

2n
I,(A:B)= Z s(h)) = s(1))) (C5)
2n
< (50 = s(u)] (C6)
Jj=1
2n
< max {|s' 2] 18" Ep)l = 1on) D Ay =l C7)
j=1
Weyl’s perturbation theorem then delivers [A; — u;| < |lycll forj=1,..., 2n, so that
I,(A : B) < max(s'(—|lyagl), s"(=&asI)2n| el (C8)
< max (—log (1 — [|yaglD), —log (1 — [I5a81D)) 2n|lyc| (C9)

—log(min (1 — |lyasll, 1 — 5a1D) 2n]lycll. (C10)
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Here, it has been used that

/ 1 1+
S0 =5 (log (Tx> n 1) < —log(1 + x), (Cl11)

for x € [ — 1, 1]. This means that
I,(A: B) < —4nlog (min (1 — [|yagll, 1 — [5a81)) Cp(A : B). (C12)
O

I'M. B. Hastings and T. Koma, “Spectral gap and exponential decay of correlations,” Commun. Math. Phys. 265, 781
(2006).

2B. Nachtergaele and R. Sims, “Lieb-Robinson bounds and the exponential clustering theorem,” Commun. Math. Phys.
265, 119 (2006).

3J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277 (2010).

4M. B. Hastings, “An area law for one-dimensional quantum systems,” J. Stat. Mech.: Theory Exp. (2007) P08024.

51. Arad, A. Kitaev, Z. Landau, and U. Vazirani, “An area law and sub-exponential algorithm for 1D systems,” e-print
arXiv:1301.1162.

ON. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Entropy scaling and simulability by matrix product states,” Phys.
Rev. Lett. 100, 030504 (2008).

7F. G. S. L. Brandao and M. Horodecki, “An area law for entanglement from exponential decay of correlations,” Nature
Physics 1745, (2013).

8H. Bernigau, M. J. Kastoryano, and J. Eisert, “Area laws for thermal free fermions,” e-print arXiv:1301.5646.

9S. Bravyi, M. B. Hastings, and S. Michalakis, “Topological quantum order: Stability under local perturbations,” J. Math.
Phys. 51, 093512 (2010).

10, Michalakis and J. Pytel, “Stability of frustration-free Hamiltonians,” e-print arXiv:1109.1588.

115, Bachmann, S. Michalakis, B. Nachtergaele, and R. Sims, “Automorphic equivalence within gapped phases of quantum
lattice systems,” Commun. Math. Phys. 309, 835 (2012).

12T S, Cubitt, A. Lucia, S. Michalakis, and D. Perez-Garcia, “Stability of local quantum dissipative systems,” e-print
arXiv:1303.4744.

I3E. B. Davies, “Generators of dynamical semi-groups,” J. Funct. Anal. 34, 421 (1979).

14H. Spohn, “Entropy production for quantum dynamical semi-groups,” J. Math. Phys. 19, 1227 (1978).

I5E, Martinelli, “Lectures on Glauber dynamics for discrete spin models,” in Lectures on Probability Theory and Statistics
(Springer, 1999).

16 M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz, “Mixing in time and space for lattice spin systems: A combinatorial view,”
Random Struct. Algorithms 24, 461 (2004).

17 A. Guionnet and B. Zegarlinski, “Lectures on logarithmic Sobolev inequalities,” Lect. Notes Math. 1801, 1 (2003).

8N. Yoshida, “The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the
lattice,” Ann. L.H.P. Probab. Stat. 37(2), 223 (2001).

19M. J. Kastoryano and K. Temme, “Quantum logarithmic Sobolev inequalities and rapid mixing,” J. Math. Phys. 54, 052202
(2013).

20K Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf, and F. Verstraete, “The X2 divergence and mixing times of
quantum Markov chains,” J. Stat. Mech.: Theory Exp. (2010) 122201.

21 D. Poulin, “Lieb-Robinson bound and locality for general Markovian quantum dynamics,” Phys. Rev. Lett. 104, 190401
(2010).

2g, Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Biichler, and P. Zoller, “Quantum states and phases in driven open
quantum systems with cold atoms,” Nat. Phys. 4, 878 (2008).

23F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation, quantum state engineering, and quantum phase transitions
driven by dissipation,” Nat. Phys. 5, 633 (2009).

247 Eisert and T. Prosen, “Noise-driven criticality,” e-print arXiv:1012.5013.

25T. Prosen, “Third quantization: A general method to solve master equations for quadratic open Fermi systems,” New J.
Phys. 10, 043026 (2008).

20C.-E. Bardyn, M. A. Baranov, E. Rico, A. Imamoglu, P. Zoller, and S. Diehl, “Topology by dissipation,” e-print
arXiv:1201.2112.

2TM. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, “A dissipative quantum Church-Turing theorem,” Phys.
Rev. Lett. 107, 120501 (2011).

28T, Barthel and M. Kliesch, “Quasi-locality and efficient simulation of Markovian quantum dynamics,” Phys. Rev. Lett.
108, 230504 (2012).

29B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, “Lieb-Robinson bounds and existence of the thermodynamic limit
for a class of irreversible quantum dynamics,” AMS Contemp. Math. 552, 161 (2011).

30R. Alicki, M. Fannes, and M. Horodecki, “On thermalization in Kitaev’s 2D model,” J. Phys. A: Math. Theor. 42, 065303
(2009).

31 M. J. Kastoryano, M. M. Wolf, and J. Eisert, “Precisely timing dissipative quantum information processing,” Phys. Rev.
Lett. 110, 110501 (2013).

32M. Sanz, D. Perez-Garcia, M. M. Wolf, and J. L. Cirac, “A quantum version of Wielandts inequality,” IEEE Trans. Inf.
Theory 56, 4668 (2010).

3'W. A. Majewski and R. F. Streater, “Detailed balance and quantum dynamical maps,” J. Phys. A 31, 7981 (1998).


http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://arxiv.org/abs/1301.1162
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://arxiv.org/abs/1301.5646
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://arxiv.org/abs/1109.1588
http://dx.doi.org/10.1007/s00220-011-1380-0
http://arxiv.org/abs/1303.4744
http://dx.doi.org/10.1016/0022-1236(79)90085-5
http://dx.doi.org/10.1063/1.523789
http://dx.doi.org/10.1002/rsa.20004
http://dx.doi.org/10.1007/978-3-540-36107-7_1
http://dx.doi.org/10.1016/S0246-0203(00)01066-9
http://dx.doi.org/10.1063/1.4804995
http://dx.doi.org/10.1103/PhysRevLett.104.190401
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://arxiv.org/abs/1012.5013
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://arxiv.org/abs/1201.2112
http://dx.doi.org/10.1103/PhysRevLett.107.120501
http://dx.doi.org/10.1103/PhysRevLett.107.120501
http://dx.doi.org/10.1103/PhysRevLett.108.230504
http://dx.doi.org/10.1090/conm/552
http://dx.doi.org/10.1088/1751-8113/42/6/065303
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1109/TIT.2010.2054552
http://dx.doi.org/10.1109/TIT.2010.2054552
http://dx.doi.org/10.1088/0305-4470/31/39/013

102201-21 M. J. Kastoryano and J. Eisert J. Math. Phys. 54, 102201 (2013)

K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete, “Quantum Metropolis sampling,” Nature 471, 87
(2011).

35D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times (AMS, Providence, R1, 2009).

36 5. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-Robinson bounds and the generation of correlations and topological
quantum order,” Phys. Rev. Lett. 97, 050401 (2006).

37 M. B. Hastings, “Topological order at non-zero temperature,” Phys. Rev. Lett. 107, 210501 (2011).

38R, Alicki and M. Fannes, “Dilations of quantum dynamical semi-groups with classical Brownian motion,” Commun. Math.
Phys. 108, 353 (1987).

39M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, “Area laws in quantum systems: mutual information and
correlations,” Phys. Rev. Lett. 100, 070502 (2008).

40F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, “Matrix product density operators: Simulation of finite-T and dissipative
systems,” Phys. Rev. Lett. 93, 207204 (2004).

41 M. Zwolak and G. Vidal, “Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superop-
erator renormalization algorithm,” Phys. Rev. Lett. 93, 207205 (2004).


http://dx.doi.org/10.1038/nature09770
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.107.210501
http://dx.doi.org/10.1007/BF01212314
http://dx.doi.org/10.1007/BF01212314
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207205

