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We employ a recently developed coarse-grained model for peptides and proteins where the effect
of pH is automatically included. We explore the effect of pH in the aggregation process of the
amyloidogenic peptide KTVIIE and two related sequences, using three different pH environments.
Simulations using large systems (24 peptides chains per box) allow us to describe the formation of
realistic peptide aggregates. We evaluate the thermodynamic and kinetic implications of changes in
sequence and pH upon peptide aggregation, and we discuss how a minimalistic coarse-grained model
can account for these details. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935707]

I. INTRODUCTION

Neurodegenerative diseases and protein-based drugs have
put protein aggregation in the limelight, drawing a large re-
search interest over the last decades.1–3 In fact, nonspecific
aggregates and fibrils have been identified as a core element
in many degenerative diseases and dementias;4 peptide drugs
such as new antibiotics need to present enhanced stability and
resistance upon aggregation to be competitive as commercial
drugs.5

In spite of the large efforts made in the field, aggregates
are still hard to characterize with microscopic detail using
standard protocols; their amorphous state makes them
impractical for the usual high resolution techniques such
as nuclear magnetic resonance and X-ray crystallography.
Among the alternative strategies that are commonly used
to investigate protein aggregation, computer simulations
play a very significant (and increasingly important) role.
First, simulation provides a microscopic description of the
system (according to the assumptions of the simulation
model). Second, it gives an optimal framework to test
sequences, structures and environment conditions in a
systematic way. As a result, simulations can aid in the
design of experiments and molecules tailored for properties on
demand.6

However, aggregation processes are also a major chal-
lenge for the computational community due to the interplay
of many physical scales (in space and time). In particular, one
needs to bridge atomistic detail at time scales of picoseconds
(typical of interatomic interactions) to the macroscopic scale
of multipeptide systems that aggregate on the millisecond
scale. As a result, most atomistic simulation studies either

a)Electronic address: m.enciso@latrobe.edu.au
b)Electronic address: schuette@zib.de
c)Electronic address: luigi.dellesite@fu-berlin.de

focus on just a small part of the whole process7 or a minimal
system size.8,9 Coarse-grained models are, then, an appeal-
ing alternative. Their simplified description of the system
allows for the study of larger and more complex systems
while keeping a reasonable computational cost;10,11 despite the
produced results may be qualitative, they still play a major
role in pioneering fields.

Protein aggregation is a ubiquitous event that may
happen to any known protein.12,13 Aggregation propensities,
however, depend on the particularities of protein sequence14

and structure,15 as well as on external factors like pH,
concentration, ionic strength, to cite a few. Among the latter,
pH is of key importance because of its clinical relevance (it
has even been suggested as a diagnosis method16) and its
impact in drug production and synthesis.17 Media acidity is
also a challenge in computation because a proper description
of pH implies instantaneous changes in the protonation states
of the involved species. Some simulation strategies have
been proposed during the last decades, all of them focused
on atomistic descriptions of the biological systems.18,19 The
most relevant drawback of constant-pH atomistic simulations
for aggregation studies is its computational cost (they are
remarkably slower than standard simulations), which usually
makes these models impractical for studying an aggregation
process. Coarse-grained pH-dependent methods, in contrast,
are still competitive and, if a discrete protonation approach
is used, do not even have a large impact on computational
efficiency.

We have recently proposed a constant-pH simulation
algorithm in combination with a simple but accurate coarse-
grained force field.20,21 It provides satisfactory results in
aggregation studies when compared, at qualitative level, to
both experimental and full-atomistic simulation data. Our
strategy is based on the principle of “consistency across
scales,” i.e., microscopic data taken from atomistic simulations
and experiments are used to build a first version of a molecular

0021-9606/2015/143(24)/243130/8/$30.00 143, 243130-1 © 2015 AIP Publishing LLC

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Thu, 14 Apr

2016 07:22:48

http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
http://dx.doi.org/10.1063/1.4935707
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:m.enciso@latrobe.edu.au
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:schuette@zib.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
mailto:luigi.dellesite@fu-berlin.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4935707&domain=pdf&date_stamp=2015-11-18


243130-2 Enciso, Schütte, and Delle Site J. Chem. Phys. 143, 243130 (2015)

based coarse-grained model, which is then employed to study
a system at different conditions from those used as input.
The coarse-grained simulation results are then compared with
atomistic simulations and/or experimental data obtained at
the modified conditions. The coarse-grained model is refined
until both sets of results agree; then, the model is accepted
and can be employed in larger simulations (see Ref. 22
and references therein for the basic strategy). This technique
assures a certain universality to the model and carries the
essential microscopic information for the aggregation process;
this is proven by benchmarking the model on a large series of
test systems and test situations which are, in principle, more
challenging in their description. If results are of an acceptable
(at least qualitative) level (as systematically proven in our
previous work20,21), then one may assume that the study of
larger systems, in such a class of problems, will deliver
qualitative results which capture some relevant features and
help to understand/interpret experiments. Instead, quantitative
information may differ from higher resolution techniques
and/or experiments, as the specific chemistry of the system
is unavoidably simplified. This is the attitude with which
we are going to apply our method to the systems described
below.

It was mentioned above that aggregation is a common
feature of every protein.14 This fact allows the use of
test systems to explore its fundamental characteristics. Test
systems are also very convenient from a computational point
of view because they reduce the complexity of the system. It
is easier, then, to break the overall process into its individual
factors, extracting more powerful and clear conclusions. In
this particular study, we have chosen the de novo sequence
KTVIIE as test system, designed by de la Paz and co-workers
to form amyloids.23,24 The literature is rather broad regarding
this family of peptides and hence it provides a broad range
of data to use for comparison in a computational study like
the current one. In particular, we have analyzed the effect
of pH in aggregation; moreover, the “amyloidogenicity” of
different sequences has been investigated. Among the studies
on these and closely related peptides,25–27 only one has
taken the effect of pH into account.27 The limitations of
atomistic constant-pH molecular dynamics simulations make
this study rather constrained in terms of the system size,
i.e., formation of a dimer in a 4-amino acid peptide. Such
a study, although very valuable, can just extract limited
conclusions about peptide aggregation, as the investigated
system is smaller than the critical nucleus size of aggregating
peptides, usually set between four and ten peptides.11,28–30

In the present study, we use replica exchange Monte Carlo
(REMC) simulations to extract thermodynamic information
and a kinetic Monte Carlo (KMC) for qualitative dynamic data.
We use these computationally efficient simulation techniques
jointly with a recently reported constant-pH coarse-grained
strategy.20,21 Their combination has allowed us to increase
one order of magnitude the systems’ size, as well as the
exploration of several pH conditions and sequence alternatives
within the same study. In this way, our results can be
related to macroscopic experimental information and used
as complementary tool of interpretation of macroscopic data
in terms of “individual molecular” process.

II. METHODS

In this section, we report the technical aspects regarding
this work, particularly the pH-dependent coarse-grained
methodology as well as some notes about the simulation
techniques that we used: REMC and KMC. They have been
described in full detail somewhere else and only a brief
description is included here (see references in Subsections
II A and II B).

A. System description and force field

Peptides are described by an off-lattice bead and stick
model. Each amino acid is described by just one interaction
center, placed at the α-carbon position; the molecule is then
embedded in an environment described via implicit solvent
approximation. Neighboring beads within the same peptide
chain are located at a fixed distance of 0.38 nm (i.e., the
average length of a trans peptide bond).

The central assumption of the model, based on the
extended benchmark simulations of our previous work, is that
the main peptide driving forces are considered independent
additive terms in the overall force field,10,20,31

E = ωhb Ehb + ωhp Ehp + ωstiff Estiff + ωelec Eelec

= ωhb


i


j
Ehb
i, j + ω

hp


i


j
Ehp
i, j

+ωstiff


i
Estiff
i + ωelec


i


j
Eelec
i, j ,

where Ehb is the energy associated with backbone hydrogen
bonds, Eelec is the energy associated to electrostatic inter-
actions, and Ehp is the energy associated with hydrophobic
interactions. A “stiffness term,” Estiff

i , has also been included.
While specific details and tests of validity are extensively
discussed in previous work,10,20,31 here we report only the
main features of the terms above.

Any pair of residues i and j (where j = i + 2 or j ≥ i + 4)
may form a hydrogen bond interaction, Ehb. This interaction is
calculated in two steps; first, three geometrical conditions are
checked (the length of the possible hydrogen bond between
beads, the orientation between bond vectors, and the relative
orientation between those vectors and the possible hydrogen
bond). Second, a step-wise potential is applied if the values
associated to such conditions fall within certain ranges. The
acceptance ranges as well as the interaction strength depend
on the specific nature of the hydrogen bond (local/helical or
non-local/β-type), see Ref. 31 for details.

The hydrophobic interaction Ehp is modeled by a pair-
wise 10-12 Lennard-Jones interaction. Hydrophobic and polar
centers of interaction can be distinguished by the particular
parameters in the Lennard-Jones potential.10 Amino acids have
been divided into the two categories above following Ref. 32.
A sequence-independent stiffness term, Estiff , is included to
equally favor helical and extended conformations10,32 and has
a similar role as the torsional interaction term in atomistic
simulations. The stiffness term is calculated for each residue,
i, and defined by a sinusoidal function that depends on the
bond angle between three consecutive beads, φ. Minima of
the potential are at φi = ±π/3 (i.e., the most probable angle
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of α-helices is then well described) and φi = ±π (i.e., the
most probable angle in extended configurations such as β-
sheets).

Up to this point, the effect of the pH is not included,
as we have proved that the interactions described above
are not significantly affected by pH changes.20 Electrostatic
interactions, however, are sensitive to changes in pH. Using the
principle of “consistency across the scales,” we have designed
an “effective” and physically sound electrostatic term, Eelec,
which is modeled by a Yukawa potential.33 Appropriate tests
on a rather large class of peptides can be found in Refs. 20
and 21.

The system pH itself is modeled via discrete protonation
states, which are allowed to fluctuate during the simulation
according to a Monte Carlo scheme.20 In each Monte Carlo
“pH move,” a protonable site is randomly selected and
its protonation state is changed. The new configurations
are accepted or rejected according to the detailed balance
condition, which depends on the “sensitivity” of the specific
amino acid towards protonation (i.e., the corresponding
equilibrium acidity constant) and on the particular pH value.

The balance among the contributions is defined in terms
of the following weighting factors: ωhb = 9.5, ωhp = 6.5,
ωstiff = 7.0, and ωelec = 12.0. Energetic units are referred
to a certain reference temperature Tref and energy Eref

= kBTref ; they can be directly related to states typical of
experiments. Our simulations were performed according to
these reduced and adimensional units, that is, T∗ = Treal/Tref

and E∗ = Ereal/kBTref .

B. Simulation details

Equilibrium simulations were carried out using a REMC
in-house software, coded in FORTRAN90 and parallelized
with OpenMP for higher performance; each of these
simulations presents 32 different temperatures. Simulations
start from a completely extended conformation for each
chain and consist of 8 · 106 Monte Carlo cycles at every
temperature after 5 · 106 equilibration cycles (enough to
guarantee convergence). In each cycle, every bead of the
system is subjected to a trial Monte Carlo move. In order to
sample the conformational space as efficiently as possible,
we have implemented individual bead movements as well as
whole chain movements. See Ref. 31 for details. For each
system, at least three independent runs have been performed.

We used KMC to extract qualitative dynamic informa-
tion.34 In this technique, it is assumed that the main process
(aggregation, in this case) is achieved in a large number of
much smaller steps (Monte Carlo cycles), proportional to
the real time scale of the process. As this is true only if
small amplitude movements are allowed in the code, larger
amplitude Monte Carlo movements (present in the REMC
version) were removed from the in-house FORTRAN90 code.
The evolution of the KMC system can thus be compared
to the real one. In our implementation, random initial
configurations are computed at a temperature below the
transition one, registering the evolution of the system until it
reaches the stopping point. Kinetic aggregation simulations
were performed at a temperature T∗ = 0.9 · T∗m and stopped

when the system energy reached the average energy at the
equilibrium transition temperature; in all cases, this is shortly
after the aggregation nucleus is formed. In order to achieve
proper statistics, 500 independent aggregation events have
been performed for each system.

In all cases, the simulated systems are composed of
twenty-four peptides in a simulation box of 21 nm, using
periodic boundary conditions to mimic bulk behavior. pH
changes are acknowledged through changes in the effective
bead-bead interactions while the solvent has kept its implicit
representation, as described above.

Simulation results were analyzed using standard proto-
cols, mostly using in-house software. Heat capacity curves
were calculated at each simulated temperature by means
of thermal fluctuations of the total energy. The number of
intermolecular hydrogen bonds and hydrophobic and electro-
statics contacts were computed based on the intermolecular
contribution of each type of interaction to the overall energy;
two beads were considered in contact if their energy was at
least 10% of its maximum strength. Aggregate sizes were
determined by counting the number of peptides whose centers
of mass were closer than 1 nm (the overall results showed
minimal differences within a 30% variation of this interchain
distance). VMD35 was used to produce pictures.

III. SIMULATION RESULTS

This article studies the effect of pH and sequence on
peptide aggregation in a systematic way. For this purpose, we
used realistic systems sizes, i.e., larger than the critical nucleus
size. This critical size is a function of the peptide sequence
and its length and it is usually set (by both experimental
and computational means) between four and ten polypeptide
chains.11,28–30 We used twenty-four peptides per simulation
box in replica exchange Monte Carlo and kinetic Monte Carlo
pH-dependent simulations; it is the first time that this large
scale approach has been used to take into account the effect
of pH in the aggregation process.

We took the de novo sequence KTVIIE as starting
point, designed by de la Paz and co-workers as intrinsically
amyloidogenic.23,24 In the first part of this study we explored
the effect of pH in aggregation, as it had been reported
that peptides present pH-sensitive aggregation propensities,
probably linked to a difference in their net charge.23,36 Then,
we simulated the KTVIIE peptide with capped ends at three
different pH conditions: acidic (pH = 2.6), neutral (pH = 7.4),
and basic (pH = 12.5). According to experimental evidence,
the three systems aggregate, although these aggregates present
slight morphological differences.23,24

The second part of this work deals with two related
sequences, KTWEFE and PRVIIR. We used them to analyze
the role in aggregation of the amyloidogenic core of the
original sequence, VII. In the first derived sequence, this
triad was mutated to WEF, which is also amyloidogenic
but aggregates at a much slower rate.24 The last sequence,
PRVIIR, surrounds the amyloid-forming core by amino acids
that prevent aggregation.23,37 Peptide termini were set as
capped/free to achieve in all cases a peptide net charge of ±1
in an acidic environment (pH 2.6).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Thu, 14 Apr

2016 07:22:48



243130-4 Enciso, Schütte, and Delle Site J. Chem. Phys. 143, 243130 (2015)

A. Effect of pH in the aggregation of KTVIIE

In this case, we evaluated the aggregation characteristics
of the KTVIIE peptide at acidic, neutral, and basic pH
conditions. We analyzed the thermodynamic stability of the
KTVIIE peptide system in equilibrium simulations at different
temperatures. The results are summarized in the heat capacity
curves versus temperature shown in Figure 1(a) and the
thermodynamic data of Table I. The curves corresponding to

FIG. 1. Thermodynamic and structural information for KTVIIE at pH 2.6
(blue), 7.4 (red), and 12.5 (dark yellow). (a) Heat capacity curve versus tem-
perature, in reduced units. Contact histogram for (b) electrostatic interactions,
(c) hydrophobic interactions, and (d) hydrogen bonds.

TABLE I. Thermodynamic information of the simulated systems. T ∗m is the
transition temperature in reduced units. Maximum C∗v is the height of the heat
capacity peak at the transition temperature. Width∗1/2 is the temperature width
of the transition peak, measured at 1/2 of its maximum. ∆E∗ is the internal
energy (in reduced units) involved in the transition.

System T ∗m Maximum C∗v Width∗1/2 ∆E∗

KTVIIE, pH 2.6 2.35 32 000 0.82 880
KTVIIE, pH 7.4 2.35 13 000 0.69 1000
KTVIIE, pH 12.5 2.35 20 000 0.57 1100
KTWEFE, pH 2.6 2.60 6 600 1.10 130
PRVIIR, pH 2.6 . . . . . . . . . . . .

the three tested environments present a peak at temperature
T∗m = 2.35, indicative of an energetic transition: the system
is forming aggregates at temperatures below T∗m, which
dissociate at higher temperatures. This transition is found
at a similar temperature at all pH values, which suggests that
they all aggregate in similar circumstances, this is qualitatively
consistent with experimental evidence.23

However, other thermodynamic characteristics differ, as
can be observed in Table I, suggesting microscopic differences
among the three systems. Low pH conditions result in a
high and broad heat capacity peak, consistent with a weak
cooperative transition. The internal energy involved in the
process is relatively low, which is due to the presence of
some residual structure above the transition temperature.
In an intermediate pH environment, however, the system
exhibits a lower heat capacity peak, slightly wider and
involving a larger energetic difference. This is consistent
with a slightly more cooperative transition and less residual
interactions at higher temperatures. The KTVIIE sequence at
high pH presents relatively high and narrow heat capacity
peaks: the energy associated with the aggregate stabilization
is lost in a narrow temperature interval. Unfortunately, no
thermodynamic experimental evidence could be found to
confirm these simulation observations and this is left as an
open challenge for future experiments.

We have taken each of these systems separately and
analyzed their intermolecular contacts at a temperature slightly
below the transition one (T∗ = 0.9 T∗m). In Figures 1(b)–1(d),
we show the distribution of intermolecular electrostatic
interactions, hydrophobic interactions, and hydrogen bonds,
respectively. Hydrophobic contacts and hydrogen bonds
(Figures 1(c) and 1(d)) exhibit a comparable distribution
at the three pH values, which reflect the similarity of the
overall aggregated structure in all cases. These aggregates
are formed by hydrogen bonded β-type structures, which
are associated by hydrophobic interactions (see structural
discussion referring to Figure 2). Electrostatic interactions,
shown in Figure 1(b), present a higher variability upon pH,
as they are directly affected by the media acidity. In neutral
conditions, positive and negative charges coexist (according to
our simplified model description), which results in a slightly
higher number of electrostatic contacts. Basic and especially
acidic pH conditions shift the distribution maxima towards
lower values. This shift might be due to the fact that in these
conditions peptides present an effective net charge, either
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FIG. 2. Stages of the aggregation process for KTVIIE at pH 2.6. (a) At t = 0 peptides present random configurations. (b) At t = 0.5 τ, peptides interact, forming
a hydrophobic collapsed cluster. (c) At t = 0.75 τ, collapsed states rearrange and form hydrogen bonds. (d) At t =τ the hydrogen bonded aggregates can freely
grow.

positive (at pH 2.6) or negative (at pH 12.5). We have further
investigated this aspect by calculating the average charge of
the potentially charged amino acids in our systems. In each
situation, we have focused in the amino acids whose tabulated
pKa was closer to the pH value and, therefore, more sensitive
to the media acidity. We have found that in our simulations,
the amino acid E (pKa = 4.25) has average charge of −0.59 at
low pH whereas K (pKa = 10.53) has a+0.72 net charge at pH
12.5. The lower charge of E compared to K (consistent with a
smaller difference between tabulated pKa and pH) explains its
more abrupt drop in electrostatic contacts. Note also that the
calculated charges are higher than a simple calculation with
tabulated pKa values would predict. Although no quantitative
conclusion can be extracted from our minimalistic coarse-
grained simulations, these results qualitatively show the effect
of the environment upon pKa, as these amino acids are forming
aggregates and, therefore, less exposed to the solvent.

Our thermodynamics results indicate that KTVIIE is
indeed prone to form aggregates in all sorts of conditions, as
experimentally reported.23,24 Therefore, a very simple model
like ours is sensitive to sequence and it can qualitatively
capture intrinsic pH-dependent effects. Regarding the
aggregation dynamics of this peptide, we carried out KMC
calculations for the three different pH conditions used in
the equilibrium simulations. This approach, quite low in
resolution but very suited for the kind of coarse-grained
potential used in this work, allows to use large size systems
at a limited computational cost. Therefore, it was possible to
register hundreds of independent aggregation events for each
particular condition, permitting a proper statistical analysis of
KTVIIE aggregation kinetics.

The structural description of the aggregation dynamics is
quite similar in all our simulation runs, showing no remarkable
structural differences depending on pH. Figure 2 shows the
most relevant stages in a typical aggregation event and shows
the key aspects regarding how aggregation takes place. This
particular example was taken from one single run of KTVIIE
at pH 2.6, although just minor differences were found in
neutral and basic environmental conditions. Snapshots A–D
show the evolution of the whole system at different times t,
relative to the total aggregation time (denoted by τ). We have

included a magnified image where structural configurations
are clearly shown, as well as a global view of the simulation
box to indicate the presence of many aggregation events in
different parts of the system, as well as to give an idea of the
concentration conditions used during our simulations.

Simulations are started from random configurations (see
Figure 2(a)), which are allowed to diffuse freely according
to our KMC scheme. The magnified image in the figure
reflects the fact that peptides adopt random configurations
with residual intramolecular hydrogen bonds in some peptide
chains. As time evolves, sporadic hydrophobic interactions
are formed among peptides; they become more frequent and
robust around t = 0.5 τ (see Figure 2(b)). The enlarged image
shows three independent peptides (represented in different
colors for the sake of clarity) agglutinated into an unspecific
cluster. It is mostly stabilized by hydrophobic interactions
and electrostatics, with null or little presence of hydrogen
bonds in the overall structure. These clusters are transient,
i.e., they rapidly form and dissociate. However, the large size
of the simulated system allows us to identify the formation
of many similar clusters (usually composed by 3-5 peptide
chains) at this stage of the simulation (as can be observed in
a close inspection of the global image in Figure 2(b)). The
formation of this hydrophobic core is, then, identified as a key
step in the aggregation process, in agreement with the litera-
ture.38

The hydrophobic clusters rearrange at t = 0.75 τ, as
observed in Figure 2(c). At this point there is a shift in the
stabilizing interactions, from mostly hydrophobic contacts to
hydrogen bonds. Peptide chains acquire a more elongated
form, which maximizes the number of intermolecular
hydrogen bonds and form a β-sheet type structure; its hallmark
parallel distribution can be easily recognized in the magnified
cartoon in Figure 2(c). The hydrogen-bonded core structure
acts like a “seed” that promotes the growth of the aggregate
(fibril), as shown in Figure 2(d) for time t = τ. This final
structure is similar to the ones observed in REMC equilibrium
simulations, proving that convergence was reached. Note also
that a purely hydrogen bonded configuration would result in a
highly exposed and unstable hydrophobic core; this is avoided
by adding more peptides to the structure, usually through
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hydrophobic interactions (see the peptide colored in magenta
in Figure 2(d)).

By employing the KMC technique, a large number of
aggregation events were registered in each particular case (see
Section II for details), resulting in meaningful statistics about
aggregation. We calculated the relative number aggregation
events (N/N0) as a function of time, plotted in Figure 3. This
representation provides information about the kinetics law
that drives aggregation according to our model; in addition,
it illustrates the differences between the tested conditions.
In Figure 3, the three simulated systems (acidic, neutral, and
basic) show a linear trend, consistent with a first order kinetics.
This finding is in agreement with data from other aggregation
studies39 and suggests that it is a common feature in peptide
aggregation.

The fitting details from our simulations are shown in
Table II. Results in this table indicate that the aggregation rate
is a pH-dependent property for the KTVIIE peptide according
to our model. The rate constant is larger at neutral pH; this
suggests that neutral pH conditions not only averages out the
overall peptide net charge but also promotes intermolecular
interactions, as more beads with opposite charges are present
in the system. This also suggests that, at least according to
our simplified interaction scheme, systems with non-zero net
charge do not necessarily aggregate faster.

So far, we have performed a systematic study of the
aggregation conditions for the KTVIIE peptide and have
shown how our simple but (carefully designed) one-bead
coarse-grained model such as ours is able to propose
mechanisms which may characterize the very essence of
peptide aggregation from both a kinetic point of view and
a thermodynamic point of view. This kind of approach, in
turn, can then provide valuable insight to interpret and guide
experimental studies. Besides, the effect of pH, our coarse-

FIG. 3. Relative population of isolated peptides (i.e., not forming aggregates)
vs time (in number of Monte Carlo cycles) for the sequence KTVIIE at
T ∗m = 2.10 and two different pH conditions.

TABLE II. Kinetic information regarding the peptide KTVIIE at three differ-
ent pH conditions and KTWEFE at low pH. k is the first order rate constant,
calculated from the fitting in Figure 3 with correlation coefficient R2.

System k (10−6/MC cycles) R2

KTVIIE, pH 2.6 8.95 0.98
KTVIIE, pH 7.4 22.5 0.97
KTVIIE, pH 12.5 12.6 0.94

KTWEFE, pH 2.6 0.47 0.99

grained model with a pH-dependent algorithm, highlights also
the impact of the re-distribution of the system electrostatics
upon acidity changes.

B. Sequence-dependent effects on aggregation
at low pH

The KTVIIE sequence is unique in its kind, in the sense
that its aggregation propensity is so high that some degree
of aggregation is expected in nearly any condition. However,
modifications in its sequence can lead to noticeable differences
in the aggregation response.24 We investigated this aspect
by simulating two additional sequences that focus on the
role of the amyloidogenic core VII. A comparison of the
three sequences can be found in Figure 4. The first one,
KTWEFE, presents the WEF motif instead of VII; WEF is
thought to slow down aggregation. Our second variation is
the sequence PRVIIR, which presents one proline and two
positively charged amino acids surrounding the aggregation
motif VII. The former has been identified as a β-sheet breaker
amino acid;37 the latter are thought to destabilize aggregates
due to an increase in the local peptide charge.23

Regarding the first alternative sequence, experimental
evidence at low pH conditions states that the KTWEFE
peptide has a much slower kinetic response,24 although it still

FIG. 4. Bead representation of the studied sequences. Amino acids have
been colored according to their nature: white, hydrophobic; green, polar; red,
negatively charged; blue, positively charged. (a) KTVIIE. (b) KTWEFE. (c)
PRVIIR.
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aggregates at long time scales (i.e., in the thermodynamic
regime). Using a model as simple as ours, all the chemical
subtleties regarding these mutations cannot be grasped.
However, our model is able to detect that the new sequence
is more polar and has more charged interaction centers
(compare Figures 4(a) and 4(b)); these features should be
clearly reflected in our results. This hypothesis was tested
by simulating the KTWEFE peptide at pH 2.6, using REMC
and KMC to extract thermodynamic and dynamic information
about the effect that the new sequence has in aggregation.

Our equilibrium simulations showed that KTWEFE is
able to form aggregates at low pH, presenting a low peak
in the heat capacity curve at T∗m = 2.60, similarly to the
KTVIIE curves in Figure 1 (data shown in Table I). The slight
increase in the transition temperature reflects the fact that
KTWEFE may form more stable aggregates than the original
sequence; the thermodynamic data in the table also suggests,
similarly to KTVIIE at low pH, that the transition is weakly
cooperative. We compared the aggregate sizes at T∗ = 0.9 T∗m
for the two sequences, shown in blue and red in Figure 5.
KTWEFE aggregates are slightly larger in size. Regarding
their structure, they are similar to KTVIIE aggregates, with
a mild increase in the average number of hydrogen bonds
due to the incorporation of more peptide chains into the
hydrogen bonded aggregated cluster (similar to Figure 2(d)).
These evidences support the fact that KTWEFE aggregates are
thermodynamically stable, like those in their parent sequence
KTVIIE.

In the case of the KMC dynamic information, first order
kinetics are again fulfilled, as shown in Table II by a fitting
correlation coefficient very close to one (R2 = 0.99). The main
difference compared to KTVIIE was found in the rate constant,
which is in this case an order of magnitude smaller than in
KTVIIE. A smaller rate constant matches the experimental
evidence of slower aggregation kinetics for this sequence
compared to the original one.24 It also highlights the fact that

FIG. 5. Aggregate size for the studied sequences a pH= 2.6 at T ∗= 0.9 T ∗m.
Blue: KTVIIE at T ∗= 2.10; red: KTWEFE at T ∗= 2.30; yellow: PRVIIR at
T ∗= 1.50 (lowest simulated temperature).

a thermodynamically possible event may or may not occur
in dynamically driven conditions such as a time-dependent
experiment, as the rate constant may be largely affected. It
is worth mentioning that this difference has been spotted
with a one bead coarse-grained model. This type of models,
by definition, lacks a side chain explicit description: only a
careful design of the bead to bead interactions (such as the
present model) can make up for sequence-dependent details,
which could be easily lost otherwise.

The original sequence KTVIIE has also been modified
in literature to introduce amino acids that are thought to
prevent aggregation.23,37 One of these alternative sequences
is PRVIIR, which surrounds the aggregation key motif VII
by so-called β-sheet breaker amino acids.24,37 Note that the
used coarse-grained model is not able to grasp many of
the particularities of proline; however, our model is very
suited to reflect the excess of charge in the system. We
simulated the new sequence in equilibrium conditions using
a similar temperature range as in all the other cases. To our
surprise, we did not observe a shift of the heat capacity peak
towards lower temperatures, but its complete disappearance
(see Table I), which means that PRVIIR does not aggregate
at any of the simulated temperatures. A numerical analysis
of the aggregate sizes at low temperatures shows, in fact,
no presence of intermolecular structures, as can be observed
in the yellow histogram of Figure 5. For this reason, no
kinetic study was performed in this case. PRVIIR results
illustrate the importance of mutations in aggregation, as they
can completely prevent the formation of intermolecular struc-
tures.

IV. CONCLUSIONS

Peptides have been extensively used as test systems
to study fundamental aspects of protein aggregation, such
as the role of each amino acid in promoting/disrupting
polymerization, the effect of net charge in the overall process
or the impact that environment acidity may have in the
formation of aggregates. One of the most common peptides
for this kind of studies is the de novo sequence KTVIIE,
broadly investigated by experiments and simulations.23–27

Computational tools play a preponderant role in
aggregation studies, as they can provide microscopic detail
as well as fundamental information. However, simulation
time is still a hard limit for many applications due to
the size of the relevant systems. This is especially true
in pH-dependent studies, as current atomistic constant-pH
methodologies are about one order of magnitude slower than
their traditional counterparts. In this work, we have applied
a recently developed coarse-grained pH-dependent strategy
to circumvent this issue. Because of its simplicity and low
computational cost, we have been able to simulate three
different multichain systems at several pH conditions. This
study has been carried out using REMC and KMC to extract
both thermodynamic and kinetic information.

We have found, in accordance to the available literature,
that KTVIIE is intrinsically amyloidogenic in all pH con-
ditions, presenting slight but noticeable differences depending
on the particular media acidity. The sequence variation
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KTWEFE, also amyloidogenic, aggregates at much slower
rates. The sequence PRVIIR, which presents the amyloido-
genic motif VII but is surrounded by aggregation defender
amino acids, does not aggregate in our simulations. Since our
model is a molecular model, our computational strategy could
put forward an interpretation of macroscopic data in terms of
the very microscopic (molecular) details. The consequence of
such an analysis is the indication of the possible subtleties that
drive protein aggregation and thus suggest deeper but specific
theoretical and experimental studies.
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