
The Cyborg Astrobiologist: matching of
prior textures by image compression for
geological mapping and novelty detection

P.C. McGuire1,2, A. Bonnici3, K.R. Bruner4, C. Gross1, J. Ormö5, R.A. Smosna4,
S. Walter1 and L. Wendt1
1Planetary Sciences and Remote Sensing Group, Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
e-mail: mcguirepatr@gmail.com
2Formerly at: Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
3Department of Systems and Control Engineering, University of Malta, Malta
4Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
5Centro de Astrobiología, CSIC-INTA, Torrejón de Ardoz, Madrid, Spain

Abstract: We describe an image-comparison technique of Heidemann and Ritter (2008a, b), which uses
image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of:
(ii) alerting the user to the similarity of a new image to a previously observed texture. This image-comparison
technique has been implemented and tested using our Astrobiology Phone-cam system, which employs
Bluetooth communication to send images to a local laptop server in the field for the image-compression
analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones,
mudstones and coal beds. Some of the rocks are partly covered with lichen. The image-matching procedure
of this system performed very well with data obtained through our field test, grouping all images of yellow
lichens together and grouping all images of a coal bed together, and giving 91% accuracy for similarity
detection. Such similarity detection could be employed to make maps of different geological units.
The novelty-detection performance of our system was also rather good (64% accuracy). Such novelty
detection may become valuable in searching for new geological units, which could be of astrobiological
interest. The current system is not directly intended for mapping and novelty detection of a second field site
based on image-compression analysis of an image database from a first field site, although our current system
could be further developed towards this end. Furthermore, the image-comparison technique is an
unsupervised technique that is not capable of directly classifying an image as containing a particular
geological feature; labelling of such geological features is done post facto by human geologists associated
with this study, for the purpose of analysing the system’s performance. By providing more advanced
capabilities for similarity detection and novelty detection, this image-compression technique could be useful
in giving more scientific autonomy to robotic planetary rovers, and in assisting human astronauts in their
geological exploration and assessment.
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Introduction

In prior work, we have developed computer algorithms for
real-time novelty detection and rarity mapping for astro-
biological and geological exploration (McGuire et al. 2004,
2005a, b, 2010; Bartolo et al. 2007; Gross et al. 2009, 2010;
Wendt et al. 2009). These algorithms were tested at astro-
biological field sites using mobile computing platforms
originally (McGuire et al. 2004, 2005a, b, 2010)with awearable
computer connected to a digital video camera, but more
recently (Bartolo et al. 2007; Gross et al. 2009, 2010; Wendt
et al.2009;McGuire et al.2010)with aphone cameraconnected
wirelessly to a local or remote server computer. The image
features used in the novelty detection and rarity mapping in
prior work were based only upon RGB or HSI colour.
Nonetheless, even with image features limited to colour, the

mobile exploration systems worked very robustly. Based on an

analysis of the procedures governing the team’s geologists
when analysing an encountered outcrop, we developed a con-
cept of ‘novelty detection’ for guiding the Cyborg Astrobio-
logist system in a first step towards mimicking the geologist’s
approach. Very simplified, the geologist’s decisions when
approaching an outcrop are based upon observations that may
be useful to ‘tell the tale’ about the outcrop, i.e. relations
between individual parts of the outcrop. This can, for instance,
be contacts between different lithologies, alteration sequences,
diagenetic variations or structures such as beddings or
fractures. Commonly, such variations are, at a first distant
glance of an outcrop, expressed as colour and/or texture vari-
ations. In, for instance, the case of colour variations, the geo-
logistmaydecide that it is a certain colour that stands out froma
more common background that should be given special
attention, i.e. as ‘interest points’. The next step for the geo-
logists is, thus, usually to investigate the contacts between these
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first-order ‘interest points’ and the background. When further
advancing on the outcrop, new ‘interest points’ ofmore detailed
scale are selected based upon the same principle in a somewhat
iterative way. The ‘colour-only’ Cyborg Astrobiologist has, in
our first tests, been employed in unvegetated, desert-like
environments where it was able to identify novel or uncommon
areas in image sequences, ranging from mostly white-coloured
gypsum to mostly red-coloured ‘red bed’ sandstones. The
system was able to identify, for example, bleached areas and
hematite concretions in the red beds of Spain, and lichens of
varying colours within the desert landscapes of Spain andUtah
as being novel features (whenfirst observed) of those landscapes
(Gross et al. 2009, 2010; Wendt et al. 2009; McGuire et al.
2010). However, another important factor in addition to
colour variations in the decision-making of the geologist
when approaching an outcrop is texture, the objective of this
study.
Herein, using data acquired by the Astrobiology Phone-cam

at a geological field site (Fig. 1), we test an image-comparison
technique of Heidemann and Ritter (2008a, b), which uses
image compression and is capable of (i) detecting novel (col-
oured) textures in a series of images as well as of (ii) alerting the
user to the similarity of a new image to a previously observed
texture. We first implemented this technique in 2010 (Bonnici
et al. 2010), but did not test this software at a geological field site
until now. Such a capability could be useful in giving more
scientific autonomy to robotic planetary rovers (Volpe 2003;
Fink et al. 2005, Castano et al. 2007; Halatci et al. 2007, 2008),
and perhaps in assisting human astronauts in their geological
explorations. For example, suppose that a semi-autonomous
planetary rover equipped with texture-based novelty detection
is observing a long series of textures corresponding to hematite
concretions embedded in mineral deposits. With texture-based
novelty detection (Gulick et al. 2001, 2004; Thompson et al.
2012), this rover would report, during stage 1 of its approach
towards the outcrop, that a particular previously unobserved
horizontally layered texture is novel, and hence merits further
investigation. In stage 2, it would detect smaller spherical ob-
jects, possibly even of a different colour relative to the back-
ground, within the previously observed layers. Depending on
the resolution of the camera, this process could continue
iteratively, with further observations of onion-layering of the
spherules and so forth. A certain amount of autonomous
decision-making of the rover would, in this way, greatly reduce
the amount of data to be transferred between the rover and the
scientists.

Heidemann and Ritter’s image-compression
technique

Following Heidemann and Ritter (2008a, b), we ‘calculate the
similarity of two images I1, I2 as:

DSIM(I1, I2) = S(I1) + S(I2) − S(I12), (1)
where S(·) denotes the [(single-number) byte] size of a com-
pressed image. I12 is the ‘joint’ image obtained as juxtaposition

of pixel arrays I1 and I2’. If the two images are very similar,
then S(I12) will be small and DSIM(I1, I2) will be large. If the
two images are very different (due to textural and colour
differences), then S(I12) will be large and DSIM(I1, I2) will be
small.
The juxtaposition in our implementation is left–right, but

we have not compared our implementation to an up–down
juxtaposition. Various image-compression programmes were
investigated by Heidemann & Ritter (2008a, b), and their
optimal image compressor for texture classification was gzip,
which we have chosen as our image compressor1.Gzip relies on
Huffman entropy coding (Huffman 1952; see also Saravanan
& Ponalagusamy 2010) and the Lempel–Ziv algorithm
(Lempel & Ziv 1977; see also Kärkkäinen et al. 2013).
Huffman coding is based on how frequent the symbols2 are
in a data stream, assigning shorter bit-length representations
for more commonly used symbols. The Lempel–Ziv algorithm
(LZ77) eliminates duplicate strings of symbols using ‘sliding-
window compression’ (referring to the buffer window that
records the previously observed symbols in the data stream)3.
Quoting Heidemann & Ritter (2008b): ‘The Lempel–Ziv algo-
rithm (LZ77) (Lempel & Ziv 1977), which detects repeatedly
occurring symbol sequences within the data, such that a
dictionary can be established. A repeated symbol sequence can
then be replaced by the symbol defined in the dictionary.’4 The
gzip algorithm outperforms (Heidemann & Ritter 2008b) the
correlation technique and the histogram-based matching tech-
nique for the texture-classification, object-recognition and
image-retrieval tasks.
By employing a simple image-compression technique such

as Heidemann and Ritter’s, we can avoid the complexities and
ambiguities of more reductionist textural comparison techni-
ques (i.e. Haralick et al. 1973; Rao 2012), wherein a significant
number of different textural indicators (at different spatial
scales and orientations) are computed and mapped for each
image.

1 In our implementation, we have used the gzip functionality of
MATLAB 7.10.0 (R2010a), using the MATLAB function java.util.zip.
GZIPOutputStream(), which calls a Java function that was derived from
the Java Deflater compression algorithm. Our version of Java is
7.0.110.21. The Java Deflater algorithm is based upon the Compressed
Data Format specification for DEFLATE in the Request for Comments
#1951 (http://www.ietf.org/rfc/rfc1951.txt) of the Internet Engineering
Task Force and the Internet Society.
2 A symbol in this context is a numeric byte.
3 We use gzip’s standard sliding window size of 32kB. In future work, by
modifying the gzip source code, we plan to study how texture-matching
performance depends on this sliding window size.
4 Bytes of similar numeric value will not be automatically classified as a
single symbol. Therefore, digital noise or slight, intrinsic variations of
pixel values may affect the compression results. This is one shortcoming
of this dictionary-based technique for data compression. In the future, as
suggested by Heidemann and Ritter (2008a,b), other data-compression
techniques could be used (or developed) that can handle better the
inherent variability of RGB pixel values. Such techniques would be in
principle lossy, though lossy compression in the JPEG implementation
does not work well, due to the discrete cosine transform that was utilized
by JPEG (Heidemann and Ritter, 2008a).
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In order to simplify interpretation, we have taken the log-
arithm of DSIM and added a normalization factor, so that the
maximal range of DSIM is 0–100% for the current database of
images. We accomplish this by comparing the newest image to
itself and setting the value obtained as the 100% similarity
value. One would expect this value ofDsim(IN,IN) to be slightly
smaller than S(IN) since the two images being compared are the
same, but the changes at the boundary (between the two
identical juxtaposed images) introduce a discrepancy in the
value of Dsim(IN,IN).

Field tests

The Astrobiology Phone-cam system sends images wirelessly
by Bluetooth to a nearby laptop computer, dynamically build-
ing an image library with examples from different terrain.
The Phone-cam for this field test is a Samsung SGH-A767
with 1280×960 RGB colour images, and the laptop is a Dell
Inspiron 9300. Each incoming image IN is processed by a
compiled MATLAB code by the laptop using equation (1) to
compute the similarity DSIM(IN, IJ), with each previous
image, IJ. If DSIM(IN, IJ) is less than a chosen threshold for
all previous images IJ (for all J<N), then the computer
considers image IN as ‘novel’ and returns a text message to the
Phone-cam by Bluetooth informing the explorer that the image
is novel. If the image is novel, the explorer might decide to
perform a more detailed analysis of the ground or rocky
outcrop that image IN represents. IfDSIM(IN, IJ) is greater than
the chosen threshold for one or more of the previous images IJ,
then the image IK, which has the highest similarity score
(highest value ofDSIM(IN, IK)), is returned to the phone camera
via Bluetooth, juxtaposed with IN, in order for the user to
assess the similarity visually. We have performed tests of this
procedure for detecting novelty or similarity; a set of example
images in the test sequence and their best-matching prior
images are juxtaposed in Fig. 2. Image pairs such as in Fig. 2
are the visual information that the image-compression
algorithm on the laptop computer outputs and then sends to
the phone camera for inspection.

Owing to its proximity to three of the authors (McGuire,
Smosna and Bruner) at the time of the survey, we chose a
geological field site near the northern end of the Morgantown
Mall in Morgantown, West Virginia, USA. This mall is the
former site of a coal mine, so there are several exposed geo-
logical cuts, including one of a coal bed. These rocks5 comprise
a part of West Virginia’s coal measures, in particular the
lowest section of the Pittsburgh Formation, and have a late
Carboniferous age. The outcrop exposes a heterogeneous mix
of coal, sandstone, shale, mudstone and limestone, typically
occurring in beds of 30–150 cm thickness. The photographed
coal is the Pittsburgh coal, about 3 m thick with well-developed
cleats (fractures) and elemental sulphur on the face. The
sandstone ranges from being thin-bedded to being massive
with planar bedding and cross-bedding. The shale is charac-
teristically thinly laminated. The mudstone shows a nodular
character and locally contains ironstone concretions (com-
posed of iron carbonate and iron silicate minerals). The lime-
stone exhibits spherical weathering and solution features.
Our original plan was to use the Cyborg Astrobiologist’s

image-compression system at the geological field site, acquir-
ing and analysing about 25 images in the 1.5 h battery lifetime
of the laptop server computer (it takes an average of 3–4min to
analyse each image). However, at the field site, we decided to
acquire 55 images6 with the Astrobiology Phone-cam in 1 h,
and then to analyse the images offline after the field work

Fig. 1. The Cyborg Astrobiologist using its image-comparison software with the Astrobiology Phone-cam to study lichens (left picture) and coal
with cleats (right picture) at the geological field site (photos by K.R. Bruner).

5 unpublished data from the West Virginia Geological & Economic
Survey.
6 The images were acquired without horizon, or rock-debris aprons, or
vegetation in the view. This is not the way a robot or rover would have
taken the images, unless it was trained to do so. However, it allows us to
focus our investigation on the rocky outcrops. We also tried to focus as
much as possible on the ‘end-member homogeneous textures’, as
opposed to images that contain multiple, different, mixed textures. In a
limited investigation which we do not present here, our software seems to
work also with mixed colored textures, wherein the best matching images
are of similar mixing amounts of the different colored textures. Much
more work needs to be done for these mixed textures.
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(a)

(b)

(c)

Fig. 2. Good matches: Incoming image IN is on the left, and best-
matching image is on the right. Each image is about 0.5 m across.
(a) Platy-rock texture (laminated shale); (b) yellow-sporing bodies of
lichens; (c) coal bed.

(a)

(b)

(c)

Fig. 3. Novel images: Incoming image IN is on the left, and best-
matching image is on the right. Each image is about 0.5 m across. (a)
Novel platy-rock texture; (b) novel yellow-sporing bodies of lichens;
(c) novel coal bed.
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was completed. This offline analysis7 lasted for about 4 h,
longer than the battery life of the laptop. Therefore, this was
not the ideal real-time test, but all the capabilities of the system
were otherwise tested and more images could be analysed than
during a real-time test.
Three of the 55 result images are shown in Fig. 2. Figure 2(a)

shows the platy-rock texture on the left, and the best-matching
of the prior images on the right. This is indeed a successful
match. Likewise, it was a successful match for the yellow-
sporing bodies of the lichens in Fig. 2(b), and for the coal bed in
Fig. 2(c). Generally, for each image which was not novel, the
computer successfully matched it best with another image of
similar texture and/or colour statistics.
For those images which were novel, the computer either gave

a lowDSIM score (<39%) ormatched it with a higher scorewith
an image that even the human analyst would say is similar. See
Fig. 3 for examples of the novel images and their best matches
in the database. Figure 3(a) shows the low DSIM score for the
novel platy texture with the best-match smooth iron-stained
texture. Figure 3(b) shows the low DSIM score for the novel
yellow-sporing bodies of the lichens with the best-match platy
texture with red clast. And Fig. 3(c) shows the higher DSIM

score for the novel coal bed with the best-match yellow-sporing
bodies of the lichens. In Fig. 3(c), the score is likely to be higher
because the substrate rock for the yellow lichen is black, much
like a large part of the coal bed, and because the coal bed has
some pale yellow colouring due to sulphur content.
In Table 1, we estimate the number of images that are novel,

similar or different, as judged by three members of our human
team8, and the number of images that are novel but have high
similarity scores, the number of images that are similar and the
number of images that are similar with low similarity scores.
A more detailed compilation of our results is shown in Table 2,

listing for each of the 55 incoming images: (i) which prior
image matched best, as well as (ii) notes about novelty and
mismatching. The range of observed scores for matching
images is generally about 39–50%. Lower scores generally
signify novelty, although there are some novel images with
scores above 39%, due to similarity to other geological units
(see Table 1). The threshold of 39% between similarity and
novelty was chosen after the experiment, and it is not a perfect
threshold, but it is approximately the right value for these
images.
There are examples where the *48% score appears rather

low (for instance, the pair 273/272, where the two images
appear to the human observer identical, apart from a small
vertical shift). We would expect that the algorithm should be
able to detect this better: if the strategy is to compare hori-
zontal scan line (pieces), then the vertical shift should leave
many scan line similarities intact and a high value should result
(but there might still be high sensitivity to rotation). Based
upon prior tests, we believe that the reason the highest scores
are not near 100% is because of the discontinuity between the
juxtaposed images.

Discussion

The intent of our algorithm is to analyse a series of images
made in a homogeneous environment (a common outcrop),
which slightly changes over time. The scope here is to auto-
matically detect sudden variations in the outcrop’s visual
appearance, for the purpose of minimizing interactions by the
human scientists who are supervising the robotic rover from
afar. We do not expect our current algorithm to be able to
extrapolate to a new field site in order to identify lichens or coal
or other coloured textures that were observed at a prior field
site, for the following reasons:
First, these coloured textures would most likely have sig-

nificant intrinsic variability in their colour or textural qualities
from one site to the next. However, if the colour and textural
qualities were the same or similar, then the similarity matching
and novelty detection would work well.
Second, we have not controlled for lighting conditions or

photometric angles of observation. We do not attempt such
control in the present work, since our main objective is to test
the similarity-matching and novelty-detection capabilities of
the image comparison algorithm. Nonetheless, in a muchmore
advanced system, real-time photometric and atmospheric
correction could be added, similar to the post-processing
correction system for the CRISM camera on the Mars
Reconnaissance Orbiter (McGuire et al. 2008). We did not
need such photometric or atmospheric control for the field tests
completed here, since the lighting conditions were the same
(overcast) throughout the one-hour field test.
Third, at the new field site, the colour and textural properties

of the images may have different spatial scales than at the
original field site. Careful control of the camera distance to the
rock outcrop may lessen the differences in spatial scale of
the coloured textures in the images from one field site
to another. In the current field tests, we have only tested

Table 1. Summary of results.

Truth (human judgement)

SumNovel Similar Different

Predicted
by Cyborg
Astrobiologist

Novel or Different
(score <39%)

9 3 2 14

Similar
(score 539%)

5 31 4 40

Sum 14 34 6 54

Accuracy of Novelty detection: 9/14=64%.
Accuracy of Similarity detection: 31/34=91%.
Accuracy of Difference detection: 2/6=33%.
Overall accuracy: 42/54=78%.

7 The testing procedure consisted of (i) an empty image database at the
beginning of the test, and subsequently, (ii) each image was compared to
the previous ones as it is added to the database, and (iii) to test the
performance of the algorithm, the images were later classified based on
expert knowledge as one of the following classes: weathered rock,
laminar shale. . . (and so on). The match was considered successful if the
algorithm returned an image from the same rock unit.
8 Novelty is based upon the history of images, and difference is only for
the non-novel and non-similar images and is based upon only the labels
of the best matching pair.
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Table 2. Detailed results.

Incoming Image #, and
Best matched pair

Matching
Image # Incoming Image Descrip. Matching Image Descrip.

Mismatch Notes (Novel/Similar/
Different judged by human)

265 264 Loose weathered rock Thick-bedded sandstone with thin
parting of mudstone in middle

Novel.
Only two images in database.
Dsim=0%

266 264 Thin-bedded sandstone Thick-bedded sandstone with thin
parting of mudstone in middle

Novel.
Only three images in database.
Dsim=7%

267 264 Thin-bedded sandstone
below, shale above

Thick-bedded sandstone with thin
parting of mudstone in middle

Novel.
Only four images in database.
Dsim=11%

268 265 Weathered shale Loose weathered rock Novel.
Only five images in database.
Dsim=25%

269 264 Thick-bedded sandstone
with thin parting of
mudstone in middle

Thick-bedded sandstone with thin
parting of mudstone in middle

Similar.
Dsim=40%

270 264 Thick-bedded sandstone
with thin parting of
mudstone in middle

Thick-bedded sandstone with thin
parting of mudstone in middle

Similar.
Dsim=41%

271 270 Thick-bedded sandstone
with thin parting of
mudstone in middle

Thick-bedded sandstone with thin
parting of mudstone in middle

Similar.
Dsim=40%

272 269 Massive sandstone Thick-bedded sandstone with thin
parting of mudstone in middle

Novel.
Dsim=44%
These two units appear very similar
in the images

273 272 Massive sandstone Massive sandstone Similar.
Dsim=48%

274 273 Massive sandstone Massive sandstone Similar.
Dsim=44%
Some grass in 274
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Table 2. (Cont.)

Incoming Image #, and
Best matched pair

Matching
Image # Incoming Image Descrip. Matching Image Descrip.

Mismatch Notes (Novel/Similar/
Different judged by human)

275 265 Nodular mudstone Loose weathered rock Novel.
Dsim=42%
These two units appear very
similar in the images

276 275 Nodular mudstone Nodular mudstone Similar.
Dsim=46%

277 275 Nodular mudstone Nodular mudstone Similar.
Dsim=48%

278 268 Laminated shale Weathered shale Novel.
Dsim=26%

279 278 Laminated shale Laminated shale Similar.
Dsim=37%

280 279 Laminated shale Laminated shale Similar.
Dsim=37%

281 279 Laminated sandstone Laminated shale Novel.
Dsim=31%

282 279 Laminated shale Laminated shale Similar.
Dsim=30%
Shale in 279 is much redder in colour
than in 282

283 282 Laminated shale with
ironstone concretion

Laminated shale Novel.
Dsim=34%

284 283 Laminated shale Laminated shale with
ironstone concretion

Different.
Dsim=31%
These two images are very similar.
Ironstone is about 10% of image in
area
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Table 2. (Cont.)

Incoming Image #, and
Best matched pair

Matching
Image # Incoming Image Descrip. Matching Image Descrip.

Mismatch Notes (Novel/Similar/
Different judged by human)

285 277 Laminated shale with
ironstone concretion

Nodular mudstone Different.
Dsim=41%
These two images are similar
in colour statistics

286 269 Massive sandstone Thick-bedded sandstone with thin
parting of mudstone in middle

Different.
Dsim=46%
These two units appear very similar
in the images

287 286 Massive sandstone Massive sandstone Similar.
Dsim=49%

288 283 sandstone with lichen laminated shale with
ironstone concretion

Novel.
Dsim=30%

289 288 Sandstone with lichen Sandstone with lichen Similar.
Dsim=41%

290 288 Sandstone with lichen Sandstone with lichen Similar.
Dsim=40%

291 288 Sandstone with lichen Sandstone with lichen Similar.
Dsim=43%

292 286 Massive sandstone Massive sandstone Similar.
Dsim=49%

293 290 Sandstone with lichen Sandstone with lichen Similar.
Dsim=44%

294 289 Coal with cleats Sandstone with lichen Novel.
Dsim=43%
Sulphur colouring in coal is
also yellowish, like the lichens.
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Table 2. (Cont.)

Incoming Image #, and
Best matched pair

Matching
Image # Incoming Image Descrip. Matching Image Descrip.

Mismatch Notes (Novel/Similar/
Different judged by human)

295 294 Coal with cleats Coal with cleats Similar.
Dsim=45%

296 295 Coal with cleats Coal with cleats Similar.
Dsim=47%

297 295 Coal with cleats Coal with cleats Similar.
Dsim=42%

298 297 Coal with cleats Coal with cleats Similar.
Dsim=43%

299 298 Coal with cleats Coal with cleats Similar.
Dsim=41%

300 294 Coal with cleats Coal with cleats Similar.
Dsim=45%

301 300 Coal with cleats Coal with cleats Similar.
Dsim=47%

302 301 Coal with cleats Coal with cleats Similar.
Dsim=49%

303 297 Coal with cleats Coal with cleats Similar.
Dsim=43%

304 299 Coal with cleats Coal with cleats Similar.
Dsim=45%

305 304 Coal with cleats Coal with cleats Similar.
Dsim=45%
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Table 2. (Cont.)

Incoming Image #, and
Best matched pair

Matching
Image # Incoming Image Descrip. Matching Image Descrip.

Mismatch Notes (Novel/Similar/
Different judged by human)

306 302 Coal with cleats Coal with cleats Similar.
Dsim=46%

307 302 Coal with cleats Coal with cleats Similar.
Dsim=49%

308 307 Coal with cleats Coal with cleats Similar.
Dsim=45%

309 308 Coal with cleats Coal with cleats Similar.
Dsim=50%

310 309 Coal with cleats Coal with cleats Similar.
Dsim=48%

311 282 Coal with yellow growths Laminated shale Novel.
Dsim=41%
These images are similar to each
other in texture and colour statistics

312 282 Coal with yellow growths Laminated shale Different.
Dsim=38%
These images are similar to each
other in colour statistics

313 282 Coal with yellow growths Laminated shale Different.
Dsim=41%
These images are similar to each
other in texture and colour statistics

314 313 Coal with yellow growths Coal with yellow growths Similar.
Dsim=47%

315 293 limestone sandstone with lichen Novel.
Dsim=48%
These images are similar to each
other in colour statistics
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the system at a single image scale or resolution, given by
the human operator locating the camera about 1 m away from
the outcrop. This single-scale property of the images could be
approximated on a Mars rover, for example by using an imag-
ing camera held by the robotic arm at a fixed distance from the
outcrop. We do not have plans currently to develop an
algorithm that is capable of distinguishing between coloured
textures at different spatial scales.
Fourth, this algorithm is an unsupervised algorithm; it does

not need to know prior image classifications in order to identify
novel or familiar coloured textures. The algorithm does not
know that an image is one of lichen or a coal bed – it just can
classify an image as familiar or novel, based upon similarity
to previous images. So, the algorithm cannot really identify
lichens or coal as being lichens or coal. The algorithm does not
need to know what it is looking at ahead of time. The classifi-
cations were made by human geologists a couple of days after
the field test. The intent of the algorithm is to allow the robotic
astrobiologist to find those areas of a rocky outcrop that are
similar to each other (for mapping purposes) and those areas of
a rocky outcrop that are novel (for further investigation and/or
sample acquisition).
These conditions exactly correspond to the requirements

for an extraterrestrial robotic image-acquisition system, where
many images are autonomously taken in a mostly homo-
geneous environment. Sudden changes or exceptions in the
environment could be flagged and reported to the human
scientists on Earth, effectively scanning the immense number of
images for anomalies (possibly of astrobiological interest).

Conclusions and future

Our initial tests at a geological field site of this texture-based
algorithm for image comparison show promise for both
novelty detection and for similarity matching. The similarity

matching was superb (91%), especially of images of the yellow
lichens and of images of the coal bed. Our next step is for the
Cyborg Astrobiologist to perform more extensive field testing
of this algorithm with the Astrobiology Phone-cam at other
geological/astrobiological field sites.
Testing with grey-scale cameras and multispectral cameras

are possible extensions of this work. To simulate images taken
by a rover, one could take videos and randomly select frames
from the video. We also hope to speed up the algorithm so that
it can analyse *100 images in a laptop-battery-limited real-
time test of 1.5 h. This speed-up can be accomplished perhaps
by using the cluster characteristics of the image database so
that each image is only compared with one image of each
cluster of the database. The speed-up could also be accom-
plished by eliminating the delays of Bluetooth transmission
and developing an app for smartphones which acts directly on
the smartphone as soon as the image is captured; this would at
least reduce the bottleneck to one battery life rather than two,
and carrying a spare phone battery is much easier than carry-
ing around a spare laptop battery. Another extension of the
system could be useful for offline analysis: allowing for an
image to be segmented for texture with this compression
algorithm. This could lead the Cyborg Astrobiologist to
understand further the images, so that the software could be
used by a Robotic Astrobiologist to zero in on novel
astrobiological/geological areas of outcrops.
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