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We consider fermionic and bosonic quantum chains where a defect separates two subsys-

tems and compare the corresponding entanglement spectra. With these, we calculate their

Rényi entanglement entropies and obtain analytical formulae for the continuously varying

coefficient of the leading logarithmic term. For the bosonic case we also present numerical

results.

I. INTRODUCTION

In critical quantum chains, the entanglement entropy between a section of length L and the

remainder varies as lnL with a prefactor proportional to the central charge c of the model. For a

review, see [1]. If one modifies the interface, this coefficient has been found to vary continuously

with the defect strength in free particle systems. The effective number of states in the Schmidt

decomposition then increases as a power of L with a continuously varying exponent.

For fermionic systems, the problem was first posed by Levine [2] and then investigated numer-

ically for XX chains [3] and transverse Ising chains [4]. By mapping the problem to that of a

two-dimensional Ising model with a defect line, the coefficient could later be obtained analytically

and perfect agreement with the numerical data was found [5]. Moreover, the parameter entering

the analytical expression turned out to be simply the transmission amplitude through the defect.

This holds also for more complicated defects [6]. In a series of recent papers, calculations were also

done for continuous fermionic systems, and the same coefficient was found [7–9]. On the bosonic

side, Sakai and Satoh studied a continuum system with a conformal interface between two different

critical parts with c = 1 [10]. This can also be viewed as a uniform system with a defect. The

continuously varying coefficient found in this case has a close relation to the fermionic one, but the

detailed connection has remained unexplored so far.

The purpose of this note is two-fold. Firstly, we want to show how one can treat the bosonic

case in complete analogy to the fermionic one. Thus we consider a system of coupled oscillators

which is the lattice version of the system studied in [10]. For this system, we derive an expression

http://arxiv.org/abs/1201.4104v2
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for the single-particle spectrum in the reduced density matrix ρ which is formally very similar to

that in the fermionic case. However, it does not have a gap, since the defect does not break the

criticality. This clarifies the relation between the two problems at the level of the RDM spectra.

We check that one recovers the previous result for the von Neumann entropy in this way and also

compare with numerics.

Secondly, with the spectra at hand, we show that not only the von Neumann entropy S =

−tr (ρ ln ρ), but also the Rényi entropies

Sn =
1

1− n
ln tr(ρn) (1)

can be calculated asymptotically in closed form for all integer n. In both cases, the coefficients κn

in

Sn = κn lnL (2)

turn out to be (sums of) elementary functions for n > 1 and in this sense simpler than the von

Neumann coefficients. Qualitatively, they all vary in a similar way for each of the two cases.

In the following, we first recapitulate the fermionic results in section 2. Then, in section 3, we

study the oscillator chain and its RDM spectrum. In section 4 and 5 we present the calculations

for the Rényi entropies and show the resulting functions. In section 6 we sum up our findings and

in the appendix we present a derivation of the bosonic spectrum from the transfer matrix of a

two-dimensional Gaussian model.

II. SETTING AND FERMIONIC RESULTS

We consider open chains of length 2L with a defect in the middle and the entanglement between

left and right halves. The geometry is shown in fig. 1 for a bond defect.

21 L L+1 2L

t

FIG. 1: Quantum chain with a bond defect.

For free-particle systems, the reduced density matrix for a subsystem can be written

ρ =
1

Z
e−H (3)
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where H is again a free-particle Hamiltonian, see [11]. Its single-particle eigenvalues, called 2ωk in

the following, contain the basic entanglement information. With them, the von Neumann entropy

S is given by

S = ±
∑

k

ln(1± e−2ωk) +
∑

k

2ωk

e2ωk ± 1
(4)

and the Rényi entropies are

Sn =
1

1− n

[

±
∑

k

ln(1± e−2nωk)∓ n
∑

k

ln(1± e−2ωk)
]

(5)

where the upper (lower) sign refers to fermions (bosons).

For a transverse Ising model, these eigenvalues were determined in [5] from the excitations in

the transfer matrix of an Ising strip of width lnL. The result was that

chωk =
1

s
ch εk (6)

Here the εk are the values without the defect and vary linearly with k for lnL ≫ 1, while s

measures the defect strength. For a bond defect, where the coupling is changed from 1 to t, it is

given by s = sin(2 arctan t) = 2/(t + 1/t). For an XX chain, T = s2 is the transmission coefficient

through the defect at the Fermi level. The dispersion relation (6), shown in fig. 5 of [5], describes

a spectrum with a gap induced by the defect and encodes the entanglement properties for a large

system. In particular, the entanglement decreases as s becomes smaller. This was investigated in

[5] for the von Neumann entropy.

The functional relation (6) can also be written in another form. In terms of the quantities with

and without the defect,

ζ ′k = 1/(e2ωk + 1), ζk = 1/(e2εk + 1) (7)

it becomes

ζ ′k(1− ζ ′k) = s2ζk(1− ζk) (8)

Such a relation was found recently in the study of quantum wires, i.e. for continuous systems with

a localized, scale-free scattering potential [8, 9]. In these calculations, one considers the overlap

matrix A of the occupied single-particle states in the subsystem [14] and finds that

A′(1−A′) = s2A(1−A) (9)

for arbitrary particle number N . This relation extends to the eigenvalues ak which are then used to

determine the entanglement entropies. However, for free particles the non-trivial ak are the same
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as the eigenvalues ζk of the correlation matrix C which give the ωk and εk via (7). The relation for

ak in [8, 9] is therefore the same as (8) and the calculations, although they proceed in a different

way, have actually the same basis and thus lead to the same results.

III. BOSONIC CHAIN

A quantum chain realizing the system studied in [10] consists of 2L harmonic oscillators coupled

by springs, where the spring constants and the masses are different in both halves, but have the

same ratio, see [15]. The spring in the centre has to be chosen properly. The Hamiltonian is

H =
2L
∑

n=1

(

− 1

2mn

∂2

∂x2n
+

1

2
mnΩ

2
0 x

2
n

)

+
1

2

2L−1
∑

n=1

Dn(xn − xn+1)
2 (10)

and we set

Dn = mn =







K1 = eθ n < L

K2 = e−θ n > L
(11)

while the central spring is assumed to have

DL = K0 ≡
2K1K2

K1 +K2
=

1

ch θ
(12)

A rescaling of the coordinates un =
√
mn xn then makes H homogeneous up to the springs at sites

L and L+ 1

H =

2L
∑

n=1

(

−1

2

∂2

∂u2n
+

1

2
Ω2
0 u

2
n

)

+
1

2

∑

n 6=L

(un − un+1)
2 +

1

2

(

K0

K1
u2L +

K0

K2
u2L+1 − 2

K0√
K1K2

uLuL+1

)

(13)

In this form, one is dealing with a defect problem, and the defect is completely characterized by

the parameter θ. For large |θ|, i.e. if K1 and K2 are very different, the chain is cut in the middle.

The eigenfrequency Ω0 of the oscillators is included to avoid a zero mode, but will be taken small.

The single-particle eigenvalues in the RDM follow from the matrix C = 2X 2P containing the

position and momentum correlations in the subsystem [11]. In terms of the eigenvalues Ω2
m and

eigenfunctions φm(i) of the dynamical matrix, one has

Cij =
2L−1
∑

m,n=0

Ωn

Ωm
Amnφm(i)φn(j) (14)

where the reduced overlap matrix

Amn =

L
∑

l=1

φm(l)φn(l) (15)
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comes from taking the product of X and P in the subsystem (chosen as the left half-chain).

In the homogeneous system

Ωm =

√

Ω2
0 + 2

(

1− cos
mπ

2L

)

, m = 0, . . . , 2L− 1 (16)

and

φm(i) =

√

1

L
cos

(i− 1/2)mπ

2L
m 6= 0, φ0(i) =

√

1

2L
(17)

Then the matrix A is for m,n 6= 0

Amn =
1

4L

[

sin π
2 (m− n)

sin π
4L (m− n)

+
sin π

2 (m+ n)

sin π
4L(m+ n)

]

(18)

and if one or both the indices are zero one has

Am0 = A0m =
1√
22L

sin π
2m

sin π
4Lm

, A00 = 1/2 (19)

Note, that Amn vanishes if m− n 6= 0 is even. Furthermore, Amm = 1/2 and one can write

Cij =
1

2
δij +Dij (20)

where Dij is the piece of (14) with the sum restricted to m− n odd.

For the inhomogeneous system, the eigenvalue equations can be satisfied by choosing the same

spectrum as in the homogeneous case Ω′
m = Ωm and making the ansatz

φ′
m(i) =







αmφm(i) 1 ≤ i ≤ L

βmφm(i) L < i ≤ 2L
(21)

Inserting this into the two modified equations and requiring orthonormality, one obtains the con-

ditions

αmβm = K0, αmαn + βmβn = 2δmn (22)

The solutions are

α2
m = 1± tanh θ, β2

m = 1∓ tanh θ (23)

where the upper (lower) signs refer to even (odd) indices m. This yields

A′
mn =



















Amn(1− tanh2 θ) m− n odd

Amn(1 + tanh θ)2 m = n even

Amn(1− tanh θ)2 m = n odd

(24)
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Finally, one obtains

C ′
ij =

1

2
(1 + tanh2 θ)δij + (1− tanh2 θ)Dij

= (1− tanh2 θ)Cij + tanh2 θ δij

(25)

which is an exact relation between the matrices with and without the defect and translates to their

eigenvalues coth2 ωk and coth2 εk. Written differently, it takes the form

shωk =
1

s
sh εk (26)

where s = 1/ch θ. This is the analogue of the relation (6) and has a striking similarity to it.

However, while the two relations are identical for large ω and ε, the lower part of the spectrum is

different. There is no gap in (26), ω approaches zero with slope 1/s as ε goes to zero. The defect

does not make the system non-critical. Full dispersion curves are shown in fig. 2 for several s.

Also marked are the discrete numerical values which are obtained for a chain of L = 200 sites. We

also note that with

n′
k = 1/(e2ωk − 1), nk = 1/(e2εk − 1) (27)

the functional equation can be written as

n′
k(1 + n′

k) = s2nk(1 + nk) (28)

which is the analogue of (8). Furthermore, one should mention that the overlap matrix (18) has

a similar structure as the one in [8, 9] and also satisfies (9). The two calculations are therefore

closely related.

As in the fermionic case, the parameter s has the meaning of a transmission amplitude through

the defect. This can be seen from the 2×2 transfer matrix for the scattering problem. This matrix

has eigenvalues (eθ, e−θ) and transmits the odd resp. even functions (17) by multiplying them with

these factors. This explains the form (21) of the perturbed eigenfunctions. One can also see, that

only the choice (12) leads to a transmission coefficient T = s2 independent of the wavelength (i.e.

to a scale-free defect) and to such a simple structure of the problem.

The relation (26) can also be derived by going to two dimensions and studying the transfer

matrix of a Gaussian model. This is sketched in the Appendix. The relation is also implicit in

the work of [10], but not really visible. However, one can insert it into the bosonic von Neumann

entropy (4), change to integrals and obtain κ = I/π2 with

I = −
∫ ∞

0
dε ln(1− e−2ωk) +

∫ ∞

0
dε

2ωk

e2ωk − 1
(29)
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FIG. 2: The relation (26) for the bosonic single-particle excitations in H for several values of the defect

strength. The points are the numerical values for chains with L = 200.

Expressing this in terms of hyperbolic functions, differentiating twice with respect to s and using

a partial integration gives, with x = sh ε

I ′′(s) =

∫ ∞

0
dx

x
√
x2 + 1

3√
x2 + s2

arsh(
x

s
)

=
1

1− s2
ln s (30)

This is (4.12) in [10] and the negative of the corresponding result in the fermionic case [5]. A

further difference appears in the integration over s, since I ′(0) = π2/4 here, while it vanishes for

fermions. Therefore κ(s) contains a term linear in s and reads

κ(s) =
1

4
s− κF (s) (31)

where the second part is the fermionic result

κF (s) = − 1

2π2
{[(1 + s) ln(1 + s) + (1− s) ln(1− s)] ln s+ [(1 + s)Li2(−s) + (1− s)Li2(s)]} (32)

with Li2 denoting the dilogarithm. This is, written somewhat differently, the final result in [10].

The function ceff = 6κ(s) is shown in fig. 3 and rises smoothly from zero to 1, while κ(s) itself

varies between 0 and 1/6.

The figure also contains data points from numerical calculations. In order to see a logarithmic

behaviour of S in the bosonic case, one has to work in a situation, where the correlation length

given by 1/Ω0 is larger than the system size but still finite. In the homogeneous system one can

then obtain κ = 1/6 with high precision (3-4 decimal places) from sizes L = 100 − 500. The
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FIG. 3: The function ceff = 6κ(s) for the bosonic interface problem. The points are numerical results, see

text.

calculations are done such that 2LΩ0 = A is held constant as L is varied. With the defect, the

dispersion curve shown in fig. 2 becomes rather steep for small s and only a single eigenvalue is

found on the slope for usual sizes 2L. The results depend sensitively on this eigenvalue and deviate

from the theoretical curve for small s. We have therefore plotted only data for s > 1/4, obtained

with A = 0.01, where the agreement is very good.

IV. FERMIONIC RÉNYI ENTROPY

We now turn to the Rényi entropy. In terms of the single-particle eigenvalues, it is given by

(5). Converting the sum over k into an integral over ε leads to the logarithmic behaviour (2) of Sn

with coefficient

κn =
1

π2

1

1− n
Kn , Kn = In − nI1 (33)

where

In =

∫ ∞

0
dε ln(1 + e−2nω) (34)

In terms of hyperbolic functions, the quantity Kn is

Kn =

∫ ∞

0
dε [ln(2ch nω)− n ln(2chω)] (35)

To evaluate it, one first writes chnω as a product by using 1.391 of [13]. For even n, this gives

ch nω =

n/2
∏

k=1

[

ch 2ω − c2k
s2k

]

(36)
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where sk = sin((2k − 1)π/2n) and ck = cos((2k − 1)π/2n). One now inserts chω = ch ε/s and

takes the derivative with respect to s. This gives, with x = ch ε,

∂

∂s
ln(2ch nω) = −n

s
−

n/2
∑

k=1

2sc2k
x2 − s2c2k

(37)

The first term is compensated by an identical one from n ln(2ch ω) and one has

K ′
n(s) =

n/2
∑

k=1

ck

∫ ∞

1

dx√
x2 − 1

[

1

x− sck
− 1

x+ sck

]

=

n/2
∑

k=1

ck
2 arcsin(sck)
√

1− s2c2k

(38)

which can be integrated to give

Kn(s) = −
n/2
∑

k=1

arcsin2(sck) (39)

With k → (n/2 + 1− k) the ck can be changed to sk and one finally obtains

κn(s) =
1

π2

1

n− 1

n/2
∑

k=1

arcsin2(ssk), sk = sin(
(2k − 1)π

2n
), n even (40)

For odd n, the expression (36) is changed into

ch nω = chω

(n−1)/2
∏

k=1

[

ch 2ω − c2k
s2k

]

(41)

but leads to the same result as in (39), up to the summation limit. Replacing the ck again by sine

functions, one has

κn(s) =
1

π2

1

n− 1

(n−1)/2
∑

k=1

arcsin2(ss̄k), s̄k = sin(
2kπ

2n
), n odd (42)

Formulae (40)and (42) give the κn for all integer n. One sees, that they are all elementary functions,

namely sums of n/2 or (n − 1)/2 arcsin2 terms. This is in contrast to the limiting cases n → 1

(von Neumann entropy) and n → ∞ (largest eigenvalue of ρ), where the dilogarithm Li2 appears

[5]. The result is particularly simple for n = 2, 3 where only a single term is present

κ2(s) =
1

π2
arcsin2(s/

√
2) (43)

κ3(s) =
1

2π2
arcsin2(s

√
3/2) (44)

The first formula was given before in [12].
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FIG. 4: Coefficients κn for a transverse Ising chain with a defect. Upper panel: as a function of the

parameter s. Lower panel: as a function of the defect bond strength t. The n-values are, from top to

bottom, n = 1/2, 1, 2, 3, 4, 8,∞.

Qualitatively, the κn all vary similarly with s, rising from zero for s = 0 (the dissected system)

to a limiting value

κn(1) =
1

24
(1 +

1

n
) (45)

for s = 1 (the homogeneous system) which can be obtained either directly from In(1) = π2/24n,

or by carrying out the simple sums which remain in κn for s = 1. For n = 1, κ1(1) = 1/12 = c/6
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with c = 1/2. The behaviour near s = 0 is quadratic and given by

κn(s) =
1

4π2

n

n− 1
s2 , s → 0 (46)

As n → 1, the curvature diverges which signals the s2 ln(1/s)-behaviour one has in the von Neu-

mann entropy.

The κn(s) are shown for several values of n in the upper part of fig. 4. In the lower part, the

same κn are plotted as functions of the bond variable t. The linear behaviour near s = 1 is then

turned into a quadratic one near t = 1, and the functions become symmetric under t → 1/t.

Fig. 4 includes the results for n = 1 and for n = ∞ which were found in [5]. Also shown is the

quantity κn for n = 1/2, which can be obtained from the derivative

K ′
1/2(s) =

1

2

∫ ∞

1

dx√
x2 − 1

1

x+ s

=
1

2

1√
1− s2

(π − arcsin s) (47)

which gives

κ1/2(s) =
1

2π2
arcsin s (π − arcsin s) (48)

It varies linearly, κ1/2(s) ≃ s/2π, for small s, has negative curvature everywhere and lies signifi-

cantly above the n = 1 curve, but otherwise fits into the overall scheme.

The formulae given above all refer to the transverse Ising model, where c = 1/2. For the XX

(hopping) model with c = 1, they have to be multiplied by a factor of two. In this case, it is also

easy to construct a scale-free defect in analogy to the bosonic chain. One only has to supplement

the modified bond t with site energies ±
√
1− t2 at L and L+1, respectively. Then (9) is satisfied,

the transmission amplitude is s = t and the κn(s) are the relevant quantities.

These results can also be obtained for continuum systems by working with the overlap matrices.

Then the particle number N appears in (2) instead of L and the κn are found in the form of an

infinite series in the parameter s which can be recognized as that of the function arcsin2 [8, 9]. In

the cited papers, the notation is somewhat different: 2κn is called C(n) and T is used instead of s.

V. BOSONIC RÉNYI ENTROPY

The calculation of Sn in the bosonic case is very similar. The quantity Kn introduced in (33)

becomes

Kn = −
∫ ∞

0
dε [ln(2shnω)− n ln(2shω)] (49)
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and the necessary formula for shnω is, for odd n

shnω = n shω

(n−1)/2
∏

k=1

[

1 +
sh 2ω

s̄2k

]

, s̄k = sin(kπ/n) (50)

This gives the derivative

K ′
n(s) = −

(n−1)/2
∑

k=1

2ss̄2k

∫ ∞

0

dx√
x2 + 1

1

x2 + s2s̄2k

= −
(n−1)/2
∑

k=1

2s̄k
√

1− s2s̄2k

arcsin (
√

1− s2s̄2k) (51)

and the integrations leads to

Kn(s) = −
(n−1)/2
∑

k=1

arcsin (ss̄k)[π − arcsin (ss̄k)] = −
(n−1)/2
∑

k=1

[π2/4− arccos2 (ss̄k)] (52)

After changing to cosine functions in the arguments, one has

κn(s) =
1

π2

1

n− 1

(n−1)/2
∑

k=1

[

π2

4
− arccos2(sck)

]

, ck = cos(
(2k − 1)π

2n
), n odd (53)

In the same way, the case of even n can be treated and leads to

κn(s) =
1

π2

1

n− 1







1

2

[

π2

4
− arccos2(s)

]

+

(n−2)/2
∑

k=1

[

π2

4
− arccos2(sc̄k)

]







, c̄k = cos(
2kπ

2n
), n even

(54)

These are the analogues of the fermionic formulae (40) and (42) and one sees that basically the

arcsin2 has been replaced with arccos2. The value for s = 1 is now

κn(1) =
1

12
(1 +

1

n
) (55)

whereas the behaviour for s → 0 is linear

κn(s) =
1

2π2

1

n− 1
cot(

π

2n
) s , s → 0 (56)

The limit n → 1 can be taken and gives the slope 1/4 found already in (31). Again, the cases

n = 2, 3 give the simplest formulae

κ2(s) =
1

8

[

1− 4

π2
arccos2(s)

]

(57)

κ3(s) =
1

8

[

1− 4

π2
arccos2(s

√
3/2)

]

(58)

In fig. 5, the functions κn(s) are shown for six different values of n. They all rise in a rather
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FIG. 5: Coefficients κn(s) for the bosonic defect. The n-values are, from top to bottom, n = 1, 2, 3, 4, 8,∞.

smooth way with negative curvature. Included is also the limit n → ∞, for which one only has to

calculate the integral I1. This is

I1 = −
∫ ∞

0
dε [ln(2shω)− ω] (59)

and has the derivative

I ′1(s) =
1

s
ln(1 + s) (60)

which upon integration gives a dilogarithm and

κ∞ = − 1

π2
Li2(−s) (61)

Thus κ∞, which describes the scaling of the largest eigenvalue of ρ, is a simple, but non-elementary

function, as in the fermionic case.

VI. CONCLUSION

We have considered defects in critical chains of free particles which can be varied in such a

way that one can go continuously from a homogeneous system to one cut in two pieces. In the

RDM, this leads to a characteristic rise of the single-particle eigenvalues by which the entanglement

across the defect becomes smaller. Both for fermions and for bosons, the change of the eigenvalues

is described by a simple functional relation. This allows to obtain closed expressions for the



14

entanglement entropies in the asymptotic region. In this sense, one is dealing here with a fully

soluble problem.

The bosonic chain, modeling a system with a conformal interface, is somewhat subtle. In order

to avoid a zero-energy mode, which would spoil the correlation function approach and does not

contribute to the logarithmic term anyway [10], one has to work slightly off-critical. The numerical

extrapolations for the available sizes then do not give the same perfect agreement with the analytical

results as for the fermionic defect. Nevertheless, they reproduce them over most of the parameter

space.

An interesting point is the validity of the functional relation (26) also away from criticality. This

offers the possibility to obtain exact results also in this case, since the εk are explicitly known and

equidistant in the infinite system [11, 16]. In the critical region, one then finds the same behaviour

as in (2) with L replaced by the correlation length ξ. One can also see that one needs quite large

values of ξ to observe the exact value of κn(s) if s becomes small.

Finally, one should mention that simply reducing the central spring constant in the oscillator

chain does not lead to a varying κn. The eigenvalues ωk then increase in a similar way as here

and the entanglement entropy becomes smaller, but the asymptotic variation with L remains

unchanged.
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Appendix: Transfer matrix in the Gaussian model

We want to show here that the relation (26) can also be obtained from the transfer-matrix

excitations in the associated two-dimensional model, as done in [5] for the fermionic case.

Consider a Gaussian model on a square lattice with variables φ, −∞ < φ < ∞, and coupling

constant K such that K(φ − φ′)2/2 is the energy of neighbouring sites. The symmetrized row

transfer matrix W = V
1/2
1 V2V

1/2
1 consists of the contribution from vertical (V1) and horizontal
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(V2) bonds. These are given by

V1 = exp(
1

2
K∗

∑

n

∂2

∂φ2
n

) , V2 = exp(−1

2
K

∑

n

(φn − φn+1)
2) (62)

where K∗ = 1/K. After a Fourier transformation with open boundaries and momenta q, they

become

V1 = exp(
1

2
K∗

∑

q

∂2

∂φ2
q

) , V2 = exp(−1

2
K

∑

q

Ω2
qφ

2
q) (63)

with Ω2
q = 2(1− cos q) = 4 sin2(q/2). These can be expressed in terms of creation and annihilation

operators b†q, bq for oscillators with mass 1 and frequency Ωq. Then

V1 = exp(
1

4
K∗

∑

q

Ωq(bq − b†q)
2) , V2 = exp(−1

4
K

∑

q

Ωq(bq + b†q)
2) (64)

In order to obtain W as a single exponential, one forms Heisenberg operators with V
1/2
1 and V2.

These are

V
1/2
1





bq

b†q



V
−1/2
1 =





1 + λ1 −λ1

λ1 1− λ1









bq

b†q



 = M
1/2
1





bq

b†q





V2





bq

b†q



V −1
2 =





1 + 2λ2 2λ2

−2λ2 1− 2λ2









bq

b†q



 = M2





bq

b†q





(65)

with the notation λ1 = K∗Ωq/4 and λ2 = KΩq/4. This gives for W

W





bq

b†q



W−1 = M
1/2
1 M2M

1/2
1





bq

b†q



 =





a b

−b d









bq

b†q



 (66)

The antisymmetric matrix on the right has determinant 1 and thus eigenvalues e±γq where ch γq =

(a+ d)/2 is half the trace. Explicitly,

ch γq = 1 +
Ω2
q

2
, or sh (γq/2) = Ωq/2 (67)

Introducing new boson operators via





βq

β†
q



 =





ch θq sh θq

sh θq ch θq









bq

b†q



 = U





bq

b†q



 (68)

the row transfer matrix then becomes

W = A exp( −
∑

q

γqβ
†
qβq) (69)
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M/2

1

K1

K2 M

M/2K

FIG. 6: Strip geometry defining the transfer matrix Wtot.

The parameter in the transformation (68) is given by

exp(−4 θq) =
1

K2
(1 +

Ω2
q

4
) (70)

and depends on the value of K, in contrast to γq.

Consider now a strip as shown in fig. 6 where the three sections have coupling constants K1,

K2 and K1. The total transfer matrix then is Wtot = W
M/2
1 WM

2 W
M/2
1 and the relation analogous

to (66) contains the matrix

Mtot = U(θ1)
−1EM/2U(θ1)U(θ2)

−1EMU(θ2)U(θ1)
−1EM/2U(θ1) (71)

where E is diagonal with entries e±γq and the index q of the θ has been suppressed. But the

products of the U ’s are just U(θ1 − θ2) = U(θ) where

exp(2 θ) =
K1

K2
(72)

is independent of Ωq. Using cyclic permutation, the trace is that of the matrix

M̃tot = U(θ)EMU(θ)−1EM (73)

and calling the eigenvalues e±2ωq one finds

ch 2ωq = ch 2(Mγq) + ch (2θ) sh 2(Mγq) (74)

or equivalently, writing Mγq = εq and ch θ = 1/s,

shωq =
1

s
sh εq, (75)

This is the relation (26). Due to (72), the parameter s is defined in the same way as for the chain.



17

Remarks:

(i) Multiplying the symmetrized transfer matrices W1 and W2 leads to particular vertical bonds

at the interface: K∗
0 = (K∗

1 +K∗
2 )/2, i.e. 1/K0 = (1/K1 + 1/K2)/2. This the choice made in the

chain calculation.

(ii) By rescaling the variables as in section 3, one can convert the system into a homogeneous

one with two defect lines. Repeating the transfer-matrix calculation, one finds again the spectrum

(74),(75).

(iii) The considerations here are not restricted to the critical point. However, the relation to

the RDM via a conformal mapping is limited to criticality.
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