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Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation
via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics
(MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of
atoms; however, computationally this technique is very demanding. The above mentioned limitation
implies the restriction of PIMD applications to relatively small systems and short time scales. One
of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms
into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small
region treated at path integral level and embeds it into a large molecular reservoir consisting of
generic spherical coarse grained molecules. It was previously shown that the realization of the
idea above, at a simple level, produced reasonable results for toy systems or simple/test systems
like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of
liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like
version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the
literature. The comparison of our results with those reported in the literature and/or with those
obtained from full PIMD simulations shows a highly satisfactory agreement. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4929738]

I. INTRODUCTION

The structure and dynamics of liquids consisting of mole-
cules that contain light atoms (e.g., hydrogen) can be influ-
enced by the quantum effects due to the delocalization of atoms
in space. In simulation, such systems are treated by modeling
the atoms of the molecules via the path integral formalism
of Feynman.1–3 In particular, liquid water is a typical subject
of interest given its role in many fields.4 As explained in more
detail in Sec. III, the computational effort is massive because
the number of interatomic interactions becomes much larger
compared to the classical case. As a consequence, the size
of the system and the simulation time affordable with stan-
dard computer resources are rather limited. For liquid water at
room condition, a system of 500 molecules for a simulation
time of 1-2 ns is usually considered already expensive. The
limited size and simulation time may imply that particle num-
ber density fluctuations are arbitrarily suppressed and some
systems cannot be treated if not at high computational price
(e.g., solvation of a large molecule in water). An optimal
complementary technique would consist of a Grand Canonical
(GC)-like scheme where (local) properties can be calculated
by employing a computationally affordable path integral (PI)
simulation of a small open region which, in statistical and ther-
modynamic equilibrium, exchanges particles and energy with
a reservoir acting at small computational cost. One possible
implementation of a grand canonical-like Molecular Dynamics
(MD) technique is the Adaptive Resolution Simulation scheme

a)animesh@zedat.fu-berlin.de
b)dellesite@fu-berlin.de

(AdResS)5–7 in its most accurate version of GC-AdResS.8–12

For the simplest version of AdResS, it was shown that for a
toy system (liquid of tetrahedral molecules) the embedding of a
PIMD technique into the scheme produced rather encouraging
results;13 such results were confirmed and empowered by the
application to simple/test systems like liquid parahydrogen at
low temperature.14,15 Meanwhile, the increased accuracy and
more solid conceptual framework of the adaptive scheme (GC-
AdResS) allow for the study of more complex systems and the
calculation of a larger number of properties than before.9–12

In this perspective, this paper reports the technical implemen-
tation of two different approaches to PIMD, Refs. 16–18 and
Refs. 19 and 20, into our GC-AdResS. We show its application
to liquid water and report results about static and dynamic
properties. The comparison with reference data is highly satis-
factory and suggests that GC-AdResS, as a complementary
method, may play an important role in future applications of
PIMD (today not feasible with full PIMD simulations). One
can think, for example, of solvation of a large molecules (e.g.,
fullerene in water) and look at possible quantum effects in
the structure of the solvation shell. However, it must also be
mentioned that in light of recent advances in the method-
ology of path integral calculations, the gain in efficiency with
the (current) PI-AdResS scheme presented here needs to be
compared with the gain of more advanced PIMD schemes.
For example, two schemes, in particular, reduce the cost of
path integral calculations by allowing a reduction in the num-
ber of beads. These are the path integral plus the general-
ized Langevin equation thermostat (PIGLET) of Manolopou-
los and coworkers19,21 and algorithms based on the Takahashi-
Imada factorization (see, e.g., Refs. 22 and 23). However, such
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approaches do not work for the Ring Polymer MD (RPMD)
scheme, employed later in this work for calculating equilib-
rium time correlation functions; in such case, the ring polymer
contraction scheme would be appropriate.20,24,25 This method
is applicable to RPMD simulations and it leads to essentially
classical (1 bead) numerical effort in the limit of large system
size; therefore, it can be expected to be highly competitive
with the current version of the method we propose. It must
also be clear that the approaches reported above are integration
techniques which are more efficient than the PIMD techniques
that we have merged with AdResS in this paper; however, they
may be merged with AdResS as well and thus take advantage
of the grand canonical-like approach in reducing the num-
ber of degrees of freedom (even further). Moreover, a point
that is certainly important is that GC-AdResS may be em-
ployed as a tool of analysis and study how the quantum effects
change as a function of the size of the region treated at PI
level. This would represent a novel type of analysis because
it unequivocally defines the essential molecular degrees of
freedom required for a given property26 and thus, it allows
to quantify how localized (possible) quantum effects (for the
properties considered) are. The paper is organized as follows:
Sec. II is dedicated to a summary of the relevant technical
and conceptual characteristics of GC-AdResS, followed by
Sec. III, which is dedicated to the description of the basic
characteristics of the two PIMD methods employed in this
study. The implementation of PIMD in GC-AdResS, for each
of the two specific techniques used, is reported in Sec. III B.
Sec. IV is divided into the subsections of (i) static and (ii)
dynamic properties. In Subsection IV A, we report particle
number density profiles, probability distributions, and radial
distribution functions of the GC-AdResS simulation compared
with results from full PIMD simulations. In Subsection IV B,
we report the calculation of equilibrium time correlation func-
tions compared, also in this case, with data obtained from
full PIMD simulations. Finally, the conclusion is presented in
Sec. V. The Appendix instead reports all technical data of the
simulations so that the results can be reproduced/checked by
other groups.

II. GC-ADRESS

In the original AdResS, the coupling idea is rather simple,
that is, in a region of interest (the atomistic or high resolution
region), all the molecular degrees of freedom are treated via
molecular dynamics, while in a (larger) region of minor inter-
est, only coarse-grained degrees of freedom are treated. The
passage of a molecule from one region to another should be
performed smoothly with hybrid dynamics in such a way that
the atomistic and coarse-grained regions are not perturbed in a
significant way. In order to do so, the space is divided into three
regions: the atomistic (high resolution) region, the coarse-
grained region, and an interfacial region where the atomistic
degrees of freedom are transformed in coarse-grained and vice
versa, we call this region hybrid region or transition region (see
Fig. 1 and Ref. 27). The coupling is made via a space dependent
force interpolation,

Fαβ = w(Xα)w(Xα)Fatom
αβ + [1 − w(Xα)w(Xα)]Fcm

αβ, (1)

where α and β indicate two molecules, and w(Xα) and w(Xβ)
indicate the interpolating (weighting) functions depending on
the coordinate of the center of mass of the molecules Xα and
Xβ,

w(x) =




1 x < dAT

cos2


π

2(d∆) (x − dAT)


dAT < x < dAT + d∆

0 dAT + d∆ < x

,

where dATand d∆ are the size of atomistic and hybrid regions,
respectively. Fatom

αβ is the force in the atomistic region, which is
derived from atomistic interactions, and Fcm

αβ is the force in the
coarse-grained region, which is derived from a coarse-grained
potential. A thermostat takes care of thermally equilibrating
the atomistic degrees of freedom reintroduced in the transi-
tion region. This simple setup turned out to be computation-
ally robust; the calculation of structural and thermodynamics
properties in AdResS compared with the calculations done
in a subregion of equivalent size in a full atomistic simula-
tion shows a highly satisfactory agreement for several test
systems.26,28–32 The computational robustness encouraged the
investigation of the conceptual justification of the method on
the basis of first principles of thermodynamics and statistical
mechanics.33,34 This analysis first led to the introduction of
a thermodynamic force acting on the center of mass of the
molecules in the hybrid region. The thermodynamic force is
based on the principle of uniformizing, to the atomistic value,
the chemical potential of each (space dependent) resolution7

and then to the derivation of such a thermodynamic force
from a more general thermodynamic principle, that is from the
balance of grand potential for two interfaced open systems,8


Patom + ρo


∆

Fth(x)dr


V = PCGV, (2)

where Patom and PCG are the pressure of the atomistic and
coarse-grained regions, ρo is the target density of the reference
full atomistic simulation, and V the volume of the simu-
lation box. The explicit calculation of Fth(x) is reported in
Sec. III B 1. Based on such derivation, a step forward was
done and AdResS was reformulated in terms of grand canon-
ical formalism (GC-AdResS) where mathematical rigorous
conditions were derived in order to assure that in the atomistic
region, the system samples a grand canonical distribution.
Such conditions, at the first order, has been shown to be equiv-
alent to the use of the thermodynamic force.10,11 Moreover,
the coarse-grained model can be arbitrarily chosen without
any reference to the atomistic model. In recent work,12 we
have embedded the scheme into the grand ensemble model
of Bergmann and Lebowitz35,36 and introduced a local ther-
mostat acting only in the coarse-grained and hybrid region.
Such a formalization allows one to define, with well founded
physical arguments, the Hamiltonian of the atomistic (high
resolution) region as the kinetic energy plus the interaction
energy of the molecules in the atomistic region only; this
implies that the interaction with molecules outside can be
formally neglected. The definition of the Hamiltonian allows
then to properly define the procedure for the calculation of
equilibrium time correlation functions; moreover, for the case
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FIG. 1. Pictorial representation of the
GC-AdResS scheme; CG indicates the
coarse-grained region, HY the hybrid
region where path-integral and coarse-
grained forces are interpolated via a
space-dependent, slowly varying, func-
tion w(x) and EX (or PI) is the path-
integral region (that is the region of
interest). Top, the standard setup with
the thermostat that acts globally on the
whole system used in the calculation
of static properties. Bottom, the “local”
thermostat technique employed in this
work in the calculation of dynamical
properties.

of PI approach, this setup will provide a rigorous definition of
the Hamiltonian of quantization. As it will be specified later
on, there also exists a clear numerical argument that supports
the definition of an accurate Hamiltonian in the high resolution
region.

III. PIMD TECHNIQUES

The path integral formalism of Feynman applied to molec-
ular simulation/dynamics of molecular systems is a well
established approach and thus here, we will not report its
formal derivation but only those aspects which are technically
relevant for this specific study. A formal derivation and discus-
sion of basic aspect of this approach can be found in Refs. 16
and 37, for example. The essential point of interest (in this
paper) is the transformation, via path integral formalism, of
a classical Hamiltonian of N distinguishable particles with

phase space coordinate (p,r), mass m j (for the jth particle),
and interaction potential in space V (r1, . . . ,rN),

H =
N
j=1

p2
j

2m j
+ V (r1, . . . ,rN), (3)

into a quantized Hamiltonian which is formally equivalent to
a Hamiltonian of classical polymer rings (atoms). The inter-
atomic potential is distributed over the beads in such a way that
each bead of a polymer ring interacts with the corresponding
bead of another polymer ring. The intra-atomic interactions
consist of harmonic potentials which couple each bead to the
first neighbors in the chain. The fictitious dynamics of this
polymeric liquid, with the spatial fluctuations/oscillations of
the rings describing the quantum spatial delocalization of the
atoms, allows for the calculation of quantum statistical prop-
erties of the atomic/molecular system. The quantized Hamil-
tonian takes the form

HP =

P
i=1



N
j=1

[p(i)]2j
2m′j

+

N
j=1

1
2

m jω
2
P(r(i)j − r(i+1)

j )2 + 1
P

V (ri1, . . . ,riN)

, (4)
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where P is the number of beads of the polymer, m′j =
Pm

(2π~)2
and pi are a fictitious mass and momentum, respectively,
ωP =

√
P

β~
(β = 1/kBT), and V (ri1, . . . ,riN) is the potential that

acts between same bead index i of two different particles.
This setup allows to use molecular dynamics for the calcu-
lation of statistical properties. However, the direct use of
the Hamiltonian above has shown to lead to a highly non-
ergodic dynamics and suffers from poor sampling problems
in the extended phase space of polymer rings,3 since there are
a wide range of frequencies present. The highest frequency
limits the time step to be used in the simulation which causes

the low frequency modes to be poorly sampled. Thus, either
a very small time step should be used or very long runs
should be performed, starting from different initial condi-
tions. In order to circumvent the ergodicity problem, normal
modes transformation is preferred.16,38 The basic idea is to
decouple the harmonic spring term, so that only a single
harmonic frequency remains in the dynamics, and the time
step for the simulation can be adjusted accordingly. The whole
procedure is based on a transformation of coordinates to
normal mode coordinates and thus to the use of an effective
Hamiltonian,

HP =

P
i=1



N
j=1

p(i)2
j

2m(i)′
j

+

N
j=1

1
2

m(i)
j ω

2
P(x ′)(i)

2

j +
1
P

V
(
r(i)1 (x ′1), . . . ,r(i)N (x ′N)

) , (5)

where 1
P

U
(
r (i)1 (x ′1), . . . ,r (i)N (x ′N)

)
is the potential that acts between same bead index i of two different particles in terms of the

normal mode coordinates x ′1, . . . , x
′
N .

A. Choice of masses

In the standard PIMD,39,40 the masses m(i)′
j are chosen such that all the internal modes have the same frequency and the

sampling is efficient. Thus, the choice of mass is

m(i)′
j = m jλ

i
j, i = 2, . . . ,P,

m1′
j = m j,

where m j is the physical mass and λi
j are the eigenvalues obtained by the normal mode transformation. This approach was used to

calculate static properties and here we will use it, within GC-AdResS, for the same purpose. We will refer to this approach as H1.
Craig and Manolopoulos41 have developed RPMD, which has been successfully shown to calculate time correlation functions;
the choices of the masses in RPMD are as follows:

m(i)′
j = m j . (6)

In this work, we will employ this approach within GC-AdResS to calculate, in addition to static properties, time correlation
functions; we will refer to it as H2 approach. However, there exists an alternative formulation for RPMD.19 The classical
Hamiltonian for RPMD is

HP =

P
i=1



N
j=1

[p(i)]2j
2m j

+

N
j=1

m j

2β2
P~

2
(r(i)j − r(i+1)

j )2 + V (ri1, . . . ,riN)

, (7)

where βP = β/P, which effectively means that the simulation
is performed at P times the original temperature. Moreover,
the harmonic bead-bead interaction and the potential energy
are scaled by P relative to Eq. (5). In Ref. 18, equivalence
between different RPMD formalisms was shown. Due to the
calculation of the thermodynamic force, for GC-AdResS simu-
lations, this becomes an interesting technical aspect to inves-
tigate (see Sec. III B 1). We will refer to this approach as
H3 and verify its numerical robustness in GC-AdResS by
comparing its results with the results obtained from H1 and
H2.

B. PIMD in GC-AdResS

The original idea of merging PIMD and AdResS
was based on a simple extension of the AdResS principle.
The dynamics of polymer rings, from a technical point of
view, is nothing else than the dynamics of classical
degrees of freedom; thus, the standard AdResS could be
applied (technically) in the same way, with only one
modification,13–15

Fαβ = w(Xα)w(Xα)FPI
αβ + [1 − w(Xα)w(Xα)]Fcm

αβ, (8)
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where FPI
αβ is the force between beads of the rings represent-

ing the atoms of molecule α and molecule β. There exists
another version of AdResS, recently developed in the group
of Kremer,42 based on a global Hamiltonian where the atom-
istic and coarse-grained potentials are interpolated instead of
forces. The force-based and Hamiltonian-based approaches
were shown to be numerically equivalent,11,43 while conceptu-
ally both methods need strong assumptions when considering
the physics of the entire system (see discussion in Refs. 12
and 44–46). In our force-based approach, from the conceptual
point of view, the coupling between the polymer rings and
the coarse-grained molecules cannot be rigorously expressed
in a Hamiltonian form. However, calculations have shown
that PIMD-AdResS was able to reproduce very well results
obtained with full PIMD simulations. Since a rigorous Hamil-
tonian formalism is at the basis of the PIMD approach, the
procedure of Refs. 13–15 was empirical and could be verified
only a posteriori. The reason why the procedure was successful
is that the coupling between the polymer rings and the coarse-
grained molecules is negligible, in terms of energetic contri-
bution, under the hypothesis that the path integral region and
the coarse-grained region were large enough compared to the
hybrid region. However, we have also numerically verified
that even when all the three regions are relatively small and
comparable in size, results are still satisfactory. The latest
formalization of AdResS in GC-AdResS, reported in Sec. II,
justifies why from a conceptual point of view the setup of PI-
AdResS is robust. In fact, according to the model of Bergmann
and Lebowitz,12,35,36 for a simulation in a grand ensemble, one
does not need to have an explicit coupling between the path
integral region and the reservoir. The necessary and sufficient
condition is the knowledge of the molecules’ distribution in the
reservoir. It follows that the interaction of the molecules of the
path integral region with the rest of the system, while techni-
cally convenient and numerically efficient, from the conceptual
(formal) point of view instead does not play a crucial role.
Such an interaction plays only the technical role of a sort of
“capping potential” which avoids that molecules entering the
path integral region overlap in space. Moreover, the action of
the thermodynamic force and of the thermostat in the hybrid
region makes the stochastic coupling dominant (compared to
the explicit hybrid interactions), which is the essence of any
grand ensemble scheme. It follows that in GC-AdResS, the
Hamiltonian to be considered for the path integral formalism
is the Hamiltonian of the path integral region only, without
any external additional term, i.e., the path integral region with
its quantized Hamiltonian is embedded in a large reservoir
with the proper grand canonical behaviour. It must be clarified
that while the Bergmann-Lebowitz model provides an elegant
and solid formal structure to the PI-AdResS, it is not strictly
required to justify the existence of an accurate Hamiltonian
in the PI region and thus the implementation of PIMD in
AdResS. In fact, in the Appendix, we provide a numerical
proof that, for the systems treated in this paper, the interaction
energy between the PI region and the rest of the system is
at least one order of magnitude smaller than the interaction
energy of the molecules in the PI region. The accuracy and
robustness of PI-AdResS (or PI-GC-AdResS) will be shown
with the simulation of liquid water in Sec. IV. Finally, it must

be clarified that for the current implementation of PIMD in
GC-AdResS (in the GROMACS package), it is difficult to
estimate the computational gain since the code architecture
is not yet optimized. At this stage, we only want to show
that the approach is satisfactory from a conceptual point of
view. However, for very large systems with P = 32, the compu-
tational gain is around 1.7-2.0 compared to the full PIMD
simulations. With further code modifications (e.g., removal of
explicit degrees of freedom in the coarse-grained region, using
multiple time steps) or with the implementation of PI-AdResS
in a platform explicitly designed for PIMD simulations we
estimated, for systems of the order of thousand molecules, a
gain of at least a factor 4.0-5.0 compared to the full PIMD
simulations.

1. Calculation of the thermodynamic force in PIMD

For an atomistic system, the thermodynamic force, Fth(x),
can be expressed as

Fth(x) = M
ρo
∇P(x), (9)

where M is the mass of the molecule and P(x) is the pressure
which characterizes different resolutions (for the initial config-
uration). P(x) is approximated in terms of linear interpolation
of molecular number density,

P(x) = Patom +
M
ρoκ

[ρo − ρ(x)] , (10)

where κ is the compressibility and ρ(x) is the density generated
if the simulation runs without any thermodynamic force. The
thermodynamic force is then obtained by an iterative proce-
dure,

F th
k+1(x) = F th

k (x) −
Mα

[ρo]2κ∇ρk(x). (11)

After each iteration, a density profile ρ(x) is obtained due
to the application of the thermodynamic force. The process
converges when the density profile obtained is equal to the
target density. At this point, the system is in thermodynamic
equilibrium and the production run can start. The calculation
of thermodynamic force in PIMD-GC-AdResS is essentially
based on the same principle of balancing grand potential for
interfaced open systems,


Pquantum + ρo


∆

Fth(r)dr


V = PCGV, (12)

where ρo is the target density of the reference full path-integral
system. As for the classical case, P(x) can be written as

P(x) = Pquantum +
Ma

ρoκ
[ρo − ρ(x)] . (13)

While the above approach is highly efficient for classical
simulations, for path integral simulations, it is cumbersome
to run a PIMD-GC-AdResS simulation to calculate the ther-
modynamic force, before doing an actual production run, as
the path-integral simulation is inherently very expensive. In
order to make the scheme efficient, we have devised a strategy
to calculate the thermodynamic force which requires least
computation. As discussed in Sec. III A, we will show how the
thermodynamic force is calculated for different Hamiltonian
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FIG. 2. Thermodynamic force calculated in AdResS simulation using H1
(H2) approach. The force is calculated for different number of polymer ring
beads. It does not change as the number of beads is varied.

approaches. In case of H1 and H2, where the temperature of
the system is just the normal temperature, we calculated the
thermodynamic force for path-integral systems with varying
Trotter number P = 1,4,6,8, and 10 (P = 1 represents the
classical limit). Since the thermodynamic force takes care of
a thermodynamic equilibration and since the thermodynamic
conditions (thermodynamic state point) of a classical and
a quantum system are the same, we expect that the ther-
modynamic force calculated in the classical case (P = 1)
would be sufficient to provide thermodynamic equilibrium
in simulations where P = 32 is used. In fact, we found that
the thermodynamic force was same in all the cases. Fig. 2
shows the thermodynamic force calculated for a water system,
with different number of ring polymer beads in each case.
Using this argument, we used this thermodynamic force in
the actual production run with P = 32. We found that the
density of water molecules in the full quantum subregion
and the transition region is equal to the reference density
of the water system at the same thermodynamic conditions.
Thus, in H1 and H2 approaches, if the quantum effects on
the pressure of the system are not large, we can directly
use the thermodynamic force calculated from the classical
simulation.

In H3 approach, the situation is more complex, as the
effective temperature of simulation changes if the number of
beads is changed, thus the (numerical) thermodynamic state
point changes. In this case, there would be no other choice
but to run a full PIMD-GC-AdResS simulation with P = 32
and calculate the thermodynamic force. However, we avoided
such an expensive calculation and instead calculated the ther-
modynamic force for system with different number of beads
P = 1,4,6,8, and 10 at temperatures T = 298 × P and extrap-
olated thermodynamic force for P = 32, using space depen-
dent factors calculated from thermodynamic force for smaller
values of P (Fig. 3). Next, we used this thermodynamic force
for production run with P = 32 and found that the density of
water molecules in the full-PI subregion is same as the target
density, while the density in transition region differs at worst
by 3%.

FIG. 3. Thermodynamic force calculated in AdResS simulation using H3
approach. The force is calculated for different number of polymer ring
beads. The thermodynamic force for P = 32 is then extrapolated by using
space-dependent scaling factors calculated using thermodynamic force for
P = 1,4,6,8, and 10.

2. Equilibrium time correlation functions: Theoretical
and computational aspects

The technique of RPMD (H2) focuses on the Kubo-
transformed correlation functions.47,48 The Kubo-transformed
correlation function of the operators Â and B̂ is defined by41

KAB(t) = 1
βZ

 β

0
dλ


e−(β−λ)Ĥ Âe−λĤeiĤ t/~B̂e−iĤ t/~


,

(14)

where Z is the canonical partition function,

Z = tr

e−βĤ


. (15)

The RPMD method approximates the Kubo-transformed
correlation functions by using the classical ring-polymer
trajectories generated by the dynamics produced by the Hamil-
tonian in Eq. (7). The RPMD approximation is given by49

c̃AB(t) ≈ 1
(2π~)9PN ZP

 
dPp0dPr0e−βPHP(p0,r0)

× 1
N

N
i=1

Ai
P(r0)Bi

P(rt), (16)

where ZP is the canonical partition function, and rt indicates
the time evolution at time t of the positions. The functions
AP(ro) and BP(rt) are calculated by taking the average over
the beads of the ring polymer,

AP(r) = 1
P

P
j=1

A(r),BP(r) = 1
P

P
j=1

B(r). (17)

For the calculations in GC-AdResS, the above equation needs
to be written in the formalism of the grand canonical ensemble,

c̃AB(t) ≈ 1
ZGC
P


N

1
(2π~)9PNN!


dPp0(N)dP

× r0(N)e−βPHP(N )(p0(N ),r0(N ))−µN

× 1
N ′

N ′
i=1

Ai
P(r0(N))Bi

P(rt(r0(N))), (18)
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FIG. 4. Molecular number density calculated with GC-AdResS for different sizes of quantum subregion. Results are compared with the density obtained in a
full path integral simulation.

where µ is the chemical potential and N ′ is the number of
molecules at time “0” that remain correlated at time “t” (that
is, molecules which remain in the path integral region for
the whole time within the time window considered); ZGC

P

=


N eβµN ZP is the grand-canonical partition function and
HP(N) is the Hamiltonian of the (open) path integral region
with N instantaneous number of molecules. It must be noticed
that the a priori knowledge of µ is not required; actually, in
GC-AdResS, µ is automatically calculated by the equilibration
procedure of the thermodynamic force (see also Ref. 11).
From the technical point of view, we have used the same
calculation procedure as that of Ref. 12, where equilibrium
time correlation functions were calculated in the open subsys-
tems using classical molecular dynamics. Such a principle is
based on the definition of reservoir in the Bergmann-Lebowitz
model, which implies that when a molecule leaves the

system and enters the reservoir, it looses its microscopic iden-
tity and thus the corresponding correlations; thus, if a molecule
which is present at time t0 disappears from the system at time t
(i.e., moves into the reservoir), then the contribution of this
molecule, outside the time window [0, t], to the correlation
function shall not be considered. In our previous work, we
have shown that such a principle is physically consistent on
the basis of results of molecular simulations. Since all the
beads in a ring-polymer are treated as dynamical variables,18

there are no thermostats used in full RPMD simulations.
Thus, the simulations are performed under NVE conditions,
with either starting configurations generated from massively
thermostated PIMD simulations50 or re-sampling of momenta
from Maxwell-Boltzmann distribution after every few pico-
seconds.51 In order to keep the dynamics of the beads New-
tonian in the path-integral subregion of GC-AdResS, we use a
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FIG. 5. Particle number probability distribution of GC-AdResS compared with the equivalent full path integral subsystem for different sizes of the quantum
subregion. The shape of both curves is a Gaussian (reference black continuous curve) in all the three different simulations. The top part of the figure indicates
the extension of the PI region (compared to the rest of the system) where the function is calculated; this representation is equivalent in all subsequent figures.

“local-thermostat” procedure,12,52 where the thermostat is
applied only in the coarse-grained and hybrid region, while
the explicit path-integral region is thermostat-free. This en-
sures that the molecules which are present in the path-integral
subregion are not subject to any perturbation due to the direct
action of the thermostat.

IV. RESULTS

In this section, we report results about the simulation of
liquid water at room conditions. The quantum model for liquid
water used in this work is q-SPC/FW.58 It was shown that the
thermodynamic and dynamical properties calculated using this
water model agree quite well with the experimental data. The
section is divided in two parts, the first where static results

(molecular number density across the system, radial distribu-
tion functions, and probability distribution of the molecules)
are reported, and the second where several equilibrium time
correlation functions are calculated. Few further points must
be mentioned as clarification to this study. The total volume
of the PIMD-GC-AdResS box is the same in all simulations,
while three different sizes of the region at PI resolution are used
and the dimension of the transition region is always kept the
same. The smallest size of the PI region represents the limiting
case of a statistically relevant number of molecules treated with
PI resolution. The largest size instead represents the limiting
case of a reservoir (hybrid plus coarse-grained region) which
is relatively small and thus, it may be expected to not fulfill
the conceptual requirement of being statistically large enough.
We will show that even in these two limiting cases, the method
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FIG. 6. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path
integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 0.5 nm) in a full path integral simulation.

is computationally and conceptually robust. A second point to
take into account is that we compare the results of GC-AdResS
for the PI region with the results obtained in a subsystem of a
full PI simulations, such a subsystem is of the same size as in
the GC-AdResS simulation. The subsystem of a large full PI
simulation box is a natural grand canonical ensemble; thus, if
our subsystem of AdResS reproduces the results of a full PI
subsystem, then we can be rather confident that the PI region in
AdResS samples the Grand Canonical distribution sufficiently
well. From the physical point of view, it should be clarified
that the functions calculated in a subsystem must be considered
local in space and time if compared to calculation done over
the whole simulation box of the full PI simulation. Once again,
as the subsystem size increases, the functions go to the value
obtained in a full PI simulation when the full box is considered

(for physical consistency, see checks in Ref. 12). Technical
details of the simulation are reported in the Appendix.

A. Static properties

We use the H1 and H2 PIMD approaches (H1-GC-
AdResS and H2-GC-AdResS, respectively, for the GC-
AdResS simulation), Fig. 4 shows molecular number density.
In all three cases, the agreement is highly satisfactory, the
largest deviation is found for the case with PI region of 0.5 nm
and is below 5%. This is the basic test to show equilibra-
tion and thermodynamic consistency; moreover, following the
mathematical formalization of Ref. 10, is the first order neces-
sary condition in order to have the correct grand canonical
distribution in the PI region. A further confirmation of the
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FIG. 7. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path
integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 1.2 nm) in a full path integral simulation.

fact that the method samples the phase space of a subsystem
in a sufficiently correct way is represented by Fig. 5. The
figure shows the particle number probability distribution in
quantum subregion of AdResS and an equivalent subregion
in full path integral simulation. It can be seen that also in
this case, the results are highly satisfactory and the shape of
two curves is a Gaussian, as one should expect. There is a
systematic shift by (at most) two-three particles between the
full path integral results and the adaptive resolution scheme for
particle number distributions; such a shift seems to correlate
with the width of the distribution (i.e., extension of the PI
region). An explanation of the effect is that in AdResS, the
average particle density is not perfectly flat across the box and
for larger PI regions, the frequency in space of small density
fluctuations is larger than for smaller PI regions. This is due to
the fact that we have used an empirical approach to evaluate the

thermodynamic force instead of the standard one, as explained
before. However, the discrepancy is numerically negligible.
The g(r) is an important structural quantity that represents a
two-body correlation function and thus a higher order than the
molecular density of the ensemble many-body distribution;
moreover, it differs considerably when quantum models of
water are used, in particular correlation functions involving
hydrogen atoms.53 We calculated the local bead-bead g(r)’s
in the quantum subregion in GC-AdResS and compared them
with the bead-bead g(r)’s in an equivalent subregion in the full
path-integral simulation. Figs. 6–8 show that the results from
GC-AdResS agree with the results from full PI simulation in
a highly satisfactory way.

We have also verified, for the most relevant case (EX
= 1.2), that also H3 approach gives satisfactory results for the
static properties when employed in GC-AdResS; results are
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FIG. 8. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path
integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 2.4 nm) in a full path integral simulation.

reported in Fig. 9. Due to the more empirical calculation of the
thermodynamic force in H3, results are not as accurate as those
of H1 and H2; the density in the hybrid region differs by around
3%, which is anyway numerically negligible (however, the
difference must be reported). However, the number probability
distribution and bead-bead g(r)’s agree quite well in AdResS
and full path-integral simulations. This leads to the conclusion
that also results obtained with H3 are highly satisfactory.

This section essentially shows the ability of PI-GC-
AdResS with all three PIMD techniques to sample basic
(but highly relevant) static properties of a grand canonical
ensemble. In order to prove that a more elaborated sampling is
also satisfactorily made by the method, we report in Sec. IV B
the calculation of equilibrium time correlation functions.

B. Dynamic properties

We report results for the velocity-velocity autocorrelation
function, for the first and second order orientational (molecular
dipole) correlation functions,54,55 and for the reactive flux
correlation function for hydrogen bond dynamics.56,57 This
latter in specific situations may strongly diverge from the
classical case, and thus, it may be a quantity of relevance for
this work. Moreover, the fact that PI-GC-AdResS reproduces
the behaviour of a full PI simulation is of high technical
relevance in perspective (e.g., study of solvation of molecules).
The explicit formulas used for the functions calculated here are
given in Ref. 61. All results shown in this section are highly
satisfactory, either when H2 is used or H3 is used. Thus, the
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FIG. 9. From left to right (top): Particle number density, Particle number probability distribution of GC-AdResS obtained using the H3 approach. From left to
right (bottom): (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path integral AdResS
using the H3 approach. Such functions are compared with the results obtained for an equivalent subsystem (EX = 1.2 nm) in a full path integral simulation.

PI-GC-AdResS can be certainly considered a robust computa-
tional method for the calculation of quantum-based static and
dynamic properties of liquid water and as a consequence for
simpler systems and for systems where water plays a major
role (at least).

1. Equilibrium time correlation functions

Figures 10–12 show the three correlation functions calcu-
lated in the quantum subregion in GC-AdResS and in an equiv-
alent subregion in RPMD simulation, where the explicit region
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FIG. 10. Kubo-transformed velocity
autocorrelation function for q-SPC/FW
water model calculated in the quan-
tum subregion of GC-AdResS and in an
equivalent subregion in RPMD simula-
tion.

FIG. 11. Kubo-transformed first order
orientational correlation function for q-
SPC/FW water model calculated in the
quantum subregion of GC-AdResS and
in an equivalent subregion in RPMD
simulation. Dipole moment axis is cho-
sen as the inertial axis of molecule.

FIG. 12. Kubo-transformed second
order orientational correlation func-
tion or q-SPC/FW water model calcu-
lated in the quantum subregion of
GC-AdResS and in an equivalent
subregion in RPMD simulation. Dipole
moment axis is chosen as the inertial
axis of molecule.
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FIG. 13. The rate function k(t) (semilogarithmic plot) for q-SPC/FW water
model calculated in the quantum subregion of GC-AdResS and in an equiva-
lent subregion in RPMD simulation.

is 1.2 nm. All the correlation functions are calculated using H2
approach and H3 approach; results confirm the consistency of
the two methods in GC-AdResS. As stated before, these are
the local time correlation functions, calculated in the specific
region of interest, and could differ from the global time corre-
lation functions, calculated over the whole system. However,
it was shown in Ref. 12 that as the size of the explicit region
increases, the local correlation functions converge to the global
correlation functions.

2. Dynamics of hydrogen bonding

In order to investigate the dynamics of hydrogen bond
formation and breaking using RPMD simulations, we calculate
the hydrogen bond population fluctuations in time, which are
characterized by the correlation function,

c(t) = ⟨h(0)h(t)⟩/⟨h⟩, (19)

where h(t) is the hydrogen bond population operator, which
has a value 1, when a particular pair is bonded, and zero
otherwise. One can then calculate the rate of relaxation as

k(t) = −dc/dt, (20)

where k(t) is the average rate of change of hydrogen-bond
population for those trajectories where the bond is broken at
a time t later. Two water molecules are treated as hydrogen
bonded, if the distance between the center of two oxygen
rings is less than 0.35 nm and, simultaneously, the angle
between the axis defined by the center of two oxygen ring
polymers and the center of one of the oxygen-hydrogen rings
is less than 30◦. Fig. 13 shows k(t) calculated in the quantum
subregion of AdResS and an equivalent subregion in RPMD
simulation.

V. CONCLUSION

We have performed simulations of liquid water at room
conditions using PIMD in three different technical approaches.
Each of these approaches was embedded in GC-AdResS so that
a PIMD for open systems in contact with a generic reservoir
is realized. The results regarding static and dynamic quan-
tities are highly satisfactory and qualify PI-GC-AdResS as a
robust method for simulations of systems which currently are
prohibitive for full PIMD simulations; for example, the already
mentioned solvation problem. One can define a high resolution
region at PI resolution around the solute and surround the
solvation region with a reservoir as that constructed in GC-
AdResS. The static and dynamic properties of the hydrogen
bonding network can be analyzed and, by comparing results
with those of classical systems, one may conclude about the
importance of quantum effects due to hydrogen spatial delocal-
ization. This approach can introduce not only a technical inno-
vation regarding the computational efficiency but, by varying
the size of the high resolution region, could also be used as
a tool of analysis to identify the essential degrees of freedom
required by a certain physical process. In this perspective,
here we have shown that PI-GC-AdResS is a robust method
for linking the microscopic to macroscopic scale in a truly
multiscale fashion.
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APPENDIX: TECHNICAL DETAILS
1. Energetic contribution of the coupling term

The ith molecule (at position, ri) in the EX (PI) region is
characterized by w(ri) = 1. It follows that the force acting on
the ith molecule can be separated in two parts: (i) the force
generated by the interaction of molecule i with molecules of
the EX region,

Fi, j = FPI
i, j,∀ j ∈ EX (A1)

and (ii) the force generated by the interaction with molecules
in the rest of the system,

Fi, j = w(r j)FPI
i, j + [1 − w(r j)]FCG

i, j ,∀ j ∈ HY + CG. (A2)

From Eq. (A1), it follows

Fi =

j,i

FPI
i, j =


j,i

∇ jU
i j
PI, (A3)
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where ∇i is the gradient with respect to molecule i and U i j
PI is

a compact form to indicate the proper bead-bead interaction
of atoms of molecule i with those of molecule j. Eq. (A2)
represents instead the coupling force between molecules of
HY + CG region and molecule i, that is an external force. At
this point, we argue that the non-integrable part of the dy-
namics in the HY region is a numerically negligible boundary
effect. In fact, Eq. (A2) can be rewritten as

Fi =


j ∈HY+CG

[w(r j)FPI
i, j + [1 − w(r j)]FCG

i, j ]

=


j ∈HY+CG

[w(r j)∇iU i j
PI + [1 − w(r j)]∇iUCG]. (A4)

It follows that the energy of the ith molecule at a certain time
t associated with the force of Eq. (A4) is given by

W i
PI−Res(t) =


j ∈HY+CG

[w(r j)U i j
PI + [1 − w(r j)]U i j

CG], (A5)

where the Res = HY + CG. The total energy of coupling at
time t is then defined as

WPI−Res(t) =

i∈PI

W i
PI−Res(t). (A6)

In order to understand whether or not the quantity of Eq. (A6)
is numerically negligible, one should compare it to the amount
of energy, WPI−PI, corresponding to the interaction between
molecules of the PI region only: WPI−PI(t) = i< j U i j

PI; i, j
∈ PI. If

|WPI−PI(t)| − |WPI−Res(t)|
|WPI−PI(t)| ≈ 1;∀t, (A7)

then it seems reasonable to approximate the total energy of
the PI region by the Hamiltonian of the PI region; thus, the
Hamiltonian formalism is numerically justified in PI-AdResS.
Fig. 14 shows that the difference in energy is at least of one
order of magnitude and that condition (A7) holds in all simu-
lations we have presented in this work. Moreover, it should
be noticed that on purpose, we have performed simulations
where the technical conditions are not optimal (the size of each
region of the system is much smaller than the size prescribed by
the theory); thus, Eq. (A7) would certainly hold in simulations
with standard technical conditions.

2. Simulation setup
a. Static properties

All path integral simulations are performed by home-
modified GROMACS,59 and the thermodynamic force in GC-
AdResS simulations is calculated using VOTCA.60 The num-
ber of water molecules in system is 1320, and the box dimen-
sions are 5.8 × 2.6 × 2.6 nm3, corresponding to a density
990 kg m−3. In AdResS simulations, the resolution of the
molecules changes along x-axis, as depicted in Figure 1.
Three different AdResS simulations are performed, each with
a different size of quantum subregion. The different sizes
of the quantum subregion treated in this work are 0.5 × 2.6
× 2.6 nm3, 1.2 × 2.6 × 2.6 nm3, and 2.4 × 2.6 × 2.6 nm3. The
transition region, which has dimensions 2.8 × 2.6 × 2.6 nm3,
is fixed in all the three cases. The remaining system contains

FIG. 14. Main figure: WPI−PI(t) compared to WPI−Res(t). Inset: The relative
amount of the interaction between the PI region and the rest of the system
along the trajectory: |WPI−PI(t )|−|WPI−Res(t )|

|WPI−PI(t )| ; the contribution is, at most, of
10%. Calculations are done within the H1 and H2 approaches (top) and H3
(bottom).

coarse-grained particles, which interact via generic WCA
(Weeks-Chandler-Andersen) potential of the form

U(r) = 4ϵ
(
σ

r

)12
−
(
σ

r

)6
+ ϵ,r ≤ 21/6σ. (A8)

The parameters σ and ϵ in the current simulations are 0.30 nm
and 0.65 kJ/mol, respectively. Thirty two ring polymer beads
are used in all the simulations, which is sufficient to obtain
the converged results for both static and dynamical properties.
Reaction field method is used to compute the electrostatic
properties with dielectric constant for water equal to 80. The
cutoff for both van der Waals and electrostatic interactions is
1.2 nm. All the static properties are computed from 250 ps long
trajectories. The simulations using H1 and H2 formalisms are
performed at 298 K, while the simulations using H3 formalism
are performed at 9536 K. The time step used in all the simula-
tions is 0.1 fs. In the calculation of the thermodynamic force,
a single iteration consists of a 200 ps long trajectory which is
used to compute the density profile. A total of 20 such iterations
is sufficient to obtain a flat density profile and a converged
thermodynamic force.

b. Dynamic properties

The system details are kept same as in Subsection 2 a of the
Appendix. A 200 ps long PIMD simulation is performed and
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along the trajectory, configurations are taken after every 8 ps
to perform RPMD simulations. Thus, a total of 25 trajectories
each of length 25 ps is generated. For the first 5 ps, we keep
the thermostat switched on, in order to adjust the velocities
as masses are different in PIMD and RPMD methods. After
this initial equilibration run, the thermostat is switched off, and
the NVE trajectories generated are used to compute various
time correlation functions. We use the same strategy for
AdResS simulations, where a 200 ps long fully thermostated
GC-AdResS PIMD simulation is performed, and 25 initial
configurations are taken along this trajectory to perform GC-
AdResS RPMD simulations. For the first 5 ps, the thermostat
acts in the explicit as well as the hybrid and coarse-grained
regions. After the short equilibration run, the thermostat is
switched off in the explicit region, while the hybrid and coarse-
grained regions are kept under the action of the thermostat.
The dynamic properties are calculated in the explicit region
in the last 20 ps, i.e., excluding the equilibration run. The
velocity auto-correlation function is calculated for 1 ps, while
the orientational correlation functions and reactive flux corre-
lation functions for hydrogen bond dynamics are calculated for
10 ps in one single trajectory and then averaged over all the
trajectories.

3. Thermostat issue

It is well known that massive thermosetting is needed in
the path integral simulations, as the forces arising due to the
high frequencies in the polymer ring and the forces due to the
potential U(x) are weakly coupled. Tuckerman et al.16 coupled
each normal mode variable to separate Nose-Hoover chains,
thereby ensuring proper ergodic sampling of the phase space.
Manolopoulos et al.19 developed specific Langevin equations
for thermostat that are tuned to sample all the internal modes
of the ring polymer quite efficiently. However, in this work,
we chose the standard Langevin equations of thermostat with
time scale 0.1 ps, which is strong enough for sampling the
phase space effectively, though it may not be the most efficient
choice. The reason is that in the initial stage of validating GC
AdResS for path integral simulations, we need to show that the
properties obtained in the full PI simulations are reproduced
exactly in AdResS. Since we use the same thermostat in both
the simulations, there should not be any discrepancy arising
due to the thermostat. However, the comparison of static prop-
erties calculated in our reference PIMD simulation with those
available in the literature (referring to the approaches above)
is highly satisfactory.
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