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The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional
Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin)
and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin
ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-
pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of
sites turned to be closely related to the presence of an energy gap between the ground-state and the
first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum is associated to a
linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations,
the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally,
for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS
on the number of sites n and the total spin-projection Sz has been derived. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4936585]

I. INTRODUCTION

The concept of localization tensor was introduced in the
context of the theory of Kohn1 to characterize the electrical
conductivity properties. Indeed, in his seminal work, Kohn
suggested that the most fundamental picture of electrical
conductivity is more related to the delocalization of the
ground-state wave function than to the simple gap closure.
Subsequently, Resta and co-workers, with the introduction of
the Localization Tensor (LT), provided an important tool
to give a quantitative formulation of this localization.2–6

According to their results, one of the key properties of this
quantity is the following: it diverges in the thermodynamic
limit for a conductor, while remaining finite for an insulator. A
remarkable sum rule connecting explicitly electrical resistivity
and localization tensor was later given by Souza, Wilkens, and
Martin.7

The LT is an intensive quantity which makes it highly
suitable to study systems in solid state physics. On the other
hand, in a molecular context we prefer to consider the total
position-spread (TPS) tensor,8–10 which is nothing but the
LT by a multiplication factor, i.e., the number of electrons.
The TPS presents important properties for molecules such
as size-consistency11,12 which is crucial to describe bond
breaking and chemical processes.8,13–16 Hence, given that it
encloses information about the overall wave function, the TPS
is particularly appropriate to study finite-size systems.

Despite the fact that the TPS tensor has been subject
of a variety of works in the last years,13–15,17–24 the spin-
partitioned TPS (SP-TPS) formalism is a new tool which

has been introduced in our recent works on H2 molecule16

and hydrogen chains (Hn),25 where we showed in detail
how it allows to investigate separately the fluctuations of
the same-spin and different-spin electrons in a system. In
the present work, we focus our attention on the spin part
of the wave function of linear systems, through the use of
the Heisenberg model Hamiltonian. The importance of the
Heisenberg model lies in its capability to describe and predict
magnetic phenomena in real systems such as “superexchange”
in copper-oxide ferromagnets,26 phase transitions, and critical
points. This model has also been used to derive the spin
wave theory, and the study of experimental and theoretical
spin currents.27 We studied and compared different spin states
with different multiplicity and values of the z-projection of
the total spin Sz. These distinctions are indeed harder to
achieve with quantum chemical calculations on the previously
mentioned hydrogen chains, which show a low-spin ground-
state as the result of an anti-ferromagnetic coupling between
isolated atoms in the dissociation limit. Moreover, acting on
the magnetic coupling between neighbor sites, we will analyze
the effect of spin-pairing, depicting the spin part of the wave
function of dimerized chains.

This paper is structured as follows: in Section II, a
brief description of the Heisenberg model for linear spin
chains is provided; in Section III, we recall the main aspects
of the SP-TPS formalism and describe its application to
this model Hamiltonian; after supplying a description of the
computational details in Section IV, we present and discuss
the numerical results in Section V; finally, our conclusions are
drawn in Section VI; further details are given in Appendix B,

0021-9606/2015/143(24)/244308/10/$30.00 143, 244308-1 © 2015 AIP Publishing LLC
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where we report the analytical derivation of the SP-TPS
tensor dependence of the number of sites n and Sz for the
ferromagnetic coupling.

II. THE HEISENBERG HAMILTONIAN
AND ITS APPLICATION TO LINEAR CHAINS

Let us consider the Heisenberg Hamiltonian, which allows
us to describe the magnetic interaction of a linear system
consisting of n spins ν, having components {Ŝx

ν , Ŝy
ν , Ŝz

ν} and
nearest-neighbor spin coupling Jν = {J x

ν , J
y
ν , Jz

ν },

Ĥ =
n−1
ν=1

J x
ν Ŝx

ν Ŝx
ν+1 + J y

ν Ŝy
ν Ŝy

ν+1 + Jz
ν Ŝz

ν Ŝz
ν+1. (1)

Notice that in the previous equation the sum over ν can also be
seen as a sum over the nearest-neighbor spin pairs (or “bonds”
in the chemists’ language). The model Hamiltonian describing
the case under study can be obtained as the strong Coulomb
limit of a half-filled Hubbard Hamiltonian28 that involves
one electron per site. In its simplest form, the Hubbard
Hamiltonian29 for a linear chain is given by

ĤU = −t
n

ν=1


δ=−1,1


σ=α,β

ĉ+ν,σĉν+δ,σ +U
n

ν=1

n̂ν,αn̂ν,β, (2)

where ĉν,σ (ĉ+ν,σ) are annihilation (creation) operators of an
electron with spin projection σ, and n̂ν,σ is the number
operator, defined as n̂ν,σ = ĉ+ν,σĉν,σ. In this equation, the sum
over ν runs over all the sites of the system. On the other
hand, the sum over δ (δ = −1 or δ = +1) restricts the range
of the inter-center interaction to topologically connected pairs
only. In a linear chain, the parameter t is the hopping integral
between the connected sites ν and ν + 1, while U is the
one-center Coulomb repulsion. Since in the strong Coulomb
limit U ≫ −t, it is possible to treat the system by employing
Rayleigh-Schödinger perturbation theory30 for which the term
U


ν

n̂ν,αn̂ν,β in Eq. (2) is taken as the unperturbed part of the

Hamiltonian ĤU, whereas the −t
n

ν=1


δ=−1,1


σ=α,β

ĉ+ν,σĉν+δ,σ

part is treated as a perturbation. As described in Ref. 30, when
considering the second-order equation, if the topologically
connected site of an electron with spin projectionσ is occupied
by one electron of opposite spin then the former can hop to
the neighboring site, and get back to its original position.
Thus, this mechanism gives rise to an effective interaction
that will favor neighboring electrons to have opposite spins
(anti-ferromagnetic exchange) that in turn makes the kinetic
energy to decrease. It can be shown26 that the resulting
effective model (that holds at temperatures and energies≪ U)
corresponds to the Heisenberg anti-ferromagnetic model for
the S = 1/2 electron spins, with J = 4t2/U .

In the particular case where the coupling constant has the
same value for each direction, the Heisenberg Hamiltonian
reduces to

Ĥ =
n−1
ν=1

Jν


1
2
�
Ŝ+ν Ŝ−ν+1 + Ŝ−ν Ŝ+ν+1

�
+ Ŝz

ν Ŝz
ν+1


, (3)

FIG. 1. Pictorial representation of the Heisenberg spin chain with different
magnetic couplings and an even number of sites.

with Ŝ+ν = Ŝx
ν + iŜy

ν and Ŝ−ν = Ŝx
ν − iŜy

ν . In a Heisenberg chain,
both the square of total spin Ŝ2 and the total spin z-component
Sz =


Sz
ν commute with the Hamiltonian. This means that

the eigenvectors |Ψ⟩ of Ĥ can be chosen in such a way that
Ŝ2|Ψ⟩ = s(s + 1)|Ψ⟩ and Ŝz |Ψ⟩ = m|Ψ⟩. For this reason, it is
convenient to label the ground-state wave function as |s,mΨ0⟩.
It can be expressed in the basis consisting of the 2n spin
permutations {mφi},

|s,mΨ0⟩ =

i

Cs,m
i |mφi⟩. (4)

We stress the fact that our magnetic interaction J couples
nearest-neighbor centers only. We will assume an even
number of sites n and focus our attention on two different
situations (see Figure 1 for a graphical illustration). In the
first case (the “uniform” or “equal-J chain”), all Jν have
a common value of J. In this situation, J does not affect
the eigenvectors of the Hamiltonian, but it does change their
eigenvalues: for J < 0 the ferromagnetic case (s = n/2) is
the ground-state of the system, while for J > 0 the ground-
state is an anti-ferromagnetic singlet. In the second case (the
“alternating” or “dimerized” chain), the coupling constants
have two alternating values, J1 and J2, for ν odd (J1) and
even (J2), respectively. By simply varying the η = J2/J1 ratio
from 1 to 0, we studied the evolution of the system, that
goes from a highly delocalized magnetic chain to a collection
of non-interacting spin-pairs. This allows us to depict the
evolution of the magnetic behavior of a chain of atoms if
dimerization occurs. Notice that in the present work we
limit our investigation to the case where J1 and J2 have
the same sign. It has also to be underlined that, in order
to minimize boundary effects, we will use the largest (in
modulus) coupling constant J for the external bonds. In other
words, we assume |J1| ≥ |J2|. The calculation of the spread
tensors is fully described in Secs. III and IV. Here, we want
to stress the fact that the position of the centers is fixed, and
independent on presence of dimerization that affects the value
of J. In particular, the nearest-neighbor inter-center distance
is assumed to be one bohr.

III. THE SPIN PARTITION OF TPS TENSOR
FOR THE HEISENBERG WAVE FUNCTION

The general formalism of the spin-partitioned TPS tensor
is fully unfolded in our previous works on the H2 molecule16

and hydrogen chains.25 In the present paper, we summarize its
main aspects and describe its application to the special case
of Heisenberg chains. Indicating by r̂(i), the vector operator
associated to the position of electron i, it is possible to define
the total position operator as the many-body operator given
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by the sum of all the individual electron-position operators,

R̂ =
n
i=1

r̂(i), (5)

where the sum runs over all the n electrons of the system.
The spin-summed TPS (SS-TPS) tensor is then defined as the
second moment cumulant12 of the total-position operator R̂,

Λ = ⟨Ψ|R̂2|Ψ⟩ − ⟨Ψ|R̂|Ψ⟩2. (6)

The position operator of a single electron can be expressed
as the sum of two terms arising from the α-spin and β-spin
electrons (or spin up and spin down electrons in physicists’
notation),16

r̂ = r̂α + r̂β. (7)

Therefore, the total-position R̂ will be described by a similar
sum,

R̂ = R̂α + R̂β. (8)

By taking the square of Eq. (8), one trivially obtains

R̂2 = R̂2
α + R̂2

β + R̂αR̂β + R̂βR̂α. (9)

Thus, each term in Eq. (6) splits in four joint cumulants31 αα,
β β, αβ and βα, so that

Λ = Λαα + Λββ + Λαβ + Λβα, (10)

where the different components of the TPS tensor are

Λαα = ⟨Ψ|R̂2
α |Ψ⟩ − ⟨Ψ|R̂α |Ψ⟩2, (11)

Λββ = ⟨Ψ|R̂2
β |Ψ⟩ − ⟨Ψ|R̂β |Ψ⟩2, (12)

Λαβ = ⟨Ψ|R̂αR̂β |Ψ⟩ − ⟨Ψ|R̂α |Ψ⟩⟨Ψ|R̂β |Ψ⟩, (13)

Λβα = ⟨Ψ|R̂βR̂α |Ψ⟩ − ⟨Ψ|R̂β |Ψ⟩⟨Ψ|R̂α |Ψ⟩. (14)

Different symmetry relations occur among the spin-partitioned
components ofΛ. Because R̂α and R̂β commute,Λαβ andΛβα

components are equal. In the Heisenberg model (unlike the
t − J model, for instance), there is always exactly one electron
per site, and there is no charge fluctuation among the sites.
Therefore, since the spin-summed TPS tensor measures the
many-body variance of the total-position operator, its value
is identically zero. On the other hand, the spin-partitioned
TPS does not vanish, in general, because the α- and β-spins
can fluctuate. As a consequence, for any Heisenberg wave
function Λαα + Λββ = −2Λαβ. Finally, in this special case it
also occurs that Λαα and Λββ are identical. This can be shown
considering that

R̂|mΨ(S)⟩ =

i

Cm
i (S) R̂|mφi⟩ = 0, (15)

because R̂|mφi⟩ = 0 for any |mφi⟩. It follows that

R̂α |mΨ(S)⟩ = −R̂β |mΨ(S)⟩, (16)

from which

R̂2
α |mΨ(S)⟩ = −R̂αR̂β |mΨ(S)⟩ = −R̂βR̂α |mΨ(S)⟩

= R̂2
β |mΨ(S)⟩. (17)

The equivalence Λαα = Λββ is then easily proven. As a result
of these equivalences, the evaluation of only one of the

spin-partitioned terms will be sufficient. We will focus on
Λαα.

A further simplification can be achieved exploiting the
independence from the origin of the TPS tensor. Indeed, one
can assume a coordinate system with ⟨Ψ|R̂α |Ψ⟩ = 0, so that
the SP-TPS tensor can be written as

Λαα = ⟨Ψ|R̂2
α |Ψ⟩. (18)

Finally, it has to be underlined that, for a one-dimensional
system like the one under study, only the longitudinal
components of each spin-partitioned term of the TPS tensor are
different from zero. Therefore, the considerations described
in this work will only concern these scalar terms, which we
will label as Λs,m

αα for the ground-state wave function |s,mΨ0⟩.

IV. COMPUTATIONAL DETAILS

The computation of Λs,m
αα can be achieved as

Λ
s,m
αα = ⟨s,mΨ0|R̂2

α |s,mΨ0⟩
=


i

(Cs,m
i )2⟨mφi |R̂2

α |mφi⟩

=

i

(Cs,m
i )2⟨mφi |R̂α |mφi⟩⟨mφi |R̂α |mφi⟩, (19)

since the orthonormal functions |mφi⟩ = | . . . σn . . .⟩ are
eigenfunctions of R̂α,

R̂α | . . . σν . . .⟩ =
n

ν=1

r̂αν | . . . σν . . .⟩

=

n
ν=1

ρν δα,σν | . . . σν . . .⟩, (20)

ρν = ν − n+1
2 . (21)

Using Eqs. (20) and (21), the matrix elements ⟨mφi |R̂α |mφi⟩
can be easily calculated and used to evaluate Λs,m

αα if the
coefficients Cs,m

i are known. In order to evaluate them, we
employed a numerical approach to solve the corresponding
secular equations, diagonalizing the Heisenberg Hamiltonian
matrix built up in the basis of the 2n possible spin permutations
{mφi}. This task was achieved through our licensed Python
code HEISENBERG.32 This way the values of Λs,m

αα were
computed for chains with increasing n and we could explore
the effect of the total spin Ŝ2 and z-projection Ŝz. We
have introduced the notation λ

n
2 ,m
αα = Λ

n
2 ,m
αα /n to represent

the normalized values of the SP-TPS. Notice that, while
the spin-summed TPS Λ is appropriate to describe non-
homogeneous systems like atoms or molecules, the same
quantity divided by the number of sites or electrons is more
convenient when systems having different sizes are to be
compared. As already stated, we focused on chains with an
even number of sites only, which gave us the advantage of
dealing with anti-ferromagnetic (singlet) and ferromagnetic
(s = n/2) ground states. In Appendix A, the case n = 4 is
reported as an explanatory example.

Because of the exponential growth of the configuration
space as a function of n, full diagonalization can be easily
achieved only for relatively small chain lengths. For larger

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Mon, 11 Apr

2016 11:55:16



244308-4 Fertitta et al. J. Chem. Phys. 143, 244308 (2015)

systems, an analytical approach, e.g., through the use of the
Bethe Ansatz33–36 can be a suitable option for the calculation
of the total energy and wave function of the system. The
Bethe Ansatz is an exact method to the calculation of the
eigenvalues and eigenstates of some limited quantum many-
body problems. This method has the following advantages:
(i) eigenvalues and physical properties obtained using this
method can be evaluated in the thermodynamic limit, (ii) avoid
the need of exact diagonalizations which are time consuming,
(iii) eigenstates can be labeled using quantum numbers to
relate them to specific physical properties.36 However, the
calculation of the SP-TPS is far from being trivial with
such an approach. In fact, a double sum over all the sites and
configurations is involved, for which an analytical result could
not be obtained. For this reason, we limited our investigation
to a purely numerical study of chains, by taking n ≤ 18,
and extrapolated our results to U → ∞ in order to obtain
information about the thermodynamic limit. In the case of a
ferromagnetic wave function, nevertheless, we were able to
obtain an analytical expression for the SP-TPS.

In our numerical calculations, open boundary conditions
were always employed. The use of periodic boundary
conditions yields in general much faster convergence because
of the absence of border effect and the high symmetry of
the system due to translational invariance. However, even if
they can be easily used within model Hamiltonians such as
the Heisenberg Hamiltonian, it was not possible to exploit
them for our investigation. This is because of the nature
of the position operator used to compute the TPS tensor,
which cannot be uniquely defined within periodic boundary
conditions. Work in this direction is in progress in our group
to achieve a TPS formalism for periodic boundary conditions.

V. RESULTS AND DISCUSSION

In this section, we discuss and compare the different
behavior of equal-J and spin-paired Heisenberg chains. In the
limit of an infinite number of sites, the spectra are known
to be very different: in the equal-J case, a gapless low-lying
energy spectrum is obtained for any value of J; in presence of
spin-pair dimerization, on the other hand, a gap opens between
the ground-state and the first-excited state. As underlined later,
the differences in the energy gaps are reflected in different
behaviors of the TPS.

A. Equal-J chains

Let us start analyzing the equal-J chains. As already
stated, in this case the energy gap between the ground- and
first excited-state goes to zero as n goes to infinity, both for
a ferromagnetic and anti-ferromagnetic couplings. However,
the behavior of this gap closure as a function of n depends on
the sign of J and thus on the spin nature of the ground-state. In
particular, for J < 0, the gap between a maximum-spin state,
s = n/2, and a state with spin s = n/2 − 1, closes faster as n
grows. Indeed, as it can be derived using the Bethe Ansatz36,37

approach, this gap has the form

∆E = J
�
1 − cos

�
π
n

��
= 2Jsin2 � π

2n

�
, (22)

FIG. 2. Energy gaps between the ground-state and the first-excited state for
the ferromagnetic and anti-ferromagnetic spin chains as a function of n.

which has the leading term 1/n2 (see Ref. 34). On the other
hand, in the case J > 0, the gap35 between the ground-state
singlet and the first-excited state vanishes as 1/n for large n.

In Figure 2, the calculated energy gaps are reported
for both cases as a function of the number of sites. These
same gaps, multiplied by n2 and n, for the ferromagnetic and
anti-ferromagnetic cases, respectively, are reported in Tables
I and II and Figures 1 and 2 of the supplementary material,38

in order to emphasize their asymptotic behavior.
We analyze now the SP-TPS for the two different cases

and observe how the different nature of gap closure is reflected
in a different behavior of the TPS, corresponding to a different
delocalization of the wave function, so that a faster gap closure
corresponds to a quicker divergence of the SP-TPS.

1. Ferromagnetic case

Let us compare the behavior of the spin-partitioned
TPS in the case of equal-J chains for the ferromagnetic
state. This consists of a manifold of n + 1 degenerate spin
states having m = s, s − 1, . . . ,0, . . . ,1 − s,−s. These wave
functions present very different SP-TPS values which, for a
fixed value of n, show a quadratic dependence on the quantum
number m, having a maximum for m = 0 and being zero for
m = ±s. In order to ease the comparison between the different
chains, it is a common practice to normalize the TPS to the
number of sites16,25 as done in Figure 3, where the values
of the λ

n
2 ,m
αα = Λ

n
2 ,m
αα /n are reported as a function of m for

different number of sites (the values can be found in Table
III of the supplementary material38). As explained in detail in
Appendix B, the αα spin partitioned component obeys to the
following law:

λ
n
2 ,m
αα (n) = n + 1

12 n

(
n2

4
− m2

)
. (23)

It should be noticed that the value of Λ
n
2 ,m
αα does not depend

on the sign of m, which implies the equivalence Λαα = Λββ,
as already discussed.

Finally, from Eq. (23) it can also be shown that the value
of the maxima has a quadratic leading dependence on the
number of sites. In fact, for the special case m = 0, it holds
that
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FIG. 3. Normalized αα component of the spin partitioned total position-
spread tensor calculated for the ferromagnetic states with different z-
projection of the total spin. The dependence on the number of sites is also
highlighted reporting data for 2 ≤ n ≤ 18. The quadratic trends are expressed
by Eq. (23).

λ
n
2 ,0
αα (n) = n2 + n

48
. (24)

2. Anti-ferromagnetic case

The quadratic trend of Eq. (24) has to be compared with
the one obtained for the anti-ferromagnetic state as shown in
Figure 4 (unnormalized values are given in Table IV of the
supplementary material38). As it can be seen, in the latter case
the spin part of the wave function results to be less delocalized
than in the ferromagnetic case and the normalized SP-TPS
grows linearly with n. We observe that, in the range under
study (2 ≤ n ≤ 18), λ0,0

αα can be very well fitted with a linear
function.

It can be noticed that the behavior of the SP-TPS of the
anti-ferromagnetic Heisenberg magnetic chain corresponds
to that of the Hubbard Hamiltonian ground-state for small
values of the ratio −t/U discussed in our previous work.16 The
equivalence of the two results, which is shown in Figure 5, has

FIG. 4. Normalized αα component of the spin partitioned total position-
spread tensor calculated for the anti-ferromagnetic 0Ψ(0) and the ferro-
magnetic 0Ψ

�
n
2
�

eigenfunctions of the Heisenberg Hamiltonian with spin
z-component m = 0. The analytical quadratic curve for the ferromagnetic
case is also shown in comparison to the linear trend of λ0,0

αα for the anti-
ferromagnetic state.

FIG. 5. Comparison between the normalized αα component of the spin
partitioned total position-spread tensor calculated for the anti-ferromagnetic
state of Heisenberg chains and Hubbard chains with different −t/U ratios.
At −t/U = 3.00, the SP-TPS has converged to the limit −t/U → ∞. The
reported data were discussed in our previous work on the spin partitioned
TPS.16

to be expected since the Heisenberg Hamiltonian corresponds
to the limit of the Hubbard model for −t/U → 0. Moreover, a
comparison with the results obtained for large values of −t/U,
whose upper limit brings to the Hückel (or tight-binding)
chain,20 shows that a similar linear dependence is obtained,
although the physics of the two situations is very different.
One can conclude that the larger effect on the delocalization
of individual spins has to be attributed more to the magnetic
interaction described by the Heisenberg Hamiltonian. Finally
it has to be underlined that the linear growth of the normalized
SS-TPS and SP-TPS of the Hückel tight-binding chains,
whose behavior is very reminiscent of those of the Heisenberg
SP-TPS, corresponds to a metallic behavior.

3. Other states with m = 0

Till this point, we have focused our attention only to the
two situations of the anti-ferromagnetic and ferromagnetic
states. Among the n!/[(n/2)!]2 states with m = 0 these two
represent indeed the possible ground states, depending on
the value of J, as previously stated. It is maybe of interest
also to depict the behavior of λs,0

αα for the whole spectrum. In
Figure 6, we report the SP-TPS calculated for n = 8, 10, and 12
as a function of the eigenvalues for all possible states with
m = 0 (raw data available in Table V of the supplementary
material38). As it can be seen, the anti-ferromagnetic and
ferromagnetic states do not yield boundaries in the values that
λs,0
αα can adopt.

B. Spin-paired chains

As already stated, the Heisenberg wave function for the
spin-paired chains can be used as a model to describe the
behavior of the coupled spins in a dimerized hydrogen chain
where we observe a Peierls transition.25 The dimensionless
real parameter η = J2/J1 was used to define the degree of
spin-pairing: we have η = 1 for the equal-J chains, and η < 1
in presence of dimerization. In the limit case of η = 0 the
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FIG. 6. Spin partitioned αα component of the total position-spread tensor calculated for all the states with m = 0 as a function of the eigenvalues. Both λs,0
αα

and the energies are divided for the number of electrons, in order to achieve a better comparison. The anti-ferromagnetic and the ferromagnetic states are the
lowest and highest in energy, respectively.

system is composed of n/2 non-interacting spin pairs. It has to
be noticed that, for the ferromagnetic case, the SP-TPS results
are totally independent from η. This is because the coefficients
of the various components of the wave function are uniquely
determined by the spin symmetry of the problem (they are all
equal) and therefore do not depend on the relative values of
J1 and J2. This means that the value λ

n
2 ,m
αα that was obtained

for the equal-J case, Equation (23), is still valid for the
dimerized chains. In this context, we stress the fact that, in our
simple model, dimerization holds on the coupling coefficients
of the Hamiltonian, not on the center positions, that are kept
fixed. For this reason, our discussion here will be limited to
the case of an anti-ferromagnetic coupling only. Moreover,
it has to be underlined that we will restrict to the case
η ≥ 0.

In Figure 7, the values of λ0,0
αα for the different values of

η are reported (see Table VI of supplementary material for
numerical values38). The behavior of the tensor is qualitatively
different in the equal-J and dimerized cases. In fact for the large
values of n, as already anticipated in Subsection V A 2, the
growth of λ0,0

αα appears to be linear if η = 1. On the other hand,
as soon as η is decreased, the behavior evolves into a trend that
saturates toward a constant value. Once again it turns out that
this trend is very much similar to the one of SS-TPS of the
dimerized Hückel chains that were discussed in Ref. 20.

We notice that also in this case the different divergences
of the SP-TPS can be related to the different trends of the
gap closure. In Figure 8, the gaps for several values of η are
reported and, as it can be seen, as for the equal-J chains, a
faster gap closure corresponds to a faster divergence while
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FIG. 7. Normalized αα component of the spin partitioned total position-
spread tensor, computed for the anti-ferromagnetic state and different values
of η = J2/J1.

FIG. 8. Low-spin energy gap between the anti-ferromagnetic state and the
first-excited state, for different η = J2/J1 values, as a function of n.

a size independence of λ0,0
αα is associated to the constant

gap which characterizes the spin-paired chains. In Subsection
V C, the large-n behavior of the gap and the TPS tensor will
be addressed.

C. Energy gap and total-spread extrapolation

The fit of energy gaps and SP-TPS tensors will be now
discussed, with a particular interest into the large-n behavior
of these quantities. Although several possibilities have been
tested in the past for the gap,39 the limited number of n values
available in the present work makes the fit a rather difficult task.
Indeed, for the energy gap, we employed Heisenberg chains
of n = 4,6,8,10,12,14,16,18 sites whereas the SP-TPS was
fitted using values computed for n = 2,4,6,8,10,12,14,16,18
sites. Note that, for the former case, the value of n = 2 was not
considered because its addition causes an important increase
of the Sum of Squared Residuals (SSR). For the sake of
simplicity, we decided to use linear combinations of functions
of the form nk, where k is an integer number (either positive,
negative, or zero). For the same reason, we limited the number
of terms into the sum to a maximum of three: the use of large
sets of functions, in our experience, certainly decreases the

mean-square error, but produces large, unstable coefficients.
Finally, we emphasize that in all cases the fits were accurate,
with a maximum value of the SSR of 1.0858 × 10−05 (for the
energy gap) and 2.913 98 × 10−04 (for λ0,0

αα).
The low spin (LS) gaps (both for the equal-J and spin-

paired chains) have been fitted with functions of the form

∆E(n) = a0 + a−1n−1 + a−2n−2, (25)

while for the high spin (HS) gap the following expression has
been used:

∆E(n) = a0 + a−2n−2 + a−3n−3. (26)

The results of the fit operation for the gap are reported
in Table I. Although the precision of this fit cannot be
overestimated, it appears that the leading term of the
ferromagnetic gap is in n−2, and the reported coefficients
are consistent with a zero gap in the large-n limit. In the same
way, the non-dimerized LS gap has a very small a0 parameter,
again consistent with a zero gap in the large-n limit (although
one order of magnitude larger than the HS corresponding
value). In the case of spin-paired chains, on the other hand,
the leading term is the constant a0, which means that the gap
does not close in the limit n → ∞.

In Table II, the corresponding fit for the SP-TPS divided
by n is reported. The HS value has been fitted via the formula

λn/2,0
αα = b0 + b1n + b2n2, (27)

which is able to recover the exact parameters of the analytical
solution (see Appendix B), with b0 = 0. The LS results, on the
other hand, have been fitted via the more flexible expression:

λ0,0
αα = b−1n−1 + b0 + b1n. (28)

In all spin-paired results, the linear term b1 is very small,
and this is coherent with a constant large-n behavior of λ0,0

αα.
Although the b1 value is also relatively small for the spin-
unpaired chains (but at least one order of magnitude larger
than the largest spin-paired value), the linear term is essential
in order to reproduce the fitted data in an acceptable way. This
implies a linear growth of λ0,0

αα in spin-unpaired chains, in
agreement with the general scenario discussed in this section.

TABLE I. Optimized coefficients for the energy gaps, obtained by fitting the
functions in Eqs. (25) and (26) as a function of the number of sites. SSR: Sum
of Squared Residuals.

Anti-ferromagnetic chains (LS)

η a0 a−1 a−2 SSR

1 0.0202 3.4024 −3.3954 4.6653 × 10−6

0.8 0.2950 2.0159 −1.0722 9.8311 × 10−6

0.6 0.5321 1.0858 0.0435 1.0858 × 10−5

0.4 0.7234 0.5490 0.2821 4.1237 × 10−6

0.2 0.8777 0.2159 0.2022 8.9715 × 10−6

0.0 1.0000 0.0000 0.0000 . . .

Ferromagnetic chains (HS)

η a0 a−2 a−3 SSR

1 −0.0020 5.3994 −2.7825 3.7878 × 10−6
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TABLE II. Optimized coefficients for the SP-TPS obtained by fitting the
functions in Eqs. (27) and (28) as a function of the number of sites. SSR:
Sum of Squared Residuals.

Anti-ferromagnetic chains (LS)

η b−1 b0 b1 SSR

1 −0.0667 0.0954 0.0310 1.7265 × 10−5

0.8 −0.2151 0.2153 0.0067 2.9140 × 10−4

0.6 −0.1479 0.1940 0.0017 4.7774 × 10−5

0.4 −0.0804 0.1640 0.0004 4.0550 × 10−6

0.2 −0.0319 0.1408 0.0001 1.1182 × 10−7

0.0 0.0000 0.1250 0.0000 3.6378 × 10−29

Ferromagnetic chains (HS)

η b0 b1 b2 SSR

1 0.0000 0.0208 0.0208 5.8015 × 10−15

VI. CONCLUSIONS

In the present investigation, the total position-spread
tensor partitioned accordingly to its spin components
(SP-TPS) has been computed and discussed for one-
dimensional Heisenberg chains with open boundary condi-
tions. The two qualitatively different cases of equal-J and
dimerized nearest-neighbor couplings were considered, both
for ferromagnetic and anti-ferromagnetic ground states. The
equal-J finite chains present a band gap that tends to zero as the
chain length is increased. In particular, the gaps are known to
close as 1/n2 and 1/n for ferromagnetic and anti-ferromagnetic
couplings, respectively. This difference is reflected by the
behavior of the SP-TPS tensors that grow as n3 and n2 in these
two different cases, respectively. This fact suggests that anti-
ferromagnetic chains are less delocalized than ferromagnetic
ones at the thermodynamic limit.

As a general property, the SP-TPS strongly depends on the
z-projection of the total spin. In particular, the ferromagnetic
Heisenberg eigenfunctions present a maximum value of the
SP-TPS for m = 0 if n is kept fixed. Then, if m is increased, the
number of spin configurations is reduced, and consequently
the spin delocalization decreases. In the case of high-spin
wave functions, all the different configurations have the same
weight. Because of this particular structure of the eigenvector,
we were able in this case to obtain an analytical expression of
the SP-TPS tensor as a function of both m and n.

The effect of dimerization in Heisenberg chains was
investigated for the anti-ferromagnetic ground-state, by
varying the dimensionless parameter η (given by the ratio
between the two coupling constants) from 1 to 0. These two
limit cases correspond to an equal-J chain and a collection

of non-interacting spin pairs, respectively. The SP-TPS was
found to be very sensitive to the degree of dimerization present
in the chain. In particular, as expected, the spin pairing reduces
the delocalization of spins between the dimers in the strongly
intra-pair correlated regime. In the limit case of a collection
of non-interacting dimers (η → 0), the value of the per-site
SP-TPS tensor is damped to the value corresponding to an
isolated dimer, as predicted by the size-extensivity property
of the tensor.

These results confirm the fact that the SP-TPS is
a powerful tool to analyze spin-fluctuations in magnetic
systems, as we found in our previous investigations on
Hydrogen chains.16,25 At the moment, the application of this
formalism to more realistic magnetic systems is under way.

Note added in proof: During the review process, one
of the referees pointed out that Kohn’s 1964 paper1 can be
fruitfully considered as a precursor of the so-called “modern
theory of polarisation,” as it employs similar mathematical
tools. This view is in part based on Ref. 40 (see, e.g., page
901 therein). In fact, the modern theory of polarisation has
been devised to bypass the use of the position operator with
periodic boundary conditions.
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APPENDIX A: CALCULATION OF ΛS,m
αα

FOR A HEISENBERG CHAIN WITH n = 4

As an explanatory example, we report the case of a
Heisenberg chain with four sites in order to show how the
terms ΛS,m

αα were calculated. Let us start by considering the N
possible spin permutation mφi,

+2φ1 = | ↑↑↑↑⟩
+1φ1 = | ↑↑↑↓⟩ +1φ2 = | ↑↑↓↑⟩ +1φ3 = | ↑↓↑↑⟩ +1φ4 = | ↓↑↑↑⟩

0φ1 = | ↑↑↓↓⟩ 0φ2 = | ↑↓↑↓⟩ 0φ3 = | ↓↑↑↓⟩ 0φ4 = | ↑↓↓↑⟩ 0φ5 = | ↓↑↓↑⟩ 0φ6 = | ↓↓↑↑⟩
−1φ1 = | ↓↓↓↑⟩ −1φ2 = | ↓↓↑↓⟩ −1φ3 = | ↓↑↓↓⟩ −1φ4 = | ↑↓↓↓⟩
−2φ1 = | ↓↓↓↓⟩.
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By using Eq. (20) and (21) we can evaluate the eigenvalue
of R̂α for the basis mφi,

m mφ1
mφ2

mφ3
mφ4

mφ5
mφ6

+2 0
+1 −3/2 −1/2 1/2 3/2
0 −2 −1 0 0 1 2
−2 3/2 1/2 −1/2 −3/2
−2 0

.

The expectation values ⟨0φi |R̂2
α |0φi⟩ are then simply

calculated as the squares of these terms. Let us now consider
the singlet ground-state wave function,

|0Ψ(0)⟩ =
6

i=1

C0
i (0)|0φi⟩. (A1)

From Eq. (19), the αα component of the spin partitioned TPS
results

Λ
0,0
αα = ⟨0

Ψ(0)|R̂2
α |0Ψ(0)⟩

=

6
i=1

C0
i (0)2⟨0φi |R̂2

α |0φi⟩

=

6
i=1

C0
i (0)2⟨0φi |R̂α |0φi⟩⟨0φi |R̂α |0φi⟩

= 4 · C0
1(0)2 + C0

2(0)2 + C0
5(0)2 + 4 · C0

6(0)2. (A2)

In a similar case, we can calculate Λ2,m
αα for each of the five

ferromagnetic states with different values of m,

Λ
2,2
αα = 0, (A3)

Λ
2,1
αα =

9
4 · C

1
1(2)2 + 1

4 · C
1
2(2)2 + 1

4 · C
1
3(2)2 + 9

4 · C
1
4(2)2,

(A4)

Λ
2,0
αα = 4 · C0

1(2)2 + C0
2(2)2 + C0

5(2)2 + 4 · C0
6(2)2, (A5)

Λ
2,−1
αα =

9
4 · C

−1
1 (2)2 + 1

4 · C
−1
2 (2)2 + 1

4 · C
−1
3 (2)2 + 9

4 · C
−1
4 (2)2,

(A6)

Λ
2,−2
αα = 0. (A7)

APPENDIX B: ANALYTICAL EXPRESSION FOR ΛS,m
αα

IN THE FERROMAGNETIC STATE

In this appendix, we will prove the analytical expression
for λ

n
2 ,m
αα shown in Eq. (24). Let us start considering N possible

permutations of p identical spins (either α or β) distributed
into n sites,

N =
n!

p!(n − p)! , (B1)

which can be rewritten as a function of the spin z-projection
quantum number m considering the equivalence p = n/2 ± m,

N(n,m) = n!�
n
2 + m

�
!
�
n
2 − m

�
!
. (B2)

As expressed in Eq. (4), an eigenfunction of the Heisenberg
Hamiltonian with spin quantum numbers S and m is a linear
combination of N(n,m) basis |mφi⟩. The crucial thing to
consider is that for all ferromagnetic states the coefficients

Cm
i (S) have the same value that is 1/


N(n,m). Therefore,

for a chain with an even number of sites and with the origin
its middle, using the results of Eqs. (19) and (20) we can
write

Λ
n
2 ,m
αα =

N
i

Cm
i (S)2⟨mφi |R̂α |mφi⟩⟨mφi |R̂α |mφi⟩ (B3)

=
1

N(n,m)
N
i

⟨mφi |R̂α |mφi⟩⟨mφi |R̂α |mφi⟩ (B4)

=
1

N(n,m)
N
i


ν,µ

⟨mφi |r̂αν |mφi⟩⟨mφi |r̂αµ |mφi⟩. (B5)

In the case |ν | , |µ|, the corresponding contribution is given
by four terms, having identical modulus, but opposite signs:
(ν, µ), (−ν, µ), (ν,−µ), and (−ν,−µ). This implies that the
total sum will vanish. Therefore, the only terms that do not
cancel out exactly are those of the type (ν, ν) and (ν,−ν). The
first one is a one-electron term, while the second one has a
two-electron nature. (Notice that, since n is even, the case
⟨r̂αν ⟩ = 0 is not possible.)

Let us consider first the one-electron term, the one
with ν = µ. There are N(n − 1,m − 1/2) identical such
contributions, since the position µ is fixed, and one electron is
sitting there. Using the results of Eq. (21), each contribution is
given by (ν − (n + 1)/2)2. The two electron term, ν = −µ, on
the other hand, gives N(n − 2,m − 1) identical contributions,
since two different positions are fixed, and two electrons are
sitting there. In this case, each contribution is now equal to
the opposite of the previous one, −(ν − (n + 1)/2)2. Therefore,
the total result is given by

Λ
n
2 ,m
αα =

N(n − 1,m − 1
2 ) − N(n − 2,m − 1)
N(n,m)

n
ν=1

(
ν − n + 1

2

)2

=

�
n
2 + m

� �
n
2 − m

�

n(n − 1)
n

ν=1

(
ν − n + 1

2

)2

. (B6)

To solve the sum in Eq. (B6), we invoke the identity

l
k=0

(2k + 1)2 = (2l + 1)(2l + 2)(2l + 3)
6

, (B7)

from which we obtain

Λ
n
2 ,m
αα =

�
n
2 + m

� �
n
2 − m

�

n(n − 1)
(n − 1)n(n + 1)

12

=
n + 1

12

(
n2

4
− m2

)
. (B8)

Finally, Equation (24) is simply obtained by dividing Eq. (B8)
by the number of sites.
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