
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 160.45.66.60

This content was downloaded on 12/02/2015 at 12:38

Please note that terms and conditions apply.

Fast decoders for qudit topological codes

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 063038

(http://iopscience.iop.org/1367-2630/16/6/063038)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/6
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Fast decoders for qudit topological codes

Hussain Anwar1,2,5, Benjamin J Brown3,5, Earl T Campbell4 and
Dan E Browne2
1Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
2Department of Physics and Astronomy, University College London, Gower Street, London
WC1E 6BT, UK
3Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, London
SW7 2AZ, UK
4Dahlem Center for Complex Quantum Systems, Freie Universitát Berlin, D-14195 Berlin,
Germany
E-mail: hussain.anwar@brunel.ac.uk

Received 21 February 2014
Accepted for publication 15 April 2014
Published 17 June 2014

New Journal of Physics 16 (2014) 063038

doi:10.1088/1367-2630/16/6/063038

Abstract
Qudit toric codes are a natural higher-dimensional generalization of the well-
studied qubit toric code. However, standard methods for error correction of the
qubit toric code are not applicable to them. Novel decoders are needed. In this
paper we introduce two renormalization group decoders for qudit codes and
analyse their error correction thresholds and efficiency. The first decoder is a
generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah
(arXiv:1112.3252). We modify this decoder to overcome a percolation effect
which limits its threshold performance for many-level quantum systems. The
second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin
and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to
optimize the efficiency of implementation in the high dimensional case. In each
case, we estimate thresholds for the uncorrelated bit-flip error model and provide
a comparative analysis of the performance of both these approaches to error
correction of qudit toric codes.

Keywords: topological error correcting codes, toric code, qudits, thresholds,
renormalization group decoders

New Journal of Physics 16 (2014) 063038
1367-2630/14/063038+37$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

5 These authors contributed equally to this paper.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

mailto:hussain.anwar@brunel.ac.uk
http://dx.doi.org/10.1088/1367-2630/16/6/063038
http://arXiv.org/abs/1112.3252
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://creativecommons.org/licenses/by/3.0/

1. Introduction

The study of quantum error correction and fault-tolerant quantum computation [1–3] for qubit
systems is very well established, and the combination of topological codes [4] for robust error
tolerance and magic state distillation [5] for universality has become a leading framework for
fault-tolerant quantum computation [6–9].

In contrast to qubit systems, fault-tolerant quantum computation with systems of
dimension d higher than 2 are less well understood. Only recently were the first magic state
distillation schemes for qudit systems developed, which demonstrated improved distillation
thresholds and reduced overhead compared with their qubit counterparts [10, 11]. Also, recently
the first decoders for qudit topological codes were proposed [12], providing the ingredients for a
fault-tolerant qudit computation.

Topological codes were introduced by Kitaev in one of his seminal papers [4], establishing
a framework encompassing both qubit and qudit variants. In particular, the toric code places
qudits on the surface of a torus, as illustrated in figure 1. Also notable is the planar code, which
has similar properties but can be physically realized in two-dimensions [13, 14]. These codes
are topological in nature as the quantum information is encoded in degrees of freedom which
are independent of the local physics of the code.

For a topological code to protect quantum information, physical errors must be detected
and corrected at a sufficient rate to prevent the errors from accumulating and causing an
unwanted logical error. An important part of error correction is the decoder, the classical
algorithm which, given the output of the error detecting measurements (the syndrome set)
computes a correction operator which should restore the quantum code to its original state. The
mapping between syndromes and errors can never be one-to-one (even in classical codes), so a
good decoder will output a correction operator which has a high likelihood of successful error
correction. Comparing decoders, however, is subtle. Whilst some decoders may achieve the
highest thresholds (optimal decoders) others may run faster and at more favourable
computational cost.

In this work, we implement and refine two types of decoders for the qudit generalization of
Kitaevʼs toric code [15]. One of the motivations behind exploring qudit systems is that stabilizer
measurements have more outcomes, and so provide more information with which to determine
the error locations. If this extra information is exploited correctly, then improvement in

New J. Phys. 16 (2014) 063038 H Anwar et al

2

Figure 1. In a toric code, qudits (black dots) are attached to the edges (black lines) of a
square lattice on the surface of a torus. Errors are detected by measuring the codeʼs
stabilizer generators—operators which act locally on four qudits associated with each
plaquette and vertex.

performance vis-à-vis qubit codes can be observed [16]. Studies of the thermal stability and
Hamiltonian realization of the qudit toric code also indicate some advantages in using qudit
systems [17]. Moreover, the extra levels in qudit systems allow for the enhancement of quantum
memories in two-dimensions via the insertion of domain walls [19, 20], which is not possible in
qubit codes [21].

For the qubit toric code a variety of decoding algorithms have been studied. The early
extensive study by Dennis et al [22] demonstrated how the decoding problem for the qubit toric
code undergoing independent X and Z errors can be mapped to a statistical–mechanical model,
the random-bond Ising model (RBIM). Remarkably, they showed that the optimal error
threshold, p

th
opt, for this model directly maps to a phase transition point in the RBIM, known as

the Nishimori point [23], which had already been identified numerically to be around 10.9%
[24–27]. Moreover, Dennis et al observed that this optimal threshold lay very close to an
important quantity arising in quantum Shannon theory called the hashing bound threshold p

th
H

[28] (see appendix B). In the qubit case, and for the independent X and Z error model, the
hashing bound threshold is =p 11.0028%

th
H . Further work by Takeda and Nishimori [29]

showed that the similarity between the optimal and the hashing bound thresholds applies to
more general statistical–mechanical models. They made a conjecture in statistical mechanics
terms, which when translated to topological codes, implies that the optimal code threshold
should coincide with the hashing bound threshold for a variety of error models, i.e. =p p

th
opt

th
H.

Whether this conjecture holds (either exactly or approximately) remains an open question, but
numerical results so far have supported it [30].

Thresholds are dependent on the error model chosen. In this paper, unless explicitly stated
otherwise, all thresholds reported are for the independent X and Z error model, defined in
section 3. Note also that the reported threshold values are code thresholds and not fault-
tolerance thresholds and that error-free syndrome measurement and correction is assumed.

The most typically employed decoder for the qubit toric code is the minimum-weight
perfect matching algorithm (MWPMA), which has an efficient implementation based on
Edmonds’ blossom algorithm [31]. This algorithm has been extensively studied and its
threshold has been estimated to be10.3% [32]. As we will see below, however, the MWPMA is
not suitable for decoding >d 2 qudit toric codes.

Recently, a number of alternative decoders have been proposed. Of particular relevance to
this paper are the two decoders which utilize renormalization group (RG) ideas, proposed by
Duclos-Cianci and Poulin [33, 34], and by Bravyi and Haah [35]. While both of these decoders
employ RG techniques, they do so in very different ways. To distinguish between them, we
shall use the terminology suggested by Duclos-Cianci and Poulin [36]. We will refer to the first
as the soft-decisions-RG (SDRG) decoder and the second as the hard-decisions-RG (HDRG)
decoder. These decoders will be detailed in sections 4 and 5, and the reasons for this
terminology will become clear. These decoders have gained great attention recently due to the
fact that they have a greater flexibility over MWPMA [37, 38] and yet achieve comparable
thresholds. The thresholds that were obtained for the qubit toric code by the SDRG (using ×2 1
cells) and HDRG decoders are 8.2% and 6.7%, respectively. Notably, higher thresholds can be
achieved using the SDRG decoder by increasing the cell size [33].

In section 4 we generalize the HDRG decoder to decode the qudit toric code. We will
show that the construction of this decoder has no dependence on the qudit dimension, which

New J. Phys. 16 (2014) 063038 H Anwar et al

3

allows us to obtain a numerical estimate of the threshold for any dimension. Some of the
refinements of our qudit decoder also have benefits for the qubit code. We will demonstrate that
the original qubit HDRG decoder of [35] can be improved so that a higher threshold of 8.4% is
achieved. In the limit of high dimensions this decoder reaches a saturating threshold of about
18%. We discover that this behaviour is due to a percolation effect, where thresholds achieved
by this decoder are always upper bounded by the syndrome percolation threshold. To beat this
upper bound, we introduce an initialization step into the algorithm which disrupts this
percolation effect and enhances the performance of the decoder such that, for high dimensional
systems, thresholds as high as 30% are obtained. We refer to the HDRG decoder when
augmented with the initialization step as the enhanced-HDRG decoder.

In section 5 we develop a variant of the SDRG decoder for toric codes of any dimension.
Recently, Duclos-Cianci and Poulin generalized the SDRG decoder for qudit codes [12]. They
studied the relationship between the hashing bound threshold and the thresholds achieved by
their decoder, finding, strikingly, that their thresholds approximate a constant fraction of the
hashing bound threshold. Due to the fact that their decoder has a run-time complexity that

depends on the dimension as ()O d7 , they were not able to investigate this behaviour beyond

=d 6. The version of the SDRG decoder that we develop has a different scaling behaviour with

a dimension dependence of ()O d 4 . The smaller cell size we use leads to lower thresholds, but

allows us to analyse much higher dimensional systems. This enables us to estimate thresholds
for systems of dimensions up to =d 19.

We have summarized the thresholds obtained by our HDRG, enhanced-HDRG and SDRG
decoders in figure 2. This paper is structured as follows. In section 2 we review the qudit toric
code. In section 3 we describe the noise model formally and describe the numerical method we
adopt to estimate the thresholds. Sections 4 and 5 describe our generalization of the HDRG and
SDRG decoders, respectively. Finally, we compare and discuss these two decoders in section 6.

New J. Phys. 16 (2014) 063038 H Anwar et al

4

Figure 2. A comparison between the thresholds obtained using the HDRG, enhanced-
HDRG and SDRG decoders presented in this paper. The dimension 7919 is the 1000th
prime number used here to demonstrate the independence of the HDRG decoder on the
dimension of the qudits. The error bars have been omitted for clarity.

2. Qudit toric code

The toric code is a stabilizer error-correcting code described within the stabilizer formalism
[39, 40]. Here, we consider a toric code consisting of a lattice of d-level quantum systems,
qudits, where ⩾d 2. For simplicity, we will restrict our discussion to prime dimensions. Our
definitions are valid in both the d = 2 and >d 2 case.

The single qudit Pauli group, d, is generated by

 

∑ ∑ ω= ⊕ =
∈ ∈

X j j Z j j1 , , (1)
j j

j

d d

where the addition ‘⊕’ is carried out modulo d, and ω = πe i d2 [41]. These operators satisfies the
commutation relation ω= −XZ ZX1 .

In the case where qudit dimension >d 2, unitaries X and Z are not Hermitian, but,
possessing orthogonal eigenspaces, they still can be interpreted as observable measurements
whose measurement outputs are labelled by complex eigenvalues ωk. As a short-hand we shall
usually denote outcome ωk simply by integer k.

The n-qudit Pauli group d
n is generated by the n-fold tensor product of single qudit Pauli

operators. A stabilizer code is defined by an Abelian subgroup  of the Pauli group d
n, such

that it contains the identity operator  but not any other phase multiples of the identity, i.e.
ω ∉ j for all non-zero j. The common +1 eigenspace of S forms a protected subspace called

the code-space, and the elements of  are called the stabilizers of the code.
The qudit toric code is defined on a square lattice of L × L vertices with periodic boundary

conditions, where we have a qudit on each of the edges of the lattice, see figure 3(a). The
stabilizer group of the qudit toric code is generated by two types of stabilizers, the vertex
operators Av and the plaquette operators Bp. There is an Av stabilizer for each vertex v and a Bp

stabilizer for each plaquette p of the lattice. We show examples of Av and Bp operators in

figure 3(b). The qudit toric code encodes two logical qudits. The operators acting within the

New J. Phys. 16 (2014) 063038 H Anwar et al

5

Figure 3. (a) The primal lattice of the toric code with qudits depicted by black dots, and
a couple of examples showing how the plaquette syndromes are generated for a set of X
errors. The two logical operators Z̄ a

1 and Z̄ a
2 correspond to the two non-contractible

loops on the primal lattice. The dashed lines indicate the periodic boundaries. (b) The
qudit vertex and plaquette operators.

code-space on the logical information are string-like operators that have support on non-
contractible loops of the lattice. We show examples of logical operators Z̄ a

1 and Z̄ a
2 in

figure 3(a). The conjugate X̄j
a logical operators have support over non-contractible loops on the

dual lattice. Logical operators commute with the stabilizer group, but are not members of . We

shall label the initial encoded state, which we wish to preserve, as ψ
init

.

The vertex and plaquette operators collectively comprise the check operators for the code.
These are the operators which are measured to determine the error syndromes. We shall call the
integer outcome a of a measured check operator a syndrome. If this outcome is zero we call this
a trivial syndrome. The combined outputs of all check operators we shall call the syndrome set.
The syndrome set thus comprises an integer a for each vertex v and plaquette p check operator,
such that = −a d0, 1 ,..., 1 correspond to the eigenvalues ωa of the measured operator.

After measuring the set of stabilizer generators, errors are projected to Pauli errors and the

lattice will be in the state ψE
init

such that ∈ E d
n. In common with other CSS codes [2, 3],

we can deal with X-type and Z-type errors on the toric code independently. Here we will focus
on X errors, however the behaviour of Z errors is equivalent with respect to the dual lattice. The
relationship between the errors and the syndromes is crucial to the design of the decoder, in
essence the decoder is trying to invert this mapping.

If a toric code state undergoes a single X a error, as shown for example in figure 3(a), then a
pair of non-zero syndromes are generated with values a and −a, where negative numbers are
defined modulo d. For multiple errors the integer syndromes combine additively. For example,
the three errors X a, Xb and X c in figure 3(a) generate syndromes − ⊕b a and − ⊕c b on the
plaquettes between pairs of errors. Note that in general, any set of syndrome outcomes
generated by a set of errors will sum to zero (e.g. for a single error + − =()a a 0).

We see that if adjacent errors correspond to equal (in some directions) and opposite (in
other directions) powers of X, then the intermediate syndrome cancels to the zero outcome. It is
this behaviour which strongly distinguishes qubit toric codes from >d 2 qudit codes. For
qubits, Pauli operators X and Z are self-inverse, which means that intermediate syndromes
always cancel. A string of errors will only generate non-trivial syndromes at its ends. For >d 2,
however, the syndrome between adjacent errors will cancel only in the special case that adjacent
errors are equal (or opposite, depending on the direction). This is the principle reason why
decoders designed for the qubit code will often not immediately generalize to the >d 2 setting.

The task of the decoder, then, is to derive a correction operator †F which returns the state
to the code-space. Given any correction operator †F which (trivially) returns the logical operator
to the code-space, and given any logical operator on the code-space L, then the combined
operator †LF will also return the system to its code-space. Indeed, given any set of errors E and
any logical operator L, the error set EL will return an identical syndrome. It is this degeneracy
between the errors and the syndromes which makes decoding non-trivial. For a successful
correction, F must be chosen such that †F E acts trivially on the encoded logical information, i.e.
implements the identity operator and not a non-trivial logical operator.

Considering Z operators alone, the logical operators on the toric code are of the form ¯ ¯Z Zj k
1 2

for all j and k integers between ⩽ ⩽ −j k d0 , 1. There are thus d2 equivalence classes of
correction operators for any given syndrome. It is the role of the decoder to choose the most

New J. Phys. 16 (2014) 063038 H Anwar et al

6

appropriate correction operator given the underlying error model. We call a decoder with the
highest probability of choosing the correct equivalence class of correction operators the optimal
decoder.

It is sometimes useful to adopt quasi-particle terminology to describe syndromes on a toric
code. We interpret a single syndrome outcome a as representing a quasi-particle of charge a,
with −a outcome representing the anti-particle of a. The set of quasi-particles generated by any
set of errors is then of neutral charge, and sets of quasi-particles of overall neutral charge can be
annihilated by the application of an appropriate correction operator.

The mathematical structure of the toric code can be elegantly and concisely described
using the mathematics of homology. Homology theory provides a concise and exact
representation of the (otherwise somewhat complicated) relationship between errors and
syndromes, and the logical operators on the code-space. Since we do not expect the typical
reader of this paper to be familiar with this field, we have aimed to refrain from using
homological terms, as much as we can, in the main text and provide a primer on homology in
appendix A. Some aspects of the SDRG decoder, however, are most cleanly expressed in
homology terms and these shall be explained at the beginning of section 5. A powerful aspect of
homology is that the relationship between errors and syndromes on the toric code is the same
for d = 2 and all higher values of d.

It is worth noting that we do not choose to generalize the MWPMA. In the qubit case, the
MWPMA typically consists of constructing a complete weighted graph where the vertices are
non-trivial syndromes and the weight of the edges is the shortest Manhattan distance between
the vertices. Then using Edmonds’ algorithm [31, 42] the perfect matching of minimum weight
can be efficiently determined. In quasi-particle language MWPMA works by associating pairs
of syndromes, which together have neutral charge. It then finds the minimal weight correction
operators to annihilate each pair. In higher dimensions, however, the charge of the vertices
ranges across the set −{ }d1 ,..., 1 . Any neutral set (not just a pairing) of clusters should be
considered for annihilation. Thus to find the lowest weight error correction chains for the qudit
code requires an algorithm, which must minimize weights on a hypergraph whose hyperedges
consist of all charge neutral subsets of vertices. Minimum weight hypergraph matching is in
general an NP-Hard problem [43]. We therefore do not expect good speed performance for such
a decoder, and have not pursued it here.

3. Noise model and threshold estimation

In this section we define the noise model used in this paper, and review the numerical methods
we use to estimate the thresholds. We work with the independent error model, otherwise known
as the uncorrelated error model, which is widely used in other studies of the toric code [12, 22].
The principle benefits of this model are its simplicity and its direct mapping to statistical
mechanics models (e.g. the RBIM and Potts gauge glass models).

In the independent error model, we treat X-type and Z-type errors as separate processes
which act independently on each physical qudit. Each channel has a simple definition. For X-
type errors, with probability − p1 no error occurs to the qudit, and with probability −()p d 1

the error operator X j is applied, where j is an integer between < ⩽ −j d1 1. The Z-type errors
occur according to an analogous channel with the same probability p. The important feature of

New J. Phys. 16 (2014) 063038 H Anwar et al

7

this error model is that all powers of X occur with equal likelihood, and X and Z errors are
uncorrelated.

We will estimate these thresholds numerically via a Monte Carlo simulation. For a single
Monte Carlo sample, we initiate the lattice in the pure state of the code-space, fix p and then
generate a random error configuration using the above noise model. The syndromes of the error
configuration are then measured and fed to the decoder. The decoding algorithm will return a
Pauli correction operator †F , that will return the system to the code-space.

In the simulation we repeat this procedure N times for a given p, and we evaluate the
success probability p

succ
as the fraction of times the decoder succeeds. The standard deviation in

the estimated success probability is σ = −()p p N1
succ succ

. To determine the threshold, we

plot p versus p
succ

for different lattice sizes as shown, for example, by figures 5 and 13. The
threshold p

th
is defined to be the point at which the success probability curves intersect in the

limit → ∞L . In other words, the threshold represents the point below which arbitrarily high
p
succ

can be achieved provided that the lattice is made large enough. However, in the actual
simulations, the data points can only be obtained for a relatively small lattice sizes L, and such
lattices are subject to small system size effects, which can affect the evaluation of p

th
. This is

easily seen in the L = 16 curve of figure 5.
To account for the small system size effects, we estimate p

th
by using the fitting proposed

by Harrington et al [32]. In this fitting, all the data points are fitted to the curve

= + + + μ−p A Bx Cx DL , (2)
succ

2 1

where = − ν()x p p L
th

1 , as shown, for example, in the boxed plot in figure 5. The last term in

the fitting, μ−DL 1 , accounts for the the small size effects. We can see that, in the limit of
→ ∞L , this term tends to 0, where μ is positive6.

In the next two sections we introduce two types of decoders, namely, the HDRG and
SDRG decoders, suitable for decoding the qudit toric code of any dimension. We describe
earlier formulations of these decoders, our refinements to them and the resulting thresholds
achieved for the independent error model.

4. HDRG decoder

The HDRG decoder was introduced by Bravyi and Haah in [35] as an efficient decoder for
general local topological codes [44, 45], where MWPMA is an unsuitable decoder. For the
qubit toric code, they obtain a threshold of 6.7% using the independent noise model. The
construction of this decoder built upon previous work by Harrington [46] and Dennis [47]. In
the first sub-section of this section, we present a refined version of this decoder and show that
these refinements achieve higher thresholds for the toric code.

New J. Phys. 16 (2014) 063038 H Anwar et al

8

6 We have used the NonlinearModelFit function in Mathematica to estimate the fitting parameters

ν μ{ }A B C D p, , , , , ,
th

. In particular we have used the options ‘BestFitParameters’ to extract the parameter

estimates, and ‘ParameterErrors’ to estimate the standard deviation error in each parameter.

4.1. Decoder description

The HDRG decoder has a simple and elegant intuition behind its construction, and before we
introduce it formally we shall give a heuristic description of how it works. If error rates are low,
errors will typically be sparsely distributed. Each cluster of errors will generate a cluster of non-
zero syndrome measurements in its immediate vicinity. Identifying and annihilating such small
clusters of syndromes is the heart of Bravyi and Haahʼs HDRG decoding technique.

The decoder considers the syndromes on the lattice over many levels of decoding. Each
level of decoding is associated with a geometric measure of distance on the square lattice, such
that the distance gets bigger as the levels increase. At each level, the non-trivial syndromes are
divided into clusters which are disjoint with respect to this measure. In other words, in each
cluster, all of the syndromes are separated from at least one other syndrome of the cluster by a
distance no greater than that determined by the decoding level. If the sum of all the syndromes
within a cluster is zero (modulo d), i.e. if the cluster is neutral, then the syndromes of the
clusters are annihilated locally with respect to the cluster. Clusters whose total syndromes are
non-zero are referred to as charged clusters. Charged clusters are passed to the next level until
ultimately they become part of a neutral cluster which is annihilated. Next, we will define and
explain all the aspects of this decoder more rigorously.

Without loss of generality we shall consider only the plaquette syndromes, with the
analogous vertex formalism being obvious. Firstly, we review some distance measures between

plaquettes labelled as ⃗ = ()x x x,1 2 and ⃗ = ()y y y,
1 2

. The Manhattan (or taxi-cab) distance is

⃗ ⃗ = − + −()D x y x y x y,()1
1 1 2 2

. Our second distance is the Max distance, and is

⃗ ⃗ = − −∞ { }()D x y x y x y, max ,()
1 1 2 2

. Both can be used to define balls of a certain radius,

centred on a plaquettes p, such that

⃗ = ⃗ ⃗ ⃗ ⩽{ }() ()B x y D x y r, , (3)()
r

1 1

⃗ = ⃗ ⃗ ⃗ ⩽∞ ∞{ }() ()B x y D x y r, . (4)()
r

Although called balls, the Max distance generates squares and the taxi-cab distance picks out
diamonds. However, primarily we are interested in regions that combine these two regions. For
any integers r and s, we define regions r s, that when centred on a point ⃗x are

∩⃗ = ⃗ ⃗+
∞ () () ()x B x B x , (5)() ()

r s r s r,
1

and so simply the intersection of two balls with different metrics. The first few instances are
shown in figure 4, and clearly we only need to consider ⩽s r. Note that the regions are
symmetric, so if ⃗ ∈ ⃗ ()x yr s, then ⃗ ∈ ⃗ ()y xr s, and when this happens we say ⃗x and ⃗y are (r,s)-
connected.

Furthermore, we need a notion of connection for a cluster C, or set, of plaquettes. Firstly,
we define connected paths in C. A path γ in C is an ordered subset of C, such that

γ = ⃗ ⃗ ⃗ +{ }x x x, ,...,() () ()n1 2 1 , and we define it to be an (r,s)-path if for all j, ⃗x ()j and ⃗ +x ()j 1 are (r,s)-

connected. Now, we say the cluster is an ()r s, -cluster if for all ⃗ ⃗ ∈x y C, there exists an (r,s)-

path in C starting at ⃗x and ending at ⃗y . The intuition behind considering these particular regions

New J. Phys. 16 (2014) 063038 H Anwar et al

9

is to take into account some of the degeneracy in the errors creating the syndromes. We will
discuss this point in more detail in the next section.

These geometric concepts can be used to explain the decoding scheme. Given the
measurement data of all the plaquettes, if plaquette ⃗x has measurement outcome ⃗mx , then

information is conveyed by the ordered pair ⃗ ⃗()x m, x , and the full list of charged plaquettes is

= ⃗ ≠⃗ ⃗ { }()x m m, 0x x . Similarly, a charged cluster is a subset of the full charge distribution,

⊂ , where we use a different script to indicate the presence of charge information. A
cluster is said to be neutral if the total charge is zero, so that ∑ =⃗m 0x modulo d. Neutral

clusters can always be annihilated by transporting and fusing the syndromes within the cluster
until the total charge disappears. When doing so, we update the plaquette information from 
to ′ , such that the annihilated neutral cluster  is no longer contained in ′ . Despite there
being many different ways to annihilate the charge, all of these are equivalent assuming only
that the cluster is small compared to the lattice and the charges are transported within the
cluster. The intuition behind the HDRG decoder is that if such small clusters are annihilated
locally, then the resultant correction chains, combined with the actual error chain, will form a
trivial loop of errors. That is, a stabilizer element of the code and so equivalent to the identity on
the code-space.

The complete set  can always be partitioned into a set of disjoint clusters
˜ =   { }, ,..., n1 2 , for some n, and where ∪ ∪ ∪=   ... n1 2 . We say a particular

partition ̃ is an (r,s)-partition if both the following conditions are satisfied:

(a) Connectivity: every charged cluster in the partition is an (r,s)-cluster;

(b) Maximality: for any distinct pair of charged clusters in the partition, j and ≠k j, we find
that ∪ j k is not an (r,s)-cluster.

Maximality tells us there is no suitable path between the disjoint clusters, and so they
could not be merged into a single cluster. Furthermore, whenever the connectivity condition is
met, but maximally fails, there exists another partition that does fulfil both conditions using
fewer charged clusters.

As stated previously, the HDRG decoder involves multiple levels of decoding. Each
decoding level l is associated with a choice of regions r s, . At the first level we begin with

=() ()r s, 1, 0 . The parameters increase iteratively, such that for +l 1, first we try to increase s

New J. Phys. 16 (2014) 063038 H Anwar et al

10

Figure 4. The refined regions r s, on a taxi-cab geometry (left-hand side) with examples
of the first four levels (right-hand side).

by 1, but if s = r we instead increase r by one and reset s to zero. The relation between the level
number and the distance parameters can be determined with simple calculation to be

+ +()r r s1 2 . The decoder performs the following, beginning with the first level l = 1:

(i) Clustering: find an (r,s)-partition of l.

(ii) Neutral annihilation: for every neutrally-charged cluster in the partition, for instance j,
find a Pauli correction ej with support entirely on j that annihilates all the syndromes
within the cluster.

(iii) Refresh: record the collective Pauli correction ∏ e
j j and update the syndrome information

to +l 1. If +l 1 is non-empty, then repeat at next level = +l l 1.

It is helpful to refer to individual levels of the decoder as sub-protocols that we label Dl.
Any charged cluster that cannot be annihilated completely by Dl, is therefore left for the next
higher level of decoding D+l 1. The higher levels will have larger regions and therefore any
charged clusters will eventually be combined and form bigger neutral clusters which can then
be annihilated. Also, notice that in the HDRG construction the correction chains are determined
during the neutral annihilation step at every level of decoding. In classical coding theory, this is
a typical feature of what is known as a hard-decision decoder [48, 49]. Later, in section 4.4, we
will introduction an initialization step that is not part of the above main loop and occurs before
D1. The initialization step performs some syndrome manipulation to edit  prior to use in the
first level of the decoder.

There are several crucial differences between our version of the HDRG decoder described
above and the original decoder by Bravyi and Haah [35]. First, the distance measure in [35] is

the Max distance ∞D(). Recall that a ball of radius r in the Max distance is denoted ∞Br , and
Bravyi and Haah use such a region at level-r of the decoder where r grows exponentially with
the decoder level. The refined metric we choose here includes all such regions, since = ∞ Br r,0 ,
but our decoder will consider additional intermittent levels corresponding to ≠r s, 0. In addition,

our metric grows as ()O r 2 as the decoding level increases. It is important to point out that in

[35] Bravyi and Haah presented a proof for the existence of a threshold for their HDRG

decoder. The proof makes use of the exponential increase of their ∞D() metric, and it is not clear
to us that it can be extended to the linearly growing refined metric we consider. However, as we
will see, our numerics demonstrate clearly the existence of a threshold. Second, their decoder
declares failure and aborts if the area of a cluster is larger than half the lattice size. The idea
behind this requirement is that annihilating such large clusters would very likely lead to a
logical error. In our decoder we do not enforce this requirement because, as we will see, in
higher dimensions the syndrome tends to percolate at high enough error probability, and we
would like to investigate how this decoder behaves in such regimes. For this reason, in our
implementation here, in the annihilation step we simply combine the syndromes within a cluster
with their first possible local neighbours. Similar variations of the HDRG decoder have been
proposed very recently in [50–52].

The construction of the HDRG decoder has no dependence on the actual charge of the
syndromes. All that matters in the clustering step is the fact that the syndromes have non-zero
charge. Similarly, in the neutral annihilation step the syndromes in a neutral cluster are
combined with their local neighbours systematically regardless of their actual charge. As a

New J. Phys. 16 (2014) 063038 H Anwar et al

11

consequence, the run-time complexity of the HDRG decoder depends only on the number of
non-trivial syndromes. Note that the density of syndromes increases as the qudit dimension
increases. This is because in the qudit case, the probability of two neighbouring errors with
opposite weights to occur diminishes quickly as the dimension increases, and hence any shared
syndrome will almost always be detected (see figure 3). Therefore, the exact run-time
complexity needs to capture the relation between the number of syndromes and the qudit
dimension, which is not a trivial task. Nevertheless, our numerical analysis shows that this
dependence on the qudit dimension is negligible and for practical purposes can be ignored.

It is not hard to derive an upper bound for the worst case run-time complexity for our
HDRG decoder. At each decoding level, the complexity of each of the clustering and the neutral

annihilation steps is at most ()O L2 . Since in our construction we have considered a

quadratically increasing level, then at most ()O L2 levels of decoding are needed. As a result,

our HDRG decoder has a worst run-time complexity of ()O L6 .

4.2. Threshold estimation

In this section we present the results of the Monte Carlo simulation for the HDRG decoder. We
begin with the qubit case before moving to higher dimensions. We plot the success probability
curves for the qubit case in figure 5. Using the fitting described in equation (2), we estimate the
threshold to be ±8.4% 0.01.

Recall that the threshold achieved by the original HDRG decoder in [35] was 6.7%. The
improvement in the threshold achieved by our HDRG decoder is mainly due to the refined set of
regions r s, , which we have adopted in favour over using just the Max distance, to account for

New J. Phys. 16 (2014) 063038 H Anwar et al

12

Figure 5. The success probability of the HDRG decoder for the qubit case. The data
points are generated with =N 105 samples for ∈ { }L 16, 32, 64, 128 and =N 104

samples for ∈ { }L 256, 512 . The error bars are are taken to be σ2 . The boxed plot

shows the data fitting, where = − ν()x p p L
th

1 , ν = ±1.85 0.04 and μ = ±0.46 0.06.

some of the degeneracy of difference error configurations. To demonstrate this point, we
consider two simple examples. Figure 6(a) shows two plaquettes created by one and two errors.
Clearly the single error is more likely to occur in comparison to two neighbouring errors.
However, with the ∞D -metric the plaquettes in both cases will be connected at the first level.
But the regions r s, distinguish between the two cases, and they will be connected at two
separate decoding levels, namely D1 and D2. Also, figure 6(b) shows two cases of two
plaquettes created by two errors. For the first case, there are two errors for which the set of
successful recovery operations are identical. Hence, the first case is more probable to occur
since it has double the degeneracy. The regions r s, better account for this degeneracy by again
treating these cases in two separate levels, namely D2 and D3. The overall effect of such
refinement is to create finer clusters which would lead to better error correction during the
annihilation step.

The above observations suggest that to improve our decoder further one can consider a
different sequence of regions. Such distance measure is optimal in the sense that it will always
connect syndromes that can be created by fewer errors and higher degeneracy first. It is not hard
to see that such improvement will switch, for example, levelD5 with levelD6, because the latter
will connect syndromes created by fewer errors as shown in figure 6(c). Our approach,
however, was easier to implement, and we leave such further improvement for a future
investigation. The above ideas of improving a decoder performance by accounting for
degeneracy has been considered for other decoders too. For instance, in [53] Stace and Barrett
demonstrated how the threshold achieved by the MWPMA can be improved from 10.3% to
10.6% by including the degeneracy in the weights of the edges to refine the outcome of the
perfect matching.

The thresholds of the remaining prime dimensions are plotted in figure 7. To demonstrate
that a numerical estimate of the threshold can be obtained for any dimension we have chosen
the 1000th prime number =d 7919 to represent the limit of high d. As can be seen from
figure 7, the threshold increases monotonically with qudit dimension and reaches a saturating
value of about 18%. We have discovered that the reason for this behaviour is due to a
percolation effect, which we will discuss next.

New J. Phys. 16 (2014) 063038 H Anwar et al

13

Figure 6. The regions r s, distinguishes between (a) and (b), whereas the ∞D -metric
does not. (c) The optimal distance measure will switch levels 5 and 6.

It is not hard to see that for a given error rate the density of syndromes increases as the
dimension of the qudits increase. In fact, as we will show in the next section, for any given
prime dimension ⩾d 3, there exists a unique threshold error rate at which the syndromes
percolate the lattice. In other words, above this threshold the syndromes will always span the
lattice completely. We refer to this threshold as the syndrome percolation threshold, denoted
here by p

th
syn. We will provide numerical estimates of this threshold in the next section. We will

find that it decreases as the dimension increases until it reaches a constant value of about18% in
the limit of high d, see figure 8.

The syndrome percolation has severe consequences for the HDRG decoder. For any error
rate >p p

th
synd there will be one percolating neutral cluster at the first level D1 of decoding. The

HDRG will try to annihilate the syndromes with their nearest-neighbours and will most likely
fail. This suggests that we cannot expect the HDRG decoder to achieve a threshold higher than
the percolation threshold, because the success probability curves must diminish above the
percolation threshold. Indeed this is what we observe in the limit of high d, as illustrated by the
boxed plot in figure 7. The point of intersection of the curves (which defines the threshold)

New J. Phys. 16 (2014) 063038 H Anwar et al

14

Figure 7. The threshold values of the HDRG decoder for prime dimensions with σ2
error bars. The boxed plot is an illustrative figure of the behaviour of the success
probability in the limit of high d.

Figure 8. Syndrome percolation threshold for prime dimensions with σ2 error bars.

intersects the x-axis at the value of the percolation threshold. The actual curves (omitted here)
are too noisy around the syndrome percolation threshold, for this reason we have indicated by
the red error bar the range at which the actual curves intersect in the limit of high d.
Furthermore, our numerical analysis shows that if we ignore the small lattice sizes, then the
curves of the large lattice sizes clearly cross at single point around 18%.

The conclusion of the above discussion is that in the limit of high d we expect the
syndrome percolation threshold to be a close upper bound to the threshold achieved by the
HDRG decoder. Next, we outline some basic concepts in percolation theory and show how the
syndrome percolation thresholds can be estimated.

4.3. Syndrome percolation thresholds

Percolation theory is the study of connectivity and transport on random graphs [54–56]. A
standard percolation model consists of a random graph whose sites are distributed in space, and
the bonds connect neighbouring sites only. We are mainly interested in the percolation
behaviour on a two-dimensional regular graph, and in particular the regular square graph. There
are typically two stochastic mechanisms associated with each graph structure: either the sites of
the graph are fixed in space and bonds are made randomly on them, or sites are random in space
and the bonds are determined on the neighbouring sites.

For instance, in the random vertex model, each site is ‘empty’ with probability p and
otherwise it is ‘occupied’. For each instance, percolation occurs if there is a nearest neighbour
path that spans the graph using only occupied sites. The key result of percolation theory is that
there exists a threshold, =p 59.27%

th
site [55], above which the probability of percolation

approaches unity with increasing lattice size, and below threshold the percolation probability
vanishes in the large lattice limit. A similar phenomenon occurs when randomly removing
graph bonds, and has an analytic threshold of =p 50%

th
bond .

On the square lattice of the toric code, the bonds correspond to the qudits on the edges of
the lattice and the sites correspond to the vertices/plaquette operators. In our discussion here, we
are interested in the syndrome percolation threshold of the toric code. This is not equivalent to
site percolation because the syndromes are created in pairs by qudit errors on the lattice edges.
Given a syndrome  we say that it percolates the lattice if there is a nearest neighbour path in
 that spans the lattice. Using our terminology, a nearest neighbour path is a ()1, 0 -path in.
There have been studies of site percolation with distant neighbouring interaction [57, 58], but to
our knowledge there have not been investigations where bonds interact with sites in the manner
defined by the toric code. Also, there does not appear to be an analytic method that can
determine the syndrome percolation threshold precisely from the known theory on the bond and
site percolation.

We resort to estimating the syndrome percolation numerically via Monte Carlo simulations.
The simulation is straightforward and it is very similar to that described in section 3 in estimating
the error correction threshold of a general decoder. For a given dimension d, error rate p, and
lattice size L, we generate a qudit lattice such that each qudit suffers an error with probability p.
The syndromes are then calculated. If the syndromes percolate, then the simulation will be
declared successful, otherwise it is a failure. This procedure is then repeated N times, and the
success probability is evaluated as the fraction of times the simulation has succeeded. The

New J. Phys. 16 (2014) 063038 H Anwar et al

15

simulation is repeated for a fixed range of p for different lattice sizes. The threshold is
determined as the point of intersection of the different success probability curves.

The numerical estimates for syndrome percolation thresholds obtained are presented in
figure 8. As can be seen from this figure, there does not exist a syndrome percolation threshold
for the qubit case, a fact that can be understood as follows. Consider the probability that a
plaquette (the toric code analogue of a site) is non-trivial given that the four neighbouring qubits
independently suffer an error with a probability p. This probability can easily be shown to be

− + −() ()p p p p4 1 4 1
3 3 . This expression is symmetric about = ±p c0.5 , where c is a

constant between ⩽ ⩽c0 0.5. This indicates that the profile of the success probability curve
versus the error rate p has a bell shape about =p 0.5, and therefore prohibiting the existence of
a unique threshold point above which the lattice always percolates. However, for the remaining
prime dimensions, such symmetry does not exist and we always observe a threshold. We see
that the syndrome percolation threshold decreases monotonically with the qudit dimension, and
in the limit of high d it reaches a constant value of about 18%. This confirms the conclusion of
the last section in that the syndrome percolation threshold is an upper bound for the HDRG
decoder. In the next section we will show how the HDRG decoder can be enhanced to beat this
upper bound.

4.4. Beating the percolation threshold

To overcome the syndrome percolation threshold we introduce an initialization step r s, that
enhances the performance of the HDRG decoder. Although this step is not efficient, we show
that for a sufficiently high d it can boost the threshold to about 30% at a computationally
feasible cost. The initialization step is designed to dissect any percolating cluster into a more
sparse set of clusters before running the HDRG decoder. It achieves this by using a brute force
method in finding any neutral sub-clusters within a percolating cluster. The sub-clusters are
then annihilated before running the HDRG decoder. We have constructed the initialization step
to search for the sub-clusters systematically by utilizing similar concepts as those used in the
HDRG decoder. For example, the subscripts r and s of each step r s, take the same increasing
integers as previously defined, and here they quantify the depth of searching for the neutral sub-
clusters in the lattice.

Each initialization step r s, consists of a series of initialization levels r s, that
systematically search for neutral sub-clusters. More precisely, in this construction, each step
r s, simply involves running all the initialization levels in ascending order such that

=   { }, ,...,r s r s, 1,0 1,1 , . Loosely speaking, the subscripts r and s of each level r s, quantify

the ‘size’ of the regions to search over for any neutral sub-clusters; we will expand on this point
shortly. Each level r s, is associated with a set of syndromes r s, . The set r s, consists of the
syndromes at the outer layer of r s, , such that

⃗ =
= ⧹
> ⧹

− −

−

⎧⎨⎩  
 ()x

s

s

for 0, ,

for 0, ,
(6)r s

r s r r

r s r s
,

, 1, 1

, , 1

where ‘ ⧹A B’ just means in A but not in B. This is more easily shown by the examples in
figure 9. We denote the elements of the set r s, by q

k
, and by definition, each set has either four

or eight syndromes. Next, we describe how the searching procedure at each initialization level

New J. Phys. 16 (2014) 063038 H Anwar et al

16

works, and again without loss of generality we will limit the discussion to the plaquette
operators. We will denote the set of all plaquettes by = { }u u u, ,..., L1 2 2 .

At each level r s, , the search for sub-clusters is performed by starting at a plaquette uj in

the lattice (regardless if it is charged or not) and then for each ∈ q
k r s, , we construct a search

rectangle  , which is defined as the minimum size rectangle that encloses syndromes uj and q
k
.

In other words, the plaquettes uj and q
k
form the opposite corners of the search rectangle. Inside

 , we define a search-path τ as any ()1, 0 -path in  that starts at uj and ends at q
k
. There are

many such paths, and by construction, every path will contain τ = + +()r s 1 elements in

total. We denote the set of all possible search-paths in  by τ τ= { }T ,..., T1 , where T is the

total number of possible paths. From a pure geometric point of view, a rectangle consisting of
×a b plaquettes has = + ! ! !()T a b a b possible paths connecting its corners. This expression

was calculated by considering the equivalent problem of finding all the minimum paths between
two points on a Manhattan geometry [59]. Our idea here is to treat each search-path as an
independent sub-cluster, and the aim is to annihilate any neutral sub-clusters.

Based on the above definitions, we now summarise the searching routine of an
initialization level r s, as follows. For each plaquette ∈ uj (starting with u1):

(i) Choose an element ∈ q
j r s, , and construct a search rectangle  ;

(ii) Search for all possible sub-clusters τ ∈ Tj within  systematically. If any sub-cluster τj is
found to be neutral, then annihilate τj and stop the search. Then start step 1 with the next
plaquette ∈+ uj 1 ; else

(iii) If no neutral sub-cluster were found, choose the next element ∈+ q
j r s1 , and repeat steps 1

and 2; else

(iv) If there are no remaining syndromes ∈ q
j r s, , then the search has ended without finding a

neutral sub-cluster for plaquette uj. Start step 1 with the next plaquette ∈+ uj 1 .

The above procedure is repeated until all the plaquettes ∈ uj have been searched. The

overhead of this search procedure is proportional size of the search rectangle T , which is
factorial in r and s. More precisely, for each initialization level r s, , in the worst case scenario

(where no neutral sub-clusters are found) the search takes αL2 steps, where the constant

New J. Phys. 16 (2014) 063038 H Anwar et al

17

Figure 9. The set of syndromes r s, for the first four initialization levels r s, . The red
square is the syndrome u and the blue squares are the q

k
syndromes at the outer layer of

r s, .

overhead α = + ! ! !()r s r s . Although that seems to be completely inefficient (in the depth of
search), the parameters r and s increase polynomially with the number of initialization levels,
and hence for the first few levels the overhead α is small enough. As a result, running the above
procedure for the first few initialization levels is still a computationally feasible task. It is
important to notice that for each plaquette uj the procedure stops once a neutral sub-cluster is

found, and the worst case of not finding any neutral sub-clusters happens only when the
dimensions d and the error rate p are sufficiently high.

The depth of searching for the neutral sub-clusters increases as the initialization levels
increase in size. We propose an enhanced-HDRG decoder at depth (r,s) to consists of running
the initialization step r s, followed by the HDRG decoder described in section 4.1.

The numerical estimates for the thresholds achieved by the enhanced-HDRG decoder for
the first four initialization steps are summarized in figure 10. The thresholds for 0,0 corresponds
to the HDRG decoder without any enhancement, with the corresponding thresholds previously
presented in figure 7. For the qubit and qutrit cases we see that the thresholds decreases after the
initialization steps are introduced. This is because for these low dimensions, finding a neutral
sub-cluster is very probable, and hence the initialization step is in fact too destructive. As a
result the clusters are divided into very sparse set of smaller clusters, and running the HDRG
will end up connecting these sparse sets of clusters and causing more logical errors.

However, we start to observe improvement in the thresholds above the qutrit case. Notice
that for all the listed first few primes dimensions, after some initialization step the thresholds
start to decrease. This is also because after some depth of searching the initialization step
becomes too destructive. In the limit of high d, we see that a threshold just under 30% can be
achieved. The current shape of the curve indicate a potential increase in threshold with
initialization step beyond 2,1, and we leave such investigation for a future work.

Finally, in the limit of high d, the saturating thresholds of the enhanced-HDRG decoder
can also be explained by the syndrome percolation effect. We introduce the enhanced-
syndrome-percolation threshold which is determined by simply running the initialization step

New J. Phys. 16 (2014) 063038 H Anwar et al

18

Figure 10. The thresholds for the enhanced-HDRG decoder with the first four
initialization steps r s, . The error bars and data of some prime dimensions are not
included for clarity. The red curve is the enhanced-syndrome-percolation threshold in
the limit of high d.

r s, followed by the syndrome percolation simulation described in section 4.3. The numerical
estimates for the enhanced-syndrome-percolation thresholds are presented in figure 10 by the
red curve. Our numerical analysis shows that the enhanced-HDRG decoder can reach the upper
bound of the red line by ignoring small size effects and considering large lattice sizes only.

5. SDRG decoder

5.1. SDRG overview

In this section we study the SDRG decoder introduced by Duclos-Cianci and Poulin in [33, 34].
The SDRG decoder used here, developed independently of that used by Duclos-Cianci and
Poulin in [12], differs from their approach in that we optimise the decoder for very high speed
decoding at the expense of a reduced threshold. This enables us to probe thresholds up to very

large d. Specifically, the decoder presented here has time complexity scaling as ()O d 4 , which is

comparably faster than the decoder presented in [12], which has time complexity ()O d7 . It will

become clear during the presentation of the SDRG decoder from where these scalings arise. In
this section we broadly review the techniques used in the SDRG decoder. Next, we introduce
the specific implementation of the SDRG decoder we use. Finally, we discuss the thresholds
obtained by this decoder.

It would be cumbersome to describe this decoder without employing homology
terminology. In the following, for the non-expert reader, homological equivalence can be
taken as equivalent to equivalence under multiplication by a member of the stabilizer group (or
more precisely the stabilizer subgroup generated only by plaquette or vertex operators,
depending on context). Two homologically equivalent objects are referred to as being
homologous. A homology class is an equivalence class of operators equal up to a member of the
vertex or plaquette stabilizer subgroup (as appropriate). We refer the reader who would like a
precise definition of these terms to appendix A.

The SDRG decoder has a run-time complexity ()O L Llog2 . It works by approximating

the relative likelihood of different homology classes  of error configurations e with
corresponding error operators = ()E X e , where we are using the notation

= ⊗()X e X , (7)
j

j
ej

where = −{ }e d0 ,..., 1
n
is an n-dimensional vector.

We begin this section by considering first the exhaustive evaluation of the relative
probabilities of different homology classes of error cofigurations, denoted  . A decoder that
can evaluate this information can make the best informed decision on the most likely error
configuration. We evaluate relative probabilities by summing the probabalities of all the error
configurations  ()e for each homology class 

 ∑=
∈




()u . (8)
u

On the torus, we have d2 distinct homology classes. Homology classes differ by addition
of configurations of non-contractible loops, l, where, for example, we may have l such that

New J. Phys. 16 (2014) 063038 H Anwar et al

19

¯ = ()X X l1 . The calculated probabilities of all homologous e for each  can then be used to
produce a correction operator from the appropriate homology class to attempt to return the
lattice to its initial state. This method of exhaustive decoding is not adopted because it is not
efficient with system size. We find all the elements of a homology class by stabilizer

deformations on the qudit toric code, where we have ()O L2 stabilizers, we have therefore

()O d L2

elements of every homology class. Summing over an exponential number of correction

operators is clearly inefficient.
It is not necessary to consider all the error configurations within a homology class. Instead,

we can consider probabilities of many ‘sensible’ error configurations which are likely to have
occurred and still achieve respectable thresholds. The SDRG decoder uses RG methods to
efficiently consider the probabilities of many sensible error configurations. It coarse grains
syndromes and prior error probability distributions, or priors, over multiple scales using
Bayesian inference methods. We label different length scales with an integer λ. The decoder
coarse grains over ∼ ()O Llog levels, until it reaches the final coarse graining level which we
label λ0. The priors at level λ0 correspond to approximate probabilities of the error configuration
on the original lattice having come from particular homology classes.

We denote a lattice which contains both syndromes and priors at different scales by L λ().
To efficiently coarse grain L λ(), the SDRG dissects L λ() into small fixed cells of constant size.

Each cell occupies a local connected area of L λ(). Examples of three cells, α, β and γ are shown
in green, red and blue respectively in figure 11. This cellular decomposition is then used to
coarse grain L λ() to L λ +()1 , shown on the right of figure 11. Syndromes of the coarse

grained lattice λ + ()1 are evaluated by summing the syndromes of each cell, and the priors

of L λ +()1 correspond to probabilities that the syndrome of the cell is generated by an error
chain from different homology classes of the cell. Each cell is decoded exhaustively. As the size
of each cell is constant, and small, the time to decode a single cell is constant, and fast. The cells

of L λ() are decoded in ()O L2 time, with the capacity to be parallelized to constant time. After

coarse graining to scale λ ∼ ()O Llog0 , we arrive at λ ()0 whose syndrome is necessarily

New J. Phys. 16 (2014) 063038 H Anwar et al

20

Figure 11. Three fixed, overlapping ×2 1 cells, α, β and γ, of a ×4 4 lattice. The cells
coarse grain L λ() to the ×4 2 lattice L λ +()1 in the implementation used here.

vacuum and whose edge priors contain the probabilities that the syndromes were generated by
an error configuration from different homology classes.

Coarse graining L λ() by exhaustively decoding individual cells will only give

approximate priors for L λ +()1 , as each cell only has access to restricted local information

from the local region of the cell of L λ(). In particular, at the boundaries where cells dissect the
lattice, the approximation used is very poor. To overcome this, the SDRG decoder employs
belief propagation to share information between neighbouring cells before renormalization
takes place. The cells are chosen such that they contain overlapping edges with neighbouring
cells, as in figure 11. Before the cells are renormalized, they pass marginal messages to other
neighbouring cells. The messages take the form of a probability distribution, and describe the
beliefs of a cell of what physical errors may have occurred on edges shared, given its syndrome
information. In a similar spirit to exhaustively decoding each small cell, the marginal messages
are also evaluated exhaustively over the cell in a constant time. Messages received from nearby
cells are used to find better priors when the cells are coarse grained. In general, many messages
can be shared between cells, where new messages are generated iteratively using previous
messages. Multiple iterations of this step significantly enhance the performance of the SDRG
decoder.

In the following sections, we describe how the renormalization step of the decoder works
using messages that we assume have already been exchanged. We then explain how the
messages are generated and passed, and we finally discuss the performance of this decoder.

5.2. Decoder implementation

The decoder will coarse grain the lattice L λ(), to a lattice of fewer edges L λ +()1 . In the
decoder implementation used here, even and odd values of λ employ different shape
renormalization cells. For even λ we use cells of ×2 1 vertices, and for odd λ we use cells of

×1 2 vertices. We describe in detail the coarse graining and belief propagation stages for a
×2 1 cell as shown in figure 12, but the cell decompositions for odd or even λ are equivalent up

to a reflection. We note that the cells used here are the smallest possible cells that can be used in
such a decoder, which optimize the speed of the algorithm. In choosing this cell size, it is
necessary to use different cell shapes at odd and even λ. A further detail of the message passing
stage in the implementation used here is that cells pass messages only to left and right
neighbouring cells for even λ, and to above and below neighbouring cells for odd λ. In a general
implementation however, messages can be passed in all directions at all levels. Cells evaluate
probabilities of their own homology classes, which become priors on the coarse grained lattice.

New J. Phys. 16 (2014) 063038 H Anwar et al

21

Figure 12. A five edge cell of L λ() which is renormalized to two edges of L λ +()1 .
The cell receives messages from its left and right neighbours at l and r.

The decoder uses many cells at every λ. However, the action of a single cell of each L λ() is
identical up to its input. In the following subsection we describe in detail the action of a single
cell, and its two nearest neighbours, which is repeated over the entire lattice L λ() for all λ.

5.3. Renormalization cells

Each cell contains five edges, and two syndrome measurements, a and b, which are shown at
the left of figure 12. As before, we denote operators of Pauli X operators with notation X(e)
where now error configuration e now only covers five edges indexed on the cell shown on the
left of figure 12.

A cell will coarse grain its syndromes. For the plaquette operators we perform this coarse
graining by moving syndrome a shown in figure 12 onto the face of syndrome b, such that the
coarse grained syndrome will take the value ⊕a b. Coarse graining is achieved using the
operator

= =()T X at t, where (0, 0, 0, 1, 0). (9)a

The configuration at is a member of a homologous class of configurations which will have no
errors on the edges of its corresponding coarse-grained cell. We change the class of the coarse-
graining configurations to consider the probabilities of errors suffered on the coarse-grained
edges of a cell using the logical operators

= =() ()X X l l, where 1, 0, 0, 1, 0 , (10)1 1 1

= =() ()X X l l, where 0, 0, 0, 0, 1 . (11)2 2 2

These configurations modify the class of a coarse-graining configuration because they represent
error configurations that extend between different cells.

So far, we have specified three X(e) operators (with =e t l l, ,1 2) in a renormalization cell,
but need another two independent operators to form a complete basis for all possible errors. The
remaining two operators are vertex operators truncated to the support of the cell. They are
sometimes called gauge stabilizers in the literature. They are

= = −() ()S X s S d, where 0, 1, 0, 1, 1 , (12)1 1 1

= = −() ()S X s S d, where 0, 0, 1, 1, 0 . (13)2 2 2

Two error configurations e and ′e are now homologous if they differ by a gauge stabilizer.
Specifically, this is true if and only if there exists μ ν ∈, d such that μ ν= ′ ⊕ ⊕e e s s1 2.

The cell only considers error configurations consistent with the syndrome. Given a
particular measurement syndrome a we are interested in classes of homologous errors ()h h,1 2

for ∈h h, d1 2 where  ()h h,1 2 is the class containing elements homologous to at

⊕ ⊕h l h l1 1 2 2. We shall calculate the relative likelihood of each of these classes as described
in the next section.

Let us reflect for a moment on the last layer of renormalization. For L λ()0 we have a lattice
with only two edges and a single syndrome. The syndrome has been generated by summing
syndromes at different levels of renormalization in such a way that it equals the sum of
syndromes over the whole lattice. Since the whole lattice is charge neutral we know that the last
syndrome must be trivial, and so syndromes play no further role at this stage. Whereas the edges

New J. Phys. 16 (2014) 063038 H Anwar et al

22

and the probabilities of them carrying an error can be directly interpreted as the relative
probabilities of each homology class of the original lattice at the microscopic scale, and hence
we choose our recovery error from the most likely error class.

5.4. Coarse graining priors

In addition to syndrome information, each cell contains a set of prior probability distributions
and messages received from cells to the left and right. Each edge, j, of L λ() contains a prior

probability distribution 
j
that takes as input ∈ej d and outputs an estimated probability  ()e

j j

for an Xj
ej error. The initial lattice  ()0 contains the original lattice syndrome and takes its

priors from the error model described in section 3. Each message, 
l r,
, encodes beliefs

calculated by neighbouring cells which share edges 2 and 3.
Based on these priors, a cell will evaluate  ′1 and  ′2

which are coarse grained priors to be

used in L λ +()1 . This is achieved by considering the probabilities of error configurations for
different homology classes of the cell. First we find the probability of a particular error
configuration

     =() () () () () ()e e e e e e , (14)
l r1 1 2 3 4 4 5 5

which evaluates the probability that an error configuration has occurred using priors 
j
and

messages 
l r,
.

However, we are actually interested in probabilities over a whole homology class
 ()h h,1 2 and so

 ∑=
∈




()u . (15)()
()

h h
u h h

,
,

1 2

1 2

Ideally, we would pass on all of this information to the next level of renormalization as it
represents our belief of the joint probability distribution  ×′ ′1 2

. However, our renormalization

cells only accept input priors for individual edges, and these are given by the marginal
distributions:

 


∑=′
∈

()e , (16)()
k

e k1 1 ,

d

1

 


∑=′
∈

()e . (17)()
k

k e2 2 ,

d

2

A smarter use of correlations, which we have discarded here, could lead to improved thresholds
[60].

We see from equation (15) that we must sum over d 4 elements of  ()h h,1 2 , generated by
two stabilizer operators and two logical operators per cell. Similar to this, as we will see in the
following section, belief propagation cells have the same time complexity. This shows

explicitly the time complexity for the decoder of ()O d 4 .

New J. Phys. 16 (2014) 063038 H Anwar et al

23

5.5. Belief propagation

To enhance the performance of the decoder, each cell is supplied with marginal messages from
neighbouring cells. The messages correspond to the beliefs of a cell that physical errors have
occurred on particular edges. The messages are calculated before each level of coarse graining.
We label one cell β, and its left and right neighbours are labelled α and γ, as shown in figure 11.
Each β prepares two messages which are the believed error distributions over the shared edges,
2 and 3 of figure 12, between neighbouring cells α and γ using the syndrome information of the
cell. One message L is passed left to become 

r
of cell α and the other, R, is passed right to

become its 
l
of cell γ. Keep in mind that each message is a list of d numbers, e.g. L is

communicated as the vector −{ }() () ()L L L d0 , 1 ,..., 1 . At the same time α and γ will

respectively prepare messages 
l
and 

r
respectively for cell β. These messages are then

exchanged for later message passing rounds or for use in coarse graining.
At the beginning of any level λ, all the messages 

l r,
are initialized to the uniform

distribution. The messages are then evaluated to be the marginals over all homology classes

∑ δ=
∈

() ()L e G u , (18)
u

u e2 ,2 2

∑ δ=
∈

() ()R e H u , (19)
u

u e3 ,3 3

which are in terms functions G and H which return probabilities of error configurations that we
define shortly. Here,  is the union over all  ()h h,1 2 and δu e,j j

is an indicator function that

equals unity when =u ej j and zero otherwise. The presence of the indicator function ensures

that we are calculating marginal probabilities. We can unpack this notation, by considering
when the indicator function doesnʼt vanish to find the more explicit, but less compact, formulae

∑

∑

ν

μ

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕
ν

μ

() ()

() ()

L e G h l h l e s s at

R e H h l h l s e s at

,

.

h h

h h

2
, ,

1 1 2 2 2 1 2

3
, ,

1 1 2 2 1 3 2

1 2

1 2

Conveniently, the only error configurations we consider that act on edges 2 and 3 are s1 and s2,
respectively. This is why we are able to change e2(e3) simply by adding the error configuration
s1(s2). Now, we reveal the functions upon which these equations depend

    =() () () () () ()G e e e e e e , (20)
r1 1 2 2 3 4 4 5 5

    =() () () () () ()H e e e e e e . (21)
l1 1 2 3 3 4 4 5 5

One may notice from G and H that the messages being passed left (right) do not evaluate new
messages using messages received from the left (right). This is to avoid feedback, where
messages are created using messages that have previously been sent.

It is easily seen that the computational complexity of evaluating a round of messages is the
same as performing one coarse graining step. However, the improvement in threshold by
applying belief propagation significantly enhances the threshold of the decoder, so it pays to
spend a few rounds evaluating messages [33]. Further, short cuts can be found to evaluate future

New J. Phys. 16 (2014) 063038 H Anwar et al

24

messages, after the first round of messages have been evaluated by simply performing updates
on the previous messages, rather than evaluating new messages from scratch. This significantly
speeds up the evaluation of messages. In the implementation of the SDRG decoder used here
we use five rounds of message passing at each stage before performing a renormalization step.
After a few rounds of message passing, messages tend to converge, and they are used to coarse
grain the lattice in a renormalization step.

5.6. Threshold estimation and the hashing bound

In estimating the thresholds we have only considered the crossing of the three largest system
sizes to reduce small system size effects, and we used the fitting in equation (2). An example is
shown for the qutrit case in figure 13, where we use system sizes L = 512, 1024 and 2048 to find
the crossing. The inset of figure 13 shows the points close to the crossing point we fit (2) to, as
well as the fitting itself. We evaluate each p

succ
using =N 104 samples. We calculate thresholds

up to d = 19, however, due to the run time complexity the decoder shows in d, we reduce
system sizes as we increase d. The d = 19 data point uses system sizes L = 16, 32 and 64 . The
achieved thresholds are shown in figure 14.

The choice of small cells in the SDRG decoder means the thresholds are lower than those
in [36]. However, this comes with the trade-off of impressive run times, which enables us to
probe very large d. It is conjectured in [36] that the threshold will follow a constant fraction of
the generalized Hashing bound with increasing d. However, we see that the obtained thresholds
tend away from this limit. This can be partially explained by small system size effects, as we
have to decrease the system sizes as we increase d.

6. Summary and discussion

In this paper we have introduced two efficient decoding algorithms for decoding the qudit toric
code, and we have studied how their thresholds for the independent noise model vary as we
change the local dimension of the qudits of the code.

New J. Phys. 16 (2014) 063038 H Anwar et al

25

Figure 13. Threshold crossing of the SDRG decoder by plotting p
s
versus p. The inset

shows the data points collected close to the crossing point which were fitted to the fitting
(2). Each data point is calculated using =N 104 Monte Carlo samples.

We observed first of all that the HDRG decoder is restricted by the syndrome percolation
threshold. For small d, the decoder is capable of exploiting the additional syndrome information
provided by increasing d and the threshold increased. However, the decoder is unable to correct
errors above an error rate of approximately 18%, where syndromes percolate across the lattice.
We introduced an initialization step (in the enhanced-HDRG) which makes use of the charge
information given by the syndrome, to annihilate small neutral sub-clusters of syndromes
ameliorating the percolation effect. This enhancement enabled the HDRG decoder to achieve
thresholds beyond the percolation limit.

Part of the simplicity of the HDRG algorithm is that it makes minimal utilization of charge
information, in particular that the clusterization step is charge-blind. The initialization step in
our enhanced algorithm incorporates more local charge information into the decoding and doing
so enhances thresholds. It would be worthwhile to attempt to combine initialization and
clusterization steps into a single algorithm which might combine computational efficiency with
higher thresholds.

We study also the SDRG decoder which we optimized for high speed decoding. This
decoder uses Bayesian inference methods to coarse grain probability distributions to efficiently
find the probabilities that different errors have occurred on the lattice. This decoder considers
probabilities of different error configurations at a microscopic level. This enables the decoder to
overcome percolation thresholds in a natural way. Instead, we observe that this decoder
maintains a threshold which is a constant factor from the optimal threshold for a non-degenerate
code, which we should expect to achieve by exhaustive decoding.

While we see that the SDRG will typically outperform the HDRG decoder, we note that
for low d the HDRG decoder performs comparably well to the SDRG decoder. This is
remarkable given the comparative simplicity of the decoder. Moreover, we see that the
enhanced-HDRG can continue to achieve thresholds that come close to matching those of the
SDRG decoder.

We see a general trend of error threshold increasing with dimension d. This is in line with
the conjecture that the optimal threshold should be close to or equal to the hashing bound
threshold. The hashing bound threshold rises monotonically with d up to a maximal value of
50% for high d, and we see a corresponding monotonic rise in the thresholds for both decoders.
Comparing the obtained thresholds with a rescaled hashing bound threshold in figure 15, we see

New J. Phys. 16 (2014) 063038 H Anwar et al

26

Figure 14. This graph shows thresholds for prime d for the SDRG (in blue), and a
constant factor of ∼0.68 of the generalized Hashing bound (in red).

further evidence of a phenomenon first reported by Duclos-Cianci and Poulin. For both
decoders, the numerical threshold remains close to a constant factor (69%) of the hashing bound
threshold, independent of d. If the conjecture that the hashing bound threshold approximates the
optimal threshold is true, this would seem to imply that the decoder thresholds are reaching a
constant fraction of the optimal threshold independent of d. We do not understand the origin of
this effect, and investigating it with a wider range of noise models will be an avenue for future
work.

It is pertinent to discuss some limitations of the noise model studied here. The independent
noise model was chosen for its convenience and its connection to statistical mechanics models
(the Potts gauge glass). However, it is not physically motivated, and certain aspects of it (equal
probability of all powers of X and Z, and independence of X and Z errors) do not represent a
noise model in nature. In future work, we will explore the performance of these decoders in
more general noise models. In particular, for high d one would expect, for general noise
channels and e.g. for the depolarizing channel, to see high correlations between X and Z noise.
A decoder which took these correlations into account may therefore reach higher thresholds
than one treating these as separate decoding problems. It is difficult to make a fair comparison
between the noise thresholds of different d. In particular, in the independent noise model we
have considered here, as d increases the total error probability is split between more and more
individual noise processes. Thus the increased thresholds here must be partly attributed to this
fact. Nevertheless, the increase in threshold probability for low d (e.g. from 2 to 3 or 5) is
striking and coupled with the increased thresholds and yields observed in magic state
distillation at these dimensions [11] may promise advantages in the implementation of quantum
computation. However, to verify this promise further study is needed, in particular a full fault-
tolerant analysis with a physically motivated noise model allowing fair comparison between
schemes of different dimension.

The development of generalized decoding algorithms has provided analytical tools for the
study of novel topological systems. For instance, recent developments in decoding algorithms
[35] have given us a probe to study the properties of topological phases coupled to a thermal
environment [35, 45]. In particular, the HDRG decoder developed here is used to study a 2D

New J. Phys. 16 (2014) 063038 H Anwar et al

27

Figure 15. A comparison between the thresholds obtained using the HDRG, enhanced-
HDRG and SDRG decoders presented in this paper, plotted, for comparison, against

p0.69 H
th
, the hashing bound threshold rescaled to 69% of its value. In [12] Duclos-Cianci

and Poulin report that the thresholds for their SDRG decoder (with larger unit cells) are
close to p0.81 H

th
, independent of d.

topological phase with Hamiltonian defects [21]. Moreover, recent advances in decoding
algorithms have demonstrated the capability to encode and read out quantum information in
non-Abelian topological phases [51, 52] which shows promise towards the realization of fault-
tolerant topological quantum computation. Further development using more specialized
decoders may lead to more refined analysis of such fault-tolerant systems.

Our study shows that both SDRG and HDRG provide effective decoders in scenarios
where the MWPMA is inappropriate. The simplicity of the HDRG, and the incorporation of a
sub-lattice optimal decoder for the SDRG mean that both may be readily generalized to non-
standard topological codes. The key advantage in the HDRG decoder is its light computational
requirements. In scenarios where high threshold is important, however, for example, where
reducing the code overhead [61, 62] is a key priority, the extra classical computational cost of a
SDRG decoder, and in particular its ability to reach higher thresholds via larger cell sizes, may
be a price worth paying. Overall, the diversity of efficient decoders provides a toolbox for
further research into the new phenomena, new physics and potential advantages for quantum
information offered by non-traditional and non-qubit topological codes.

Acknowledgments

We would like to thank Simon Burton, Guillaume Duclos-Cianci and Fern Watson for useful
discussions. We especially thank Fern Watson for her help in analysing the data and estimating
the thresholds. We acknowledge the Imperial College High Performance Computing Service for
computational resources. HA and BJB acknowledge the financial support of the EPSRC (HA is
supported by grant number: EP/K022512/1). ETC is supported by the EU (SIQS).

Appendix A. Homology

A.1. Introduction

The algebra of the stabilizer group of the qudit toric code defined on the edges of a lattice is
captured by homology. Homology is a framework for relating structures of different dimension
via the concept of cycles, which has important applications in topology. We will not give a
detailed and formal introduction to homology here, but instead introduce the key concepts
needed for understanding homology in toric codes, in terminology accessible to the general
physicist.

In short, homological equivalence of string-like operators supported on the edges of the
toric code lattice, as used in the main text and in the literature, correspond to equivalence under
multiplication by stabilizer operators—and hence two homologically equivalent operators are
logically equivalent on the code-space of the toric code. While this definition will suffice for
some readers, we invite those who would like a fuller introduction to homology to read on. For
a formal introduction to homology as used in the topological code literature which does not take
excursions into more general algebraic topology, we recommend chapter 3 of [63] or chapter 5
of [64].

New J. Phys. 16 (2014) 063038 H Anwar et al

28

A.2. Simplices and the triangulation of a manifold

The fundamental objects in simplicial homology which we describe here are directed simplices.
A simplex is an n-dimensional generalization of a solid triangle. A 0-simplex is a vertex, a 1-
simplex is a line and a 2-simplex is a triangle. We label vertices with letters. Vertex a is shown
in figure A1(a). The term ‘directed’ means we assign orientations to the simplices. The 1-
simplex shown in figure A1(b) is oriented from vertex a to vertex b, and the 2-simplex shown in
figure A1(c) has a clockwise orientation from a, to b, to c, and back to vertex a.

We introduce the notation Δn, to denote an n-simplex. We extend this notation to include a

direction. A 1-simplex running from point a to b shown in figure A1(b), is denoted Δ ()a b,1 .

The same simplex with opposite direction is written Δ ()b a,1 , where we have permuted vertices
a and b. The 2-simplex shown in figure A1(c) where the clockwise orientation follows the
vertices in the sequence → → →a b c a, is written Δ ()a b c, ,2 . We point out that the sequence

of vertices → → →b c a b will describe the same oriented 2-simplex Δ ()a b c, ,2 , such that

Δ Δ=() ()a b c b c a, , , ,2 2 . The orientation of a 2-simplex is changed by permuting a pair of

vertices, for instance, Δ ()a c b, ,2 has the opposite orientation to Δ ()a b c, ,2 . We should use the

notation ‘Δ ()a0 ’ to denote a 0-simplex, but for brevity with 0-simplices write only a.
Simplices can be used to describe topologically non-trivial manifolds. A manifold, such as

the 2D surface of a torus, can be triangulated, meaning it can be divided into a set of oriented
simplices. We show a triangulation of a 2D manifold in figure A1(d), where the triangulation
includes all the directed 0-, 1- and 2-simplices shown in the diagram. We are free to assign all
the 2-simplices of the triangulation a clockwise orientation.

A.3. Chains

Having introduced a simplicial triangulation of a manifold, it is now interesting to construct
complex objects on a manifold composed of many simplices. General n-dimensional objects are
known as n-chains. Such n-chains are linear combinations of n-simplices. We write an n-chain,
A, as

New J. Phys. 16 (2014) 063038 H Anwar et al

29

Figure A1. (a) A 0-simplex, a. (b) A 1-simplex. Its orientation is depicted with an arrow
from vertex a to vertex b. (c) A clockwise oriented 2-simplex. (d) A triangulation of a
manifold where 2-simplices have a uniform clockwise orientation. (e) A plaquette, the
fundamental square object we use for manifold ‘triangulation’ throughout these notes.

∑ Δ=
Δ

ΔA a , (A.1)n

where we sum over all n-simplices of a triangulated manifold. In the present exposition we
consider ∈Δa d. We are able to perform binary operations between chains. For example

∑ Δ+ = +
Δ

Δ Δ()A B a b , (A.2)n

where we use Δ= ∑Δ ΔB b n. We remark that the additive inverse of a simplex is the same

simplex with opposite orientation. For instance, Δ Δ= −() ()a b b a, ,1 1 , and

Δ Δ= −() ()a b c b a c, , , ,2 2 .
Having introduced linear combinations of simplices, we are now able to define a plaquette,

Ξ ()a b c d, , , , in terms of 2-simplices. The plaquette is the fundamental square object we use to
describe the square toric code lattice, shown in figure A1(e). We consider once more the
example triangulation shown in figure A1(d), we have

Ξ Δ Δ= +() () ()a b c d a b c c b d, , , , , , , . (A.3)2 2

We compose an entire lattice of plaquettes. We find the plaquettes of the square decomposition
by summing all the pairs of 2-simplices which share a diagonal bounding edge of the
considered regularly triangulated manifold. In the next section we see from the example
plaquette Ξ ()a b c d, , , that the simplex Δ ()b c,1 is not included in its bounding set, thus
eliminating the diagonal edges of figure A1(d) from the plaquette decomposition of the
manifold.

It is useful to write arbitrary n-chains on the square lattice. We will see that such chains
correspond to operators relevant to the qudit toric code. We give an example of an arbitrary 0-,
1- and 2-chain on the considered square lattice in figure A2. In these diagrams, and the diagrams
we use throughout this appendix, we uniformly assign all plaquettes a clockwise orientation,
and vertical(horizontal) edges are assigned an upwards(right) orientation, which we mark in the
bottom left corner of each lattice diagram. The numbers then correspond to the coefficient of a
given simplex for the described n-chain of using the defined orientations.

New J. Phys. 16 (2014) 063038 H Anwar et al

30

Figure A2. (a), (b) and (c) show examples of a 0-chain, a 1-chain and a 2-chain
respectively on a square lattice. We orient 1- and 2-simplices uniformly. We mark the
uniform orientation in the bottom-left corner of the lattice.

A.4. The boundary map

A key idea of homology is the boundary. A boundary of an n-simplex is a unique linear
combination of −()n 1 simplices. The boundary of Δ ()a b,1 shown in figure A1(b) contains

two bounding vertices, a and b, and the boundary of a triangle, Δ ()a b c, ,2 , shown in

figure A1(c), contains lines Δ ()a b,1 , Δ ()b c,1 and Δ ()c a,1 .
To make the concept of a boundary rigorous, we define the boundary map δn. The

boundary map is a linear map which takes an n-chain, A, and outputs an −()n 1 chain which
forms the boundary of A. We consider the examples we have introduced in this section.

We first consider a single vertex, a, shown in figure A1(a). A vertex necessarily has no
boundary

δ =[]a 0. (A.4)0

The boundary map δ1 acting on the 1-simplex Δ ()a b,1 , shown in figure A1(b) returns

δ Δ = −⎡⎣ ⎤⎦()a b b a, , (A.5)1 1

where the negative sign arises due to the orientation of Δ ()a b,1 . The importance of signs will
become clear in later sections where we consider cycles.

The last boundary map relevant to us, δ2, will output a linear combination of the edges. It is
defined

δ Δ Δ Δ Δ= − +⎡⎣ ⎤⎦() () () ()a b c a b a c b c, , , , , , (A.6)2 2 1 1 1

again, where it is very important to keep track of vertex order a, b and c to maintain consistency

with the signs. One can easily check that the output δ Δ⎡⎣ ⎤⎦()a b c, ,2 2 is independent of even

(cyclic) permutations of vertices a, b and c using that Δ Δ= −() ()a b b a, ,1 1 .
Finally, we consider the boundary of a plaquette (A.3), composed from 1-simplices which

we denote ∂p. By linearity we have that

δ Ξ δ Δ δ Δ∂ ≡ = +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦() () ()p a b c d a b c b d c, , , , , , , . (A.7)2 2 2 2 2

Then, using equation (A.6), it is easily checked that

Δ Δ Δ Δ∂ = + − −() () () ()p a b c a d b c d, , , , . (A.8)1 1 1 1

As the orientations of the two simplices of Ξ ()a b c d, , , align, the boundary matches with our

intuition and the Δ ()b c,1 does not appear in the boundary of the plaquette.

A.5. Cycles

We begin discussing cycles by considering the example of the boundary of a plaquette,
calculated in equation (A.8). We calculate the boundary of this 1-chain using equation (A.5) to
find

δ ∂ = − − − + − − − =[] () () () ()p b a c a d b d c 0. (A.9)1

In homology any n-chain, A, such that δ =[]A 0n , is known as an n-cycle. Calculation (A.9)
shows explicitly that the boundary of a plaquette is a 1-cycle. Indeed, one can verify in general

New J. Phys. 16 (2014) 063038 H Anwar et al

31

that a boundary of any n-chain is a cycle. Written more rigorously, one can prove that

δ δ =−
⎡⎣ ⎤⎦[]A 0n n1 for any n-chain A.

Are all n-cycles the boundary of an +()n 1 chain? The answer is no. Consider the loop
indicated in figure A3. This chain has zero boundary, which can be verified algebraically.
Nevertheless it encloses no 2-chain. If we try and ‘fill out’ the surface of the torus to enclose a
chain, we will find that this covers the whole toric surface. The 2-chain covering the surface
however, has no boundary. Hence this 1-cycle is not a boundary of any 2-chain.

The distinction between boundary cycles and non-boundary cycles is of central importance
to homology theory (and to the toric code). Boundary cycles are known as ‘homologically
trivial’ cycles. Otherwise, cycles are ‘homologically non-trivial’.

A.6. Homological equivalence

The group of boundary cycles is used to define another central concept of homology theory,
homological equivalence. We say two n-chains are homologically equivalent, or homologous, if
they are equivalent up to addition of a boundary n-cycle. We provide an explicit example of two
homologous 1-chains. We show in figures A4(a) and (c) the 1-chains A and B respectively. Itʼs
easily seen that the B differs from A by only a boundary, ∂H , shown in figure A4(b). The 1-
cycle δ∂ = []H H2 is clearly a boundary of the 2-chain h highlighted in blue on figure A4(b).
We denote that two n-chains are homologous by the symbol ‘∼’, such that ∼A B. It is from this

New J. Phys. 16 (2014) 063038 H Anwar et al

32

Figure A3.On a torus there are a number of ways one can construct cycles which do not
enclose a boundary. Here are two examples. The cycles depicted here cannot be
transformed to one another via the addition of a homologically trivial cycle.

Figure A4. An example of homology. (a) Shows a 1-chain A. (b) A 1-cycle ∂H which
bounds 2-chain H which is highlighted on blue plaquettes. (c) A 1-chain B homologous
to A as = + ∂B A H .

insight that we see why boundary n-cycles are known as ‘homologically trivial’. All n-
boundaries are homologous to the trivial n-chain, A = 0. It is in this sense that homologically
trivial cycles are contractible, i.e. can be contracted to a point or the trivial n-chain. Non-trivial
cycles such as those shown in red in figure A3 do not share this property. Indeed, these non-
trivial cycles are known as non-contractible.

Before we move onto the final section of this appendix we remark that the group of non-
trivial cycles of a triangulation of a manifold is known as the first homology group, and is a
topological invariant used to classify manifolds.

A.7. Homology and the toric code

Here we arrive at the main section of the appendix where we show that operators acting on the
code-space of the qudit toric code are elegantly characterized using concepts from homology.

We make use of the notation introduced in the main text to identify 1-chains Δ= ∑Δ ΔA a

with Pauli operators = ⊗Δ Δ
Δ()Z A Z a . The subscript Δ now indexes qudits lying on the edges of

the toric code lattice.
We first consider the plaquette operators of the toric code. It is easily checked that

plaquette stabilizers simply correspond to the boundary cycle of a plaquette, such that

= ∂()B Z pp , where δ Ξ∂ = ⎡⎣ ⎤⎦()p a b c d, , ,1 . In fact, it is easily checked that any operator of the

form ∂()Z A where δ∂ = ()A A2 for any 2-chain A will act trivially on the code-space of the toric
code. We show an example of such a boundary cycle in figure A5(a).

We consider next logical Z̄ operators of the qudit toric code. These are easily identified
with homologically non-trivial 1-cycles, such as C, shown in figure A5(b). A sensible encoding
of the toric code might be chosen such that ¯ = ()Z Z C2 . All operators ′()Z C where ′ ∼C C will
act equivalently on the code space of the qudit toric code to the operator Z(C).

We have seen in this subsection that the code-space of the toric code is acted on by
operators of form Z(C), where trivial cycles C act trivially on the code-space and non-trivial
cycles C perform logical operations on the code-space. In fact, the vertex operators are
prescribed such that the syndromes of operators Z(C) for 1-chains C which are not cycles will
introduce syndromes equal to the boundary of the 1-chain, δ []C1 . We see an example of a 1-
chain with its corresponding boundary written in green in figure A5(c). Once more it is easily
checked that chains homologous to C will generate the same syndrome, by simple calculation,

New J. Phys. 16 (2014) 063038 H Anwar et al

33

Figure A5. (a) A homologically trivial 1-cycle which is the boundary of the 2-chain
highlighted in blue. (b) A homologically non-trivial 1-cycle C. (c) A 1-chain whose
boundary is non-zero.

we find the boundary of ′ = + ∂C C A where ∂A is the boundary of a 2-chain:

δ δ δ δ δ′ = + ∂ = + ∂ =[] [] [] [] []C C A C A C . (A.10)0 0 0 0 0

Finally, we remark that all the homological properties of vertex stabilizers, logical X̄
operators and X-type error chains are the same if we move to a dual lattice. On the dual lattice,
the roles of plaquettes and vertex operators are interchanged, the same homology mapping
captures the relationship between X-errors, logical X̄ operators, plaquette syndromes. We
summarise the correspondences between the toric code properties and homology concepts in
table A1.

Appendix B. Hashing bound threshold

The hashing bound is an important quantity from quantum Shannon theory [65]. It is often
described in relation to the capacity of a communication channel. For instance, consider the
Pauli noise channel: a channel with Kraus operators σp

j j where σj are the (qubit or qudit) Pauli

operators (including the identity) and ∑ =p 1
j j

. Then the hashing bound represents a lower

bound on the capacity of this channel [28, 65]. This bound is given by the rate R achievable by
using a random coding protocol, given by

= − ()R H p1 , (B.1)
j

where H is the base-2 entropy defined as

∑= − ()()H p p plog . (B.2)
j

j j2

We shall call the values of p
j
at which R reaches zero the hashing bound threshold,

denoted here as p
th
H. Note that some authors call the hashing bound threshold simply the hashing

bound.
For one parameter noise families, the hashing bound threshold is given by a single value of

that parameter. For example, for the qubit independent noise model, where X and Z errors occur

independently with probability p, i.e. = = −()p p p p1
x z

, =p p
y

2 and


= −()p p1
2
, the

New J. Phys. 16 (2014) 063038 H Anwar et al

34

Table A1. A table showing the relationship between X- and Z-type operators on the
qudit toric code and their respective chain in homology theory.

Toric Code Property Lattice Homological Description

Plaquette (Z) stabilizer subgroup Primal Set of homologically trivial 1-cycles
Vertex (X) stabilizer subgroup Dual Set of homologically trivial 1-cycles
Zk error configuration Primal 1-chain
Vertex syndrome configuration Primal Boundary of Z-error 1-chain
Xk error configuration Dual 1-chain
Plaquette syndrome configuration Dual Boundary of X-error 1-chain
Z̄ k logical operator Primal Homologically non-trivial 1-cycle

X̄ k logical operator Dual Homologically non-trivial 1-cycle

hashing bound threshold is =p 0.110028%
th
H (to 6 d.p.). The closeness between this value and

the optimal threshold for the qubit toric code under the independent noise model was noted by
Dennis et al [22]. The same correspondence between the hashing bound and the optimal
threshold has been established for surface codes with different lattice structures [67, 68].

Dennis et al also showed that the optimal decoder for the qubit toric code can be mapped
to the random-bond Ising model (RBIM) with the optimal threshold corresponding to a phase
transition point known as the Nishimori point. The generalization of this mapping to the qudit
toric code of their argument is straightforward and leads to a model known as the Potts gauge
glass (PGG).

Further work by Nishimori and collaborators [29, 66] implied that the similarity between
the optimal and the hashing bound thresholds applies to more general statistical–mechanical
models. In particular they showed that the Nishimori point for the RBIM and PGG could be
estimated via a duality argument. The value of the Nishimori point (and thus the optimal
decoder threshold) they derive is identical to the hashing bound threshold for the independent
noise model.

A similar close relationship between the hashing bound threshold and optimal threshold
for different noise models has also been observed. For example, the optimal threshold of the
qubit toric code for depolarizing noise is estimated to be =p 18.9%

th
opt [30], and this, again, is

very close to the hashing bound for that noise model =p 18.93%
th
H .

Given the evidence that the hashing bound threshold is close to the optimal decoder
threshold for qudit codes under the independent noise model, it represents a natural point of
comparison for the thresholds in our study. We plot in figure B1 the hashing bound thresholds
for this error model as a function of dimension d. In the limit of → ∞d the hashing bound
threshold →p 50%H

th
.

References

[1] Shor P W 1995 Phys. Rev. A 52 R2493
[2] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[3] Steane A 1996 Proc. R. Soc. A 452 2551

New J. Phys. 16 (2014) 063038 H Anwar et al

35

Figure B1. The hashing bound threshold for the independent error model (defined in the
main text) for parameter p as a function of qudit dimension d.

http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1098/rspa.1996.0136

[4] Kitaev A Y 2003 Ann. Phys. (Amsterdam) 303 2
[5] Bravyi S and Kitaev A 2005 Phys. Rev. A 71 022316
[6] Raussendorf R, Harrington J and Goyal K 2007 New J. Phys. 9 199
[7] Fowler A G and Goyal K 2009 Quantum Inf. Comput. 9 0721
[8] Raussendorf R and Harrington J 2007 Phys. Rev. Lett. 98 190504
[9] Wang D S, Fowler A G and Hollenberg L C L 2011 Phys. Rev. A 83 020302

[10] Anwar H, Campbell E T and Browne D E 2012 New J. Phys. 14 063006
[11] Campbell E T, Anwar H and Browne D E 2012 Phys. Rev. X 2 041021
[12] Duclos-Cianci G and Poulin D 2013 Phys. Rev. A 87 062338
[13] Bravyi S B and Kitaev A Y 1998 arXiv:quant-ph/9811052
[14] Freedman M H and Meyer D A 2011 Found. Compt. Math. 1 325
[15] Bullock S S and Brennen G K 2007 J. Phys. A: Math. Theor. 40 3481
[16] Andriyanova I, Maurice D and Tillich J-P 2012 arXiv:1202.3338
[17] Viyuela Q, Rivas A and Martin-Delgado M A 2012 New J. Phys. 14 033044
[18] Schulz M D, Dusuel S, Orús R, Vidal J and Schmidt K P 2012 New J. Phys. 14 025005
[19] Beigi S, Shor P and Whalen D 2011 Commun. Math. Phys. 306 663
[20] Kitaev A and Kong L 2012 Commun. Math. Phys. 313 351
[21] Brown B J, Al Shimary A and Pachos J K 2014 Phys. Rev. Lett. 112 120503
[22] Dennis E, Kitaev A, Landahl A and Preskill J 2002 J. Math. Phys. 43 4452
[23] Nishimori H 2001 Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford:

Oxford University Press)
[24] Honecker A, Picco M and Pujol P 2001 Phys. Rev. Lett. 87 047201
[25] Merz F and Chalker J T 2002 Phys. Rev. B 65 054425
[26] Ohzeki M 2009 Phys. Rev. E 79 021129
[27] de Queiroz S L A 2009 Phys. Rev. B 79 174408
[28] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[29] Takeda K and Nishimori H 2005 J. Phys. Soc. Japan 74 115
[30] Bombin H, Andrist R S, Ohzeki M, Katzgraber H G and Martin-Delgado M A 2012 Phys. Rev. X 2 021004
[31] Edmonds J 1965 Can. J. Math. 17 449
[32] Wang C, Harrington J and Preskill J 2003 Ann. Phys. 303 31
[33] Duclos-Cianci G and Poulin D 2010 Phys. Rev. Lett. 104 050504
[34] Duclos-Cianci G and Poulin D 2010 IEEE ITW 1 1–5
[35] Bravyi S and Haah J 2011 arXiv:1112.3252
[36] Duclos-Cianci G and Poulin D 2014 Quantum Inf. Comput. 14 0721–40
[37] Sarvepalli P and Raussendorf R 2012 Phys. Rev. A 85 022317
[38] Bombin H, Duclos-Cianci G and Poulin D 2012 New J. Phys. 14 073048
[39] Gottesman D 1997 PhD Thesis arXiv:quant-ph/9705052v1
[40] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:

Cambridge University Press)
[41] Gottesman D 1999 Chaos Solitons Fractals 10 1749
[42] Kolmogorov V 2009 Math. Prog. Comput. 1 43
[43] Karp R M 1972 Complexity Computer Computations (New York: Plenum Press) p 85
[44] Haah J 2011 Phys. Rev. A 83 042330
[45] Bravyi S and Haah J 2013 Phys. Rev. Lett. 111 200501
[46] Harrington J W 2004 PhD Thesis CaltechTHESIS
[47] Dennis E 2005 PhD Thesis arXiv:quant-ph/0503169
[48] Moreira J C and Farrell P G 2006 Essentials of Error-Control Coding (New York: Wiley)
[49] Proakis J and Salehi M 2000 Digital Communications (New York: McGraw-Hill)
[50] Wootton J R 2013 arXiv:1310.2393

New J. Phys. 16 (2014) 063038 H Anwar et al

36

http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevA.83.032703
http://dx.doi.org/10.1088/1367-2630/14/6/063006
http://dx.doi.org/10.1103/PhysRevX.2.041021
http://dx.doi.org/10.1103/PhysRevA.87.062338
http://arXiv.org/abs/quant-ph/9811052
http://dx.doi.org/10.1007/s102080010013
http://dx.doi.org/10.1088/1751-8113/40/13/013
http://arXiv.org/abs/1202.3338
http://dx.doi.org/10.1088/1367-2630/14/3/033044
http://dx.doi.org/10.1088/1367-2630/14/2/025005
http://dx.doi.org/10.1007/s00220-011-1294-x
http://dx.doi.org/10.1007/s00220-012-1500-5
http://dx.doi.org/10.1103/physrevlett.112.120503
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevLett.87.047201
http://dx.doi.org/10.1103/PhysRevB.65.054425
http://dx.doi.org/10.1103/PhysRevE.79.021129
http://dx.doi.org/10.1103/PhysRevB.79.174408
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1143/JPSJS.74S.115
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1016/S0003-4916(02)00019-2
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1109/cig.2010.5592866
http://arXiv.org/abs/1112.3252
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://dx.doi.org/10.1103/PhysRevA.85.022317
http://dx.doi.org/10.1088/1367-2630/14/7/073048
http://arXiv.org/abs/quant-ph/9705052v1
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1007/s12532-009-0002-8
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://arXiv.org/abs/quant-ph/0503169
http://arXiv.org/abs/1310.2393

[51] Brell C G, Burton S, Dauphinais G, Flammia S T and Poulin D 2013 arXiv:1311.0019
[52] Wootton J R, Burri J, Iblisdir S and Loss D 2014 Phys. Rev. X 4 011051
[53] Stace T M and Barrett S D 2010 Phys. Rev. A 81 022317
[54] Broadbent S R and Hammersley J M 1957 Math. Proc. Camb. Phil. Soc. 53 629
[55] Grimmett G 1989 Percolation (Berlin: Springer)
[56] Stauffer D and Aharony A 1994 Introduction To Percolation Theory (Boca Raton: CRC Press)
[57] Malarz K and Galam S 2005 Phys. Rev. E 71 016125
[58] Majewski M and Malarz K 2007 Acta Phys. Pol. B38 2191
[59] Gardner M 1997 The Last Recreations (New York: Springer) p 162
[60] Duclos-Cianci G 2013 private communication
[61] Bravyi S and Vargo A 2013 Phys. Rev. A 88 062308
[62] Watson F H E and Barrett S D 2013 arXiv:1312.5213
[63] Nakahara M 2003 Geometry, Topology and Physics (London: Taylor and Francis)
[64] Henle M 1994 A Combinatorial Introduction to Topology (New York: Dover)
[65] Wilde M M 2013 Quantum Information Theory (Cambridge: Cambridge University Press)
[66] Nishimori H and Nemoto K 2002 J. Phys. Soc. Japan 71 1198
[67] Röthlisberger B, Wootton J R, Heath R M, Pachos J K and Loss D 2012 Phys. Rev. A 85 022313
[68] Keisuke F and Yuuki T 2012 Phys. Rev. A 86 020303(R)

New J. Phys. 16 (2014) 063038 H Anwar et al

37

http://arXiv.org/abs/1311.0019
http://dx.doi.org/10.1103/physrevx.4.011051
http://dx.doi.org/10.1103/PhysRevA.81.022317
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1103/PhysRevE.71.016125
http://dx.doi.org/10.1103/PhysRevA.88.062308
http://arXiv.org/abs/1312.5213
http://dx.doi.org/10.1143/JPSJ.71.1198
http://dx.doi.org/10.1103/physreva.85.022313
http://dx.doi.org/10.1103/physreva.86.020303

	1. Introduction
	2. Qudit toric code
	3. Noise model and threshold estimation
	4. HDRG decoder
	4.1. Decoder description
	4.2. Threshold estimation
	4.3. Syndrome percolation thresholds
	4.4. Beating the percolation threshold

	5. SDRG decoder
	5.1. SDRG overview
	5.2. Decoder implementation
	5.3. Renormalization cells
	5.4. Coarse graining priors
	5.5. Belief propagation
	5.6. Threshold estimation and the hashing bound

	6. Summary and discussion
	Acknowledgments
	Appendix A.
	A.1. Introduction
	A.2. Simplices and the triangulation of a manifold
	A.3. Chains
	A.4. The boundary map
	A.5. Cycles
	A.6. Homological equivalence
	A.7. Homology and the toric code

	Appendix B.
	References

