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Abstract

Background

Biological experiments are time-consuming and expensive. Hence, computer-aided ex-
perimental design is used more and more often to select those experiments that are likely
to be successful. Constraint-based analysis of metabolic networks is such a method. It
is used in bio-engineering for the production of bio-fuel and other valuable compounds
and has been applied in medical research ranging from the virtual liver project to cancer-
research.

Constraint-based methods do not predict a single outcome of experiments, but just con-
strain the space of possible outcomes. This way it is sufficient to only include confirmed
information, which is a crucial aspect in systems biology, since many parameters are still
unknown today.

The most famous constraint-based method is flux balance analysis (FBA). It is based
on the steady-state assumption, which enforces that the reaction rates (flux vector)
v ∈ RR must not over or under produce metabolites. Optimality criteria and additional
constraints are used to exclude other physiologically unrealistic behaviors. For example,
thermodynamic constraints incorporate energetic aspects.

Even with all these constraints, the flux space of metabolic networks is usually highly
underconstrained. Hence, methods like flux variability analysis (FVA), flux coupling
analysis (FCA) and elementary flux modes (EFM) have been developed. While it is
possible to efficiently perform FVA and FCA on genome-scale networks, EFM enumer-
ation is only suitable for small networks due to combinatorial explosion. On the other
hand, FVA and FCA capture only specific aspects of the flux spaces, while the set of
EFMs gives a comprehensive characterization.

Tightly connected to the problem of EFM enumeration is the problem of enumerating
vertices of polyhedra. While it has been shown that there exists no total polynomial time
algorithm (unless P = NP) to enumerate the vertices of (unbounded) polyhedra (which
corresponds to enumeration of EFMs that satisfy an optimality criterion), the complexity
for enumerating vertices of bounded polyhedra (which corresponds to the enumeration
of all EFMs for flux spaces that are polyhedral cones) is still an open question.
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Results

In this thesis, I focus on different applications of thermodynamic constraints, like the
inference of metabolite concentrations, flux coupling analysis and the computation of
flux modules. Since thermodynamic constraints are also not computationally trivial,
I also investigate the computational complexity of various forms of decision problems
related to thermodynamic constraints which lead me to theoretical obstacles for sampling
methods. In many cases matroid theory turned out to be a powerful tool.

Computational complexity and sampling

I start with extending existing results from my master thesis on the characterization
of thermodynamically feasible flux spaces and on the computational complexity of flux
optimization problems. It turns out that many flavors of thermodynamically constrained
flux optimization problems are NP-hard. I conclude that it is not possible to sample
thermodynamically constrained flux spaces without loosing important features. In an
empirical study, I even show that without thermodynamic constraints flux through some
reactions is never sampled, although non-zero flux is possible.

However, flux optimization with thermodynamic constraints can usually be solved ef-
ficiently with methods from constraint mixed integer programming. Using structural
properties, like flux coupling analysis, I refine methods from my master thesis for flux
optimization.

Optimization on metabolite concentrations

Thermodynamic constraints can not only be used to constrain the flux space, but they
can also be used to infer information on possible metabolite concentrations. Hence,
I also investigate optimization problems on metabolite concentrations/potentials. In
particular, I present an optimization method for mixed integer linear programs with
strict inequalities, since the space of feasible metabolite concentrations can only be
described properly with strict inequalities.

Flux modules

Flux modules are one of the main applications of matroid theory in this thesis. They have
originally been introduced by Kelk et al. as a structural property that can be found in the
yield-optimal flux spaces of many genome-scale metabolic networks and used to compress
the set of optimal yield EFMs considerably. However, their computation method requires
the initial computation of all optimal yield EFMs. Although the number of optimal-yield
EFMs is much smaller than the total number of EFMs it still is a major bottleneck of
their method.

ii



By introducing a mathematical definition of flux module I derive a method for finding
flux modules that does not anymore require the computation of optimal-yield EFMs, but
that instead requires the application of thermodynamically constrained FVA. Further
research on the topic revealed that flux modules are closely linked to separators from
matroid theory. Using this connection, I develop an algorithm using methods from
matroid theory that is orders of magnitude faster than the previous methods.

These results can be extended to generalizations of flux modules, so called k-modules.
The corresponding concept in matroid theory are k-separators. Closely connected to
k-separators is the concept of branch-width in matroid theory, which turns out to be a
valuable structural property for metabolic networks, too. In particular, I show in this
thesis, how the EFMs can be enumerated in total polynomial time if the branch-width
of the underlying matroid is bounded by a constant and the flux space is a polyhedral
cone.

Sublinear growth of Chlamydomonas reinhardtii

When Chlamydomonas reinhardtii is grown in a photo bioreactor, its total growth rate
decreases with increasing cell density. Cyanobacteria on the other hand, do not show
this behavior. I show that this effect can be modeled in FBA models by introducing
flux forcing reactions, i.e., reactions with positive lower flux bound or negative upper
flux bound. I show that candidate reactions (sets) can be found by solving bilevel
optimization problems.

Here again, thermodynamic constraints have to be used to investigate the flux forcing
behavior of reactions contained in internal cycles. To solve these special bilevel programs
(due to the thermodynamic constraints the inner problem is non-convex), I develop a
global optimization method based on parametrized mixed integer linear programming.

Flux coupling analysis with thermodynamic constraints

Thermodynamic constraints can also be added to FCA to detect more couplings. To-
gether with Yaron Goldstein, I developed a framework for running FCA on any kind
of qualitative model, in particular FCA with thermodynamic constraints, efficiently.
Using traditional FCA as a pre-processing step, we can now solve thermodynamically
constrained FCA also in a few seconds.

Conclusion

With flux modules and algorithmic approaches to also include complex constraints I
present methods in this thesis that simplify and speed-up the analysis of metabolic
networks. This allows us to gain biological insights faster and develop better methods
for the production of biofuels in bio-engineering and cancer therapies in medicine.
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Zusammenfassung

Hintergrund

Biologische Experimente sind zeitraubend und teuer. Deshalb werden Computer im-
mer häufiger benutzt um solche Experimente zu bestimmen, die am ehesten erfolgreich
sind und zu neuen Erkenntnissen führen. Constraint-basierte Analyse von metabolischen
Netzwerken ist eine solche Methode. Sie wird für die Produktion von Biotreibstoffen und
wertvollen Nebenprodukten benutzt, aber auch in der medizinischen Forschung um die
Funktionsweise der Leber und Krebs zu verstehen.

Constraint-basierte Methoden sagen nicht nur ein bestimmtes Ergebnis eines Experi-
ments voraus, sondern beschränken lediglich den Lösungsraum. Dabei wird biologisches
Wissen benutzt um unmögliche Ergebnisse auszuschließen. Somit sind diese Methoden
auch dann anwendbar, wenn nur wenige Daten vorhanden sind. Dies ist ein wesentlicher
Aspekt der Systembiologie, da heutzutage noch viele Parameter unbekannt sind.

In der Fluss Balance Analyse (FBA), wird z.B. angenommen, dass jeder Stoff genauso
schnell produziert wie konsumiert wird (steady-state). Optimalitätskriterien und zusätz-
liche Nebenbedingungen werden benutzt um weitere physiologisch unrealistische Verhal-
tensweisen auszuschließen. Ein Beispiel dafür sind thermodynamische Nebenbedingun-
gen um energetische Aspekte zu integrieren.

Aber auch mit all diesen Nebenbedingungen bleibt der Lösungsraum in der Regel hoch-
gradig unterbestimmt. Deswegen wurden Flussvariabilitätsanalyse (FVA), Flusskopp-
lungsanalyse (FCA) und elementare Flussmoden (EFM) entwickelt. Während es möglich
ist FVA und FCA auch auf großen, genomweiten, Netzwerken auszuführen, funktioniert
EFM-Enumeration nur auf kleinen Netzwerken aufgrund von kombinatorischer Explosi-
on. Im Gegensatz liefern FVA und FCA nur begrenzte Informationen, wohingegen die
EFMs eine vollständige Charakterisierung des Lösungsraumes ermöglichen.

Eng verwandt zur EFM-Enumeration ist das Problem der Eckenenumeration von Poly-
edern. Es wurde gezeigt, dass die Aufzählung der Ecken von unbeschränkten Polyedern
(welche Flussräumen mit Optimalitätskriterium entsprechen) nicht in polynomieller Zeit
(in Eingabe und Ausgabe) möglich ist, außer wenn P = NP gilt. Für beschränkte Poly-
eder ist diese Frage allerdings noch offen.
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Ergebnisse

In dieser Arbeit betrachte ich unterschiedliche Anwendungen von thermodynamischen
Nebenbedingungen. Diese reichen von der Vorhersage von Metabolitkonzentrationen
über Flusskopplungsanalyse zur Berechnung von Flussmodulen. Zudem zeige ich, dass die
Integration von thermodynamischen Nebenbedingungen aus komplexitätstheoretischen
Gesichtspunkten nicht trivial ist, indem ich unterschiedlichste Formulierungen und Sze-
narien analysiere. Dies wiederum lässt mich auf Hindernisse für Samplingmethoden
schließen. Dabei erweist sich Matroidtheorie oft als hochnützliches Werkzeug.

Komplexität und Sampling

Ich beginne mit der Erweiterung der Ergebnisse aus meiner Masterarbeit zu der Cha-
rakterisierung des thermodynamisch gültigen Flussraumes und den komplexitätstheoreti-
schen Ergebnissen zu Flussoptimierungsproblemen. Ich zeige, dass viele Formen des ther-
modynamisch beschränkten Flussoptimierungsproblems NP-schwer sind. Angewendet
auf Samplingmethoden heißt dies, dass es unmöglich ist den thermodynamisch gültigen
Flussraum zu samplen ohne wichtige Eigenschaften zu verlieren.

In einer empirischen Studie zeige ich sogar, dass selbst ohne thermodynamischen Neben-
bedingungen kein Fluss durch manche Reaktionen berechnet wird, obwohl die determi-
nistische FVA das Gegenteil beweist.

Optimierung und Metabolitkonzentrationen

Thermodynamische Nebenbedingungen beschränken nicht nur den Flussraum, sondern
sie können auch benutzt werden um Informationen über mögliche Konzentrationen von
Stoffen in der Zelle zu erfahren. Daher betrachte ich auch das Optimierungsproblem
über Metabolitkonzentrationen bzw. -potentialen. Insbesondere zeige ich, wie gemischt-
ganzahlige lineare Programme mit strikten Ungleichungen gelöst werden können, da der
Raum der gültigen Metabolitkonzentrationen nicht abgeschlossen ist.

Flussmodule

Eines der zentralen Anwendungsgebiete von Matroidtheorie in dieser Arbeit sind Fluss-
module. Diese wurden von Kelk et al. als eine strukturelle Eigenschaft der optimalen
Flüsse erkannt, mit der der Flussraum wesentlich vereinfacht werden kann. Sie beob-
achteten, dass damit das Problem der EFM Enumeration wesentlich effizienter gelöst
werden kann. Allerdings benötigt deren Methode zuerst die Berechnung gerade jener
EFMs.

Mittels meiner mathematischen Definition von Flussmodulen leite ich eine Methode her,
die die Flussmodule ohne EFM Enumeration berechnen kann. Allerdings benötigt diese
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Methode die Anwendung von thermodynamisch beschränkter FVA. Weitere Forschung
ergab, dass Flussmodule eng verwandt zu Separatoren aus der Matroidtheorie sind. Mit-
tels diese Erkenntnis präsentiere ich nun einen Algorithmus mit dem ich Flussmodule
von großen Netzwerken in wenigen Sekunden, also Größenordnungen schneller als die
vorherigen Methoden, berechnen kann.

Diese Ergebnisse verallgemeinere ich dann für sogenannte k-module. Ich zeige, dass k-
module wiederum eng verwandt mit k-Separatoren aus der Matroidtheorie sind und
führe die branch-weite des zugrunde liegenden Matroids als ein Komplexitätsmaß für
metabolische Netzwerke ein. Insbesondere zeige ich, dass EFMs in total polynomieller
Zeit enumeriert werden können, wenn die branch-weite des zugrunde liegenden Matroids
durch eine Konstante beschränkt ist und der Flussraum ein Kegel ist.

Sublineares Wachstum von Chlamydomonas reinhardtii

Wenn die eukariotische Grünalge Chlamydomonas reinhardtii in einem Photo-Bioreaktor
wächst, dann schrumpft die Gesamtwachstumsrate mit wachsender Zelldichte. Cyano-
bakterien dagegen zeigen dieses Verhalten nicht. Ich zeige, dass dieses Verhalten mittels
FBA und flusserzwingender Reaktionen modelliert werden kann. Dazu berechne ich po-
tentielle Reaktionskandidaten mittels bi-level Optimierung.

Auch hier benötige ich thermodynamische Nebenbedingungen um auch Reaktionskan-
didaten zu untersuchen, die in inneren Kreisen des metabolischen Netzwerkes enthalten
sind. Um diese bi-level Optimierungsprobleme zu lösen, präsentiere ich eine Methode ba-
sierend auf parametrisierter gemischt-ganzahliger Programmierung, die auch mit nicht-
konvexen inneren Problemen umgehen kann.

Flusskopplungsanalyse mit thermodynamischen Nebenbedingungen

Thermodynamische Nebenbedingungen können auch in der FCA angewendet werden um
mehr Abhängigkeiten zu finden. Zusammen mit Yaron Goldstein habe ich ein Framework
entwickelt mit dem wir FCA auf beliebigen qualitativen Modellen effizient ausführen
können. Damit können wir nun auch FCA mit thermodynamischen Nebenbedingungen
in wenigen Sekunden berechnen.

Fazit

Mittels Flussmodulen und algorithmischen Ansätzen um auch komplizierte Nebenbe-
dingungen zu integrieren, zeige ich in dieser Arbeit Methoden auf, die die Analyse
metabolischer Netzwerke vereinfachen und beschleunigen. Dadurch können biologische
Erkenntnisse schneller gewonnen werden und bessere Methoden in der Biotechnologie
zur Herstellung von Biotreibstoffen und in der Medizin für Krebstherapien entwickelt
werden.
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Chapter 1

Introduction

Large parts of this chapter were taken from my master thesis. It informally intro-
duces metabolic networks and the questions that I worked on in this thesis. Mathe-
matical definitions for essential concepts for this thesis are introduced in Chapter 2.

Living organisms are very complex systems. In the past biologists tried to deal with the
problem by looking at single enzymes or very special subsystems only. These methods
were ignoring the interactions between the subsystems and were never able to give a
whole-cell system-wide view. With the increasing amount of sequenced genomes, ex-
perimental high-throughput analyses and computational technology, the field of systems
biology emerged. Systems biologists do not try to understand single enzymes, but the
functionality of the whole cell.

Many systems biologists work on the reconstruction of metabolic networks. Metabolic
networks help to understand physiological processes, which in turn help to bring enzymes
in a whole cell context and annotate them with functional properties [78]. But not only
deeper understanding of the functionality of the cell can be obtained [151, 82], there are
also many applications in medicine [11, 146, 8] and bioengineering [149, 49, 146, 153].

With the advent of whole-genome sequencing and annotated genome-databases, the
reconstruction of genome-scale metabolic networks becomes easier and easier [39, 51,
110, 160]. Genome-scale models give us the possibility to analyze the behavior of the
cell as a whole on the computer. This is why biologists also talk in terms of in silico
experiments in contrast to in vitro and in vivo experiments that are carried out in the wet
lab or on living organisms respectively. Since many genes can be associated to enzymes
and the enzymes to the biochemical reactions they catalyze, the effects of gene knock-
outs can be analyzed without even performing mutations on real cells [20, 144]. Also
symbiotic and parasite metabolism can be analyzed, which is very difficult in vitro [159].
But, genome-scale models are huge, for example the iAF1260 model of the bacterium
Escherichia coli contains 2077 reactions and 1668 metabolites [43]. Hence, mathematical
and computational methods are necessary to analyze those networks [156].
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CHAPTER 1. INTRODUCTION

1.1 Metabolic Networks

Before we can talk about methods for metabolic models, we need to understand what a
metabolic model is. A metabolic network consists of a set of metabolites M (chemical
species) and a set of reactions R. But this is already everything all metabolic models
have in common. The amount of information on the reactions and metabolites may vary
depending on the purpose of the network. Information you may encounter in metabolic
networks are

• Stoichiometries (stoichiometric matrix S ∈ RM×R): Each column r ∈ R of
the stoichiometric matrix stores how many metabolites the respective reaction is
consuming (Smr < 0) or producing (Smr > 0). Every metabolic model contains
the stoichiometries of the reactions, but the quality of the stoichiometries may
differ. In some cases for example mass conservation is not guaranteed by the
reaction. This can be caused when similar metabolites were lumped together,
or the production/consumption of H2O or electrons were ignored [55, 46]. The
stoichiometric matrix stores the stoichiometric coefficients. See Figure 1.1 for a
small real-world example and 1.2 for an even smaller made-up example.

1 GLC 6 O2 6 CO2

Glycolysis TCA cycle

Oxidative Phosporylation

ATP consumption

glk: GLC + ATP = G6P + ADP
pgi: G6P = F6P
pfk: F6P + ATP = FDP + ADP
fba: FDP = T3P1 + T3P2
tpi: T3P1 = T3P2
gap: T3P1 + Pi + NAD = NADH + 13PDG
pgk: 13PDG + ADP = 3PG + ATP
gpm: 3PG = 2PG
eno: 2PG = PEP
pps: PYR + ATP = PEP + AMP + Pi
pyk: PEP + ADP = PYR + ATP
ace: PYR + COA + NAD = NADH + CO2 + ACCOA

glt: ACCOA + OA = COA + CIT
acn: CIT = ICIT
icd: ICIT + NADP = CO2 + NADPH + AKG
suc1: AKG + NAD + COA = CO2 + NADH + SUCCOA
suc2: SUCCOA + ADP + Pi = ATP + COA + SUCC
sdh: SUCC + FAD = FADH + FUM
fum: FUM = MAL
md: MAL + NAD = NADH + OA

nuo: NADH + Q = NAD + QH2 + 3.5 HEXT
cyo: QH2 + 0.5 O2 = Q + 2.5 HEXT
sdh: FADH + Q = FAD + QH2
pnt1: NADPH + NAD = NADP + NADH
pnt2: NADPH + NAD = NADP + NADH + 2 HEXT
atp: ATP = ADP + Pi + 4 HEXT

ak: ATP + AMP = 2 ADP
ATPase: ATP ADP + Pi

Figure 1.1: Network of E. coli core energy metabolism. Figure reproduced after [9].

• Exchange reactions E ⊂ R: Exchange reactions model the flow of nutrients and
products in and out of the network. Hence, these reactions do not satisfy mass
balance on purpose (else there could not be any inflow of nutrients). The reactions
that are not exchange reactions are called internal reactions I := R \ E .

One very important exchange reaction is the biomass reaction. It is possible to
measure the types and amounts of amino-acids, cofactors, lipids, etc. the cell is
built out of. If the cell grows, all those compounds need to be produced in exactly
that ratio, else necessary amino acids etc. may be missing and essential proteins
cannot be built. The biomass reaction consumes the compounds in exactly the
necessary ratio. Hence, the biomass reaction measures how fast the cell grows [44].
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1.1. METABOLIC NETWORKS

S =



a b c d e f g x1 x2 x3

A −1 −1 0 0 0 0 0 1 0 0
B 5 1 1 −1 0 0 0 0 1 0
C 0 2 0 0 −1 0 0 0 0 0
D 0 0 −1 3 0 −1 0 0 0 0
E 0 0 0 −1 1 0 −1 0 0 0
F 0 0 0 0 0 1 2 0 0 −1


Figure 1.2: Example of a metabolic network with the corresponding stoichiometric ma-
trix S. The exchange reactions are denoted by x1, x2, x3 and are simply indicated by
arrows in the Petri-net type of drawing. Metabolites are drawn by ellipses and reac-
tions by rectangles. Numbers on the arrows are the stoichiometric coefficients of the
metabolite in the reaction connected by the arrow. If there is no number on an arrow,
the stoichiometric coefficient is 1. Reaction g is split into two reactions to indicate that
it is reversible.

• Metabolite concentrations c ∈ RM: It is very hard to measure (or estimate)
the concentrations of all metabolites, but the area of metabolomics shows great
advances and more and more metabolite concentrations can be measured [35, 38,
59, 45]. This is valuable information from which we can estimate reaction directions
and sometimes even reaction rates.

• Flux v ∈ RR: The reaction rates are often called flux. The notion is analogous
to flow in graphs. As with metabolite concentrations, the flux rates are often
unknown and will often also depend on the environment. Some flux rates can
be measured using isotope-labeling experiments [166, 133]. The variable J is also
often found to denote flux in the literature (and also I have been using it in my
master thesis).

• Kinetics f : RM → RR: To compute flux of reactions from metabolite concen-
trations, information on the kinetics of the reaction is needed. The kinetics are
usually functions that basically take metabolite concentrations as input, and com-
pute the reaction rate. Good kinetic information is the rarest of all. Usually there
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CHAPTER 1. INTRODUCTION

are a few default types of kinetic functions that are adapted using constants that
specify enzyme concentration, temperature, pH etc [104]. Because kinetic data is
so hard to obtain, methods were developed that also work with reduced kinetic
information [152].

• Regulatory Information: Not every reaction that can happen, happens. For
example, it may be the case that regulatory control of the cell inhibits that the
needed enzyme is produced. Available transcriptomics data of gene expression
is used to integrate these behaviors in the model [27, 162]. If an enzyme that
catalyzes a reaction is not produced, this means that the reaction cannot carry
any flux. In this case, this kind of information can simply be integrated into the
model by deleting the corresponding reaction [122].

If kinetic information is available, a so-called kinetic model can be built. Since the
reactions modify metabolite concentrations, the first derivative of the concentrations
can be obtained from the flux:

d

dt
c = Sv = Sf(c) (1.1)

Hence we obtain a system of ordinary differential equations (ODE) describing the evo-
lution and growth of the cell.

As already mentioned, good kinetic parameters are very hard to obtain. Hence constraint-
based methods were developed that do not need kinetic parameters.

1.2 Steady-State Assumption

Constraint-based methods require the additional steady-state assumption, which is usu-
ally motivated as follows [122, 156]: If the environment does not change, the dynamical
system (1.1) will reach a fixed point. In cases where the environment changes only
slowly (compared to flux speeds), the error will not be very large. But the effect of this
additional assumption is enormous, since Equation 1.1 simplifies to

0 = Sv, (1.2)

which is also called the steady-state assumption or flux conservation. It can be consid-
ered as the metabolic equivalent to the flow conservation constraint in graphical flow
problems. You simply need to replace the stoichiometric matrix by the incidence matrix
of a digraph. See Figure 1.3 for an example.

The main difference between constraint-based methods and dynamical systems is, that
we are not interested in the evolution of one flux vector but on the set of all feasible fluxes
under the given constraints (e.g., at steady-state) [122, 137]. In this context additional
information on the biologically feasible fluxes becomes vital. Some reactions for example
can only proceed in one direction; hence, sign constraints on v are added. Sometimes it
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1.3. THERMODYNAMIC CONSTRAINTS

Figure 1.3: An example of a steady-state flux in a metabolic network. The reactions
that carry flux are indicated in red. The amount of flux through the reactions can be
read off from the red numbers next to the reactions. All stoichiometric coefficients are
1 except denoted otherwise (using black numbers).

is also possible to measure how fast one reaction can proceed; this leads to upper (and
lower) bounds on the feasible fluxes.

1.3 Thermodynamic Constraints

One additional constraint that will be in the focus of this thesis is thermodynamic
feasibility, which was first discussed by Oster in 1971 [115]. To understand thermody-
namically feasible fluxes, we will have to include concentrations in a certain sense back
into our formulation. This is no restriction on applicability, since it does not mean that
we need to measure concentrations. As with flux, we can treat metabolite concentrations
as unknown variables. A flux is called thermodynamically feasible if it does not violate
the second law of thermodynamics. The second law of thermodynamics states that a
reaction carries flux if and only if it reduces Gibbs free energy [10, 5, 124]. It is the same
law that prohibits electrical current to go around a cycle if no energy source is attached
[125]. We will see that this cycle-correspondence also holds for metabolic networks; for
example the steady-state flux shown in Figure 1.4 is not thermodynamically feasible
because it contains an internal cycle.

The reduction of Gibbs free energy is formulated using potential differences. Every
metabolite i ∈ M in the network has a biochemical potential µi. This biochemical
potential can usually be computed from its concentration ci by

µi = µ0
i +RT ln(ci), (1.3)

where R is the gas constant, T is temperature, and µ0
i is the equilibrium potential, which

is different for each type of metabolite [124, 115]. The second law of thermodynamics
can then be formulated using the chemical potentials as

∆µrvr < 0 or ∆µr = 0 = vr for every internal reaction r ∈ I (1.4)
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CHAPTER 1. INTRODUCTION

Figure 1.4: The steady-state flux shown in this metabolic network (again in red) is not
thermodynamically feasible, because it contains an internal cycle (dark red)

where ∆µr := µSr is the potential difference induced by reaction r ∈ I (Sr denotes
the r-th column of S). This formulation simply states that a reaction carries positive
(resp. negative) flux, if and only if it has negative (resp. positive) potential difference.
Note, that lumped metabolites (because they are not interesting by-products etc.) may
significantly perturb potential differences. Thus, excellent stoichiometric information is
necessary for these constraints to be applicable. But this is already everything that is
needed to add these additional constraints.

This is the strength of thermodynamic constraints. Without much more additional
information (except good quality stoichiometries), we can obtain more realistic results.
In particular, we do not need to know information on reaction kinetics.

Since these thermodynamic constraints do not require much more additional information,
they can easily be added to genome-scale metabolic networks [134, 43, 46, 123].

1.4 Constraint-Based Analysis

In this thesis I will present results for various kinds or aspects of analysis methods. To
put these results into a broader application-oriented context, I will outline here the main
approaches and questions in constraint-based analysis of metabolic networks.

1.4.1 Does the organism grow under certain conditions?

The simplest application of metabolic networks is to simulate an experiment on the
computer with specified growth conditions, e.g., gene knock-outs and growth medium.
Flux balance analysis (FBA) [163, 114] is then usually used to test if the organism has
the metabolic capability to grow at all. If FBA predicts that no growth is possible,
then it is a sign that it is useless to perform the experiment, because the organism will
die. There are of course exceptions, e.g. when the correctness of the metabolic network
should be verified.
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1.4. CONSTRAINT-BASED ANALYSIS

1.4.2 How does the organism grow?

FBA does also predict some quantitative growth properties, like a maximal yield rate
and a pathway that achieves this yield [40]. However, solutions of FBA are usually not
unique [77]. Additionally, the objective criterion is often not followed completely in vivo
such that in practice suboptimal yield is often observed.

Hence, a wide range of methods focuses on analyzing how the organism can grow [95, 63,
20, 58]. In particular the exclusion of growth behaviors can lead to model verification
experiments and thus, model curation.

1.4.2.1 Yield maximization vs. growth maximization

In a very common FBA setup the uptake of nutrients is limited, while the flux through the
remaining reactions is unlimited (except for irreversibility constraints). In these cases,
FBA does actually not predict how fast the organism can grow, but how efficiently it
can turn the nutrient into growth.

According to evolutionary theory (at least for bacteria) however, a high yield rate with
low growth rate is not an evolutionary advantage if the growth medium is shared. Fast-
growing bacteria would simply leave no nutrients for the more efficiently, but slower
growing individuals. This is a serious problem if evolutionarily stable cultures with high
yield rate are industrially desired [157].

Predicting how fast an organism can grow on the other hand is much more complicated
since it involves bounding the flux rates of internal reactions [146, 3]. This requires the
knowledge of kinetic parameters and, if done properly, metabolite concentrations have
to be taken into account also. This leads to huge non-convex non-linear problems, which
are currently practically not solvable [103, 167].

1.4.2.2 Essential reactions and flux variability analysis

A wide class of methods focuses on the non-uniqueness of possible solutions. The most
famous analysis method for exploring the range of possible solutions is flux variability
analysis (FVA) [22, 95]. For each reaction the minimal and maximal flux rate is com-
puted. If for a reaction r ∈ R a flux rate of 0 is in this computed range, we can conclude
that the reaction is not essential and that it is likely that the organism can also live
without it [95].

Similar approaches also exist for bounding metabolite concentrations if thermodynamic
constraints are added [11, 82, 171, 25, 106]. Due to the non-convexity of thermodynamic
constraints this is however always comes at the expense with additional computational
challenges.

7



CHAPTER 1. INTRODUCTION

1.4.2.3 Flux coupling analysis and elementary flux modes

Many reactions depend on each other. A normal variability analysis cannot uncover
these dependencies, which is why alternative methods have been developed. In elemen-
tary flux mode (EFM) analysis [141] or related concepts [138, 89] minimal pathways
through the network are enumerated. This way all dependencies are precisely captured
(and indeed the EFMs generate the whole flux space). However, this comes with the
cost of combinatorial explosion, which makes it unpractical for genome-scale metabolic
networks.

Flux coupling analysis (FCA) [21, 31, 90, 30] and elementary flux patterns [73] are a
compromise, where only dependencies between pairs of reactions or in small subsystems
are computed. Applications range from the identification of co-regulated reactions [109]
to lethality analysis [21].

1.4.3 How can a growth behavior be enforced?

In many cases, we do not only want to understand how living organisms work, but we also
want to apply our knowledge. In medicine, we want to identify reactions for potential
treatment sites; in bio-engineering, we want to identify a modification of the metabolic
network that forces the organism to produce desired by-products, for example for the
production of bio-fuel. Very popular are gene knock-outs, because they can easily be
realized in the lab and can be modeled in metabolic networks by deleting the catalyzed
reactions (reaction knock-out).

MOMA [144] and ROOM [147] assume that the regulation of the organism only adjusts
minimally to the performed gene knock-outs and hence search for a flux distribution in
the modified metabolic network that is as close as possible to a reference distribution
of the original strain. Other methods, like OptKnock [20] and cut-sets [79, 87] assume
that the organism will evolve to use optimally the reduced metabolic capabilities.

Mixed integer programming and bilevel optimization are frequently encountered tech-
niques in this area and many of the network analysis methods are used for pre-processesing
or as sub-steps.

1.5 Mathematical Context

Analyzing metabolic networks is not only interesting from a biological perspective. First
of all metabolic networks are nothing else than directed, weighted hypergraphs. Hence,
we can use Petri-nets [126, 164], Lattices [58], and oriented matroids as a generalization
of directed graphs [15, 9] to describe these networks.

The steady-state assumption and bounds on flux-rates give rise to a polyhedral flux
space. Hence, many questions can be formulated using computational discrete geometry
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and combinatorial optimization. Frequent examples are linear programming to optimize
on flux spaces and vertex enumeration to enumerate EFMs. Complicated, non-convex
constraints lead frequently to mixed integer linear programming (MILP) formulations,
which despite theoretical hardness can often be solved efficiently due to intense research
in the last decades.

Metabolic networks also give rise to new questions in polytope theory and related fields.
Flux modules (Chapter 6) are a wonderful example for this. Originally motivated from
metabolic networks, they are a structural property (formulated using matroid theory
[118]) of polyhedra in general which I then used to develop a new method for vertex
enumeration of polytopes.

1.6 Structure of this Thesis

In this thesis I present several rather independent results of mine for the analysis of
metabolic networks. All works include thermodynamic constraints in some way, but
often applications can also be found without thermodynamic constraints.

In Chapter 2 I mathematically introduce notation and discuss many fundamental prop-
erties of thermodynamic constraints. This way, Ch. 2 forms the basis for many of the
results in this thesis.

In Chapter 3 I continue the analysis of thermodynamic constraints from a complexity
theoretical point of view. In particular, I show that many flavors of thermodynamic con-
straints lead to NP-hard decision problems. This is the motivation for the computational
methods developed in Ch. 4 and Ch. 5, where I investigate computational methods for
solving the usually NP-hard computational problems in practice. The complexity the-
oretic results have also consequences on sampling methods for the thermodynamically
constrained flux space. Hence, I present in Ch. 9 theoretical and practical obstacles for
sampling methods.

In Chapter 4 I refine the optimization methods developed in my master thesis by intro-
ducing a new perspective to the branching procedure and by incorporating structural
information like flux coupling data.

Chapter 5 deals with the problem of optimizing over metabolite potentials. Here, I ad-
dress topological issues and show how MILPs with strict inequalities can be solved com-
putationally. Since optimization with bounds on metabolite potentials is much harder
than without, I present a new method to tighten and propagate metabolite bounds.

In Chapter 6 I present my results on flux modules and their generalization: k-modules.
I stumbled over this field more by accident than on purpose, but it turned out to be
very rich in mathematical theory. On the other hand it also exhibits the weakest links to
thermodynamic constraints. Here, I introduce flux modules and k-modules as structural
properties of metabolic networks and polyhedra in general. I show how k-modules are
connected to matroid theory, which leads to efficient computation algorithms. Further-
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more, I present a new method that utilizes k-modules to enumerate EFMs of metabolic
networks resp. vertices of polytopes.

In Chapter 7 I present results obtained in a collaboration with G. Cogne on an unintuitive
growth behavior of Chlamydomonas reinhardtii. I show how the problem can be modeled
using metabolic networks and formalized as a bilevel optimization problem. Based on
results from Ch. 4, I develop a method for solving these bilevel optimization problems.

In Chapter 8 I present work done together with Y. Goldstein, where we show how flux
coupling analysis (FCA) can be generalized to arbitrary qualitative models. As a show
case, we investigate the incorporation of thermodynamic constraints into FCA.

10



Chapter 2

Feasible Pathways

Abstract In this chapter we introduce basic concepts for the analysis of metabolic net-
works. Usually, every feasible pathway will have to satisfy the steady-state assumption.
In addition, thermodynamic constraints restrict the signs that flux vectors can take.

Thermodynamic constraints come in many different forms throughout the literature.
Not all of them are mathematically equivalent. Generally, thermodynamic constraints
state that a reaction can only carry (positive) flux if it has a negative potential difference.
However, sometimes it is required that if a reaction carries no flux, also the potential
difference has to be zero. In other cases, a reaction is always allowed to have no flux. Both
cases have legitimate biological background, but the mathematical properties change
significantly.

Additional side constraints, like reaction irreversibilities, or knowledge of metabolite
concentration modify the structure of the problem.

In this chapter, we mathematically introduce the different concepts of thermodynamic
constraints. Furthermore, we will compare the different structural properties. This
chapter will also supply us with the theoretical background that is then used in the
following chapters.

This chapter mostly summarizes existing results. Most of the aspects have also been
already discussed in my master thesis and are repeated here for completeness’ sake.

2.1 Basic Concepts and Notation

Before we give a mathematical definition of steady-state flux, we first fix some notation.
Every metabolic network has to consist of metabolites, reactions and a stoichiometric
matrix:

Definition 2.1.1 (Metabolic network) A three-tuple N = (M,R, S) , S ∈ RM×R is
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called a metabolic network. Its metabolites are denoted by M, the reactions by R, and
the stoichiometric matrix by S. 2

Note that for computation-theoretic results, we will assume that all entries of the stoi-
chiometric matrix are rational. This also holds for other kind of (formally real-valued)
input-parameters, like flux vectors.

Often, we have additional information like a set Irrev ⊂ R of irreversible reactions,
lower and upper bounds `, u ∈ RR on flux values, a set of internal reactions I ⊆ R,
exchange reactions E := R \ I, etc. Since this additional information varies from case
to case, it is not included in the definition itself but will be given next to it, e.g. “Let
N = (M,R, S) be a metabolic network with irreversible reactions Irrev ⊆ R.”

The definition is similar to the one of a graph with the exception that we encode the
incidence information via the stoichiometric matrix and not in the reactions themselves,
see Figure 1.2. To work properly with the stoichiometric matrix, we will write S∗r to
denote the column corresponding to reaction r and Sm∗ to denote the row corresponding
to metabolite m respectively. Smr then denotes the entry corresponding to reaction r
and metabolite m. If it is clear from the context, we will omit the ’*’ and simply write
Sr to denote the r.th column or the r.th row of S respectively. We will also use sets
of indices to denote submatrices; SI for example will denote the stoichiometries of all
internal reactions I. We will also use similar notation on vectors, like the flux vector v;
there, vr denotes the flux through reaction r.

We use prA to denote the projection on the components A, i.e., prA(v) = vA and
prA(P ) = {vA : v ∈ P}. For spaces PA ⊆ RA, PB ⊆ RB the product is defined as
PA ×PB = {v ∈ RA×B : vA ∈ PA, vB ∈ PB}. For products over a family of flux spaces,
we also use

∏
.

Often, I will use arguments based on the closure of sets. Therefore, I use for P ⊆ Rn

• conv(P ) :=
{∑m

i=1 λiv
i :
∑m

i=1 λi = 1, vi ∈ P, λi ≥ 0 for all i = 1, . . . ,m and m ∈ N
}

,

• cone(P ) :=
{∑m

i=1 λiv
i : vi ∈ P, λi ≥ 0 for all i = 1, . . . ,m and m ∈ N

}
,

• aff(P ) :=
{∑m

i=1 λiv
i :
∑m

i=1 λi = 1, vi ∈ P, for all i = 1, . . . ,m and m ∈ N
}

,

• span(P ) :=
{∑m

i=1 λiv
i : vi ∈ P for all i = 1, . . . ,m and m ∈ N

}
.

for matrices D ∈ Rn×k I use

• span(D) := {Dα : α ∈ Rk},

• ker(D) := {v : Dv = 0}.

In the Appendix B you find a summary of all notation used in this thesis.

Through out the thesis we will work with metabolic networks that satisfy the following
two assumptions:
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2.1. BASIC CONCEPTS AND NOTATION

Assumption 2.1.1 (S does not contain zero columns) In the whole thesis, we will
assume that the stoichiometric matrix S of any metabolic network does not contain any
zero columns (i.e., columns that contain only zeros). This is not a restriction for real-
world applications, since zero columns correspond to reactions that do not involve any
metabolites. 2

Assumption 2.1.2 (Finite Models) We will also assume that R and M are finite.
It may be strange to mention this explicitly, but there are works by Hatzimanikatis et al.
[62] that implicitly define metabolites and reactions. In such a setting this assumption
may not be true. 2

2.1.1 Directed Reactions and Equivalence

I developed the concept of pseudo-reaction in particular to make our lives much
easier in Ch. 5. This subsection was not part of my master thesis.

When dealing with thermodynamic constraints, the direction of a reaction is a core
property. In many cases we can simplify notation by assuming that all reactions are
used in forward direction. This can usually be done by simply reversing reactions.
Therefore we define the set of pseudo-reactions that contains the (proper) reactions and
their reversed counterparts.

Definition 2.1.2 (Pseudo-reaction) The set of pseudo-reactions R is defined as

R := {(r,+) : r ∈ R}∪̇{(r,−) : r ∈ R}

We identify each r ∈ R with (r,+) ∈ R. 2

Often, the set of internal pseudo-reactions is of special importance. Therefore, we define

I := {(r, s) ∈ R : r ∈ I, s ∈ {+,−}}.

The reverse operator turns the direction of a pseudo-reaction and it helps us to simplify
notation. Instead of writing (r,−) we can then write −r instead.

Definition 2.1.3 (Reverse operator) The reverse operator rev : R → R is defined
as

(r,+) 7→ (r,−)

(r,−) 7→ (r,+)

For s ∈ R we also write −s instead of rev(s). 2

13



CHAPTER 2. FEASIBLE PATHWAYS

We want to work with pseudo-reactions as seamlessly as we do with proper reactions.
Hence, we also define indexing of the stoichiometric matrix with pseudo-reactions and
similarly indexing of vectors.

Definition 2.1.4 (Stoichiometry of a pseudo-reaction) The stoichiometry of each
pseudo-reaction is defined by S : R → RM with

(r,+) 7→ Sr

(r,−) 7→ −Sr.

We also use subscript notation Ss to denote S(s). 2

Observation 2.1.1 The subscript notation for r ∈ R introduced in Def. 2.1.4 is con-
sistent with the subscript notation for matrices. 2

Definition 2.1.5 (Indexing with pseudo-reactions) Let v ∈ RA with A ⊆ R and
r ∈ A. We define

v(r,−) := −vr.

Often, it also makes little sense to treat lower and upper flux bounds separately. With
pseudo-reactions we can deal with them in a unified way, since the upper bounds work
as the lower bounds for the reversed reaction:

Definition 2.1.6 (Indexing flux bounds) Let `, u ∈ RA be flux bounds with A ⊆ R
and r ∈ A. We define ` ∈ RR with

`(r,+) := `r

`(r,−) := −ur

In particular, we can now define what the set of irreversible reactions are given flux
bounds `, u without having to pay additional attention to reactions that can only work
in the reverse. Note, however, that often it is sufficient if just the set of irreversible
reactions is given and hence we will also use the set Irrev of irreversible reactions if no
flux bounds are given.

Definition 2.1.7 (Irreversible reactions) Let (M,R = I∪̇E , S) be a metabolic net-
work.

For given flux bounds `, u ∈ RR we define

Irrev := {r ∈ R : `r ≥ 0}.

If a metabolic network contains multiple reactions that actually do the same thing, then
we want to call these reactions equivalent. A typical case would be that a network
contains proper reactions r, s, where s is just the reverse of r. Since r, s are both proper
reactions, it follows that r 6= −s and an identification is problematic since vr = −vs does
not need to hold in general (and usually does not).

14



2.1. BASIC CONCEPTS AND NOTATION

Definition 2.1.8 We define the equivalence relation ≡ on R by

r ≡ s :⇔ ∃α > 0 : Sr = αSs.

For proper reactions r, s where s is the reverse of r, we can now write r ≡ −s.
Sometimes, it is also important to have an easy notation to access the metabolites
involved in a reaction. Hence, we define for a pseudo-reaction r

• r+ := {m ∈M : Smr > 0} the set of metabolites produced by r,

• r− := {m ∈M : Smr < 0} the set of metabolites consumed by r,

• r := {m ∈M : Smr 6= 0} the set of metabolites involved in r.

2.1.2 Flux Coupling

In this thesis, I will work with two different kinds of flux coupling. Both are in-
troduced here to clarify the differences. This subsection was not part of my master
thesis.

In this thesis we will deal with two types of flux coupling. Directed flux coupling and
undirected flux coupling.

Directed flux coupling does not really have a biological interpretation but it is a useful
concept that can be used to speed up algorithms.

Definition 2.1.9 (Directed flux coupling) For P ⊆ RR and r, s ∈ R we define the
flux coupling relation →P by

r →P s :⇔ ∀v ∈ P : vr > 0→ vs > 0.

If the space P is clear, we also just write →. 2

In contrast to directed flux coupling, undirected flux coupling [21] has a biological in-
terpretation. It models the effect of a reaction knock-out (which is an abstraction of a
gene knock-out).

Definition 2.1.10 (Undirected flux coupling) For P ⊆ RR and r, s ∈ R we define

the flux coupling relation
=0−−→P by

r
=0−−→P s :⇔ ∀v ∈ P : vr = 0→ vs = 0.

We observe that directed flux coupling is stronger than undirected flux coupling:
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CHAPTER 2. FEASIBLE PATHWAYS

Observation 2.1.2 For r, s ∈ R it holds that r
=0−−→P s if the following conditions hold

• s→P r or s→P −r

• −s→P r or −s→P −r 2

2.2 Steady-State Assumption

Although the steady-state assumption is a very fundamental concept, I found that
there are different ways to motivate the steady-state assumption. This has fun-
damental consequences for the biological plausibility of additional constraints. In
particular this is highly relevant in the context of thermodynamic constraints, which
is why I added this discussion here.

The first property we derived in the introduction was the steady-state assumption, which
lead to the notion of steady-state fluxes [122, 156] . An example can be seen in Figure
1.3.

Definition 2.2.1 (Steady-state flux) Given a metabolic network N = (M,R, S), we
call a flux vector v ∈ RR a steady-state flux in N if

Sv = 0

In the introduction, we motivated this property by assuming that the dynamical sys-
tem (1.1) will reach a fixed point if the environment is not (or only slowly) changing.
However, we also know that some organisms are exhibiting oscillations. In that case, we
can still motivate the steady-state assumption as follows.

2.2.1 Average Fluxes are Steady-State

If an internal metabolite would accumulate or deplete over a long time, the metabolite
would eventually be available in such high quantities that it jams all other reactions or
in the other case would not be available at all and hence, also block the operation of the
cell. It follows that every metabolite (on the long time scale) must be produced at the
same rate as it is consumed.

Mathematically, we can derive this property by studying the dynamical system describing
the metabolic states of the organism. In contrast to Eq. 1.1 we can also allow enzyme
concentrations E to change over time due to regulatory control:

ċ(t) :=
dc(t)

dt
= Sv(t), v(t) = f(E(t), c(t)) (2.1)
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2.2. STEADY-STATE ASSUMPTION

We assume that enzyme and metabolite concentrations are compact, in particular at
every time point the metabolite concentrations c have to satisfy 0 ≤ c(t) ≤ cmax for a
fixed cmax ∈ RM and similar for the enzyme concentrations E. Furthermore, assume
that E and f are continuous. Hence, v(t) is also bounded. Assume that the average
concentration c̄ and flux v̄ are well defined (in general v̄ and c̄ may not exist and we
would have to consider the set of accumulation points):

c̄ := lim
T→∞

1

T

∫ T

0
c(t)dt

v̄ := lim
T→∞

1

T

∫ T

0
v(t)dt

In particular the average flux v̄ is the phenotype that we would expect to see, if we
observe the organism for a long enough time period.

We observe that also v̄ satisfies the steady-state assumption:

∫ T

0
ċ(t)dt = c(T )− c(0)

⇒
∫ T

0
ċ(t)dt ≤ cmax

⇒ 1

T

∫ T

0
ċ(t)dt ≤ cmax

T

T→∞−−−−→ 0

⇒ 1

T

∫ T

0
Sf(E(t), c(t))dt

T→∞−−−−→ 0

⇒ S
1

T

∫ T

0
f(E(t), c(t))dt

T→∞−−−−→ 0

⇒ S
1

T

∫ T

0
v(t)dt

T→∞−−−−→ 0

⇒ Sv̄ = 0

2.2.2 Concentrations for Average Fluxes

If the dynamical system converges to a steady-state, then it clearly follows that v̄ = f(c̄).
Feinberg and Horn [42] identified structural properties from which convergence to a
steady-state can be concluded. However, in practice these properties are sometimes not
satisfied. Feinberg and Horn even give a part of the glycolysis pathway as an example.
Also, the oscillating predator-prey model of Lotka and Volterra can be modeled as a
metabolic network with mass action kinetics:

17
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A1 +B → 2A1

A1 +A2 → 2A2 (2.2)

A2 → C

Here, we assume that the concentration of B is kept constant and C is immediately
transported out of the network. With simple mass-action kinetics (see [80] for more
details on kinetics) (c1 is the concentration of A1 and c2 is the concentration of A2) we
get:

v1 = c1

v2 = c1c2

v3 = c2

We derive the following ODE system:

ċ1 = c1 − c1c2 (2.3)

ċ2 = c1c2 − c2

Since the kinetic rate law f is not linear in general, we cannot use the same technique
as in the previous section to show that v̄ = f(c̄). Therefore, I would expect that a lot of
ugly things can happen if the network is exhibiting oscillations, even if we only consider
mass-action kinetics (and keep the enzyme concentrations constant).

Conjecture 2.2.1 There exists a metabolic network with mass-action kinetics and ini-
tial concentrations c0 ∈ RM>0 such that there exists no c̃ ∈ RM≥0 with v̄ = f(c̃). 2

It should be remarked that it is not so easy to come up with an example to prove the
conjecture as it may seem. For example, for the network with Lotka-Volterra dynamics
(Eq. 2.3), one can even show that the long-term behavior equals the steady-state of the
system, since several flux rates are linear in the metabolite concentrations and hence,
we can pull f out of the integral.

However, if indeed the conjecture is true, it follows that one must be careful when apply-
ing thermodynamic constraints or other concepts related to the existence of metabolite
concentrations, like the growth maximization results by Stefan Müller et al. [103] and
Wortel et al. [167]. It could for example be that a reaction may not be able to carry flux
in a steady-state of the dynamical system, but carry flux in an average flux distribution
v̄. By a similar reason, it can also be that the growth rate is maximized by an oscillation
and hence, maximal growth is not obtained by an EFM.

Nevertheless we conclude that the notion of average flux explains the success of the
steady-state assumption in methods like flux balance analysis (FBA) to predict growth-
rate [40], since growing cells are subject to oscillations, like the cell cycle and hence,
clearly not in a physical steady-state.
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2.3. POLYHEDRAL FLUX SPACES

2.3 Polyhedral Flux Spaces

Next to the steady-state condition, usually lower and upper bounds on the flux rates
`, u ∈ RR∞,R∞ := R∪{−∞∪∞} are given. Here, in abuse of notation vr ≤ ∞ (vr ≥ −∞)
means that vr is unbounded from above (below). The space of feasible fluxes then forms
a polyhedron, which we also call the flux polyhedron:

P := {v ∈ RR : Sv = 0, ` ≤ v ≤ u}.

If the flux bounds only encode irreversibilities, i.e., ur = ∞ for all r ∈ R and ` ∈
{−∞, 0}R, then P is a cone, the so called flux cone. Note that we do not need to specify
all the bounds but it is sufficient to give a set of irreversible reactions Irrev ⊆ R. The
flux cone is then defined as the set

C := {v ∈ RR : Sv = 0, vIrrev ≥ 0}. (2.4)

2.4 Elementary Modes

Elementary flux modes (or elementary modes, EFM for short) and generating vectors
are one of the most commonly used tools to analyze metabolic networks, infer potential
regulatory sites and find knock-out targets [141, 140, 143, 63, 36, 112, 7]. Basically, gen-
erating vectors, extreme rays, minimal metabolic behaviors [89] and elementary modes
are reformulations of the flux cone that can give deeper insights into the functions of
metabolic networks [120]. They all have their foundation in Minkowski-Weyl’s theorem
for polyhedral cones. See [60, 18] for an introduction into convex polytope theory. Cones
can be described in two different ways: By an outer description (as defined in Eq.2.4) or
an inner description (as generating vectors, etc.). A detailed discussion in the context
of metabolic networks can be found in [88].

In the following we will recapitulate a few properties of elementary modes. A compre-
hensive study of elementary modes can be found in the PhD-Thesis of Terzer [155].

Definition 2.4.1 (Elementary flux mode) Let (M,R, S) be a metabolic network with
irreversible reactions Irrev ⊆ R.

A steady-state flux vector v ∈ RR \ {0}, vIrrev ≥ 0 is an elementary flux mode if and
only if there exists no steady-state flux vector w ∈ RR \ {0}, wIrrev ≥ 0 with

supp(w) ⊂ supp(v),

where supp(x) := {i ∈ R : xi 6= 0} denotes the support of x ∈ RR. 2

The set of elementary modes is an inner description of the flux cone (as defined in Eq.2.4),
i.e., every v ∈ C is a conical combination of elementary flux modes [141]. The power of
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elementary flux modes stems from the fact that a single elementary flux mode is simply
a flux vector which can be much more directly interpreted than a set of inequalities.
However, the set of elementary flux modes generally grows exponentially with the size
of the metabolic network. Hence, enumeration of EFMs is up to now not possible on
genome-scale metabolic networks.

Sometimes, we do not work on a cone, but we still want to have a notion that charac-
terizes the flux modes with minimal support. Hence we define for P ⊆ RR:

Definition 2.4.2 (Elementary flux mode w.r.t. P ) A steady-state flux vector v ∈
P \ {0} is an elementary flux mode w.r.t. P if and only if there exists no flux vector
w ∈ P \ {0} with

supp(w) ⊂ supp(v),

where supp denotes the support. The set of elementary modes w.r.t. P is denoted by
EFM(P ). 2

We observe that both definitions coincide in the case that P = {v ∈ RR : Sv = 0, vIrrev ≥
0}.
Often, it is also very helpful to instead characterize elementary flux modes not using the
support, but by the signed support, which will be discussed in more detail in Sec. 2.5.

Proposition 2.4.1 (EFM by signed support) Let P = F ∩Q with F ⊆ RR convex
and Q ⊆ RR satisfying

x ∈ Q⇒ y ∈ Q for yR\A = xR\A, yA = 0, A ⊆ R.

A steady-state flux vector v ∈ P \ {0} is an elementary flux mode if and only if there
exists no flux vector w ∈ P \ {0} with supp(w) ⊂ supp(v) and

wi > 0→ vi > 0 ∀i ∈ R (2.5)

wi < 0→ vi < 0 ∀i ∈ R (2.6)

Proof We show both directions separately.

⇒: Since v is an EFM w.r.t. P it follows that there exists no w with smaller support
and hence, the condition is satisfied.

⇐: Assume there exists a v ∈ RR that is not an EFM. Let w ∈ P with supp(w) ⊂
supp(v). Since one of (2.5), (2.6) is not satisfied, there exists an r ∈ R where vr
and wr have different sign. Define x : [0, 1]→ RR by

α 7→ αv + (1− α)w.
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2.5. MATROID THEORY

Since supp(w) ⊂ supp(v) we observe that x(α) 6= 0 for all α ∈ [0, 1]. We observe
that x is a continuous function where xr(α) changes its sign from α = 0 to α = 1.
Hence ᾱ = minα∈[0,1] : supp(x(α)) ⊂ supp(v) is well defined and x(ᾱ) ∈ Q. By
convexity we have x(ᾱ) ∈ F and by continuity it follows that x(ᾱ) satisfies (2.5)
and (2.6). �

Note that Prop. 2.4.1 applies to all convex spaces (by choosing Q = RR). We will later
also see that thermodynamic constraints can be formulated in the form of Q and hence,
this result will also apply to thermodynamically constrained flux spaces.

2.5 Matroid Theory

We can also describe metabolic networks with matroid theory[118]. We will see that
steady-state flux modes correspond to cycles (also called vectors) in oriented matroids[15]
and elementary flux modes correspond to circuits.

Matroids and oriented matroids describe the metabolic networks by the reactions R,
which are called elements, and cycles, which are sets of reactions. In the case of oriented
matroids, the cycles are signed, i.e., for each element of a cycle we store whether it
is a positive element or a negative element. For example assume that the flux vector
v = (−2, 3, 4,−5, 1) is a steady-state flux vector of some metabolic network. In matroid
theory it follows that C = {r1, r2, r3, r4, r5} = supp(v) is a cycle. In oriented matroids
the cycle is signed and it is represented by C+ = {r2, r3, r5} and C− = {r1, r4}. We also
write the cycle as the signed vector (−,+,+,−,+).

In (oriented) matroid theory the notion of metabolite is lost. The book by Ziegler has a
very nice introduction to oriented matroids in chapter 6 [172].

2.5.1 Notation and Definition

Let E be a set. Based on the notation used in [15], we call C = (C+, C−) with C+∪̇C− ⊆
E a signed subset of E. Alternatively, we also use the incidence vector notation for C,
i.e., C ∈ {−, 0,+}E , where Ci = − ⇔ i ∈ C− and Ci = + ⇔ i ∈ C+ for all i ∈ E.
These two forms of notation will be used interchangeably. A signed set C can also be
represented by the set of pseudo-reactions

{(r,+) : r ∈ C+}∪̇{(r,−) : r ∈ C−}.

We use this for indexing with signed sets and to consider elements of signed sets. Note
however that not every set of pseudo-reactions can be represented by a signed set.

Since oriented matroids are a generalization of matroids, we sometimes are not interested
in the signs and hence, C := C+∪̇C− will denote the support of C.
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We will now give an abstract definition of oriented matroids and state some of the main
theorems. See the book by Björner et al. [15] for a comprehensive survey on oriented
matroids.

Definition 2.5.1 (Oriented Matroid) A tuple M = (E, C) with elements E and cir-
cuits C ⊆ {−, 0,+}E is called an oriented matroid if the following circuit axioms are
satisfied:

C0 ∅ 6∈ C, where ∅, respectively 0, are shorthand notations for (∅, ∅) in the context of
signed sets.

C1 C = −C, where −C := {−C : C ∈ C}

C2 for all X,Y ∈ C if X ⊆ Y , then X = Y or X = −Y .

C3 for all X,Y ∈ C with X 6= −Y and e ∈ X+ ∩ Y −, there is a Z ∈ C such that

Z+ ⊆ (X+ ∪ Y +) \ {e}
Z− ⊆ (X− ∪ Y −) \ {e}.

It can be shown that also a stronger form of axiom C3 can be derived.

Theorem 2.5.1 (Strong elimination, Theorem 3.2.5 in [15]) Let C be a collection
of signed subsets of a set E satisfying (C0), (C1), (C2). Then (C3) is equivalent to

C3’ for all X,Y ∈ C with X 6= −Y and e ∈ X+ ∩ Y − and f ∈ (X+ \ Y −)∪ (Y − \X+),
there is a Z ∈ C such that

Z+ ⊆ (X+ ∪ Y +) \ {e},
Z− ⊆ (X− ∪ Y −) \ {e}, and

f ∈ Z.

Note that if we remove the orientation property, these axioms are the circuit axioms
of ordinary matroids, i.e., M := (E, C) is a matroid. A more common definition of
matroid is done via independent sets. This definition is inspired from linear algebra
and generalizes the concept of linearly independent sets. We will denote the family of
independent sets by J , because we use the more commonly used letter I for the set of
internal reactions. To avoid confusion later on in the thesis, we will often just write “A
is independent” instead of A ∈ J .

Definition 2.5.2 (Matroid) A tuple M = (E,J ) with elements E and independent
sets J ⊆ 2R is called a matroid if the following axioms are satisfied:

I1 ∅ ∈ J .

I2 If Y ∈ J and X ⊆ Y , then X ∈ J .
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I3 If I1, I2 ∈ J and |I1| < |I2|, then there exists an e ∈ I2 \ I1 such that I1∪{e} ∈ J . 2

A set A ⊆ R is called dependent, if it is not independent (A 6∈ J ). The minimal
dependent sets (w.r.t. set inclusion) are called the circuits of the matroid. For the
proof of the equivalence of the two definitions, we refer the reader to the book by Oxley
[118]. For us, the most important class of matroids will be linear matroids, where the
independent sets are simply linearly independent sets:

Definition 2.5.3 (Linear Matroid) Let E be a finite set and let A ∈ Rm×E be a
matrix. The linear matroid represented by A is a matroid (E,J ) with

J := {X ⊆ E : the columns of AX are linearly independent}.

2.5.2 Matroids from Metabolic Networks

We show now how metabolic networks can be interpreted as oriented matroids [111, 9]
(the connection to matroid theory follows immediately). Since we are only working with
signs in oriented matroid theory, we have to translate the real flux vectors into sign
vectors:

Definition 2.5.4 (Sign function (signed support)) For x ∈ Rn, define sign(x) :=
s ∈ {−, 0,+}n with:

si :=


− if xi < 0

0 if xi = 0

+ if xi > 0

for all i ∈ 1, . . . , n

It turns out that the sign function sign(·) is a very useful extension of the support
function supp(·) and we will use it even in cases where we do not do purely oriented
matroid theoretic arguments. For example, we have xsign(x) > 0 (sign(x) represented as
a set of pseudo-reactions), which allows us to just work with positive vectors.

We have seen that circuits in matroid theory can be defined as dependent sets with
minimal support. For the minimality condition we used set inclusion (⊂). Using the
subset relation induced by the representation as a set of pseudo-reactions, we obtain the
following set-inclusion for signed sets (which is the ⊂-relation used in oriented matroid
theory).

X ⊆ Y :⇔ X+ ⊆ Y + ∧X− ⊆ Y −.

Let V be a collection of signed subsets of E. We can define the set of minimal signed
subsets:

Min(V) := {v ∈ V : @w ∈ V \ {v} s.t. w ⊆ v}
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In the interpretation of metabolic networks as oriented matroids, the collection V is the
set of flux directions of steady-state fluxes (called vectors or cycles) and C = Min(V \∅)
are the circuits:

Proposition 2.5.1 (Metabolic networks are oriented matroids) Let S be a sto-
ichiometric matrix, then (R, C) defines an oriented matroid, where C = Min (V) and
V = {sign(v) : Sv = 0, v 6= 0}. 2

Such a construction of an (oriented) matroid is very common, which is why (oriented)
matroids that are generated by a stoichiometric matrix S are also called realizable (ori-
ented) matroids. For matroids we can also use the definition via independent sets. Then,
we define the independent sets of the matroid as sets A ⊆ R where SA only contains
linearly independent columns. It can be seen from basic linear algebra that the linearly
independent sets satisfy the independence axioms of the matroid. In my master thesis
I also repeated the proof that shows that the construction via the circuits define a ma-
troid. Observe that the set of cycles V can be obtained by taking unions of circuits (in
the case of matroid theory, where we are only interested in the support); in the case of
oriented matroid theory, we obtain the set V by composition which is a generalization
to union for signed sets.

Proposition 2.5.2 (Composition, Thm. 3.7.5 in [15]) For a = (a+, a−), b = (b+, b−) ∈
V it holds that the composition

(a+, a−) ◦ (b+, b−) := (a+ ∪ (b+ \ a−), a− ∪ (b− \ a+))

is also a vector of the oriented matroid. 2

In linear algebra we observe that for va, vb with sign(va) = a, sign(vb) = b it follows that
for small enough ε > 0 it holds that

sign(va + εvb) = a ◦ b.

The following two examples of oriented matroids will be important for the analysis of
metabolic networks:

Definition 2.5.5 (Flux Mode Matroid) Given a metabolic network N = (M,R, S),
let (R, C) denote the oriented matroid obtained from S by Proposition 2.5.1. We will
call (R, C) the flux mode matroid. 2

Note, that the circuits of the flux mode matroid are the minimal sign vectors of steady-
state fluxes. Hence, a circuit C ∈ C is the signed support of an elementary mode if and
only if it obeys the sign constraints of the irreversibilities (C− ∩ Irrev = ∅).

Definition 2.5.6 (Internal Cycle Matroid) Given a metabolic network N = (M,R, S)
with internal reactions I ⊆ R, let (I, C) denote the oriented matroid obtained from SI
by Proposition 2.5.1. We will call (I, C) the internal cycle matroid. 2
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a

b

c
d e f

C1 = ({a, b, c, e, f}, ∅)

a

b

c
d e f

C2 = ({a, c, d, e, f}, ∅)

a

b

c
d e f

C3 = ({a, b, e, f}, {d})

a

b

c
d e f

C4 = ({b, c}, {d})

Figure 2.1: C1, C2, C3, C4,−C1,−C2,−C3,−C4 are the circuits of the flux mode ma-
troid. C4,−C4 are the only circuits of the internal cycle matroid.

The internal cycle matroid consists of all the circuits that we do not want to have in
thermodynamically feasible solutions. Observe that the circuits of the internal cycle
matroid (in the following also called internal circuits) are a subset of the circuits of the
flux mode matroid.

In my master thesis I showed that the internal cycle matroid is intrinsically linked to the
space of potential differences by oriented matroid duality (cf. Thm. 2.6.1). In Figure 2.1
we can see an example of circuits of the two matroids. For an introduction to matroid
duality see Ch. 3.4 in [15] and Ch. 2 in [118]. Here, we just mention that circuits in the
dual matroid are called cocircuits, vectors (resp. cycles) in the dual matroid are called
covectors (resp. cocycles).

The internal cycle matroid and the flux mode are also closely related in matroid theoretic
terms. It can easily be seen that the internal cycle matroid is the restriction of the flux
mode matroid to the internal reactions.

Proposition 2.5.3 (Restriction, Prop. 3.3.1 in [15]) Let M = (E, C) be an ori-
ented matroid on elements E with circuits C. For F ⊆ E it holds that M |F := (F, C′) is
an oriented matroid with

C′ := {C ∈ C : C ⊆ F}.

We call M |F the restriction of M to F . 2

Similarly, given a matroid M on elements E we call M \ F := M |E\F the deletion of F
from M .

2.5.3 Matroid Connectivity

Similar to connectivity in graphs, also a notion of connectivity can be defined for ma-
troids. This will be of crucial importance in Ch. 6, where we will see that matroid
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connectivity is closely linked to flux modules. However, matroid connectivity is not only
important in the context of flux modules, but we can also use it for the analysis of
thermodynamic constraints.

Proposition 2.5.4 (Prop. 4.1.2 of [118]) Let M be a matroid on a set of elements
E. The relation ∼ defined by

a ∼ b :⇔ there exists a circuit containing a and b

is an equivalence relation on E. 2

The equivalence classes of ∼ are a generalization of 2-connected components from graph
theory and hence, simply called connected components. Note that in the case of the
flux mode matroid the connected components do not yet have an established biological
interpretation, which will be discussed in Ch. 6.

2.6 Thermodynamic Constraints

In the following, we will partition the set of reactions R into internal reactions I and
exchange reactions E . The internal reactions will be subject to thermodynamic con-
straints, but the exchange reactions will not be. For metabolic networks, where we
have split the reactions into internal and exchange reactions, we will often also write
N = (M,R = I∪̇E , S).

We can now define thermodynamically feasible fluxes with respect to given metabolite
potentials (which depend on the metabolite concentrations) by adding the condition that
a reaction carries flux if and only if it has negative potential difference [10, 5, 124]:

Definition 2.6.1 (Strongly thermo. feasible flux w.r.t. metabolite potentials)

Given a metabolic network N = (M,R = I∪̇E , S) and metabolite potentials µ ∈ RM,
we call a flux vector v ∈ RR strongly thermodynamically feasible in N with respect to µ
if

• v is a steady-state flux in N .

• µS∗rvr < 0 or µS∗r = 0 = vr for all r ∈ I. 2

See Figure 2.2 for an example of metabolite potentials that allow a strongly thermody-
namically feasible flux. For practical reasons, it is useful to relax the second condition
slightly such that reactions do not have to carry non-zero flux if they have non-zero
potential difference, but can carry non-zero flux (see Figure 2.3).

For example if a reaction is catalyzed by an enzyme and the enzyme is not expressed,
the reaction will carry nearly no flux although there may be non-zero potential differ-
ence. Theoretically, a reaction with negative potential difference always also happens
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Figure 2.2: According to the potentials
on the nodes and the induced potential
differences on the reactions, every reac-
tion must carry flux to be strongly ther-
modynamically feasible. This is possi-
ble, since for every metabolite that is
produced, there also exists a reaction
that consumes it.

Figure 2.3: In this example, there
exists no strongly thermodynamically
feasible flux with these potentials, since
the metabolite with potential 5 would
have to be a sink, which is not allowed.
But, there exists a weakly thermody-
namically feasible flux, which carries
only flux on the continuous arcs and
not on the dashed ones (strong thermo-
dynamics would force flux on the red,
dashed arcs).

spontaneously. However, the flux rate is usually so low that it can be considered zero.
Indeed, many kinetic rate laws are linear in the enzyme concentration [91]. Hence, these
kinetic rate laws would also predict a zero flux even for negative potential difference if
the enzyme concentration is zero.

Hence, we will call the thermodynamically feasible fluxes w.r.t. Definition 2.6.1 strongly
thermodynamically feasible in contrast to weakly thermodynamically feasible fluxes that
only have to satisfy the relaxed condition. For the definition of weakly thermodynami-
cally feasible fluxes, we will follow the definition proposed by Beard et al. [9]. Since this
will actually be the definition we will work with most of the time in this thesis, we will
often simply omit the term “weakly”:

Definition 2.6.2 ((Weakly) thermo. feasible flux w.r.t. metabolite potentials)

Given a metabolic network N = (M,R = I∪̇E , S) and metabolite potentials µ ∈ RM,
we call a flux vector v ∈ RR thermodynamically feasible with respect to µ if

• v is a steady-state flux in N

• µS∗rvr < 0 or vr = 0 for all r ∈ I. 2

Sometimes, we want to apply an even weaker formulation of thermodynamic constraints.
This is in particular the case when we have to deal with metabolite potentials.

Definition 2.6.3 (Relaxed thermo. feasible flux w.r.t. metabolite potentials)

Given a metabolic network N = (M,R = I∪̇E , S) and metabolite potentials µ ∈ RM,
we call a flux vector v ∈ RR relaxed thermodynamically feasible with respect to µ if
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• v is a steady-state flux in N
• µS∗rvr ≤ 0 for all r ∈ I. 2

2.6.1 Chemical Potentials

In many applications not all metabolite potentials are known. The potentials may actu-
ally also change when regulatory mechanisms modify metabolite concentrations. Hence,
we usually have to treat chemical potentials as unknown variables.

Let Q ⊆ RM be the space of feasible metabolite potentials. Often we are not really inter-
ested in the metabolite potentials that make a flux vector thermodynamically feasible,
but are happy with the existence of such.

Definition 2.6.4 (Thermodynamically feasible flux w.r.t. potential space) Given
a metabolic network N = (M,R = I∪̇E , S) and a space of feasible metabolite potentials
Q ⊆ RM, we call a flux vector v ∈ RR thermodynamically feasible with respect to Q if
there exists µ ∈ Q such that v is thermodynamically feasible in N w.r.t. µ. 2

Even if Q = RM not every steady-state flux vector is thermodynamically feasible. How-
ever, for Q = RM we have a nice alternative characterization of thermodynamic feasi-
bility, which only generalizes in a limited extent to Q ⊂ RM.

2.6.2 Without Bounds on Chemical Potentials

In the following we will call a flux v ∈ RR thermodynamically feasible if it is thermody-
namically feasible w.r.t. Q = RM.

Beard et al. [9] observed that a flux vector is thermodynamically feasible if it does not
contain any internal cycles. More formally, they claimed the following result:

Theorem 2.6.1 (Equivalence of Thermodynamic Feasibility) Given a metabolic
network N = (M,R = I∪̇E , S) a flux vector v ∈ RR is thermodynamically feasible if
and only if it holds for all w ∈ RI with sign(w) ⊆ sign(vI) and SIw = 0 that w = 0. 2

Beard et al. [9] gave an unfortunately incomplete proof using oriented matroid theory.
In my master thesis I then gave two different mathematically rigorous proofs. In the first
proof, I extended the proof by Beard et al. and used matroid theory to fix the hole. The
second proof used LP duality and was much shorter. A similar proof was later published
by Noor et al. [108].

Thm. 2.6.1 has the nice implication that thermodynamically feasible flux through in-
ternal reactions is essentially bounded by flux through exchange reactions, i.e., if all
exchange reactions (like nutrient uptake) are bounded, then the flux through every re-
action in the network is also bounded. It follows that results obtained by flux variability
analysis become more realistic [134, 101].
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2.6.2.1 Elementary Modes, Circuits & Matroids

We can reformulate Thm. 2.6.1 using matroid theory as follows:

Corollary 2.6.1 (Equivalence of Thermodynamic Feasibility (Matroid version))

Given a metabolic network N = (M,R = I∪̇E , S) a flux vector v ∈ RR is thermo-
dynamically feasible if and only if there exists no internal circuit C with C ⊆ sign(v). 2

This is the reason, why in the literature thermodynamic constraints with Q = RM
are also referred to as loop-law constraints. The name originates from electric circuit
theory, where internal cycles are called loops. Since a loop is something different in
matroid theory, I will use the term “loop” only to emphasize that I mean thermodynamic
feasibility w.r.t. an unconstrained metabolite space.

We already observed that the internal circuits (cf. Def. 2.5.6) are a subset of the circuits
of the flux mode matroid (cf. Def. 2.5.5). By the minimality property of circuits, the
following corollary follows immediately:

Corollary 2.6.2 Let (M,R, S) be a metabolic network and C the circuits of the corre-
sponding flux mode matroid. It holds that every circuit C ∈ C that is not an internal
circuit is thermodynamically feasible.

Proof Since C is a circuit, there exists no circuit D ⊂ C, in particular no internal
circuit. The corollary follows by Thm. 2.6.1. �

We can formulate a similar result for strongly thermodynmaically feasible fluxes:

Proposition 2.6.1 (Equivalence of Strongly Thermodynamic Feasibility)
Given a metabolic network N = (M,R = I∪̇E , S) a flux vector v ∈ RR is strongly
thermodynamically feasible if and only if there exists a covector c of the internal cycle
matroid (Def. 2.5.6) with sign(vI) = c.

Proof By oriented matroid duality, it follows that for every covector c of the internal
cycle matroid there exists a vector µ ∈ RM such that c = µSI . Choosing µ as the
metabolite potentials yields the result. �

2.6.3 With Bounds on Chemical Potentials

Compared to my master thesis, this section now includes a discussion on the causes
of uncertainty on data of chemical potentials. We observe that we may not always
want to assume box shaped potential spaces. Therefore, I generalized Thm. 2.6.3
accordingly.
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With increasing advances in metabolomics, more and more systems biologists want to
include metabolite concentration information into metabolic pathway analysis [11, 171,
123, 82, 83, 43, 46, 25].

As already explained in the introduction, we theoretically can compute the chemical
potential µi of a metabolite i ∈ M from its concentration value ci by the following
formula:

µi = µ0
i +RT ln(ci) (1.3)

In practice R, T can be considered as known constants, but this is usually not the case
for the equilibrium constants µ0

i and the concentration ci.

2.6.3.1 Uncertainties of Concentration

Although it is possible to measure concentrations using mass spectrometry and other
methods [35, 38, 59, 45, 12], such data is always only measured and hence imprecise.
Additionally, often only relative concentrations are measured, but for the computation
of chemical potentials, we need absolute concentrations [12]. Furthermore, compart-
mentalization and other factors may distort the measurement. Hence, if we want to
understand the capabilities of a metabolic network we should not rely too strongly on
the measurement data, but always allow a range of tolerance to account for measurement
errors.

This is the case, if we have data on measured concentrations. In many cases however, we
do not have any such data at all. Here, we have to allow a wide range of concentrations.
Tepper et al. [154] choose 10nM as the minimal concentration (this corresponds to about
1 molecule in a cell of the size of E. coli) and 100mM as maximal concentration (maximal
total metabolite concentration in E. coli has been measured to be 300mM [12]). However,
Bennet et al. also measured glutamate concentrations of about 150mM in E.coli for
growth under glycerol. Also, channeling effects may cause local concentrations to be
much higher than 100mM.

Nevertheless, I think that 10nM − 100mM are a good range of default concentration
bounds that however may need to be corrected for certain metabolites if further biological
knowledge is available.

2.6.3.2 Uncertainties of Equilibrium Constants

Uncertainties in the equilibrium constants of formation (µ0
i values) are more complicated

than uncertainty of concentrations, because µ0
i is an energetic potential. Energetic po-

tentials do not exist as such but are always obtained from potential differences by a
normalization method. Hence, there exists no direct way to measure chemical poten-
tials, although we can estimate the µ0

i values for nearly all metabolites using the group
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contribution method developed by Mavrovouniotis [96]. This method was further im-
proved by Jankowski et al. [70] and Noor et al. [107] and is surprisingly precise. However,
due to the nature of chemical potentials, estimation errors are dependent on each other.

To understand the dependence of the estimation errors, we briefly explain how these
equilibrium constants of formation are obtained. Instead of the equilibrium constants
of formation for metabolites µ0, the equilibrium constants of reactions ∆µ0 can be mea-
sured. One of the main works that list such measurements is the book by Alberty [5]
that lists equilibrium constants for many reactions in the central carbon metabolism.
By defining certain metabolites to have an equilibrium constant of formation of 0, we
can compute the remaining equilibrium constants of formation by using the following
relationship:

∆µ0 = µ0S,

where S is the stoichiometric matrix. Note, that if we define the equilibrium constant
of formation for too many metabolites, we may obtain an inconsistent system. If we
define not enough equilibrium constants of formation, then the system becomes under-
constrained.

We further observe that we can rewrite the formula for potential differences as follows:

∆µ = µS

= (µ0 +RT ln(ci))S

= µ0S +RT ln(ci)S

= ∆µ0 +RT ln(ci)S

Consider the example network shown in Fig. 2.4. Assume that we define µ0
B = 0. It

follows by the reaction B → C that µ0
C ∈ [1, 2]. Hence, using reaction A → B + C we

obtain µ0
A ∈ [−1, 1]. However, it will never be possible that µ0

C = 2 and µ0
A = −1. It

can easily be seen that the effect can accumulate in large reaction networks.

A

C

B

∆µ0
B→C ∈ [1, 2]

∆µ0
A→B+C ∈ [1, 2]

Figure 2.4: A small example network showing that we lose precision if we ignore depen-
dencies on equilibrium constants of formation.

Hence, Noor et al. [107] developed the so-called component contribution method to
obtain more precise estimates of ∆µ0 and thus, more precise estimates on ∆µ.
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We conclude that if we ignore the dependencies between the errors in the estimates
for equilibrium constants of formation, we can simply add the error tolerances of the
concentrations and equilibrium constants of formation and thus obtain lower and upper
bounds on the chemical potentials. On the other hand, we can obtain much smaller
error tolerances, if we include the dependencies. In this case however, we are not able to
model simply with lower and upper bounds of chemical potentials, but the space Q of
feasible potentials will be more complicated. However, Q will still be polyhedral, since
we can formulate it as follows:

Q =

µ ∈ RM :
µ = µ0 +RTc′

∆µ0,min ≤ Sµ0 ≤ ∆µ0,max

cmin ≤ c ≤ cmax
, ∃c ∈ RM

 ,

where ∆µ0,min and ∆µ0,max denote the tolerance bounds of the equilibrium constants for
each reaction, and cmin, cmax denote the logarithm of the minimal resp. maximal allowed
concentration for each metabolite.

2.6.3.3 Infeasible Reaction Subsets

A similar theorem to Theorem 2.6.1 can also be stated for cases where Q ⊆ RM is a
polyhedron. A similar result for box-shaped Q (only constrained by lower and upper
bounds) was already discovered by Mavrovouniotis in 1996 [97]. Although Mavrovouni-
otis was a bit sloppy regarding strict and weak inequalities and the statement of the
theorem as well as his proof are not completely correct, he had the correct idea anyway
and I presented a new proof in my masters thesis. Here, I will repeat the preliminary
steps that lead to the proof and then show the generalized theorem for polyhedral Q.

Essential is the notion of minimally infeasible sets (MIS) called bottlenecks by Mavrovouni-
otis, which in this case can be represented as s ∈ {−, 0,+}I like the circuits of the internal
cycle matroid. Indeed, if Q = RM, the minimally infeasible sets will be precisely the
circuits of the internal cycle matroid. Similar to the circuits, we also use the signed set
notation s = (s+, s−) with s+ = {i : si = +} and s− = {i : si = −}. In Figure 2.5, you
can see a network with an infeasible set that is not an internal circuit.

a b c d

e

5 5[0, 10]

Figure 2.5: Because the potential difference between the left and right metabolite is
5 − 5 = 0, no flux is possible through reactions b, c at the same time. Hence, ({b, c}, ∅)
is an infeasible set and the only feasible pathways are ({a, b, e}, ∅) and ({c, d}, {e}).

To capture the notion of infeasible sets more precisely, we introduce the notion of a
subnetwork . Each vector s ∈ {−, 0,+}I represents a subnetwork of the original network
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in the following way:

Definition 2.6.5 (Subnetwork) Let N = (M,R = I∪̇E , S) be a metabolic network.

Given a vector s ∈ {−, 0,+}R we call the network N s = (M,Rs := s, Ss) the subnet-
work of N w.r.t. s. The stoichiometric matrix Ss of the subnetwork contains the same
stoichiometries of the forward reactions as S, i.e., Ss∗i = S∗i for all i ∈ s+. For the back-
ward reactions the signs of the stoichiometric coefficients are flipped, i.e., Ss∗i = −S∗i
for all i ∈ s−.

The internal reactions Is are defined by Is := s ∩ I. 2

If we are given a flux v and are interested in properties of the reactions that carry flux,
we can simplify things by looking at the subnetwork of flux carrying reactions. This
subnetwork is exactly the network N s, where s = sign(v).

Proposition 2.6.2 (Proposition 7 in [99]) Let N = (M,R = I∪̇E , S) be a metabolic
network. Let v be a flux in N .

Let s = sign(v). Then v is a steady-state flux, if and only if vs ∈ Rs with vsr = srvr is a
steady-state flux in N s. Additionally vs > 0. 2

Thus, it suffices to check whether it is thermodynamically feasible if all reactions in N
proceed in forward direction. If it is not feasible, we have found an infeasible direction
configuration that also cannot occur in the original network. This infeasible direction
configuration will by captured by the notion of infeasible set (IS):

Definition 2.6.6 (infeasible set) Let N = (M,R = I∪̇E , S) be a metabolic network
with metabolite potential space Q ⊆ RM. A vector s ∈ {−, 0,+}I is called an infeasible
set, if there exists no µ ∈ Q such that µSs∗i < 0 for all i ∈ Is of the subnetwork N s. 2

These infeasible sets behave as one naturally would expect infeasible sets to behave. I.e.,
if you make the set larger, it still stays infeasible:

Proposition 2.6.3 (Proposition 8 in [99]) Let v ∈ {−, 0,+}I be an infeasible set in
a metabolic network N . Let v ⊆ w ∈ {−, 0,+}I . Then w is also an infeasible set. 2

Assume now, we are given a flux vector v. If v is thermodynamically feasible w.r.t. Q,
all internal reactions where v has positive flux must have negative potential differences.
Translated to the theory of infeasible sets, sign(vI) must not be an infeasible set. As a
consequence of Proposition 2.6.3 we now only have to check for each (inclusion) minimal
infeasible set s whether s ⊆ sign(vI).

Theorem 2.6.2 (Theorem 3 in [99]) Let N = (M,R = I∪̇E , S) be a metabolic net-
work with metabolite potential space Q ⊆ RM. Then there exists a collection of minimally
infeasible sets C ⊆ {−, 0,+}I such that a flux vector v is thermodynamically feasible w.r.t
to Q if and only if s 6⊆ sign(vI) for every s ∈ C. 2
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In the case, where Q = RM, we know that the minimal infeasible sets are the circuits
of the internal cycle matroid. Since oriented matroids are well studied, we know how to
find those circuits and how to check whether sign(vI) of a flux v contains such a circuit.
The following Theorem 2.6.3 answers the generalized question. It is a generalization
of Theorem 4 in [99], which was originally stated by Mavrovouniotis [97] in a similar
fashion in 1996. There, we only analyzed the case where the potential space was given
by Q = {µ ∈ RM : ` ≤ µ ≤ u} with `, u ∈ RM.

Since we also want to model dependencies between uncertainties, we generalize the result
to polyhedral potential spaces Q ⊆ RM. Note that most of the new complexity is due
to the fact that Q may be unbounded, which was not allowed in [99]. We will apply
the following theorem only on subnetworks N s for flux vectors w with s = sign(wI).
Hence, the set of reactions R consists only of internal reaction and hence it makes sense
to consider potential differences for them.

Theorem 2.6.3 Let N = (M,R, S) be a metabolic network with polyhedral potential
space Q 6= ∅. Then the following are equivalent:

1. There exists a µ ∈ Q such that µSi < 0 ∀i ∈ R.

2. For all v ∈ RR with v ≥ 0,
∑

i∈R vi = 1 it holds that there exists a µ ∈ Q such that
µSv < 0.

Proof Since Q is a polyhedron, we can assume that there exists a matrix A and vector
b s.t. Q = {µ ∈ RM : µA ≤ b}.
The first statement holds if and only if the following minimization problem has a solution
less than 0:

min{α : α− µSi ≥ 0 ∀i ∈ R, µA ≤ b, α ≥ −1} (2.7)

Since Q 6= ∅, it follows that (2.7) is feasible, since we can choose α arbitrary large.
Clearly, (2.7) is also bounded.

Hence, it follows from the duality theorem that the solution value is equal to

max{bx− z : −Sv +Ax = 0,1v + z = 1, v ≥ 0, x ≤ 0, z ≥ 0} (2.8)

= max{max{bx : Ax = Sv, x ≤ 0} − z : 1v + z = 1, v ≥ 0, z ≥ 0} (2.9)

Claim 2.6.1 It holds that

max{max{bx : Ax = Sv, x ≤ 0} − z : 1v + z = 1, v ≥ 0, z ≥ 0}
= max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0} (2.10)

Proof The dual LP of max{bx : Ax = Sv, x ≤ 0} is min{µSv : µA ≤ b}. Let (ṽ, z̃, x̃)
be an optimal solution of (2.9). It follows that max{bx : Ax = Sṽ, x ≤ 0} is feasible and
bounded. We now show both directions of the equality separately.
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≤: By the duality theorem, we obtain

max{max{bx : Ax = Sv, x ≤ 0} − z,1v + z = 1, v ≥ 0, z ≥ 0}
= max{bx : Ax = Sṽ, x ≤ 0} − z̃
= min{µSṽ : µA ≤ b} − z̃
≤max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0}

≥: We observe that by duality min{µSṽ : µA ≤ b} is bounded and feasible. Clearly,
inf{µSv : µA ≤ b} is also always feasible and hence,

f(v, z) := max (min{µSṽ : µA ≤ b} − z̃, inf{µSv : µA ≤ b} − z)
is a continuous function defined on all (v, z) ∈ RR × R and {(v, z) ∈ RR × R :
1v + z = 1, v ≥ 0, z ≥ 0} is a compact set. Hence, the optimum of max{f(v) :
1v + z = 1, v ≥ 0, z ≥ 0} exists. Let (v, z) be an optimal solution. Clearly,
f(ṽ, z̃) ≤ f(v, z) hence, f(v, z) = min{µSv : µA ≤ b}− z. By the duality theorem,
it follows that

max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0}
≤max{f(v) : 1v + z = 1, v ≥ 0, z ≥ 0}
=f(v, z)

= min{µSv : µA ≤ b} − z
= max{bx : Ax = Sv, x ≤ 0} − z
≤max{max{bx : Ax = Sv, x ≤ 0} − z,1v + z = 1, v ≥ 0, z ≥ 0}.

Claim 2.6.2 It holds that

0 > max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0}
⇔ 0 > max{min{µSv : µA ≤ b},1v = 1, v ≥ 0}

Proof We show both directions separately:

⇒: By choosing z = 0 we reduce the feasible domain and thus we obtain

0 > max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0}
⇒ 0 > max{min{µSv : µA ≤ b},1v = 1, v ≥ 0}

⇐: If the optimum of (2.10) is attained for z = 0, the claim follows immediately. Hence,
assume the optimum is attained with z > 0. We observe that z ≤ 1 and thus it
follows that

0 > max{min{µSv : µA ≤ b},1v = 1, v ≥ 0}
⇒ 0 ≥ max{min{µSv : µA ≤ b},1v + z = 1, v ≥ 0} (scaling)

⇒ 0 > max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0}
Hence, the claim follows. �
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We summarize:

There exists a µ ∈ Q such that µSi < 0 ∀i ∈ R
⇔ 0 > min{α : α− µSi ≥ 0 ∀i ∈ R, µA ≤ b, α ≥ −1}
⇔ 0 > max{max{bx : Ax = Sv, x ≤ 0} − z : 1v + z = 1, v ≥ 0, z ≥ 0} (LP duality)

⇔ 0 > max{min{µSv : µA ≤ b} − z,1v + z = 1, v ≥ 0, z ≥ 0} (Claim 2.6.1)

⇔ 0 > max{min{µSv : µA ≤ b},1v = 1, v ≥ 0} (Claim 2.6.2)

which concludes the proof. �

In the theory of infeasible sets, we can restate Theorem 2.6.3 as follows:

Corollary 2.6.3 Let N = (M,R = I∪̇E , S) be a metabolic network with polyhedral
metabolite potential space Q.

A steady-state flux v ∈ RR is thermodynamically feasible in N w.r.t. Q if and only if
for all w ∈ RI with sign(w) ⊆ sign(vI) and w 6= 0 exists a µ ∈ Q such that µSIw < 0.2

So the main result of Corollary 2.6.3 is, that if v is not thermodynamically feasible, we
can find a witness that proves infeasibility. In the cases of circuits these are the internal
circulations w, which satisfy SIw = 0. Now it is easy to see, that all internal circulations
are also infeasible sets.

Another special case is used by Nolan, Lee, Xu, Boghihian et al. [105, 170, 16]. They
are only given potentials of boundary metabolites. In this case, all minimal infeasible
sets are elementary modes where the exchange reactions have been removed.

For general metabolite concentration bounds we observe:

Observation 2.6.1 The proof of Theorem 2.6.3 also gives us an LP formulation that
either proves thermodynamic feasibility of a flux vector v or returns a witness that proves
infeasibility. We only need to solve the LP (2.8) on the subnetwork N sign(vI). If the
solution value is less than zero we obtain feasibility. If the solution value is larger or
equal to zero, we obtain a witness for infeasibility (an infeasible set). 2
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Chapter 3

Computational Complexity

Abstract The computational complexity of the question whether there exists a ther-
modynamically feasible flux through a given reaction depends highly on how the decision
problem is formulated. In this chapter I analyze the complexity of this decision problem
depending on

• the formalism used for thermodynamic constraints,

• whether the target reaction is internal or external,

• what kind of reactions can be irreversible,

• and if bounds on metabolite concentrations are given.

The chapter extends work from my master thesis, where I showed that finding a
positive thermodynamically feasible flux through a given internal reaction is NP-
hard w.r.t. to weak thermodynamic constraints if the network contains irreversible
internal reactions.

3.1 Introduction

In the analysis of metabolic networks an essential question is whether a given reaction
can carry positive flux or not. Reactions that cannot carry positive flux are usually
indicators of modeling errors. If we only impose the steady-state condition (i.e., the flux
space is a polyhedron), we can answer the question whether a given reaction can carry
positive flux by solving a linear program.

When we add thermodynamic constraints, the computational complexity of this decision
problem becomes unclear. Hence, we now consider the complexity of the Thermoflux
problem (Prob. 3.1.1). Depending on what kinds of values we allow for the input param-
eters and what formalism of thermodynamic constraints we use, the complexity of the
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problem changes. An introduction to computational complexity theory can be found in
[119].

Problem 3.1.1 (Thermoflux)

Given:

• metabolic network N =
(
M, R = I ∪ E , S ∈ QM×R)

• irreversible reactions Irrev ⊆ R
• upper and lower potential bounds µmin, µmax

• objective reaction r ∈ R

Question: Does there exist a thermodynamically feasible w.r.t. potential bounds µmin, µmax

flux v with vIrrev ≥ 0 and vr > 0 ? 2

We consider the following 4 independent restrictions for the input / formalisms of ther-
modynamic constraints (the numbering will be used to reference the corresponding com-
bination of restrictions):

1. Choice of r

(a) r is element of the internal reactions (r ∈ I)

(b) r is element of the exchange reactions (r ∈ E)

2. Irreversibilities

(a) all reactions can be irreversible (Irrev ⊆ R)

(b) all internal reactions are reversible (Irrev ⊆ E)

(c) all reactions are reversible (Irrev = ∅)

3. Thermodynamics formalism

(a) weak thermodynamic constraints (Def. 2.6.2)

(b) strong thermodynamic constraints (Def. 2.6.1)

(c) relaxed thermodynamic constraints (Def. 2.6.3)

4. Bounds

(a) without bounds on metabolite potentials (µmin = −∞, µmax =∞)

(b) with bounds on metabolite potentials (µmin, µmax ∈ RM∞ , µmin ≤ µmax)
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3.2 Results

The complexity results are summarized in Tab. 3.1. First of all we remark that all
variants of the ThermoFlux problem are in NP, because a YES-answer can always be
proven by giving a flux vector and corresponding metabolite potentials.

We observe that adding any kind of a-priori thermodynamic information, either in form
of bounds on metabolite potentials, or irreversibilities of internal reactions makes the
ThermoFlux problem hard. However, if only limited thermodynamic information is
added the problem seems to become easier.

We also note that it is unclear at the moment if we can incorporate irreversibility con-
straints for exchange reactions and still solve the ThermoFlux problem in polynomial
time.

Table 3.1: Summary of the complexity results for the ThermoFlux problem.
Irrev ⊆ R Irrev ⊆ E Irrev = ∅

r ∈ I r ∈ E r ∈ I r ∈ E r ∈ I r ∈ E

weak
wo. bounds NP-hard P ? P P P 4a

3a
w. bounds NP-hard NP-hard NP-hard NP-hard NP-hard NP-hard 4b

strong
wo. bounds NP-hard NP-hard ? P P P 4a

3b
w. bounds NP-hard NP-hard NP-hard NP-hard NP-hard NP-hard 4b

relaxed
wo. bounds P P P P P P 4a

3c
w. bounds NP-hard NP-hard NP-hard NP-hard NP-hard NP-hard 4b

1a 1b 1a 1b 1a 1b
2a 2b 2c

3.3 Reductions

To show the complexity results of Tab. 3.1, we do not show the complexity for each case
separately, but employ the fact that we can show some reduction between the problems.

3.3.1 Trivial Reductions

The following 3 reductions are trivial. We use placeholders x, y, z to denote any choice
of formulation and a � b means that if b can be solved in polynomial time, then a can
be solved in polynomial time (a is easier or equal to b).

• 1b2x3y4z � 1a2x3y4z by declaring the exchange reaction an internal reaction and
adding a new fully coupled exchange reaction.

• 1x2c3y4z � 1x2b3y4z � 1x2a3y4z (2c is a special case of 2b which is a special case
of 2a)

• 1x2y3z4a � 1x2y3z4b (4a is a specialization of 4b)
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3.3.2 1x2y3a4a is Equivalent to 1x2y3b4a for x ∈ {a, b}, y ∈ {b, c}

We observe that if a reaction r ∈ R can carry positive strongly thermodynamically
feasible steady-state flux (that satisfies the flux bounds), then r can also carry positive
weakly thermodynamically feasible steady-state flux (that satisfies the flux bounds),
because the constraints are weaker in the latter case.

Hence, we only have to show the other direction. We consider the flux mode matroid O
represented by the metabolic network N . We observe that T := O \ E is the internal
cycle matroid. Assume that r can carry weakly thermodynamically feasible steady-state
flux (that satisfies the flux bounds). Let v be a minimal sign-vector of the flux vector
realizing this (i.e., v is a circuit of O). Define

A :=
⋃

C circuit of T
v∩C 6=∅

C

B := {s ∈ v : s 6∈ C ∀C circuit of T }

Clearly, v ⊆ A ∪B ∪ E . We observe the following

Lemma 3.3.1 Let N ′ be the metabolic network that only contains the reactions in A ∪
B ∪ E, where A,B are defined as above with exchange reactions E ′ := E ∪ B. Then it
holds that if v′ ∈ RA∪B∪E is strongly thermodynamically feasible in N ′, then w ∈ RR
with wA∪B∪E = v′ and ws = 0 for all s 6∈ A∪B∪E is strongly thermodynamically feasible
in N .

Proof LetO′ be the oriented matroid represented byN ′. It follows thatO′ = O|A∪B∪E .
Let T ′ = O′|A be the internal cycle matroid of N ′. Since v′ is strongly thermodynami-
cally feasible in N ′, there exists a covector c′ ∈ {−, 0,+}A of T ′ with sign(v′A) = c′.

By Prop. 2.5.4 it follows that A is the union of connected components of T . Hence, by
Prop. 4.2.1 of [118], it follows that A is a separator in T . Thus, c′ is also a covector of
T .

For each r ∈ B, we observe that {r} is a cocircuit of T (also called coloop). By
composition (Prop. 2.5.2) it follows that sign(vB) is a covector in T .

Again, by composition it follows that c = c′ ◦ sign(vB) is a covector of T . We observe
that cA := c′, cB := sign(vB) and cI\(A∪B) = 0. Hence, sign(wI) = c and since w is
clearly a steady-state flux, w is strongly thermodynamically feasible. �

It follows that we can assume w.l.o.g. that for every s ∈ I \ v there exists a circuit c
that contains s and at least one element of v. With Alg. 1 we now construct from v a
vector v′ of O with v′ ⊇ I that contains no internal cycles. It follows that v′ is strongly
thermodynamically feasible. Since v′ is a vector of O it also follows that there exists a
steady-state flux vector with exactly the signs of v′.
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Algorithm 1 Algorithm to compute a strongly thermodynamically feasible flux vector
from a weakly thermodynamically feasible flux vector.

Input: vector v of O for which no circuit w of T with w ⊆ v exists.
while ∃s ∈ I \ v do

Let c be a circuit of T with c ∩ v 6= ∅ 6= c \ v and c \ v minimal.
if ∃ circuit w of T : w ⊆ v ◦ c then

c := −c
end if
Set v := v ◦ c.

end while
Return: v

Proposition 3.3.1 Let be given a signed vector v for which there exists no signed vector
w of T with w ⊆ v. Then, Algorithm 1 computes a signed vector v′ with v′ ⊇ v and
v′ ⊇ I. Furthermore, v′ satisfies that there exists no signed vector w of T with w ⊆ v′.

Proof We show the following loop invariant of the while loop:

Loop invariant: v is a vector of O for which no circuit w of T with w ⊆ v exists.

We have to show that the loop invariant also holds at the end of each iteration. We
observe that by construction of A, there always exists a circuit c of T with c∩v 6= ∅ and
c \ v 6= ∅ if there exists an s ∈ I \ v̄.

Hence, the existence of such a circuit with the minimality condition follows immediately,
since the number of circuits is finite.

We note that it is unclear whether the composition with c or −c will yield a vector that
does not contain internal cycles. However, the following claim shows that at least one
of the two options will not produce internal cycles:

Claim 3.3.1 If c is a circuit of T with c ∩ v 6= ∅, c \ v 6= ∅ and c \ v minimal, then
either v ◦ c or v ◦ −c does not contain an internal cycle.

Proof Let s ∈ c \ v. W.l.o.g. assume that s ∈ c+. Assume there exist internal circuits
w ⊆ v ◦ c and w′ ⊆ v ◦ −c. By minimality of c \ v it follows that w \ v = w′ \ v = c \ v.
Hence, it follows that s ∈ w+ ⊆ (v ◦ c)+ and s ∈ w′− ⊆ (v ◦−c)−. By circuit axiom (C3)
there exists a circuit w̃ with

w̃+ ⊆ (w+ ∪ w′+) \ {s} ⊆ ((v ◦ c)+ ∪ (v ◦ −c)+) \ {s}
w̃− ⊆ (w− ∪ w′−) \ {s} ⊆ ((v ◦ c)− ∪ (v ◦ −c)−) \ {s}

It follows that w̃\v ⊂ c\v. By minimality of c it follows that w̃\v = ∅. By construction
(composition), it follows that w̃ ⊆ v. Hence, v contained an internal circuit, which is a
contradiction. �
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It follows, that at the end of the loop iteration, v is a vector of O for which no circuit w
of T with w ⊆ v exists.

Finally, we observe that the support of v is growing with each iteration. Hence, the
algorithm will terminate. �

Since Alg. 1 is correct, it follows that for every weakly thermodynamically feasible steady-
state flux that satisfies the irreversibilities in the exchange reactions, we can construct
a strongly thermodynamically feasible steady-state flux that satisfies the irreversibilities
in the exchange reactions. A close look at the construction reveals that all compositions
are performed on internal reactions. Hence, we can even conclude that there exists a
strongly thermodynamically feasible flux vector with exactly the same exchange fluxes
as the weakly thermodynamically feasible flux vector.

3.4 Problems in P

3.4.1 1a2c3a4a is in P

We observe that, since no reaction is irreversible, the supports of steady-state flux vectors
are precisely the cycles of the flux mode matroid (Def. 2.5.5). By Cor. 2.6.1 it follows
that we only have to check if there exists a circuit that contains the target reaction r
and an exchange reaction s ∈ E . We recall Prop. 2.5.4 that states that there exists a
circuit C containing s and r if and only if s and r are contained in the same connected
component. This is a sufficient condition, since all reactions are reversible and C,−C
are both circuits. Since the connected components can be computed in polynomial
time using the algorithm by Krogdahl [28, 81], the result follows. For more details see
Sec. 6.3.3.3, where the same method is used to compute flux modules.

This result relates to the fact that the 2-vertex disjoint paths problem on undirected
graphs is solvable in polynomial time [145, 131]. We remark that the complexity of
the problem remains unknown if the set of irreversible reactions is small, or if it only
contains exchange reactions.

3.4.2 1b2x3a4a is in P

For Problem 1b2a3a4a we can use the cycle elimination method, see also Thm. 4.5.1.
Hence, 1b2b3a4a and 1b2c3a4a are also in P .

3.4.3 1b2b3b4a is in P

Fleming et al. showed in [48] that a non-linear reformulation of the strict thermodynamic
flow problem can be reformulated as a convex optimization problem. Given a steady-
state flux v ∈ RR they compute a thermodynamically feasible flux (w.r.t. to their
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non-linear reformulation) ṽ with ṽE = vE . In my masters thesis I showed that the
non-linear reformulation by Fleming et al. [48] is equivalent to the strong formulation
of thermodynamic constraints (Sec. 5.3 in [99]). It follows that to decide if strongly
thermodynamically feasible flux is possible through an exchange reaction, we only have
to solve the FBA problem.

However, it should be noted that the addition of sign-constraints to internal reactions
will break the method. The hardness of 1b2a3b4a shows this formally.

Furthermore, we observe that while the primal of the non-linear reformulation does not
contain variables for potentials, the dual does. However, if we would add additional
constraints to the dual to restrict the range of the potentials, we break the steady-state
assumption of the primal. Hence, the method cannot be extended to finding a strongly
thermodynamically feasible flux vector that also satisfies metabolite bounds. Indeed,
there exist networks where no feasible pathway exists (due to the strong thermodynamic
constraints, also the zero flux can be infeasible).

3.4.4 1x2y3c4a is in P

We can set all metabolite potential to 0. It follows that every potential difference is
0. Hence, flux in any direction is feasible for the relaxed thermodynamic constraint. It
follows that FBA with relaxed thermodynamic constraints is just FBA. Since FBA can
be solved with linear programming in polynomial time, also this problem can be solved
in polynomial time.

3.4.5 1x2c3b4a is in P

Since 1a2c3b4a and 1a2c3a4a are equivalent (Sec. 3.3.2) and 1a2c3a4a is in P, it follows
that also 1a2c3b4a is in P . By declaring the exchange reaction an internal reaction and
coupling it to a new exchange reaction, we observe that also 1b2c3b4a is in P .

3.5 NP-hard problems

3.5.1 1a2a3a4x is NP-hard

In my master thesis ([99], Thm. 5; [101], Thm. 1) I showed that 1a2a3a4a is NP-hard
by reduction to the 2-vertex disjoint path problem on directed graphs [50]. By one of
the trivial reductions it follows that 1a2a3a4b is also NP-hard.
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3.5.2 1x2a3b4a and 1x2y3b4b are NP-hard

We show hardness of 1b2a3b4a and 1b2c3b4a using similar constructions in parallel. The
hardness of the other variants follows using the trivial reductions mentioned above.

We do a reduction from 3SAT. Let f be a 3SAT formula with variables x1, . . . , xn and
clauses C1, . . . , Cm. For each variable xi, i = 1, . . . , n we construct a subnetwork as
shown in Fig. 3.1. It consists of metabolites M+

i := {m+
ij : xi ∈ Cj} and metabolites

M−i := {m−ij : xi ∈ Cj} and one reversible exchange reaction ri with stoichiometric

coefficient 1 for each m ∈M+
i and stoichiometric coefficient −1 for each m ∈M−i .

m+
ij1

m+
ij2

m+
ij3

m+
ijk

m−
ij′1

m−
ij′2

m−
ij′3

m−
ij′

`

ri

Figure 3.1: The subnetwork for variable xi, where xi is used in clauses Cj1 , Cj2 , . . . , Cjk
and x̄i is used in clauses Cj′1 , Cj′2 , . . . , Cj′` . It is represented by the reversible exchange

reaction ri that transforms metabolites M+
i = {m+

ij1
,m+

ij2
, . . . ,m+

ijk
} into metabolites

M−i = {m−
ij′1
,m−

ij′2
, . . . ,m−ij`} and vice versa. The reverse direction is marked with white

arrows.

Before we construct the subnetworks for the clauses, we define the flux-decoupling motiv
shown in Fig. 3.2 for 1b2a3b4a and Fig. 3.3 for 1b2c3b4b.

We observe that this motiv decouples the input flux rate from the output flux rate by
still keeping the direction of the flux. Furthermore, the motiv will be connected to
the rest of the network using exchange reactions. Hence, it is sufficient to analyze the
thermodynamically feasible fluxes inside the motiv and only care about the steady-state
condition on a system wide perspective.

Lemma 3.5.1 Let T be the space of strictly thermodynamically feasible fluxes through
the network shown in Fig. 3.2 (Fig. 3.3). Then it holds that ri →T ro and ro →T ri
(according to Def. 2.1.9), i.e., sign(vri) = sign(vro).

Proof We first observe that metabolites o and o′ always have the same potential. In
the case of Fig. 3.3 this is trivial. In the case of Fig. 3.2 this is clearly induced by the
two irreversible reactions (drawn just with one arrow).
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It follows by the strong thermodynamic constraint that if o′ has outflow through r′o, then
also o has to have outflow through ro and vice versa. The same holds for inflow. We
conclude that i has inflow/outflow trough ri if and only if o has outflow/inflow through
ro. �

Lemma 3.5.2 For all a, b ∈ R with sign(a) = sign(b) = sign(a−b) there exists a strongly
thermodynamically feasible flux through the networks shown in Fig. 3.2 and Fig. 3.3 with
vri = a and vro = b.

Proof Define µo = µo′ = 0, vh2 = vro = b, vh1 = vro′ = a − b and vri = a. For the
irreversible reactions (if they exist), we define a flux of 0. It is easy to verify that this is
a steady-state flux distribution.

We now only have to find feasible potentials:

Case a > 0: Define µi = 1. It follows that µo − µi = µo′ − µi = −µi < 0 and hence, v
is strongly thermodynamically feasible.

Case a < 0: Define µi = −1. It follows that µo − µi = µo′ − µi = −µi > 0 and hence, v
is strongly thermodynamically feasible.

Case a = 0: Define µi = 0. It follows that µo − µi = µo′ − µi = −µi = 0 and hence, v
is strongly thermodynamically feasible, since also b = a− b = 0. �

i o

ri

ror′o
o′ h2h1

Figure 3.2: Decoupling motiv with irreversible internal reactions. The reactions ro, r
′
o

and ri are exchange reactions. The decoupling motiv has two metabolites i, o which will
be used as its interface when used in the construction. This motiv will be connected to
the rest of the network using exchange reactions, marked here as dashed arrows. The
reverse direction is marked with a white arrow.

For each clause Cj = (`a ∨ `b ∨ `c), where `a, `b, `c ∈ {x1, . . . , xn} ∪ {x1, . . . , xn} we
construct a sub-network as shown in Fig. 3.4.

We observe the following two properties:

Lemma 3.5.3 Let a1, a2, a3, b ∈ R be arbitrary but fixed. If there exists a k ∈ {1, 2, 3}
with ak > b > 0, then there exists a strongly thermodynamically feasible flux vector v
with vrex = b and vslril = al for l = 1, 2, 3.
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i o

ri

ror′o
o′

µo′ = 0 µo = 0

µi ∈ (−∞,∞)

h2h1

Figure 3.3: Decoupling motiv with metabolite potentials. The reactions ro, r
′
o and ri are

exchange reactions. The decoupling motiv has two metabolites i, o which will be used
as its interface when used in the construction. This motiv will be connected to the rest
of the network using exchange reactions, marked here as dashed arrows. The reverse
direction is marked with a white arrow.

Proof Assume w.l.o.g. that k = 1. Define ε := min
{
b
4 ,

a1−b
4

}
. Define

w2 := max
{

min
{a2

2
, ε
}
,−ε

}
w3 := max

{
min

{a3

2
, ε
}
,−ε

}
w1 := b− w2 − w3

We observe that b
2 = b − 2 b4 ≤ w1 ≤ b + 2a1−b4 = a1+b

2 < a1. Hence, by Lemma 3.5.2
there exists a thermodynamically feasible flux v with

vgi1,j = w1

vgi2,j = w2

vgi3,j = w3

By the steady-state condition it follows that vrex = w1 + w2 + w3 = b. �

Lemma 3.5.4 There exists no strongly thermodynamically feasible flux vector v with
vrex > 0 and vskrik ≤ 0 for k = 1, 2, 3.

Proof Assume there exists a strongly thermodynamically feasible flux vector v with
vrex > 0 and vskrik ≤ 0 for k = 1, 2, 3. By Lemma 3.5.1 it follows that vgik,j ≤ 0. The
result follows from the steady-state condition on cj . �

Finally, we add one exchange reaction rex that consumes each of the metabolites cj , j =
1, . . . ,m at the same rate.

Theorem 3.5.1 There exists a strongly thermodynamically feasible flux vector v with
vrex > 0 if and only if f is satisfiable.
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i = ms1
i1j

o

i = ms2
i2j

o

i = ms3
i3j

o

cj

rex

s1ri1 s2ri2 s3ri3

gi1,j
gi2,j gi3,j

Figure 3.4: The subnetwork for clause Cj . The boxes denote instances of the decoupling
motiv, where only the nodes i and o are marked. In the upper row, the input metabolites
(i) correspond to the literals of the clause. For example if Cj = (xi1 ∨ xi2 ∨ xi3) then
ms1
i1j

= m+
i1j

, ms2
i2j

= m−i2j , m
s3
i3j

= m+
i3j

. The reactions connecting the output-metabolite
(o) of the decoupling motiv are connected to the metabolite cj with exchange reactions.
The reaction rex symbolizes the exchange reaction that will be added in the last step to
take up flux from cj .

Proof ⇒: Let v be a strongly thermodynamically feasible flux vector v with vrex > 0.
By Lemma 3.5.4 it follows for each clause Cj , j = 1, . . . ,m that at least one of the
input reactions s1ri1 , s2ri2 , s3ri3 must carry positive flux. It follows that

xi 7→
{

true vri > 0

false vri ≤ 0
∀i = 1, . . . , n

is a satisfying assignment of f .

⇐: Let A be a satisfying assignment of f . For each i = 1, . . . , n define

vi := 2 if A(xi) = true

vi := −2 if A(xi) = false

Hence, at least one literal is satisfied for every clause and by Lemma 3.5.3 it follows
that we can extend v to a strongly thermodynamically feasible flux through each
clause with vrex = 1. It is easy to see that we can combine all these strongly
thermodynamically feasible fluxes to a strongly thermodynamically feasible flux
through the whole network with vrex = 1. �

Since the metabolic network described here can be generated in polynomial time for
a given 3SAT-formula f it follows by Thm. 3.5.1 that Problem 1b2a3b4a and Problem
1b2c3b4b are NP-hard.
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3.5.3 1x2y3c4b and 1x2y3a4b are NP-hard

We show hardness of 1b2c3c4b and 1b2c3a4b. The remaining problems are more general
and hence, also NP-hard.

The reduction for both kinds of problems (1b2c3c4b and 1b2c3a4b) is the same. Hence,
we do the proofs together.

Again, we do a reduction from 3SAT. Assume we are given a 3SAT formula f with
variables x1, . . . , xk and clauses c1, . . . , cn.

For each variable xi, we construct a network as shown in Fig, 3.5. We observe that for
weak thermodynamic constraints and relaxed thermodynamic constraints it holds that
either mxi or mx̄i can be produced by this subnetwork but not both at the same time.

{3}

[0, 3] [0, 3]{0} {0}

{2}{2} mxi
mx̄i

Figure 3.5: Subnetwork for each variable xi. All reactions are reversible, the exchange
reactions are drawn using arrows in both directions. For internal reactions the main
direction is indicated. It is easy to see that by the given metabolite potentials this
subnetwork can not produce mxi and mx̄i at the same time.

For each clause cj = (`1 ∨ `2 ∨ `3), where `1, `2, `3 are literals, we introduce a metabo-
lite mcj that has arcs from m`1 ,m`2 ,m`3 (i.e., the metabolites representing positive /
negative variables). The network is shown in Fig. 3.6. The metabolite mcj is assigned a
potential of 1 while the metabolites m`1 ,m`2 ,m`3 have a fixed potential of 2. It follows
that no flow from mcj to m`1 ,m`2 ,m`3 is possible. It follows that a metabolite m`,
where ` is a literal can only have inflow from the subnetwork that was constructed for
the variable. Hence, either mxi or mx̄i can have outflow to any clause.

Finally, we require that every clause has some outflow by adding the subnetwork shown
in Fig. 3.7 with exchange reaction r. It can easily be seen that f is satisfiable if and
only if r can have flux.
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m`1 m`2 m`3

mcj

{2}

{1}

{2} {2}

Figure 3.6: Subnetwork for clause
cj = (`1 ∨ `2 ∨ `3).

{1} {1} {1}

{0}

mc1 mc2 mcn

r

Figure 3.7: Subnetwork to enforce out-
flow of each clause subnetwork. Only if
this outflow is possible, the target ex-
change reaction r can carry flux.

3.6 Problems with Unknown Complexity

We do not know whether 1a2b3a4a and 1a2b3b4a are solvable in polynomial time.

We only know by Sec. 3.3.2 that the problems 1a2b3a4a and 1a2b3b4a have the same
complexity.
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Chapter 4

Flux Optimization

Abstract The optimization of fluxes through a metabolic network is a frequent ap-
proach to reduce the space of possible solutions. While the optimization problem can
be efficiently solved if only the steady-state assumption and flux bounds are given, the
incorporation of thermodynamic constraints makes the problem NP-hard (Ch. 3). To
still be able to solve the flux optimization problem efficiently in practice, I present
here several strategies from the area of mixed integer linear programming to approach
the problem. The presented methods are implemented in the metaopt-toolbox http:

//sourceforge.net/projects/metaopt/.

This section extends the work from my master thesis on the flux optimization prob-
lem, which has also been published in [99]. I briefly summarize the results from my
master thesis and then present improvements for the formalism that I determined
there as best.

4.1 Flux Balance Analysis

Flux Balance Analysis [163, 114] is a very popular analysis method in the field of
metabolic network analysis. It is a very powerful tool to check if a gene-knockout will
remove a certain metabolic function and therefore turn out to be lethal without having
to actually run the biological experiment.

It comes in many variants, but most of them have the following common features:

• The flux space is constrained by the steady-state condition (Def. 2.2.1).

• Reactions have lower and upper flux bounds `, u ∈ RR.

• An objective function (usually flux through a biomass reaction) is maximized.
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We observe that these constraints define a polyhedral flux space

P =
{
v ∈ RR : Sv = 0, ` ≤ v ≤ u

}
.

In the following we will further assume that c is a linear objective function, which leads
us to the following linear program:

max cv

Sv = 0

` ≤ v ≤ u

This formulation is very strong, since on the one hand it has been shown to give good
results on some cases [40], does not require a lot of biological information and such linear
programs, even with thousands of variables as in the case of genome-scale metabolic
networks can typically be solved in less than a second by current solvers. In particular
the formalism is easily extendable. If additional information is available it can simply
be added in the form of additional constraints.

4.2 Thermodynamic Constraints

As we know from Chapter 2.6, thermodynamic constraints prohibit flux through internal
cycles. This important property, in practice, comes with drawbacks on the mathematical
properties. While the space of steady-state fluxes P is polyhedral and hence closed and
convex, these properties are lost if we add strong thermodynamic constraints (Def. 2.6.1).

Proposition 4.2.1 (Proposition 9 in [99]) There exist metabolic networks, where the
space

Tstrong := {v ∈ P : ∃µ s.t. µSivi < 0 or µSi = 0 = vi ∀i ∈ I}

of strongly thermodynamically feasible fluxes is neither closed nor convex. 2

By relaxation to weakly thermodynamically constrained fluxes (Def. 2.6.2) we obtain
a closed flux space. Hence optimization problems on the weakly thermodynamically
constrained flux space have either an optimum or are unbounded.

Proposition 4.2.2 (Lemma 2 in [99]) Let Q ⊆ RM. The space

T := {v ∈ P : ∃µ ∈ Q s.t. µS∗ivi < 0 or vi = 0 ∀i ∈ I}

of (weakly) thermodynamically feasible fluxes is closed. 2
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But in general the set of weakly thermodynamically feasible fluxes is not the closure
of the strongly thermodynamically feasible fluxes. In particular, the space of strongly
thermodynamically feasible fluxes can be empty while the space of weakly thermody-
namically feasible fluxes is not.

It can also be easily seen that the space of weakly thermodynamically feasible fluxes is
not convex. This comes as no surprise, since we already observed that the ThermoFlux
problem (1a2a3a4a) is NP-hard (cf. Sec. 3.2).

In the literature different approaches ranging from Monte Carlo methods [33, 32] over
continuous non-linear programming [66, 47] to mixed integer programming [9, 134, 25, 69,
65] have been considered to solve thermodynamically constrained optimization problems.
A comparison of the different methods can be found in [99]. Here, we will only consider
MILP-based approaches.

4.3 Mixed Integer Linear Programming

To obtain a mixed integer programming formulation for thermodynamic constraints, we
have to rewrite the quadratic constraint that links the fluxes to the potential differences:

µSivi < 0 or vi = 0.

Since this constraint is only a sign constraint, the quadratic part can easily be reformu-
lated as follows:

vi > 0⇒ ∆µi < 0 ∀i ∈ I (4.1)

vi < 0⇒ ∆µi > 0 ∀i ∈ I (4.2)

Note, that if vi = 0 then ∆µi can be anything. Hence, if and only if a steady-state flux
v satisfies (4.1) and (4.2) then v is weakly thermodynamically feasible.

For an MILP formulation we have to capture the sign of the variables, we can either
use SOS-constraints or big-M formulations. In the case of big-M formulations we would
introduce boolean variables a, b ∈ {0, 1}I with

• vi ≤ 0 if ai = 0

• vi ≥ 0 if bi = 0

• ai = 1 if µSi < 0

• bi = 1 if µSi > 0

• ai + bi ≤ 1
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for each i ∈ I.

This leads to the following MILP, where ε is a small constant and M is a large constant:

αMILP := max cv

s.t. Sv = 0

∆µ = µS

`v ≤ v ≤ uv
−Mbi ≤ vi ≤Mai ∀i ∈ I
−Mai + εbi ≤ ∆µi ≤Mbi − εai ∀i ∈ I
ai + bi ≤ 1 ∀i ∈ R
a, b ∈ {0, 1}I

As already discussed in my master thesis [99], we observe the following weaknesses:

• The LP relaxation is very weak. Usually, M has to be very large to not be re-
strictive. Therefore, even a small fractional ai or bi will imply that flux through
reaction i is unconstrained. It follows that the optimum of the LP relaxation will
equal the optimum of traditional FBA. This property is not surprising, since the
ThermoFlux problem 1a2a3a4a (see Sec. 3.2) is NP-hard and hence, the optimiza-
tion problem is not approximable (APX-hard).

• Cutting planes barely have any effect. Any cutting plane on the decision variables
a, b will still allow fractional values of a, b and hence, due to the big-M constraints
this will have barely any effect on the continuous variables v, µ.

Hence, we draw the conclusion that clever branching strategies will help us more than
cutting plane methods. In my masters thesis I devised the branching method described
in Alg. 2 that uses the reformulation of thermodynamic constraints using infeasible sets
(Thm. 2.6.1, Thm. 2.6.2). Essentially, what we do is the following: We solve FBA
(without any thermodynamic constraints). This gives us a flux vector v. For v to be
thermodynamically feasible, there must exists a µ ∈ Q that satisfies

µSi < 0 ∀i ∈ P (4.3)

µSi > 0 ∀i ∈ N,

where P := {i ∈ I : vi > 0} and N := {i ∈ I : vi < 0}, i.e., (P,N) = sign(v).

If the computed solution is infeasible, it must contain an infeasible direction set C ⊆
(P,N). Such a minimal infeasible set can be found in polynomial time as we observed
in Obs. 2.6.1. Since C must not be contained in a feasible solution, we block one of the
reaction directions of C after another and repeat.
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Algorithm 2 Constraint handler that enforces thermodynamic feasibility

Input: A flux v
Find violated minimal infeasible set C = (C+, C−) ⊂ sign(v) (see Theorem 2.6.2).
if we found no infeasible set C then

Return feasible
else

for i ∈ C+ do
if `Ji ≤ 0 then

Create child node with uJi = 0.
end if

end for
for i ∈ C− do

if uJi ≥ 0 then
Create child node with `Ji = 0.

end if
end for
Add created child nodes to branch and bound tree and continue solving nodes.

end if

4.4 Implicit Representation of the Potential Space & Con-
straint Programming

If the number of minimal infeasible reaction sets is very small, which is the case for several
genome-scale networks without bounds on metabolite potentials, then the branching
method described in the previous section quickly tests all possibilities and computes the
optimal solution. However this method becomes quickly inefficient for larger numbers of
infeasible sets, and a closer analysis of the method reveals that we do many redundant
branchings.

W.l.o.g. let C = (C+, ∅) be an infeasible set. By Thm. 2.6.3 there exists a v ∈ RR with
sign(v) = C and µSv ≥ 0 for all µ ∈ Q. It follows that for each µ ∈ Q there exists at
least one i ∈ C+ with µSi ≥ 0. Hence, instead of blocking forward flux through reaction
i, we can also restrict the space of feasible potentials to Q′ = {µ ∈ Q : µSi ≥ 0}. The
direct effect on the feasible flux directions is the same.

Assume now that we blocked forward flux of reaction i by adding the implicit constraint
µSi ≥ 0 and we now find a new flux vector w that obeys the added constraint (i.e.,
wi ≤ 0) but contains an infeasible set C ′ = (C ′+, C ′−) w.r.t. Q with i ∈ C ′−. If we
would just branch as described in the previous section, we would also have to consider the
case where we additionally enforce vi ≥ 0 and hence block reaction i entirely. However,
we will see that if we work on Q′ we can find a smaller infeasible set that does not
contain i and hence we can skip one branching possibility.

Application of Thm. 2.6.3 yields that there exists a w′ ∈ RR with sign(w′) = C ′ and
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µSw′ ≥ 0 for all µ ∈ Q. We observe that

µSw′ = µSC′w
′
C′ = µSC′\{i}w

′
C′\{i} + µSiw

′
i ≥ 0 ∀µ ∈ Q

⇒ µSC′\{i}w
′
C′\{i} ≥ 0 ∀µ ∈ Q′,

since w′i < 0 and µSi ≥ 0 for all µ ∈ Q′. We conclude that we can find a smaller
infeasible set (that does not contain i) w.r.t. Q′ than w.r.t. Q. Under Q we do not know
that µSi ≥ 0 and hence, we cannot perform the simplification. We can also not read this
off from the irreversibility constraint, since the irreversibility may originate from kinetic
arguments (e.g. reverse flux is always so slow that it can be considered zero) and not
from thermodynamic considerations.

4.4.1 Practical Implementation

Recall Obs. 2.6.1. Let w be a given flux vector. For simplicity of notation we again just
consider the subnetwork N sign(wI) as in Thm. 2.6.3. Hence we can assume w.l.o.g. that
w > 0 and that R contains only internal reactions.

We observed that to compute an infeasible set for a polyhedral potential space Q = {µ :
µA ≤ b} we only have to solve an LP (Eq. 2.8):

opt = max{bx− z : −Sv +Ax = 0,1v + z = 1, v ≥ 0, x ≤ 0, z ≥ 0}

We recall that w was feasible if opt < 0. If an infeasible set exists, it can be read of
from the solution variables v. We observe from this LP that if we constrain Q further
to Q′ = {µ : µA ≤ b, µB ≤ 0} we simply add variables for each column in B to the LP:

max{bx− z : −Sv +Ax+By = 0,1v + z = 1, v ≥ 0, x, y ≤ 0, z ≥ 0} (4.4)

When we add constraints for the branching conditions, these constraints are exactly
of the form µB ≤ 0. We further observe that the columns of B are columns of S
corresponding to the reactions where we blocked a direction. It follows that instead of
setting vi > 0 in a feasible solution of (4.4) we can also set yj < 0 if Si = Bj (e.g.,
if we branched on reaction i before). This way we can get a smaller infeasible set and
save time in the branching process. However, the objective function will not enforce the
computation of a v with minimal support.

Hence, we will now reformulate the LP to obtain a formulation, where we can minimize
the support of v. First of all, we observe that we actually do not have to solve the
optimization problem (4.4), but it is sufficient to test whether the following system has
a feasible solution.

bx− z ≥ 0,

−Sv +Ax+By = 0, (4.5)

1v + z = 1,

v ≥ 0, x ≤ 0, y ≤ 0, z ≥ 0
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If it is inconsistent, it follows that w is feasible. If we find a feasible solution, then the
maximum of LP (4.4) is at least 0 and we know that w is infeasible and we can also use
the v from the solution to compute an infeasible set.

A naive approach would now try to minimize 1v over all feasible solutions. This however
will not yield any improvement if there exists no solution with bx > 0.

Proposition 4.4.1 If there exists no solution of (4.5) with bx > 0 then every consistent
solution is also an optimal solution under min1v.

Proof We observe that minimizing 1v is equivalent to maximizing z. To obtain z > 0
it is necessary that there exist solutions with bx > 0. Since this is not possible, we know
that every consistent solution satisfies z = 0 and hence, 1v = 1. It follows that also
every optimal solution satisfies 1v = 1 and hence optimality is no restriction. �

If there exists a solution with bx > 0, it is hard to show a minimality result in general,
but for special matrices B = SX where X contains positive entries we can show the
following result. Observe that such constraints are added when incorporating branching
decisions into the potential space Q.

Proposition 4.4.2 Assume Q = {µ : µA ≤ b, µSX ≤ 0} 6= ∅ with X ∈ RR×k+ . If there
exists a solution of (4.5) with bx > 0 then each optimal solution of

min{1v : bx− z ≥ 0,−Sv +Ax+ SXy = 0,1v + z = 1, v ≥ 0, x ≤ 0, y ≤ 0, z ≥ 0}

satisfies for each j ∈ {1, . . . , k} that there exists an i ∈ supp(X∗j) with vi = 0.

Proof Let (v, x, y, z) be an optimal solution. We observe that bx > 0.

Assume there exists a j ∈ {1, . . . , k} with vi > 0 for all i ∈ supp(X∗j).

Let λ = mini∈supp(X∗j)
vi
Xij

. Clearly, λ > 0. Define v′ := v − λX∗j , and y′ ∈ Rk with

y′k :=

{
yk if k 6= j

yj − λ if k = j
.

We observe that by construction, v′ ≥ 0.

It follows that

−Sv′ +Ax+ SXy′ = −Sv + λSX∗j +Ax+ SXy − λSX∗j = −Sv +Ax+ SXy = 0.

However, it holds that 1v′ + z < 1. We need equality for a feasible solution. This we
can obtain by scaling (v′, x, y′) to a solution (v′′, x′′, y′′) and choosing z′′ appropriately.
To obtain a contradiction we have to show that after the scaling we obtain 1v′′ < 1v
(i.e., z′′ > z).

Therefore we need to control z.
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Claim 4.4.1 bx = z

Proof Assume bx > z. Hence, λ := 1
bx+1−z < 1 is well defined. Define x′ = λx,

y′ = λy, v′ = λv and z′ = 1− λ(1− z). It follows that

bx′ − z′ = λbx− (1− λ(1− z)) =
bx

bx+ 1− z −
bx+ 1− z − (1− z)

bx+ 1− z = 0,

−Sv′ +Ax′ +By′ = λ(−Sv +Ax+By) = 0,

1v′ + z′ = λ1v + (1− λ(1− z)) =
1− z

bx+ 1− z +
bx+ 1− z − (1− z)

bx+ 1− z = 1,

v′ ≥ 0, x′ ≤ 0, y′ ≤ 0, z′ ≥ 0

and hence, (v′, x′, y′, z′) is a feasible solution with 1v′ = λ1v < 1v. This is a contradic-
tion to the optimality of v. �

It follows that when we choose v′′(λ) = λv′, x′′(λ) = λx, y′′(λ) = λy′ we can chose
z′′(λ) = bx′′ = λbx = λz and satisfy for all λ ≥ 0

bx′′(λ)− z′′(λ) ≥ 0

−Sv′′(λ) +Ax′′(λ) + SXy′′(λ) = 0

v′′(λ) ≥ 0, x′′(λ) ≤ 0, y′′(λ) ≤ 0, z′′(λ) ≥ 0.

For λ = 1 we satisfy by construction 1v′′(λ)+z′′(λ) < 1. Since scaling is continuous and
for sufficiently large λ we obtain 1v′′(λ) + z′′(λ) > 1 it follows that there exists a λ > 1
that satisfies 1v′′(λ) + z′′(λ) = 1. It follows that z′′(λ) > z and hence, 1v′′(λ) < 1v.
This is a contradiction to the optimality of v. �

4.4.1.1 Without Bounds on Metabolite Potentials

While Prop. 4.4.2 gives us some hope of a general method to obtain smaller infeasible
sets, it is restricted to the case where we can find a solution with bx > 0. In particular,
if we do not have bounds on metabolite concentrations then x is 0-dimensional (no
constraint on metabolite potentials) and hence, bx = 0 always.

Let us look again at LP 4.5.

We observe that if Q = {µ : µA ≤ b, µB ≤ 0} 6= ∅ (the potential space is consistent),
then every feasible solution of LP (4.5) has v 6= 0. In particular for such a given v, there
exists a reaction r with vr > 0. Due to scaling, we can hence find a solution of:

bx ≥ 0,

−Sv +Ax+By = 0, (4.6)

vr = 1

v ≥ 0, x ≤ 0, y ≤ 0
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Figure 4.1: Only reactions (arcs) that carry flux are shown in this example. Since
{c, e, f} forms an internal cycle, the depicted flow is thermodynamically infeasible.

Assuming that we know such a reaction r already, we can then simply minimize 1v
under the constraints in (4.6). In the special case, where Q is unconstrained (A,B have
no columns) and the infeasible sets are cycles, we observe that this approach will search
for a circuit that contains r and hence compute a minimal infeasible set.

4.4.2 Coupled Reactions and Generalized Infeasible Sets

Let us now consider the example network shown in Fig. 4.1. Assume that all reactions
carry flux. We observe that {c, e, f} is an infeasible set, since its reactions form an
internal cycle. We observe further that reactions e, f are coupled, i.e., if e carries positive
flux that f has to carry positive flux and vice versa. We observe that blocking either e
or f has the same effect and we do not have to consider both options. However, neither
{c, e} nor {c, f} forms an infeasible set and by the current theory we would have to
consider both cases.

We will now generalize the notion of infeasible set so that we do not have to consider
both cases.

Definition 4.4.1 A ∈ RR×k with supp(Ai), supp(Aj) disjoint for all distinct i, j ∈
{1, . . . , k} is called an infeasible set for a potential space Q if

µ ∈ Q
µSAj < 0 ∀j = 1, . . . , k

is inconsistent. 2

We observe that this definition is indeed a generalization of an infeasible set, since we
can model every classical infeasible set as an infeasible set according to Def. 4.4.1:

Proposition 4.4.3 A ∈ {−, 0,+}R is an infeasible set, i.e., (4.3) is inconsistent with
(P,N) = A if and only if A ∈ RR×A with

Aij =


1 i ∈ A+ ∧ i = j

−1 i ∈ A− ∧ i = j

0 otherwise
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is an infeasible set.

Proof Clearly sign(Aj) = ({j}, ∅) for j ∈ A+ and sign(Aj) = (∅, {j}) for j ∈ A−. It
follows that

µ ∈ Q,
µSAj = µSj < 0 ∀j ∈ A+

µSAj = −µSj < 0 ∀j ∈ A−

is inconsistent (i.e., A is an infeasible set) if and only if A is an infeasible set. �

We can now use this generalization to branch on groups of reactions. For example, in
the infeasible cycle {c, e, f}, we can branch on the conditions µSc ≥ 0, µ (Se + Sf ) ≥ 0.
In this case the first branching decision translates to the well known “no positive flux
through reaction c.” The second branching decision however translates to: “through
either reaction e or f no positive flux is possible.” In general this is not very helpful,
since such a condition can not necessarily be formulated using linear constraints. If,
however, e, f are coupled (as in the example), we can use this to get rid of extra branching
decisions. In the example of reactions e, f the condition would simply translate to: “no
positive flux is possible through e and f”. A linear constraint that enforces the condition
for the flux space in this special case can easily be found.

We observe that we can do the same simplification if e, f were only directionally coupled
(e→ f), i.e., if ve > 0 implies vf > 0 (Def. 2.1.9). Consequently vf ≤ 0 implies ve ≤ 0.
Hence, we can simplify (vf ≤ 0 or ve ≤ 0) to ve ≤ 0.

4.4.2.1 Computing Generalized Infeasible Sets

We have observed that we can reduce the number of branching decision of infeasible sets
(Def. 2.6.6) using generalized infeasible sets (Def. 4.4.1) and flux coupling information.
We now discuss how we can compute such generalized infeasible sets.

Theorem 4.4.1 Let A ∈ RR×k be an infeasible set. Then there exists λ1, λ2 ≥ 0
such that B ∈ RR×(k−1) is an infeasible set with Bi = Ai, i = 1 . . . , k − 2 and Bk−1 =
λ1Ak−1 + λ2Ak.

Proof By definition of infeasible set with Q = {µ : µA ≤ b} 6= ∅, we have that the
system

µA ≤ b (4.7)

µSA < 0

is inconsistent. We observe that we can define a modified metabolic network with stoi-
chiometric matrix S′ := SA. By Thm. 2.6.2 and the same arguments as above, it follows
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that (4.7) is inconsistent if and only if

bx− z ≥ 0

−SAv +Ax = 0

1v + z = 1

v ≥ 0, x ≤ 0, z ≥ 0

is consistent.

If vk−1 = 0, we observe that we can drop the (k− 1)-st column of A to obtain B, i.e., by
choosing λ1 = 0 and λ2 = 1. The theorem then holds trivially. Hence for the following
we assume that vk−1 > 0.

We now choose v′ ∈ Rk−1
+ as v′i := vi for i = 1, . . . , k − 1 and λ1 := 1, λ2 := vk

vk−1
.

For B ∈ RR×(k−1) with Bi = Ai, i = 1 . . . , k − 2 and Bk−1 = λ1Ak−1 + λ2Ak it follows
that

SBv′ =
k−2∑
i=1

SAivi + SBk−1v
′
k−1

=

k−2∑
i=1

SAivi + λ1SAk−1vk−1 + λ2SAkvk−1

=
k−2∑
i=1

SAivi + SAk−1vk−1 + SAkvk

= SAv

We observe that λ2 ≥ 0 and hence, v′ also satisfies the sign constraints. However,
1v′ + z = 1 does not have to hold anymore. We observe that 1v ≥ 1v′ > 0 since
v′k−1 = vk−1 > 0. It follows that for all µ ≥ 1 with x′′ = µx, v′′ = µv′, z′′ = µz it holds
that

bx′′ − z′′ = µ(bx− z) ≥ 0,

−SBv′′ +Ax′′ = µ
(
−SBv′ +Ax

)
= 0,

v′′ ≥ 0, x′′ ≤ 0, z′′ ≥ 0

Clearly, there exists a µ ≥ 1 that also satisfies 1v′′ + z′′ = 1. Hence, B is an infeasible
set and the theorem follows. �

As a side product of Thm. 4.4.1 we observe that if we know a witness v for an infeasible
set, then we can directly compute (recursive application of Thm. 4.4.1) a generalized
infeasible set with arbitrary reactions grouped together.

In practice we can now run Alg. 3 to minimize the number of branchings, while still
being able to realize all branchings also as linear constraints in the flux space. Let v be
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a witness of an infeasible set Y . As observed in Sec. 2.6.3.3 we will use the equivalent
interpretation of Y as a set of pseudo-reactions (Y ⊆ R). Core step of the algorithm
is to compute a minimal set X ⊆ Y that represents the branching decisions of Y . The
following proposition states that we can compute X efficiently:

Proposition 4.4.4 A minimal set X ⊆ Y of pseudo-reactions such that each pseudo-
reaction r ∈ Y is coupled from at least one pseudo-reaction s ∈ X (s → r) can be
computed by analyzing the coupling graph G = (Y,E) with

E = {(a, b) ∈ Y 2 : a→ b}

as follows:

• Start with X = ∅.

• Find all strongly connected components.

• For each strongly connected component C test if there exist r ∈ C, s ∈ Y \ C with
s→ r. If this is not the case, add an arbitrary reaction from C to X.

Proof First of all we observe that by transitivity of the coupling relation →, we can
collapse each strongly connected component C to a single representing node c ∈ C and
assume w.l.o.g. that G is acyclic.

By transitivity and reflexivity, it follows now that for every node r there exists a node s
with in-degree 0 such that s→ r. Hence, the algorithm computes a set X such that for
each r ∈ Y there exists a s ∈ X with s→ r.

The minimality of the computed X is also easy to observe, since every node with in-
degree 0 must be an element of X. �

We observe that by Thm. 4.4.1 A will be a generalized infeasible set with branchings
that can be executed by blocking the corresponding directed reaction in X.

Algorithm 3 Algorithm that computes a generalized infeasible set with a smaller
amount of branching decisions.

Input: A witness v of an infeasible set Y
Find a minimal set of pseudo-reactions X ⊆ Y such that for each pseudo-reaction
r ∈ Y there exists a pseudo-reaction s ∈ X such that s→ r.
Set A as in Prop. 4.4.3.
for r ∈ Y \X do

Find a reaction s ∈ X with s→ r.
As = As + vr

vs
Ar.

Delete the column corresponding to r from A.
end for
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4.4.3 Partitioning the Flux Space

A big problem with the proposed branching methods is that we actually do not partition
the solution space in general. The subproblems may actually overlap. This of course
can lead to massive double-computation.

The way out is paved by the idea of interdiction branching [92]. Interdiction branching
is a method developed for ILPs, where conventional branching on fractional variables
leads to one very small subproblem and one huge subproblem. This is precisely the
case in flux optimization problems with thermodynamic constraints if we would simply
branch on single reactions. Blocking flux (i.e., fixing the flux rate to 0) will induce a
small subproblem, while setting flux to be bigger than 0 only reduces the problem very
little (if it does not make it even more complicated). Hence, we have chosen to branch
on infeasible sets. The same idea is followed by interdiction branching.

From the theory of interdiction branching, we will here only use a very simple idea on
how to partition the solution space from an infeasible set.

Assume that we computed an infeasible set consisting of reactions r, s, t (in forward
direction). In our classical branching scheme, we branch on the following 3 cases:

1. ∆µr ≥ 0

2. ∆µs ≥ 0

3. ∆µt ≥ 0

The key insight is now that if our solution is not contained in the first case, it has to
satisfy ∆µr < 0. Hence, we can strengthen our three branching cases to

1. ∆µr ≥ 0,

2. ∆µr ≤ 0 ∧∆µs ≥ 0,

3. ∆µr ≤ 0 ∧∆µs ≤ 0 ∧∆µt ≥ 0.

If we branch into the third condition, this implies that we block r, s in backward direction
and block t in forward direction. Hence, these branching conditions can also be directly
enforced on the flux space.

4.5 Heuristics

Another key aspect of constraint programming are heuristics. In my master thesis, I
introduced a heuristic that turns thermodynamically infeasible solutions into thermody-
namically feasible (without bounds on concentrations) solutions by subtracting internal
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cycles. Here, we will quickly recall this heuristic, since it continues to be the main
workhorse for solving thermodynamically constrained flux optimization problems.

While the cycle subtraction heuristic works very well for unconstrained potential spaces,
the effectiveness decreases dramatically as soon as we work with bounds on metabolite
potentials. This is simply caused by the fact that the infeasible sets are not cycles
anymore. Hence, an infeasible set that is preventing a solution from being feasible
cannot be resolved by subtracting the infeasible set, since this would destroy the steady-
state condition. Hence, we will discuss a new approach for designing heuristics for the
general case.

4.5.1 Cycle Subtraction

A comprehensive discussion of this method can be found in my master thesis [99]
and in my publication on fast thermodynamically constrained flux variability analysis
[101].

For theoretical results on this heuristic, we had to observe that internal flux forcing
reactions and objective reactions in internal cycles can cause problems. To define the
set C of reactions in internal cycles, we recall that we can uniformly deal with lower
and upper bounds using pseudo-reactions (Def. 2.1.6) and define the set of irreversible
reactions Irrev given these bounds (Def. 2.1.7).

Definition 4.5.1 (Reactions in Internal Cycles) Let (M,R = I∪̇E , S) be a metabolic
network with irreversible reactions Irrev ⊆ R. The set of reactions in internal cycles is
given by

C := {r ∈ I : SIv = 0, vIrrev ≥ 0, vr > 0 ∃v ∈ RI}

Definition 4.5.2 Let N = (M, R = I∪̇E , S) be a metabolic network.

Given lower and upper flux bounds `, u ∈ RR, a pseudo-reaction r is called flux-forcing
if `r > 0.

For a linear objective function c ∈ RR, a pseudo-reaction r is called objective if cr > 0.2

Theorem 4.5.1 Let N = (M,R = I∪̇E , S) be a metabolic network with lower and
upper flux bounds `, u ∈ RR and a linear objective function c ∈ RR. Let F ⊆ R be the
set of reactions that are flux-forcing, and let O ⊆ R be the set of objective reactions.

Given a steady-state flux v with ` ≤ v ≤ u, a thermodynamically feasible flux v∗ with
cv ≤ cv∗ and ` ≤ v∗ ≤ u can be computed in polynomial time w.r.t. the size of the
network N if C ∩ (F ∪ O) = ∅. Furthermore, it holds that v∗E = vE and there exists an
internal circulation w ∈ RI with SIw = 0, sign(w) ⊆ sign(v) and v∗I + w = vI .

64



4.5. HEURISTICS

Proof This theorem was already stated in a similar fashion as Thm. 9 in [99] and
Thm. 2 in [101]. However, due to its more refined formulation with pseudo-reactions, it
is not identical. However, the proof goes along exactly the same lines.

The key to the proof of Thm. 4.5.1 is Alg. 4, which gives the wanted polynomial-time
algorithm.

Therefore, we observe that by construction of Alg. 4 we only subtract internal cycles
with smaller sign-support. Thus, we get that sign(v∗) ⊆ sign(v), |v∗r | ≤ |vr| for all r ∈ R
, and that there exists a w ∈ RI with SIw = 0, sign(w) ⊆ sign(v) and v∗I + w = vI .
Clearly, the flux bounds for all non-flux forcing reactions stay satisfied.

For every flux forcing reaction r ∈ F we know that r 6∈ C and hence, wr ≤ 0. However,
since r is flux-forcing, we also know that vr ≥ 0 and thus we conclude that wr = 0.
Therefore, also the flux bounds for the flux-forcing reactions stay satisfied and v∗ is a
steady-state flux that satisfies the flux bounds.

Since cycles are subtracted until no internal cycle can be found, the thermodynamic
feasibility of v∗ follows (Prop. 5 in [99]).

We observe that cIw ≤ 0 since there exists no pseudo-reaction r ∈ R with cr > 0 and
wr > 0 since O ∩ C = ∅. Hence, it follows that cv ≤ cv∗.
Similarly it follows that vE = v∗E (Obs. 1 in [99]). �

Note that if v is chosen to maximize cv, then clearly cv = cv∗ follows.

Algorithm 4 This algorithm computes a thermodynamically feasible flux out of a pos-
sibly thermodynamically infeasible flux, if the conditions of Thm. 4.5.1 are satisfied. It
runs in polynomial time. (1 denotes a vector where all entries are 1.)

Input: A steady-state flux v
repeat

I+ := {i ∈ I : vi ≥ 0}
I− := {i ∈ I : vi ≤ 0}

L := arg max


1LI+ − 1LI− : SIL = 0,

vI− ≤ LI− ≤ 0,
vI+ ≥ LI+ ≥ 0


vI := vI − L

until 1LI+ − 1LI− = 0
return v

4.5.2 First Directions, then Fluxes

In the cycle deletion heuristic, we took a thermodynamically infeasible solution that
satisfied the steady-state condition and modified it to also satisfy the thermodynamic
constraints. Since this approach seems to be rather difficult for general potential spaces,
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we will now go the other way round: We will first assign directions to all reactions to
make them thermodynamically consistent and then compute a steady-state flux vector
through this system that obeys the previously assigned directions.

Since computing an optimal steady-state flux vector that satisfies the assigned reac-
tion directions can easily be solved using linear programming, we now discuss how the
potentials can be chosen from which the reaction directions are inferred.

The following observations and conclusions are made on E. coli iAF1260. For this model
information on equilibrium constants was published in the supplementary material of
[43]. Since the default model already contains a lot of irreversibility information that
makes the potential bounds redundant, I removed all the irreversibility constraints for
internal reactions (for more details see Sec. 5.2.4).

4.5.2.1 Approach 1: Mean Values from Lower and Upper Bounds

Let us assume that the potential space is only constrained by lower and upper bounds
`, u ∈ RM on the metabolite potentials.

Since the lower and upper bounds originate from uncertainties around a physiologically
likely potential, it makes sense to simply use this potential as our guess. Hence, we
simply use the mean potential

µmean :=
u+ `

2

and set reaction r to be in forward direction if µmeanSr < 0 and set it to backwards if
µmeanSr > 0.

In practice we will also have to deal with metabolites on which no potential bounds
could be estimated. These metabolites have bounds of −∞ and∞, where the average is
not defined. However, even if I assume all reactions incident to metabolites with infinity
bounds to be reversible, the resulting metabolic network did not allow a feasible steady-
state flux vector. Note that the 0-flux vector is not feasible in E. coli iAF1260, since it
always requires some positive flux through an artificial ATP maintenance reaction.

The problem of this approach lies in the fact that the metabolite concentrations are
unknown and the lower and upper potential bounds are hence also not equally distributed
around the actual concentration.

4.5.2.2 Approach 2: Orientation on Steady-State Solution

Since the heuristic is usually called during the branch and bound framework of the
constraint integer programming solver, we can assume that there is a current steady-
state solution v available (which is however thermodynamically infeasible).

If we cannot find a potential vector µ ∈ Q that proves thermodynamic feasibility of v
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(i.e., µSrvr < 0 for all r ∈ supp(v)), we can at least try to maximize the number of
reactions with µSrvr < 0.

To do this, we solve

minαs (4.8)

s.t.µSr − sr ≤ 0 ∀r ∈ R : αr > 0

µSr + sr ≥ 0 ∀r ∈ R : αr < 0

µ ∈ Q
s ≥ 0

with αr = 1 for all vr > 0, αr = −1 for all vr < 0 and 0 otherwise.

Since we minimize a L1-norm, it is likely that we compute a solution with small support
in s. It follows that for many reactions in supp(v), we obtain µSrvr ≤ 0. Although,
we actually require strict inequality, this discrepancy did not seem to be too relevant in
practice (i.e., all solutions computed this way were actually thermodynamically feasible
also with strict inequalities).

The directions obtained from this approach at least allowed flux through ATP mainte-
nance and the resulting LP of the flux-optimization step was feasible. However, no flow
through the biomass reaction was possible.

4.5.2.3 Approach 3: Reiteration using Dual Variables

We observe that the choice of α in approach 2 was rather arbitrary. Instead, we could
have chosen α = v to make reactions with a lot of flux more important. Even more
important, α does not need to have the same sign as the reference flux distribution.
We now want to exploit that the dual solution of an LP tells us which inequalities are
constraining the solution. In our case, the inequalities of the FBA problem are (with a
few exceptions) the irreversibility constraints induced from the computed µ. Hence, the
dual solution of the flux optimization step tells us through which reactions we should
send flux in the opposite direction than in the current solution to obtain a better flux.

Changing αr according to the reduced costs and resolving (4.8) will lead to a new solution
that is more likely to also produce some biomass. This can be reiterated until a good
enough solution is found, or the quality of the solutions (for example measured in the
objective value) decreases.

In practice, this heuristic indeed managed to find thermodynamically feasible fluxes that
also had flux through the biomass reaction. However, this required many iterations of
resolving.
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4.6 Conclusion

In this chapter we have seen that we can reduce the number of branching decisions by
branching on the potential space instead of just the flux space and by making sure that
the branching decisions actually form a partition. Furthermore, we saw that we can
easily incorporate additional structural information like flux coupling data to reduce the
number of branchings even more. However, an empirical verification of these improve-
ments turned out to be difficult, because the run time depends highly on the order of
the branchings, which easily changes when the branching method is modified. In partic-
ular, these improvements were not sufficient to enable thermodynamic FVA on Human
recon. 1.

For the case that also bounds on metabolite potentials should be included, it should
be noted that for well-curated models, like E. coli iAF1260 most of the thermodynamic
information is already encoded in the reaction reversibilities. Hence, the bounds on
metabolite potentials do not pose a significant restriction of the flux space and the
standard algorithm works very well. On the other hand, if reversibility information is
removed, the optimization problem becomes very hard. It should be noted that the
problem seems to be particularly hard for weak thermodynamic constraints (Def. 2.6.2),
as investigated in this section.

It is interesting that if the problem is formulated with strong thermodynamic constraints
(Def. 2.6.1) or relaxed thermodynamic constraints (Def. 2.6.3), then MILP approaches,
for example with FASIMU [68, 69], can solve the flux optimization problem efficiently
in a few minutes (oral communication from Andreas Hoppe). However, with weak ther-
modynamic constraints also FASIMU is not able to solve the flux optimization problem
(takes more than a day).
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Chapter 5

Potential Optimization

Abstract Thermodynamic constraints are frequently not only used as constraints for
the flux space, but also to infer metabolite concentrations or at least concentration ranges
[82, 25, 106].

In the first part of this chapter, we will discuss how we can deal with the strict inequalities
in the definitions of weak and strong thermodynamic constraints (Def. 2.6.2, 2.6.1) in
linear and mixed integer linear programs. We will observe that this will lead to similar
techniques as applied already for flux optimization.

In the second part of this chapter, we will discuss a method to tighten the ranges
of feasible metabolite potentials. This does not only have applications for potential
optimization, but can also be used to tighten constraints and detect blocked reactions
for flux optimization.

5.1 Strict Inequalities

We recall that in the case of the strong (Def. 2.6.1) and weak (Def. 2.6.2) formulation
of thermodynamic constraints, we have a constraint of the form

µSrvr < 0 or vr = 0 (and µSr = 0) ∀r ∈ I.

While we can deal with the “or” using standard integer programming techniques, the
strict inequality makes problems. In the case of flux optimization for the weak formula-
tion we were able to circumvent the problem by using a formulation based on infeasible
sets and combinatorial Benders’ cuts (see Sec. 4). This only worked since the projection
to the flux variables is topologically closed.

Let us now consider the very simple example network shown in Fig. 5.1 and assume that
there is a fixed flux of 1 through the network. It follows that µA > µB must hold. It
follows that µA = 0 is not feasible, because µB < 0 is not allowed. However µA = ε for
every ε > 0 is possible, because we can choose µB = 0. Hence, the potential space is not
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closed. We observe that it is irrelevant whether we use the weak or the strong definition
of thermodynamic constraints, since we assumed a flux of 1 through all reactions.

A B

µA ∈ [0, 1] µB ∈ [0, 1]

Figure 5.1: A very simple example network. The bounds on potentials are specified
as closed intervals under the metabolites. It is easy to see (under the assumption that
each reaction carries flux) that metabolite A cannot attain its minimal potential and B
cannot attain its maximal potential. However, all other potentials can be attained.

We conclude that when we optimize on metabolite potentials, it may be that the op-
timization problem is bounded but an optimum does not exist. For many practical
applications it may be sufficient to compute a near-optimal solution. Often found so-
lutions (e.g. [69, 25, 137]) simply tighten each strict inequality ax < b by an ε > 0 to
ax ≤ b− ε.
This approach can lead to numerical instabilities (ε usually has to be orders of mag-
nitude smaller than the other parameters) and will always have the flavor of artificial
arbitrariness. Hence, we rather would want to compute the supremum or infimum in-
stead.

5.1.1 Strict Inequalities in Linear Programming

Let us consider the following feasible domain of an LP with strict inequalities:

F := {x ∈ Rm : Ax ≤ e, Cx < f}.

For sets A ⊆ Rm let A denote the (topological) closure of A.

The question of how to deal with strict inequalities does not seem to be widely discussed
in the literature. In the case of linear programs the reason is also rather evident as
observed by Goberna et al. [56] (in the original formulation, they even allow an infinite
set of constraints):

Proposition 5.1.1 (Prop. 1.1 in [56]) If F 6= ∅, then it holds that F = F ′ for

F ′ := {x ∈ Rm : Ax ≤ e, Cx ≤ f}.

It follows that in the case of linear programming, we only have to make sure that
the stated problem is feasible and then we can forget about the strict inequalities and
solve using conventional methods. We observe that in the case of linear programming
the shrinking of the constraints by ε is indeed unnecessary and only poses the risk of
numerical instability.
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5.1.2 Strict Inequalities in Mixed Integer Linear Programming

Let us here consider the following feasible domain of an MILP with strict inequalities:

F := {(x, y) ∈ Rm × Zn : Ax+By ≤ e, Cx+Dy < f}.

In the case of MILP, the existence of a feasible solution in F is not sufficient to guarantee
equivalence between the closure F of F and its relaxation

F ′ = {(x, y) ∈ Rm × Zn : Ax+By ≤ e, Cx+Dy ≤ f}.

as the following example shows: The system {(x, y) ∈ R× {0, 1} : x > 0, x− y < 0} has
a feasible solution (0.5, 1) but (0, 0) is not in the closure, since there exists no feasible
solution with y = 0.

However, it is sufficient to add cuts to exclude infeasible assignments.

For the following results define

F (y) := {x ∈ Rm : (x, y) ∈ F}
F ′(y) := {x ∈ Rm : (x, y) ∈ F ′}
Y ∗ := {y ∈ Zn : F (y) 6= ∅}.

We observe that Y ∗ satisfies a certain convexity property, i.e., if y′ ∈ Zn can be written
as a convex combination of points in Y ∗, then y′ ∈ Y ∗. Hence, infeasible points can be
cut off:

Lemma 5.1.1 For each y′ ∈ Zn \ Y ∗ there exists a g ∈ Rn, h ∈ R such that gy ≤ h for
all y ∈ Y ∗ and gy′ > h.

Proof Assume that there exists no g ∈ Rn, h ∈ R such that gy ≤ h for all y ∈ Y ∗ and
gy > h. This can be equivalently reformulated using the following LP:

0 ≥ max gy′ − h
s.t gy − h ≤ 0 ∀y ∈ Y ∗
g ∈ Rn, h ∈ R

It can be easily seen that the LP is feasible and it is bounded by assumption. It follows
by LP-duality that the dual LP is feasible and satisfies

0 ≥ min 0α (5.1)∑
y∈Y ∗

αy = y′

∑
y∈Y ∗

α = 1

α ≥ 0.
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It follows that y′ can be written as a convex combination of points in Y ∗. By definition
of Y ∗ there exists for each y ∈ Y ∗ a x(y) ∈ F (y) and hence (x(y), y) ∈ F . Let α be a
feasible solution of LP (5.1). It follows that

y′ =
∑
y∈Y ∗

αy and define

x′ :=
∑
y∈Y ∗

αx(y).

By convexity it follows that Ax′ +By′ ≤ e and Cx′ +Dy′ < f . Since y′ ∈ Zn it follows
that (x′, y′) ∈ F and hence, F (y′) 6= ∅ and y′ ∈ Y ∗. �

Theorem 5.1.1 There exists a (possibly infinite) set of linear inequalities giy ≤ hi, i ∈ I
such that

F =
{

(x, y) ∈ F ′ : giy ≤ hi ∀i ∈ I
}
.

Proof By definition of Y ∗ it follows that

F =
⋃
y∈Zn

F (y) =
⋃
y∈Y ∗

F (y). (5.2)

By Lemma 5.1.1 there exists for each y′ ∈ I := Zn \ Y ∗ a gy′ ∈ Rn, hy′ ∈ R with

gy′y ≤ hy′ ∀y ∈ Y ∗
gy′y

′ > hy′ .

It follows that
giy ≤ hi ∀i ∈ I

is satisfied for y ∈ Zn if and only if y ∈ Y ∗. By Prop. 5.1.1 we have F (y) = F ′(y) for all
y ∈ Y ∗ and hence, it follows by (5.2) that

F ⊇
⋃
y∈Y ∗

F (y)

=
⋃
y∈Zn

{x ∈ Rm : Ax+By ≤ e, Cx+Dy ≤ f, giy ≤ hi ∀i ∈ I}

= {(x, y) ∈ Rm × Zn : Ax+By ≤ e, Cx+Dy ≤ f, giy ≤ hi ∀i ∈ I}
= {(x, y) ∈ F ′ : giy ≤ hi ∀i ∈ I}.

Assume now that F ⊃ {(x, y) ∈ F ′ : giy ≤ hi ∀i ∈ I}. Hence there exists a sequence
(xn, yn)n∈N ∈ F with (xn, yn)→ (x, y) and (x, y) 6∈ F ′ or giy > hi for one i ∈ I.

Since F ⊆ F ′, it follows that there exists an i ∈ I with giy > hi. By definition of
convergence, there exists a (x′, y′) ∈ F with ‖x − x′‖22 + ‖y − y′‖22 ≤ ε for an ε < 1.
Hence, it follows that ‖y − y′‖22 < 1 and thus, y = y′.

We conclude that F (y) 6= ∅ and hence giy ≤ hi for all i ∈ I, a contradiction. �
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5.1.3 Integration into MILP-solver

By Prop. 5.1.1 we know a simple condition to check if an LP is consistent with the strict
inequalities. We can apply this condition for each LP-relaxation that is solved during
the solving of the MILP.

Since the integer variables y are treated as continuous variables in the LP relaxation, we
also do not distinguish between them in this section. Instead we use y to denote those
integer variables that have already been fixed and x denotes the continuous and unfixed
variables. This applies to tentative solutions and nodes in the branch-and-bound tree.

5.1.3.1 Feasibility Check at Nodes

To check if a LP with strict inequalities is feasible, we simply have to solve:

v = max z

s.t. Ax+By ≤ e
Cx+Dy + 1z ≤ f
x ∈ Rm

z ∈ R

This we can do for tentative solutions and for nodes of the branch-and-bound tree.

Additionally to the usual solving procedures, we obey the following three conditions:

• In the case of the branch-and-bound tree, v ≤ 0 implies that the node is infeasible
and can be cut off.

• In the case of a tentative solution, v ≤ 0 implies the solution is infeasible and must
be discarded.

• If we find a solution with v > 0, we know that there exists a solution satisfying the
strict inequalities and any solution satisfying the relaxation with weak inequalities
lies in the closure. Hence, we can continue as usual.

Since we check every solution for strict feasibility and only cut off nodes that cannot
contain a solution satisfying all strict inequalities, it follows that the modified method
will compute precisely an optimal solution in the closure of the strict feasible domain.

5.1.3.2 Adding Combinatorial Benders’ Cuts for Boolean Decision Variables

Of course, when we find an infeasible solution, we want to learn from that infeasibility
and cut off as many other similar infeasible solutions as possible. This can be done using
a similar technique to combinatorial Benders’ cuts [24]. Here we will only consider the
case where the fixed decision variables y are Boolean.
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Theorem 5.1.2 Assume that F ′(y) 6= ∅. Then F (y) = ∅ if and only if the following
system is consistent:

α(e−By) + β(f −Dy) + γ ≤ 0

αA+ βC = 0 (5.3)

γ + β1 = 1

α, β, γ ≥ 0

Proof Since F ′(y) 6= ∅ it follows that the following system (for fixed y) is feasible and
bounded:

z∗ = max z

Ax+By ≤ e
1z + Cx+Dy ≤ f

z ≤ 1

Hence, z∗ exists and z∗ = 0 if and only if F (y) = ∅ (since F ′(y) 6= ∅, there exists a
feasible solution with z = 0). Using the duality theorem, we conclude that F (y) = ∅ if
and only if

0 = minα(e−By) + β(f −Dy) + γ

αA+ βC = 0

γ + β1 = 1

α, β, γ ≥ 0

which is equivalent to consistency of

α(e−By) + β(f −Dy) + γ ≤ 0

αA+ βC = 0

γ + β1 = 1

α, β, γ ≥ 0.

�

Now we can use Theorem 5.1.2 to derive combinatorial Benders’ cuts for a given solution
(x∗, y∗). To obtain strong cuts, we want to have as many non-zero coefficients in the cut
as possible. Assume we have α, β, γ satisfying (5.3).

Recall that we assumed for this subsection that all decision variables y are Boolean. For
this case we observe the following:

• If y∗i = 1 and αBi+βDi ≤ 0, then α, β, γ will also prove infeasibility if yi = 0 (and
the rest of yj = y∗j for all j 6= i). This is the case because the first inequality of
(5.3) will stay satisfied and the rest of the inequalities do not involve y.
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• Similarily, if y∗i = 0 and αBi + βDi ≥ 0, then α, β, γ will also prove infeasibility if
yi = 1.

We can find such a solution by solving (with sufficient large constant M):

min 1v

αBi + βDi ≤Mvi for all i with y∗i = 1

αBi + βDi ≥ −Mvi for all i with y∗i = 0

α(e−By∗) + β(f −Dy∗) + γ = 0

αA+ βC = 0

γ + β1 = 1

α, β, γ ≥ 0

v ∈ {0, 1}n

Observe that, even if we solve the LP relaxation, we are likely to get a v with small
support.

For each feasible solution v of this MILP and each feasible solution (x, y) ∈ F of the
original problem we know that y must be distinct from y∗ in at least one index i, where
vi > 0, i.e., ∑

i∈supp(v):y∗i =1

(1− yi) +
∑

i∈supp(v):y∗i =0

yi ≥ 1.

We remark that although we know that even for general integer variable y there exists a
valid inequality that cuts of the current solution (Lemma 5.1.1), it is unclear how such
a cut can be computed efficiently.

5.1.4 Application to Thermodynamic Constraints in Metabolic Net-
works

Let us now come back to the motivation for which we looked at MILPs with strict
inequalities: Thermodynamic constraints. Let us recall Prop. 5.1.1: If all integer decision
variables are fixed, we only need to check if there exists a feasible solution and then work
with the weak inequalities.

In the case of weak thermodynamic constraints w.r.t. a metabolite space Q = {µ :
µA ≤ b} the decision variables are the directions of the reactions which are implied by a
given flux distribution. It follows that the feasibility test is precisely the same test that
we already used and developed to test thermodynamic feasibility of a flux distribution.
Furthermore, the cutting planes and branching strategies developed for flux optimization
can also be applied to enforce the strict inequalities.

In the following we will see that the cuts that we derive for dealing with strict inequalities
are the same inequalities that we have already been investigating for flux optimization.
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We recall that we can formulate thermodynamic constraints as follows using Boolean
decision variables (with sufficiently large M):

Sv = 0 (steady-state assumption)

` ≤ v ≤ u (flux bounds)

µA ≤ b (physiological potentials)

∆µ− µS = 0 (potential differences)

v ≤Ma (indicator for possible fwd. flux) (5.4)

v ≥ −Mb (indicator for possible bwd. flux)

∆µ < M(1− a) (if fwd. flux, potential difference must be negative)

∆µ > −M(1− b) (if bwd. flux, potential difference must be positive)

a+ b ≤ 1 (only fwd. or bwd. flux is possible)

a, b ∈ {0, 1}I

Since we now want to also optimize over the chemical potentials, we cannot project
out µ as we did for flux optimization. As discussed in Sec. 5.1.3 we will deal with the
strict inequalities by replacing them with weak inequalities and making sure that the
subproblems stay feasible with respect to the strict inequalities.

As we previously observed, the link between the fluxes v and the potential differences
∆µ is very weak due to the large (M) coefficients on the Boolean variables. Hence,
in the following we will only consider restrictions in the form of fixed Boolean decision
variables.

The fixed decision variables take effect by defining subsets N,P with N ∪̇P ⊂ I. N
is the set of reactions that must have negative potential difference. P is the set of
reactions that must have positive potential difference. For the remaining reactions the
flux direction has not yet been decided and hence, they do not pose any direct constraint
on the sign of the potential difference. Thus, we consider the direction unconstrained.

We analyze the following system:

µSi < 0 ∀i ∈ N
µSi > 0 ∀i ∈ P
µA ≤ b

Additionally, we will assume that the potential space is non-empty, i.e., Q 6= ∅.
Clearly, the system is consistent if the following optimization problem is feasible and has
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an optimal solution greater than zero:

max z

s.t. µSi + z ≤ 0 ∀i ∈ N
µSi − z ≥ 0 ∀i ∈ P

µA ≤ b
z ≤ 1

We observe that this optimization problem is just a reformulation of Eq. (2.7). Hence,
we see that we do not have to develop a new theory for optimizing metabolite potentials
but we can just reuse the results from flux optimization and apply them on MILP (5.4)
with weak inequalities.

5.2 Improving Bounds on Potentials

Let us consider a metabolic network with n alternative pathways of length k from a
metabolite A to a metabolite F , as shown in Fig. 5.2. It can easily be seen that no
thermodynamically feasible flow is possible through this network due to the metabolite
potential bounds. However, if we apply the approach of minimal infeasible sets this will
not be determined immediately but only after checking kn possibilities.

A B2 C2 D2 E2 F

B1

Bn

C1

Cn

D1

Dn

E1

En

µA ∈ [−k, 0]
µBi
∈ [1− k, 1]

µCi
∈ [2− k, 2]

µDi
∈ [−2, k − 2]

µEi
∈ [−1, k − 1]

µFi
∈ [0, k]

Figure 5.2: We observe that there is no thermodynamically feasible flow possible from
metabolite A to metabolite F , since the highest potential at A (µA ≤ 0) is not bigger
than the lowest potential at F (µF ≥ 0).

Since no two reactions are coupled, it follows that for each chain we get an infeasible set
consisting of k pairs of parallel reactions. This induces (at least) k branching decisions.
Since none of these branching decisions will influence the other chains, we have to do the
branching decisions for the other chains also. It follows that we get kn branching deci-
sions. We observe that we are even rather lucky in this case, because with the extended
branching scheme discussed in Sec. 4.4 it follows that with each branching decision on
one reaction, we automatically also fix the potential difference and the parallel reac-
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tion gets blocked automatically, too. Hence, for each pathway k branching decisions are
sufficient to determine that the pathway cannot operate.

5.2.1 Introduction: the Graphic Case

The central idea of the approach is to abstract from steady-state fluxes and to just work
in the metabolite space. Since the potential of a metabolite is unconstrained (except by
the given potential bounds) if the metabolite is neither produced nor consumed, we study
the range of feasible metabolite potentials under the assumption that the metabolite is
produced and consumed. This condition can easily be translated to a condition in the
potential space.

We will first analyze the graphic case, because it is easier. Let G = (V,A) be a digraph
(that represents the metabolic network). Let W− ⊆ V be the nodes with in-degree 0. We
can understand these nodes as metabolites that can be supplied from the environment.
Let W+ ⊆ V be the nodes with out-degree 0. We can understand these nodes as
metabolites that can be secreted to the environment.

Let `, u ∈ RV be lower and upper bounds on the potentials, i.e., we assume that the
potential space has the form Q = {µ ∈ RV : ` ≤ µ ≤ u}.
To simplify notation, we will allow −∞,∞ as feasible potential values to deal with
metabolites that are essentially not producible, hence we will work with potentials µ ∈
RV∞.

We will now develop a feasibility concept for the assumption that every metabolite is
produced and consumed. Although this assumption will not be satisfied in practice, it
will lead to a set of definitions that we can later use for less restricted cases.

In the graph-world this assumption means that for every node v ∈ V \W− there must
exist an arc (w, v) ∈ A from a node w with higher potential (enforced by upper-bound
feasible, see Def. 5.2.1) and for every v ∈ V \W+ there must exist an arc (v, w) ∈ A
to a node w with lower potential (enforced by lower-bound feasible, see Def. 5.2.2).
Additionally the pre-defined upper bounds (for upper-bound feasible) and lower bounds
(for lower-bound feasible) have to be satisfied. In general, it will be impossible to find
a potential µ ∈ RV∞ that is both upper-bound feasible and lower-bound feasible at the
same time. However it is easy to see that it is always possible to find a potential µ ∈ RV∞
that is only upper-bound feasible, or respectively lower-bound feasible.

Definition 5.2.1 (upper-bound feasible) µ ∈ RV∞ is called upper-bound feasible if
for all v ∈ V

• µv ≤ min
(
uv,max(w,v)∈A µw

)
or

• µv ≤ uv and v ∈W−. 2
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Definition 5.2.2 (lower-bound feasible) µ ∈ RV∞ is called lower-bound feasible if for
all v ∈ V

• µv ≥ max
(
`v,min(v,w)∈A µw

)
or

• µv ≥ `v and v ∈W+. 2

While upper-bound feasible and lower-bound feasible define a local feasibility property,
we can define global feasibility using paths.

Definition 5.2.3 (Path to v ∈ V ) We call P = (p1, . . . , pk) a path to v if

• p1 ∈W−

• pk = v

• (pi, pi+1) ∈ A for all 1 ≤ i < k 2

Definition 5.2.4 (Path from v ∈ V ) We call P = (p1, . . . , pk) a path from v if

• pk ∈W+

• p1 = v

• (pi, pi+1) ∈ A for all 1 ≤ i < k 2

We can now use the paths to define potentials µmax ∈ RV∞ and µmin ∈ RV∞ with:

µmax
v := max

P path to v

(
min
w∈P

uw

)
µmin
v := min

P path from v

(
max
w∈P

`w

)

We will now show that µmax and µmin are upper-bound feasible, resp. lower-bound
feasible (Prop. 5.2.1, Cor. 5.2.2) and that the following theorem holds:

Theorem 5.2.1 Let (u,w) ∈ A. If µmax
u ≤ µmin

w , then there exists no thermodynamically
feasible flow through (u,w). 2

While in the case of graphs, we actually can compute µmax and µmin in polynomial time,
this will not be the case for metabolic networks in general. There we will have to use
the maximal upper-bound feasible potential and minimal lower-bound feasible potential
to approximate µmax and µmin.
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Corollary 5.2.1 Let µmax, µmin ∈ RV∞ such that

µ ≤ µmaxfor all upper bound feasible µ

µ ≥ µminfor all lower bound feasible µ

Then it holds for (u,w) ∈ A with µmax
u ≤ µmin

w that there exists no thermodynamically
feasible flow through (u,w).

Proof By Prop. 5.2.1, Cor. 5.2.2 it follows that µmax, µmin are upper-bound feasible,
resp. lower-bound feasible. Hence,

µmax
u ≤ µmax

u ≤ µmin
w ≤ µmin

w

and the result follows by Thm. 5.2.1. �

We now give the deferred proofs for the promised results.

Proposition 5.2.1 µmax is upper-bound feasible.

Proof W.l.o.g. it suffices to take the maximum over only simple paths, because if a
path contains a cycle, we could simply remove the cycle and would then only take the
minimum over a subset of the original values.

Since there is only a finite number of simple paths in a graph, µmax is well defined.

We will show that the upper-bound property is satisfied for all v ∈ V .

If v ∈W−, there exists only one path to v, namely (v). By definition µmax
v = uv, hence

the property is satisfied for v.

Otherwise, v 6∈W− and every maximizing path P to v has at least length 2. Hence, we
can write P = (p1, . . . , pk, v), where possibly k = 1. Define Q := (p1, . . . , pk). Since Q is
a path to pk, it follows by definition of µmax that

µmax
pk
≥ min

w∈Q
uw

µmax
v = min

w∈P
uw = min

(
uv,min

w∈Q
uw

)
⇒ µmax

v ≤ min
(
uv, µ

max
pk

)
≤ min

(
uv, max

(w,v)∈A
µmax
w

)
.

Hence, µmax is upper-bound feasible. �

Corollary 5.2.2 µmin is lower-bound feasible.
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Proof Let G′ be the graph G with reversed arcs. Consequently, every path P from
v in G bijectively corresponds to a path P ′ to v in G′ (by reversing the path). Define
additionally `′ = −u and u′ = −`.
It follows that µ is lower-bound feasible in G w.r.t. `, u if and only if −µ is upper-bound
feasible in G′ w.r.t. `′, u′. Also, the definition of µmin in G with `, u is equivalent to the
definition of µmax in G′ with `′, u′.

Hence, by Prop. 5.2.1, the corollary follows. �

Proof (Thm. 5.2.1) Assume there exists a thermodynamically feasible flow through
(u,w). It follows that there exists a path P = (p1, . . . , pk = u,w = pk+1, . . . , pn) and
potentials µ satisfying

µpi > µpi+1 ∀i = 1, . . . , pn−1

`v ≤ µv ≤ uv ∀v ∈ P

By definition of µmax and µmin, we have µu ≤ µmax
u and µw ≥ µmin

w . It follows that

µu ≤ µmax
u ≤ µmin

w ≤ µw,

a contradiction to µu = µpk > µpk+1
= µw. �

As concluding remark, we observe that the approximation of µmax, µmin by µmax, µmin

in Corollary 5.2.1 will be perfect in acyclic parts but can be arbitrarily bad if cycles are
part of the network:

Proposition 5.2.2 It holds that

µmax
v = min

(
uv, max

(w,v)∈A
µmax
w

)
µmin
v = max

(
`v, min

(w,v)∈A
µmin
w

)
.

Proof We only show the result for µmax, since the result for µmin can then be obtained
using the same construction as in Cor. 5.2.2.

Assume v ∈ V fixed but arbitrary. If µmax
v = uv, the claim follows immediately. Hence,

we will only consider the case where µmax
v < uv. Let w ∈ V such that (w, v) ∈ A and

µmax
w is maximized. By definition of µmax, there exists a path P = (p1, . . . , pk) to w with

minx∈P ux = µmax
w . By defining Q := (p1, . . . , pk, v) it follows that Q is a path to v and

µmax
v ≥ min

x∈Q
ux = min

(
uv,min

x∈P
ux

)
= min (uv, µ

max
w ) .

Since µmax
v < uv, it follows that µmax

v ≥ µmax
w and together with Prop. 5.2.1, we obtain

equality. �
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Observation 5.2.1 It is, however, not the case that µmax is the maximal upper-bound
feasible µ. Consider a cycle, where all vertices have a maximal potential of 10 and all
arcs to vertices of the cycle start at vertices with a maximal potential of 1. It follows that
µmax
v = 1 for all cycle vertices, although µv = 10 would also lead to a feasible solution.2

We also observe that also with µmax and µmin we do not get an “if and only if” condition
in Thm. 5.2.1. Let us consider the graph shown in Fig. 5.3. We observe that the arc from
G to H can only be operated by a thermodynamically infeasible cycle. Hence, it cannot
carry flow. However, Thm. 5.2.1 does not predict this, since −1 = µmin

H < µmax
G = 1.

A C

D E

F

GH

B

µA ∈ [−1, 1] µB ∈ [−1, 1]

Figure 5.3: For the nodes A,B bounds on the potentials are given. The remaining nodes
are unconstrained (or have irrelevant big bounds). Since every node is reachable from
A, it follows that µmax

v = 1 for each node v. Similarly since we can reach B from every
node, it follows that µmin

v = −1 for each node v.

5.2.1.1 Computation of µmax (µmin analogous)

In the case of graphs, we can compute µmax exactly in polynomial time using Alg. 5.
Analogously, we can compute µmin.

We observe that in Alg. 5 every node is only updated once, since the update value
decreases monotonically. It follows that we will only look at each edge only once (if
implemented via adjacency lists). Hence, we obtain a running time of O(|V | log |V |+|A|)
for Alg. 5.

5.2.2 The Flow Condition

Now we want to apply the ideas from the previous subsection to metabolic networks. For
simplicity we assume for the rest of the theoretical work in this chapter that all reactions
in the metabolic network are irreversible. This can be obtained by splitting all reversible
reactions into a forward and a backward reaction. This simplification comes with the
cost that circulation using only the forward and backward reaction become possible.
This will require some additional consideration, which is discussed in Sec. 5.2.3.1.
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Algorithm 5 This algorithm computes µmax in polynomial time

Input: A graph G = (V,A)
µmax
v := −∞ for all v ∈ V .
µmax
v = uv for every v ∈W−.
Q := W+

while Q 6= ∅ do
v := arg max{µmax

v : v ∈ Q}
for w ∈ V with (v, w) ∈ A do

if µmax
w < max{uw, µmax

v } then
µmax
w := max{uw, µmax

v }
Q := Q ∪ {w}

end if
end for

end while
return µmax

The following results can also be formulated using pseudo-reactions (Def. 2.1.2) without
splitting reversible reactions. This however leads to some notational inconveniences (for
example for set intersection with the internal reactions), which is why it is not done
here.

The problem with metabolic networks is that we do not have the notion of “path“ to a
vertex anymore. However, we can characterize paths through the network.

Definition 5.2.5 (Path) We call F ⊆ R a path in a metabolic network (M,R, S) if
for every m ∈M holds (

∃r ∈ F : m ∈ r+
)
⇔
(
∃r ∈ F : m ∈ r−

)
We call P := {F ⊆ R : F is path} the set of all paths. 2

Definition 5.2.6 (Steady-State path) We call F ⊆ R a steady-state path in a metabolic
network (M,R, S) if F = supp(v) for v ∈ RR with Sv = 0 and v ≥ 0. We call
Ps := {F ⊆ R : F is steady-state path} the set of steady-state paths. 2

Observation 5.2.2 Ps ⊆ P. 2

Again, we assume that for every metabolite m, we are given an upper potential bound
um ∈ R∞ and a lower potential bound `m ∈ R∞.

Similar to Thm. 5.2.1, we want to find bounds µmax, µmin on potential vectors µ under
the condition that the metabolite is produced / consumed. This leads us to the following
definitions:

Definition 5.2.7 (Metabolite in a path) For F ⊆ R the set of produced / consumed
metabolites is

M(F ) :=
⋃
r∈F

r.
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Definition 5.2.8 (µ-bound) µmax, µmin : R → RM∞ are called a µ-bound w.r.t. Q ⊆ P
of a metabolic network (M,R = I∪̇E , S) if it holds for every path F ∈ Q and every
µ ∈ RM with

µ ≤ u
µ ≥ `

µSF∩I < 0

that µmin(F )m ≤ µm ≤ µmax(F )m for all m ∈M(F ), where

µmin(F )m := max
r∈F

µmin(r)m

µmax(F )m := min
r∈F

µmax(r)m

and ` ≤ µmin(r), µmax(r) ≤ u for all r ∈ R. 2

Note that µ-bounds additionally link a source reaction to each metabolite potential. In
Sec. 5.2.3.1 we will see that this is an important feature to deal with reversible reactions.
By trivial thermodynamic considerations, we know that for every path F for which there
exists a µ ∈ RM with

µSF∩I < 0

it holds that it is impossible that r, s ∈ F with −r ≡ s. Hence, if we want to check if
flux through a reaction r is possible, we can exclude all paths that contain a reaction
equivalent to −r.
Furthermore, we know that if a metabolite m is consumed/produced by F it must also
be produced/consumed by reactions in the network. This allows us to further restrict
the range of feasible values for µm (see Fig. 5.4). We therefore define µmin∗, µmax∗ for
F ⊆ R and r ∈ R where −F := {s ∈ R : r ∈ F, s ≡ −r} with:

µmin∗(F )m := max

 min
r∈R\−F
m∈r−

µmin(r)m, µ
min(F )m


µmax∗(F )m := min

 max
r∈R\−F
m∈r+

µmax(r)m, µ
max(F )m


µmin∗(r) := µmin∗({r})
µmax∗(r) := µmax∗({r})

We observe the following:
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m

Figure 5.4: Consider the network without the dashed reaction. The reactions in F are
marked in red. The reactions marked in blue additionally contribute to µmax∗(F )m. The
black reaction does not contribute to µmax∗(F )m, because its reverse is already contained
in F and hence, we would get a thermodynamically infeasible cycle if we would use it
to produce m. Note that the reactions in F do not provide an upper bound on µm at
all, i.e., µmax(F )m = ∞. If the purple reaction however, would be added to F , then it
would also provide an upper bound on µm, since it has to be able to produce m.

Proposition 5.2.3 It holds for A ⊆ B ⊆ R that

µmin∗(A) ≤ µmin∗(B)

µmax∗(A) ≥ µmax∗(B)

Proof We only show the case for µmin∗, the case for µmax∗ is analogous.

Let m ∈ M be arbitrary but fixed. Since {r ∈ R \ −A : m ∈ r−} ⊇ {r ∈ R \ −B :
m ∈ r−}, it follows that

min
r∈R\−A
m∈r−

µmin(r)m ≤ min
r∈R\−B
m∈r−

µmin(r)m.

Since A ⊆ B, it also follows that

µmin(A)m = max
r∈A

µmin(r)m ≤ max
r∈B

µmin(r)m = µmax(B)m.

Hence, the proposition follows. �

Proposition 5.2.4 Let F ⊆ R with −F ∩F = ∅. Then it holds for all m ∈M := {m ∈
M : ∃r, s ∈ F : m ∈ r+,m ∈ s−} that

µmax∗(F )m = µmax(F )m

µmin∗(F )m = µmin(F )m
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Proof Again, we only show the case for µmin∗, the case for µmax∗ is analogous.

Let m ∈M be arbitrary but fixed. Since −F ∩ F = ∅, we observe that

{r ∈ R \ −F : m ∈ r−} ⊇ {r ∈ F : m ∈ r−}.

Since m ∈M it follows that {r ∈ F : m ∈ r−} 6= ∅ and hence,

min
r∈R\−F
m∈r−

µmin(r)m ≤ min
r∈F :m∈r−

µmin(r)m ≤ max
r∈F

µmin(r)m = µmin(F )m.

By definition of µmin∗, it follows now that µmin∗(F )m = µmin(F )m. �

Note that M in Prop. 5.2.4 satisfies M =M(F ) if F ∈ P.

The usefulness of µ-bounds can be seen in the following theorem:

Theorem 5.2.2 If µmax, µmin is a µ-bound w.r.t. Q ⊆ P and r ∈ I with

µmin∗(r)r+Sr+,r + µmax∗(r)r−Sr−,r ≥ 0,

then there exists no thermodynamically feasible path F ∈ Q with r ∈ F .

Proof Assume there exists a thermodynamically feasible path F ∈ Q with r ∈ F . Let
µ denote the potentials that prove thermodynamic feasibility of F .

Since F is thermodynamically feasible it holds that

µ ≤ u
µ ≥ `

µSF∩I < 0

It follows that µmin(F )m ≤ µm ≤ µmax(F )m for all m ∈M(F ) by definition of µ-bound
w.r.t. Q. It is easy to see that no reaction in F is equivalent to −r and hence, it follows
for all m ∈M(F ) by Prop. 5.2.3 and Prop. 5.2.4 that

µmin∗(r)m ≤ µmin∗(F )m = µmin(F )m ≤ µm ≤ µmax(F )m = µmax∗(F )m ≤ µmax∗(r)m.

Since r ∈ F , we also have r ⊆M(F ) and thus,

0 ≤ µmin∗(r)r+Sr+,r + µmax∗(r)r−Sr−r

≤ µr+Sr+,r + µr−Sr−,r (since Sr+,r ≥ 0 and Sr−,r ≤ 0)

= µSr

< 0 (by thermodynamic feasibility)

This is a contradiction and hence, there cannot exists a path F ∈ Q with r ∈ F . �
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5.2.3 Updating Bounds

Let µmax, µmin be a µ-bound w.r.t. Q ⊆ P of a metabolic network (M,R = I∪̇E , S).
Let µ ∈ RR with

µ ≤ u
µ ≥ `

µSF∩I < 0

for a path F ∈ Q.

We observe that it holds for every metabolite m ∈ M(F ) and reaction r ∈ F with
m ∈ r+ that

µSr < 0

⇔ µmSmr <
∑
x∈r−

|Sxr|µx −
∑

x∈r+\{m}

|Sxr|µx

⇒ µmSmr <
∑
x∈r−

|Sxr|µmax(F )x −
∑

x∈r+\{m}

|Sxr|µmin(F )x

⇒ µmSmr <
∑
x∈r−

|Sxr|µmax∗(F )x −
∑

x∈r+\{m}

|Sxr|µmin∗(F )x (by Prop. 5.2.4)

⇒ µmSmr <
∑
x∈r−

|Sxr|µmax∗(r)x −
∑

x∈r+\{m}

|Sxr|µmin∗(r)x (by Prop. 5.2.3).

We observe that the last equation holds irrespective of the path F and hence, if

µmax(r)mSmr >
∑
x∈r−

|Sxr|µmax∗(r)x −
∑

x∈r+\{m}

|Sxr|µmin∗(r)x,

we can improve the bound of µmax(r)m to

µmax(r)m :=
1

Smr

∑
x∈r−

|Sxr|µmax∗(r)x −
∑

x∈r+\{m}

|Sxr|µmin∗(r)x


Similarly, if m ∈ r−, we can update

µmin(r)m := max

µmin(r)m,
1

Smr

∑
x∈r+

|Sxr|µmin∗(r)x −
∑

x∈r−\{m}

|Sxr|µmax∗(r)x


5.2.3.1 Reversible Reactions

We observe that adding reactions to a network will never allow us to tighten a µ-bound,
since we can always assume the additional reactions to be unused.
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Hence, to observe that we have to pay special attention to reversible reactions, it is
sufficient to consider a metabolic network that consists solely of the internal reversible
reaction r:

A+B ↔ C +D

Originally we assumed that all reactions are irreversible to simplify notation, which can
be obtained by splitting reactions. Hence, when we talk about a reversible reaction, we
mean that there exists a reaction s ∈ R with s ≡ −r. By abuse of notation, we also
write −r instead of s.

Let us further assume that `m = 20, um = 100 for all m = A,B,C,D. It can easily be
seen that many other values also produce the following undesirable effect.

Since r is the only reaction in the network, it follows that r can impossibly carry flow
in any direction. However, if we want to update the bounds on r (with using µmax∗(∅)
instead of µmax∗(r)) we obtain:

100 = µmax(r)C < µmax∗(∅)A + µmax∗(∅)B − µmin∗(∅)D = 100 + 100− 20 = 180

20 = µmin(r)C > µmin∗(∅)A + µmin∗(∅)B − µmax∗(∅)D = 20 + 20− 100 = −60

Hence, the potential bounds of C cannot be tightened. By symmetry, also none of the
other potential bounds can be tightened.

However, if we use the original definition, we observe that µmax∗(r)A = − inf = µmax∗(r)B,
since −r is excluded as a producer of A and B and no other reaction exists that can
produce A or B. In this case, we immediately deduce that r must be blocked.

Although we could have easily deduced in this example that r must be blocked by
flux variability analysis, we observe that without the source-aspect in the definition
of µ-bound we only would have very limited abilities to tighten bounds on metabolite
potentials for potentials used in reversible reactions.

5.2.3.2 Using Flux Coupling

Let us now consider the two reactions shown in Fig. 5.5. Let us assume that µ2, µ3 ∈
[−5, 5], µ1 ∈ [−2, 1], and µ4 ∈ [−1, 2]. If we consider both reactions together, we clearly
see that if one of the two reactions is used, it must hold that µ1 ∈ [−1, 1] and µ4 ∈ [−1, 1].

If we only analyze the reactions one after another, we cannot improve any bounds,
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m1 m4

m2

m3

Figure 5.5: Using coupling information to propagate bounds can induce tighter bounds.
Assume that metabolites m1,m4 are reused in the network, while m2,m3 only link the
displayed reactions. Although we immediately see that µ1 > µ4 for all potential vectors
µ that allow flow through any of the two reactions, the variability in the potentials for
µ2, µ3 does not allow us to infer this property by propagating reactions one by one.

because

µmax
2 = 5 ≤ 1 + 5 = µmax

1 − µmin
3

µmax
3 = 5 ≤ 1 + 5 = µmax

1 − µmin
2

µmax
4 = 2 ≤ 5 + 5 = µmax

2 + µmax
3

µmin
2 = −5 ≥ −1− 5 = µmin

4 − µmax
3

µmin
3 = −5 ≥ −1− 5 = µmin

4 − µmax
2

µmin
1 = −2 ≥ −5− 5 = µmin

2 + µmin
3 .

Hence, we now want to include flux coupling data into the bound update mechanism.
Therefore, we observe that we can also formulate the update step as a linear optimization
problem (we only consider the case where m ∈ r+, because m ∈ r− is analogous):

µmax(r)m := supµm

s.t.µSr < 0

µ ≥ µmin∗(r)

µ ≤ µmax∗(r).

Note that by Prop. 5.1.1, we can replace the sup by max and the strict inequalities by
weak inequalities, which allows us to use ordinary LP solvers.

We can easily extend this formalism for cases where we not only want to compute an
upper flux bound on m under the condition that reaction r carries flux but a set of
reactions F carries flux:
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µmax(r)m := supµm

s.t.µSF < 0 (5.5)

µ ≥ µmin∗(F )

µ ≤ µmax∗(F ).

We encounter such a set F in directed flux coupling analysis: Let F := {s ∈ R : r → s}
be the set of reactions that are directionally coupled from r, i.e., if r carries positive
flux, then all the reactions in F also carry positive flux. Hence, if we compute the bound
under the condition that r carries positive flux, we can also assume that all reactions in
F carry positive flux.

In the case of the two coupled reactions in the example of Fig. 5.5, we obtain the
constraints

µ2 + µ3 − µ1 ≤ 0

µ4 − µ2 − µ3 ≤ 0

which imply that µ4 ≤ µ1 and thus, we obtain the tightened bounds that we want.

5.2.3.3 Using EFMs through subnetworks

Let A ⊆ R be an arbitrary but fixed subset of reactions. By considering the set of
elementary pathways through A, we can generalize the approach developed for flux
coupling analysis.

Define

B+ := {m ∈M : m ∈ r+,m ∈ s− ∃r ∈ A, s ∈ R \A}
B− := {m ∈M : m ∈ r−,m ∈ s+ ∃r ∈ A, s ∈ R \A}.

We observe that B+ is the set of metabolites that allow outflow of the subnetwork A,
and B− is the set of metabolites that allow inflow of A.

It is easy to see that the projection v = wA of every feasible flux vector w ∈ {w : Sw =
0, w ≥ 0} in the metabolic network satisfies

SM(A)\B+,Av ≤ 0

SM(A)\B−,Av ≥ 0 (5.6)

v ≥ 0.

Therefore, we know that if there is flux through A, it can be obtained by a convex
combination of the elementary modes E′ of (5.6).
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Since we are only interested in the pathways that contain our metabolite m of interest
(for which we want to compute improved bounds), we can restrict the EFMs that we
have to look at to

E := {supp(e) : e ∈ E′,m ∈ r ∃r ∈ supp(e)}.

Proposition 5.2.5 Let A ⊆ R and m ∈M(A)\(B+∩B−). Let F ∈ Ps. If m ∈M(F ),
then there exists an e ∈ E with e ⊆ F .

Proof If m /∈ B+, there exists no reaction outside of A that consumes m. It follows
that if m ∈ M(F ), there exists an reaction r ∈ F ∩ A. Similarly we can conclude for
m /∈ B− that there exists an r ∈ F ∩A.

Since F ∈ Ps, there exists a w ∈ RR with Sw = 0, w ≥ 0. Therefore, wA satisfied the
equations in (5.6) and wA ∈ cone(E′). Since r ∈ F and hence, wr > 0, it follows that
there exists an elementary mode e ∈ E′ with supp(e) ⊆ F and er > 0. By definition of
E, it follows that supp(e) ∈ E and the statement is proven. �

Note, that we can reduce the space of feasible fluxes in (5.6) by using k-modules (see
Ch. 6) to additionally restrict the space of feasible interface fluxes.

We observe now how we can use the set E to improve potential bounds on m:

Theorem 5.2.3 Let A ⊆ R and E be defined as above. Let µmin, µmax be a µ-bound
w.r.t Q ⊆ Ps and F ∈ Q, µ̃ ∈ RM with

` ≤ µ̃ ≤ u
µ̃SF∩I < 0

Then it holds for every m ∈M(A) \ (B+ ∩B−) with m ∈M(F ) that

µ̃m ≤ max
e∈E

supµm : µSe∩I < 0, µmin∗(e) ≤ µ ≤ µmax∗(e) (5.7)

µ̃m ≥ min
e∈E

inf µm : µSe∩I < 0, µmin∗(e) ≤ µ ≤ µmax∗(e) (5.8)

Proof Assume false, then w.l.o.g. there exists a F ∈ Ps, µ̃ ∈ RM with m ∈ M(F ),
` ≤ µ̃ ≤ u, and µ̃SF∩I < 0 with (min case is analogous)

µ̃m > max
e∈E

supµm : µSe∩I < 0, µmin∗(e) ≤ µ ≤ µmax∗(e).

By Prop. 5.2.5 we know that there exists an f ∈ E with f ⊆ F . By definition of µ-bound
(Def. 5.2.8) and Prop. 5.2.4 it follows that

µ̃Sf∩I < 0, µmin∗(f) = µmin(f) ≤ µ̃ ≤ µmax(f) = µmax∗(f).
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Thus,

µ̃m > max
e∈E

supµm : µSe∩I < 0, µmin∗(e) ≤ µ ≤ µmax∗(e)

≥ supµm : µSf∩I < 0, µmin∗(f) ≤ µ ≤ µmax∗(f)

≥ µ̃m,

which is a contradiction. �

In practice we may frequently save the effort of checking if a pathway is indeed able to
satisfy the potential differences with strict inequalities:

Corollary 5.2.3 Under the conditions of Thm. 5.2.3 it follows that

µm ≤ max
e∈E

maxµm : µSe∩I ≤ 0, µmin∗(e) ≤ µ ≤ µmax∗(e)

µm ≥ min
e∈E

minµm : µSe∩I ≤ 0, µmin∗(e) ≤ µ ≤ µmax∗(e)

Proof By relaxing the strict inequality constraints, we only make the feasible solution
space bigger. �

However, with the relaxation we accept pathways that only operate with equality of
potential differences. Without equality, some metabolites may not get any inflow and
hence, their potential bound will be −∞ or ∞. In the strict formulation such effects
cannot happen:

Corollary 5.2.4 If we use A = R and Q = Ps, then the bounds of Thm. 5.2.3 are tight.

Proof Let m be a fixed but arbitrary metabolite. Let e ∈ E′ with supp(e) ∈ E,
µ ∈ RM be the maximizer of (5.7) for µm. Since A = R, it follows that B+ = B− = ∅
and w.l.o.g. M(A) = M (we can ignore metabolites that are not contained in any
reaction). It follows that we have

Se = 0

µSr < 0 ∀r ∈ supp(e) ∩ I
` ≤ µmin∗(e) ≤ µ ≤ µmax∗(e) ≤ u

Hence, e is a feasible pathway in the whole network. Thus, there exists a flow through
m and the bound value can be attained. �
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5.2.3.4 Using Branching

To be most effective, the set A should be chosen with care.

For the following, assume, we want to update the upper bound (lower bound is anal-
ogous). Let us also assume that all reactions are irreversible. Since we will compare
different subsets of R, let us denote E(A) as the set of elementary modes E defined
above for the set A.

In practice it usually is too much overhead if µmax(r), µmin(r) also bound potentials
of metabolites not produced/consumed by r, since the effect is too indirect. Hence, we
assume that µmax, µmin only tighten bounds for metabolites that are produced/consumed
by the respective reactions, i.e.,

µmax(r)n = un ∀n ∈M \ r+, r ∈ R (5.9)

µmin(r)n = `n ∀n ∈M \ r−, r ∈ R (5.10)

Let m be the metabolite whose bound we want to update. Assume we want to update
the bound coming from a reaction r (i.e., the bound under the assumption that r carries
flux).

Define C(r) := {s : r → s} the set of reactions coupled to r.

We choose A = {r}∪C(r). Clearly, there exists only one EFM through A that contains
r.

To strengthen the update, we now want to select a metabolite b that is either only
consumed or only produced by A. For simplicity assume that b is consumed by A
(production case is analogous). Let B be the set of reactions that produce b.

We now want to derive conditions for when we should try to extend the set A by B.
First of all, since b is only consumed by A, we observe that

µmax∗(A)b = max

{
max

s∈R\−A
µmax(s)b, µ

max(A)b

}
= max

s∈R\−A
µmax(s)b.

Hence, reactions s that achieve this optimum are particularly interesting and we derive
the following necessary condition:

Proposition 5.2.6 Assume no updates on µmax, µmin are possible using single-reaction
updates, (5.9), (5.10) hold and b is a metabolite only consumed by A and B is the set of
reactions producing b.

Let

µ̄D := max
a∈B
a6∈−A

max
{
µm : µSA∪{a} ≤ 0, µmin∗(A ∪ {a}) ≤ µ ≤ µmax∗(A ∪ {a})

}
µ̄A := max

{
µm : µSA ≤ 0, µmin∗(A) ≤ µ ≤ µmax∗(A)

}
.
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If µ̄D < µ̄A then every reaction a ∈ B \ −A with

µmax(a)b = µmax∗(A)b (5.11)

satisfies |a ∩M(A)| ≥ 2.

Proof Assume µ̄D < µ̄A and there exists a reaction a ∈ B \ −A satisfying (5.11) and
|a ∩M(A)| = 1.

Define A′ = A ∪ {a}. We observe by (5.9), (5.10) that

µmax∗(A′)a\M(A) = µmax∗({a})a\M(A)

µmin∗(A′)a\M(A) = µmin∗({a})a\M(A)

µmax∗(A′)M(A)\a = µmax∗(A)M(A)\a

µmin∗(A′)M(A)\a = µmin∗(A)M(A)\a

Furthermore, since

µmax∗(A′)b = min

{
max

s∈R\−A′
µmax(s)b, µ

max(A′)b

}
≥ min

{
µmax(a)b, µ

max(A′)b
}

(since a 6∈ −A′)
= min {µmax(a)b, µ

max(A)b} (by Def. of µmax)

≥ min {µmax(a)b, µ
max∗(A)b} (by Def. of µmax∗)

= µmax∗(A)b (by (5.11))

≥ µmax∗(A′)b (by Prop. 5.2.3)

it follows that µmax∗(A′)b = µmax∗(A)b.

Similarly, we conclude from

µmin∗(A′)b = µmin(A′)b (Prop. 5.2.4)

= max
{
µmin(a)b, µ

min(A)b
}

(by Def. of µmin)

= µmin(A)b (since µmin(a)b = `b)

≤ µmin∗(A)b (by Def. of µmin∗)

≤ µmin∗(A′)b (by Prop. 5.2.3)

that µmin∗(A′)b = µmin∗(A)b.

Since no updates on µmax, µmin are possible using single-reaction updates, there exists
µ1
a with µ1

b = µmax(a)b, µ
min∗(a)a ≤ µ1

a ≤ µmin∗(a)a and µSa ≤ 0.

Let µ2 be an optimizer of µ̄A. Since µmax(a)b = µmax∗(A)b, it follows that µ2
b ≤ µmax(a)b.

Define now µ3 ∈ RM by

µ3
M(A) := µ2

M(A)

µ3
M\M(A) := µ1

M\M(A).
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It follows by construction that µ3SA ≤ 0 and since µ3
b ≤ µ1

b that µ3Sa ≤ 0. From the
previous observations, it is also easy to see that

µmin∗(A′)M(A)\a = µmin∗(A)M(A)\a ≤ µ3
M(A)\a ≤ µmax∗(A)M(A)\a = µmax∗(A′)M(A)\a

µmin∗(A′)a\M(A) = µmin∗({a})a\M(A) ≤ µ3
a\M(A) ≤ µmax∗({a})a\M(A) = µmax∗(A′)a\M(A)

µmin∗(A′)b = µmin∗(A)b ≤ µ3
b ≤ µmax∗(A)b = µmax∗(A′)b.

Thus, µ3 satisfies all constraints for a feasible solution of µ̄D and thus, µ̄D ≥ µ̄A, which
is a contradiction and concludes the proof. �

We conclude that we should not branch on a metabolite b (i.e., investigate possibilities
for extending the set A via this metabolite) if there exists a reaction a that only induces
the active bound of the metabolite b, but does not have any interaction with the other
reactions in A. Such kinds of updates are already covered by normal bound propagation.

Of course the applications of Prop. 5.2.6 is rather limited, because we cannot make such
a statement as soon as there are additional reactions coupled to a that then indirectly
interact with A in the end. Similar situations occur if we decide to continue branching
after branching on b.

Since branching is subject to combinatorial explosion, it should be used very restrictively.
In the most extreme case, we might decide to only branch if a sufficient condition for
improvement is satisfied. For example, the following is a sufficient condition on whether
we will see an improvement by branching on b:

Proposition 5.2.7 Assume no updates on µmax, µmin are possible using single-reaction
updates, (5.9), (5.10) hold and b is a metabolite only consumed by A and B is the set of
reactions producing b.

Consider the LP

µ̄A := max
{
µm : µSA ≤ 0, µmin∗(A) ≤ µ ≤ µmax∗(A)

}
(5.12)

with the dual

minµmin∗(A)y + µmax∗(A)z : SAx+ y + z = 0, x ≥ 0, y ≤ 0, z ≥ 0.

Assume the following conditions are satisfied for an optimizer (x, y, z) of the dual:

• zb > 0

• For every reaction a ∈ B \−A with µmax(a)b = µmax∗(A)b there exists a metabolite
c with

– zc > 0 and there exists a reaction d ∈ C(a) with µmax(d)c < µmax∗(A)c or

– yc < 0 and there exists a reaction d ∈ C(a) with µmin(d)c > µmin∗(A)c.
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Then it holds that

µ̄A > µ̄D := max
a∈B
a6∈−A

max

{
µm :

µSA∪C(a) ≤ 0,

µmin∗(A ∪ C(a)) ≤ µ ≤ µmax∗(A ∪ C(a))

}
. (5.13)

Proof First of all, we observe that the LP (5.13) only has additional constraints and
tightened bounds compared to LP (5.12) by Prop. 5.2.3. Hence, every dual solution of
(5.12) is also dual feasible for (5.13). In particular, (x, y, z) is a dual feasible solution of
LP (5.13).

Since b is only consumed by A, we observe that for every a ∈ B \ −A it holds that

µmax(a)b ≤ max
s∈R\−A

µmax(s)b = min

{
max

s∈R\−A
µmax(s)b, µ

max(A)b

}
= µmax∗(A)b.

Hence, if µmax(a)b 6= µmax∗(A)b, then µmax(a)b < µmax∗(A)b. In this case it follows that
µmax∗(A ∪ C(a))b < µmax∗(A)b and since zb > 0, we conclude (using Prop. 5.2.3) that

µ̄A = µmin∗(A)y + µmax∗(A)z

> µmin∗(A ∪ C(a))y + µmax∗(A ∪ C(a))z

≥ max

{
µm :

µSA∪C(a) ≤ 0,

µmin∗(A ∪ C(a)) ≤ µ ≤ µmax∗(A ∪ C(a))

}
. (by LP duality)

Thus, we now only have to consider reactions a ∈ B \ −A with µmax(a)b = µmax∗(A)b.
Assume µmax(d)c < µmax∗(A)c with zc > 0. It follows by Prop. 5.2.3 that

µmax∗(A ∪ C(a))c ≤ µmax(d)c < µmax∗(A)c.

Therefore, µmax(A ∪ C(a))czc < µmax∗(A)czc and by Prop. 5.2.3 it follows that

µmax∗(A ∪ C(a))z < µmax∗(A)z

⇒ µmin∗(A ∪ C(a))y + µmax∗(A ∪ C(a))z < µmin∗(A)y + µmax∗(A)z.

The case for µmin(d)c > µmin∗(A)d with yz < 0 is analogous and we also derive

µmin∗(A ∪ C(a))y + µmax∗(A ∪ C(a))z < µmin∗(A)y + µmax∗(A)z.

It follows that

µ̄A = µmin∗(A)y + µmax∗(A)z

> µmin∗(A ∪ C(a))y + µmax∗(A ∪ C(a))z

≥ max

{
µm :

µSA∪C(a) ≤ 0,

µmin∗(A ∪ C(a)) ≤ µ ≤ µmax∗(A ∪ C(a))

}
(by LP duality),

which proves the proposition. �

Hence, the dual solution of (5.12) gives important information about which metabolites
are preferred branching targets. Common LP solvers provide this information usually
for free.
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5.2.3.5 Using 1-Modules

Chains of reactions that are linked by multiple metabolites in parallel are not likely
to propagate bounds in full strength. However, if we can group reactions to a linear
1-module (Def. 6.1.2), we can replace the reactions with just one reaction representing
the 1-module (see Sec. 6.4). In general, such a replacement will not always be useful,
because the linear 1-module will not respect the potentials of metabolites hidden by the
module. Hence, it may actually give worse bounds. Since we can choose, we can simply
go for the smaller one in the course of the algorithm.

However, most of the linear 1-modules in metabolic networks are sets of fully coupled
reactions, where already the methods using flux coupling data give the same results.
Another frequently occurring 1-module are sets of parallel reactions. In this case, even
the single reaction propagation method is sufficiently powerful.

This only leaves a few sets of 1-modules that are a combination of fully coupled reactions
and parallel reactions or indeed non-decomposable 1-modules, see Sec. 6.4.2. Hence, I
did not implement this approach.

5.2.4 Application on a Genome-Scale Network of E. coli

5.2.4.1 Method

I tested the effects of potential propagation (in terms of blocked reactions) on a modified
E. coli iAF1260 model. The modification consisted in turning all internal reactions
into reversible reactions. Potential bounds were obtained from the equilibrium constant
estimates given in the supplementary material to the paper on the model [43]. According
to the uncertainties δ in equilibrium constants µ0 (both values obtained from [43]) and
to respect metabolite concentrations between cmin = 1nM and cmax = 100mM , the
bounds for metabolite potentials were computed by (see also Sec. 2.6.3)

` = µ0 − δ +RT ln(cmin) = µ0 − δ − 12.2

u = µ0 + δ +RT ln(cmax) = µ0 + δ − 1.4

I chose cmin = 1nM , because a concentration of 1nM corresponds to less than 1 molecule
per cell [154]. As maximum concentration I chose cmax = 100mM , because this is about
the maximal metabolite concentration measured in E. coli [12]. The only exception is
water, where the concentration is fixed to 1M by default.

I implemented the update algorithm using µ-bounds that are specific to the source
reaction that feed the respective metabolites. However, I only identify forward and
backward reaction directions for reactions that are marked as reversible. The E. coli
iAF1260 network also contains duplicate reactions. I did not implement a method that
detects these duplicate reactions. Hence, the problematic effect of reversible reactions
will still occur for these cases. Since there is only a small number of such reactions, I
decided that the implementation overhead is probably not worth the improvement.
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For the integration of flux coupling data, I did not use information from a full FCA, but
I just used trivial flux coupling information. This means, I only looked at metabolites
that are only consumed / produced by one reaction. For example, if a metabolite is
only consumed by one reaction r, then r is directionally coupled from all reactions that
produce the metabolite. Such flux couplings are of course not comprehensive, but can
be computed very efficiently.

To test the effects of potential propagation, I measured the number of reaction directions
that were inferred to be blocked. Since potential propagation and flux variability analysis
are two contrasting methods to infer blocked reactions, I applied them iteratively one
after the other.

5.2.4.2 Results

The results using the different improvements can be seen in Fig. 5.6.

update pot.

braching: 1

update FVA

blocked: 143

update pot.

branching: 0

blocked: 91

blocked: 4

trivial pot.

blocked: 37

update FVA

blocked: 911

Total: 1186

update pot.

braching: 0

blocked: 0

Total: 1182

update pot.

branching: 0

blocked: 73

update FVA

blocked: 143

without

coupling data

update pot.

braching: 0

blocked: 0

Total: 1164

update pot.

braching: 2

blocked: 6

Total: 1188

update FVA

blocked: 204

Total: 1152

Figure 5.6: Results using the different improvements for propagating bounds.

We observe that although most of the blocked reaction directions originate from blocked
(directions of) exchange reactions, about 270 reaction directions can be inferred using
thermodynamic considerations. Important is the alternation between potential propaga-
tion and FVA. Already the 37 reaction directions that can be determined to be blocked
by trivial thermodynamic considerations imply 204 additional blocked reaction directions
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that can be determined by FVA.

If we would on the other hand only run potential propagation instead, we would just
find 91 additional blocked reactions. It should be noted that a large part of these 91
additional blocked reactions are also determined to be blocked by FVA.

Furthermore, we observe that the integration of even trivial coupling data (metabolites
that are only produced/consumed by one reaction) leads to about three times the num-
ber of additionally blocked reactions compared to the number of reactions that can be
inferred as blocked from FVA and trivial thermodynamic considerations. Without flux
coupling data, we find 1164 − 1152 = 12 additional blocked reactions, while with flux
coupling data we find 1182− 1152 = 30 additional blocked reactions.

We also note that the integration of branching strategies has only a mild impact. By per-
forming 1 branching operation per update step, we obtain 4 additional blocked reactions
and with 2 branching steps, we get 6 additional blocked reactions.

5.2.4.3 Conclusions

Overall, we conclude that, although non-trivial blocked reactions can be inferred, the
impact of the method is rather disappointing. In contrast to the 2382 reactions of the
E. coli iAF1260 network, the number of 36 additional reaction directions that could be
identified as blocked is very small.

In comparison, the curated network contains 1807 irreversible reactions of which are 4
blocked. FVA on this network alone already identifies 2132 reactions that are blocked
in backward direction and 1015 reactions that are blocked in forward direction.

What could be the reasons for this weak performance? One possibility could be that the
method, even with the branching feature is not strong enough to unravel the complexities
of the metabolic network. Also, the few reactions in the network that occur twice
could be preventing us from deriving stronger results. However, since the improvements
obtainable by branching on metabolites are very small, I do not think that this is the
main cause.

Rather, I expect that the effect is due to the uncertainties in the potential bounds.
For example, Tepper et al. [154] work with a minimal metabolite concentration of
10nM which would increase metabolite potential lower bounds by 1.4. Also, the current
approach is neglecting that uncertainties on equilibrium constants are not independent
[107]. However, it is unclear to me at the moment how improved models for equilibrium
constant uncertainties, as discussed in Sec. 2.6.3.2 can be integrated best into bound
propagation. One possibility would be to not propagate bounds on the potentials, but
bounds on the logarithms of concentrations. As we will see in Sec. 5.2.5 this approach
however, is not guaranteed to be better than the original approach.
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5.2.5 Dependence of Uncertainties in Equilibrium Constants

Noor et al. [107] showed that information of equilibrium constants on internal reactions
can be much more precise than data obtained simply by group contribution method.

To use data of equilibrium constants on reactions, let us assume that it is given in the
following way:

• We are given an upper and lower bound `0r , u
0
r on the equilibrium constant ∆µ0

r

for each internal reaction r ∈ I.

• We are given a consistent vector of reference equilibrium constants ∆µ0, i.e., `0 ≤
∆µ0 ≤ u0 and ∆µ0 = µ0S has a solution.

• We are given a lower and upper bound cmin
m , cmax

m on the concentration cm for each
metabolite m ∈M.

• We assume that the concentrations are already given in a logarithmic scale, i.e.,
the potential difference ∆µr of a reaction r ∈ I is computed by ∆µr = ∆µ0

r + cSr.

Instead of propagating bounds on potentials, we could now propagate bounds on the
concentrations:

cmax(v, r) = max cv

s.t. K∆µ0 = 0

∆µ0
r + cSr ≤ 0 (5.14)

`0 ≤ ∆µ0 ≤ u0

cmin ≤ c ≤ cmax

Note that we could strengthen this formalism and exclude cycles formed by forward and
backward reactions similar to µmin∗, µmax∗. For simplicity reasons, this is omitted here.

We want to investigate how the formulation (5.14) compares to the classical formulation
(which uses bounds on potentials). We will do this by analyzing when reactions can
be inferred as blocked. To be able to compare the two methods, we have to translate
the bounds on equilibrium constants on the reactions ∆µ0 to bounds on equilibrium
constants on metabolites µ0.

Using ∆µ0, we can find an assignment of µ0 by solving

∆µ0 = µ0SI .

However, this system is usually highly under-determined. Clearly, we can define a matrix
J and a vector k such that the system

∆µ0 = µ0SI (5.15)

k = µ0J
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has a unique solution. A typical choice is to define the equilibrium constants of some
metabolites to be 0 [5]. This can be realized by choosing k = 0 and J as the corresponding
sub-matrix of the identity matrix.

For fixed J and k, we can now compute lower and upper bounds on the metabolite
equilibrium constants `µm, u

µ
m for each m ∈M:

`µm := minµ0
m : ∆µ0 = µ0S, k = µ0J, `0 ≤ ∆µ0 ≤ u0 (5.16)

uµm := maxµ0
m : ∆µ0 = µ0S, k = µ0J, `0 ≤ ∆µ0 ≤ u0

(5.17)

5.2.5.1 Where Formulation 5.14 Fails

A B C

∆µ0
3 ∈ [3, 4]

∆µ0
1 ∈ [1, 2] ∆µ0

2 ∈ [1, 2]

cA ∈ [0, 3] cB ∈ [0, 3] cC ∈ [0, 3]

Figure 5.7: Example where concentration propagation does not detect an infeasible
pathway.

In Figure 5.7 we see a network, where no flow from A to C is possible. This can be
seen at reaction 3 which has an equilibrium constant of at least 3, hence this cannot be
canceled by the concentrations of the metabolites (at most a potential difference of 0 is
achievable).

If we use the classical formulation and choose J, k such that the equilibrium constant of
metabolite A is fixed to µ0

A = 0, it follows by reaction 3 that µ0
C ∈ [3, 4]. We compute

potential bounds µA ∈ [0, 3], µB ∈ [1, 5] and µC ∈ [3, 7]. Propagation of potential bounds
yield an upper potential bound for each metabolite of 3 and also a lower potential bound
of 3. Hence, classical potential propagation infers that no flux is possible.

If, however, we use concentration propagation, we infer that cB ∈ [0, 2] and cC ∈ [0, 1]
by propagating in forward direction and if we propagate in backward direction, we
additionally get cB ∈ [1, 2] and cA ∈ [2, 3]. It follows for reaction 1 that ∆µ1 ∈ [1, 2] +
[1, 2] − [2, 3] = [−1, 2]. Hence a negative potential difference is possible and hence, we
cannot derive a blocked flux. The same applies for reaction 2. Reaction 3 is derived as
blocked, but one path is sufficient to transport flow.

5.2.5.2 Where the Classical Formulation Fails

First of all, we observe that J, k can always be chosen so badly that the inferred bounds
on µ0 are so weak that no blocked reactions can be inferred. For example, we can simply
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choose J to be a slightly perturbed submatrix of the stoichiometric matrix S. Consider
the reaction A → B with ∆µ0 ∈ [1, 2]. By adding the equality (1 − ε)µ0

B − µ0
A = 0, we

obtain as bounds for µB that
1

ε
≤ µB ≤

2

ε
which is clearly covering a much wider range than the interval [1, 2] and thus it ceases
to be possible to infer that A → B can only operate in backward direction. Hence,
we assume in the following that J, k are chosen in the best possible way, resp. ask the
question if there exists a choice of J, k that imply potential bounds on µ0 from which we
can infer that a given reaction is blocked. It should be noted though that in practice we
cannot assume in general that J and k are chosen as best as possible.

It is much harder to come up with an example, where there exists no choice of J, k (such
that (5.15) has a unique solution) s.t. that the classical formulation detects no reaction
as blocked. A potential example can be seen in Fig. 5.8.

µ0
A ∈ [0, 1]

⇒ µA ∈ [0, 1]

µ0
B = 0

⇒ µB = 0

µ0
C ∈ [0, 1]

⇒ µC ∈ [0, 1]

µ0
D = 2 µ0

E ∈ [3, 4]

∆µ0
r ∈ [1, 2] for all reactions r ∈ R

⇒ µE ∈ [1, 2]⇒ µD ∈ [1, 2]

cA = 0

cB = 0

cC = 0

cD ∈ [−1, 0] cE = −2

A

B

C

D E

r1

r2

r3

r4

Figure 5.8: Example where classical potential propagation fails.

First of all, we observe that by Formulation 5.14 there cannot be any flow through the
network. Let us consider the reaction A+B → D (the other two reactions that produceD
are analogous). For thermodynamic feasibility, we have to satisfy ∆µ0

r+cD−cA−cB < 0.
Since ∆µ0

r ∈ [1, 2], cD ∈ [−1, 0], cA = cB = 0, it follows that ∆µ0
r+cD−cA−cB ≥ 0. This

is a contradiction, hence no thermodynamically feasible flux is possible. By propagation,
also D → E can be deduced as blocked.

With the choice of J, k as shown in Fig. 5.8 (i.e., to fix µ0
B = 0, µ0

D = 2) it is easy to
see where the classical potential propagation method is able to cheat. We use reaction
A+C → D. We exploit that µA = 1, µB = 1 is a feasible assignment. This way it is not
possible to restrict µD to [1, 1]. It is easy to see that for all choices of J, k that fix µ0 to
a fixed value for 2 metabolites, the situation looks alike.

Conjecture 5.2.1 Let ∆µ0 be a consistent vector of reference equilibrium constants for
the network in Fig. 5.8 and let J, k such that (5.15) has a unique solution.
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Then there exists a flux vector v ∈ RR and a µ ∈ RM with

v1 + v2 + v3 = v4 = 1

µA + µB − µD < 0 or v1 = 0

µA + µC − µD < 0 or v2 = 0

µB + µC − µD < 0 or v3 = 0

µD − µE < 0

v1, v2, v3 ≥ 0

`µm ≤ µ ≤ uµm

for potential bounds `µ, uµ as defined in (5.16). 2
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Chapter 6

Modules in Metabolic Networks

Abstract The topic of modules (flux modules) was never planned to be part of my
research work. It started as a by-product of my work on fast thermodynamically con-
strained flux variability analysis. In a summer school in Bertinoro, 2012, Leen Stougie
presented the problem of finding modules in metabolic networks. Although I had known
of the result that there exist such kind of things as modules in metabolic networks [75]
from presentations at conferences, I was not aware of the (computational) problem that
was preventing them to turn their results into a practical method.

In this summer school, Leen said that the problem are cycles in the network that allow
unbounded flux through reactions. Although it turned out that the cycles are in the
end not a problem, this gave me the idea that I can apply thermodynamic constraints
to get rid of the problem. Thermodynamic constraints prevent internal cycles and if all
nutrients / energy sources are bounded, it follows that this also eliminates all unbounded
fluxes.

I quickly realized that to work mathematically with modules, I need a definition. I
ended up defining modules by a property that was only slightly hinted at in the original
publication [75] and was not used at all in the original characterization. From the new
definition, the original characterization, an improved detection algorithm and a nice
decomposition theorem for elementary modes follow [100].

Because of these results I came in contact with the original researchers, in particular
Leen Stougie with whom I started a very fruitful collaboration. In this collaboration I
found the connection to matroid theory and we were able to improve my first method
significantly [102].

While the notion of module works very well for certain flux spaces, there is a large class
of flux spaces, where it utterly fails, since no interesting modules exist. Hence, I started
early on to also work on generalizations. Luckily the connection to matroid theory also
works for the generalization. This finally led to a decomposition result not only for
special cases of metabolic networks but for polyhedra in general [129].
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During the course of my PhD work, I have been writing 3 publications on modules
[100, 102, 129]. During my research, I continuously refined and generalized my
results. To avoid repetition and to tell a coherent story, this chapter does not
present the results in chronological order as they have been published.

6.1 Definition

Although, we usually only work on the steady-state flux space of a metabolic network
N = (M,R = I∪̇E , S), or the thermodynamically constrained flux space, we can define
the concept of flux module (or in short module) for an arbitrary flux space P ⊆ RR.

Definition 6.1.1 (Flux Module) A ⊆ R is a P -module if there exists a d ∈ RM s.t.
SAvA = d for all v ∈ P . We call d the interface flux (constant interface) of the module.2

Many results also hold for the following generalizations of flux module, called k-modules.
In particular, we will discuss two variants: k-modules and linear k-modules. k-modules
are a proper generalization of flux module, since the definition of flux module is equivalent
to 0-module. The notion of linear k-module is a bit more restrictive than the affine
counterpart, but we will see that linear k-modules will play a very important role later
on.

Definition 6.1.2 (k-module) Let P ⊆ {v ∈ RR : Sv = b}. A ⊆ R is a P -k-module if
there exists a d ∈ RM and a D ∈ RM×k s.t.

∀v ∈ P∃α ∈ Rk : SAvA = d+Dα.

We call d the constant interface of the module and D the variable interface. If we can
choose d = 0, then we call A a linear k-module. 2

Biologically, we can understand k-modules as follows: In addition to the fixed function
(the interface flux d), k-modules also allow additional variable functions (spanning a
k-dimensional space). Since biological subsystems often have several side functions, this
increases the applicability significantly. In other application areas, we can understand a
k-module as a subsystem that only has few (k) interactions to the rest of the system.

6.2 Properties of (Linear) k-Modules

The following observations follow directly from the definition and hopefully clarify the
connections between the 3 definitions introduced above.

Observation 6.2.1 Let P ⊆ {v ∈ RR : Sv = b}.
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(i) A ⊆ R is a P -module iff A is a P -0-module;

(ii) Every set A with k elements is a linear k-module; in particular every r ∈ R is a
linear 1-module;

(iii) A is a (linear) P -(k − 1)-module ⇒ A is a (linear) P -k-module;

(iv) Let B ⊆ R be a 0-module. It holds for all A ⊆ R \ B that A is a k-module if and
only if A∪̇B is a k-module;

(v) ∅ is a k-module. 2

For the special case of flux-modules, Obs. 6.2.1(iv) is discussed in more detail in Lemma 6.3.1.
In particular, we observe that the statement does not hold in general for non-disjoint
union.

We also observe that for a given k-module A the variable interface D is not unique
(unless k = 0). However, the linear space spanned by D, i.e., span(D) := {Dα : α ∈ Rk}
is unique, if k is chosen to be minimal.

Proposition 6.2.1 Let P ⊆ RR, A ⊆ R and let k be minimal s.t. A is a P -k-module.
Let D,D′ be two different variable interfaces of A. Then span(D) = span(D′).

Proof Assume span(D) 6= span(D′). Let v0 ∈ P be arbitrary but fixed. Define d :=
SAv

0
A. By definition of variable interface, it follows that

∀v ∈ P : SAvA ∈ d+ span(D),

∀v ∈ P : SAvA ∈ d+ span(D′)

⇒∀v ∈ P : SAvA ∈ d+
(
span(D) ∩ span(D′)

)
. (6.1)

Since span(D) 6= span(D′), it follows that span(D) ∩ span(D′) ⊂ span(D). Hence,

dim(span(D) ∩ span(D′)) < dim(span(D)).

It follows that there exists a D′′ ∈ RM×` with ` < k and span(D′′) = span(D)∩span(D′).
By Eq. 6.1 it follows that D′′ is a variable interface of A and hence, k was not minimal;
a contradiction. �

6.2.1 Restriction to Linear Vector Spaces

A core property of flux modules is that the precise form of the flux space is irrelevant.
We only have to look at the smallest affine linear space in which P is embedded. The
smallest affine linear space that contains P is characterized by those reactions V that
do not show variability:
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V := {r ∈ R : vmax
r 6= vmin

r },where (6.2)

vmax
r := sup{vr : v ∈ P}
vmin
r := inf{vr : v ∈ P}

Theorem 6.2.1 Let P ⊆ {v ∈ RR : Sv = b}, b ∈ RM. Then it holds for all A ⊆ R that

A is P -k-module⇔ A ∩ V is a (linear) ker(SV )-k-module,

where V is the set of variables that are not constant as defined in (6.2). 2

Theorem 6.2.2 Let P ⊆ {v ∈ RR : Sv = b}, b ∈ RM. Then it holds for all A ⊆ V ,
where V is defined as in (6.2) that

A is a linear P -k-module⇔ A is a (linear) ker(SV |d)-k-module,

where d = b−SR\V vR\V for a v ∈ P and (SV |d) denotes the matrix obtained by horizontal
concatenation of SV and d. 2

Thm. 6.2.1 and Thm. 6.2.2 are very similar. Therefore, we will derive the lemmas
necessary for the proofs in parallel and explain similarities as well as differences on
the way. First however, we observe one important case where linear k-modules and
k-modules coincide:

Observation 6.2.2 Let P ⊆ {v ∈ RR : Sv = b}. If 0 ∈ P , then it holds for all A ⊆ R
that

A is a linear P -k-module⇔ A is a P -k-module.

Proof ⇒: By definition.

⇐: Since 0 ∈ P it follows that there exists a α ∈ Rk with 0 = SA0A = Dα+ d. Hence,
d = D(−α), which completes the proof. �

In particular, this case applies to linear vector spaces as considered in Theorems 6.2.1, 6.2.2.

The following Lemma shows why we do not need a convexity assumption on P :

Lemma 6.2.1 Let P ⊆ {v ∈ RR : Sv = b}. It holds for all A ⊆ R that

A is a (linear) P -k-module⇔ A is a (linear) aff(P )-k-module.

The variable and constant interfaces are the same.
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Proof We only show that if A is a P -k-module, then A is also an aff(P )-k-module.
The other direction is trivial since P ⊆ aff(P ).

Let D be the variable interface of A and d the constant interface of the P -k-module A.
Let x ∈ aff(P ) be arbitrary but fixed. It follows that there exist λ1, . . . , λn ∈ R and
x1, . . . , xn ∈ P s.t.

x =
n∑
i=1

λix
i, 1 =

n∑
i=1

λi.

Since xi ∈ P , there exists an αi ∈ Rk with SAx
i
A = Dαi + d for every i = 1, . . . , n. It

follows that

SAxA =

n∑
i=1

λiSAx
i
A =

n∑
i=1

λi(Dα
i + d) = D

n∑
i=1

λiα
i + d

n∑
i=1

λi = D

n∑
i=1

λiα
i + d.

This concludes the proof. �

We can simplify the space that we have to analyze even further if the relative interior
w.r.t. ker(S) is non-empty:

Lemma 6.2.2 Let P ⊆ {v ∈ RR : Sv = b}. If there exist x ∈ P and ε > 0 s.t. x+w ∈ P
for all w ∈ kerS with ‖w‖∞ < ε (i.e., the relative interior of P is non-empty), then for
all A ⊆ R

A is a P -k-module⇔ A is a ker(S)-k-module.

Proof ⇐: Let v1 ∈ P be arbitrary but fixed. We define d = SAv
1. Let v2 ∈ P be

arbitrary. By definition of P , it follows that v1−v2 ∈ kerS. Since A is a ker(S)-k-
module, it follows that there exists an α ∈ Rk such that SA(v2

A− v1
A) = Dα, where

D is the variable interface of the ker(S)-k-module A. Thus, SAv
2
A = SAv

1
A+Dα =

d+Dα and A is an affine P -k-module.

⇒: Assume A is a P -k-module. It follows that there exist d ∈ Rk, D ∈ RM×k s.t. for
all v ∈ P there exists an α ∈ Rk s.t. SAvA = d+Dα. In particular, it follows that
there exists αx ∈ Rk s.t. SAxA = d+Dαx.

For a proof by contradiction we assume that A is not a ker(S)-k-module. It follows
that there exist w ∈ ker(S) s.t. for all α ∈ Rk it holds that SAwA 6= Dα. By
definition of x, there exists an ε > 0 s.t. x+ εw ∈ P . We conclude that

SA(xA + εwA) = SAxA + εSAwA 6= d+Dαx +Dα for all α ∈ Rk.
⇒ SA(xA + εwA) 6= d+Dα for all α ∈ Rk.

This is a contradiction. �
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Lemma 6.2.2 does not work for linear k-modules, since the right hand side b can introduce
a non-zero component which would not be covered by non-affine k-modules. However,
the result also applies to k-modules if b = 0. Then k-modules and linear k-modules are
equivalent:

Observation 6.2.3 Let P ⊆ {v ∈ RR : Sv = 0}. If there exists x ∈ P and ε > 0 s.t.
x+w ∈ P for all w ∈ kerS with ‖w‖∞ < ε (i.e., the relative interior of P is non-empty),
then for all A ⊆ R

A is a P -k-module⇔ A is a linear P -k-module.

Proof ⇐: By definition.

⇒: By Lemma 6.2.2 it follows that A is a ker(S)-k-module. Since P ⊆ ker(S), the
claim follows. �

If we want to generalize to flux spaces with right hand side b 6= 0, we have to eliminate
b first.

Lemma 6.2.3 Let P ⊆ {v ∈ RR : Sv = b} and assume there exists a x ∈ P and ε > 0
s.t. x + w ∈ P for all w ∈ kerS with ‖w‖∞ < ε (i.e., the relative interior of P is
non-empty).

Let Q = {(v, t) ∈ RR × R : Sv − bt = 0} = ker(S| − b).
It holds for all A ⊆ R

A is linear P -k-module⇔ A is Q-k-module.

Proof ⇐: Since A is a Q-k-module, there exist by Obs. 6.2.2 a D ∈ RM×k s.t. for
all (w, t) ∈ Q there exists an α ∈ Rk s.t. SAwA = Dα. Let v ∈ P be arbitrary but
fixed. It follows that (v, 1) ∈ Q. Hence, there exists an α ∈ Rk s.t. SAvA = Dα
and A is a linear P -k-module.

⇒: Since A is a linear P -k-module, there exists D ∈ RM×k s.t. for all v ∈ P there
exists an α ∈ Rk s.t. SAvA = Dα. In particular, there exists αx ∈ Rk s.t.
SAxA = Dαx. Assume there exists a (w, t) ∈ Q s.t. SAwA 6= Dα for all α ∈ Rk.

Case t 6= 0: Define w′ := w
t . It follows that for all α ∈ Rk we have SAw

′
A 6= Dα.

Since (w′, 1) ∈ Q, it follows that Sw′ = b. By definition of x, there exists an
ε > 0 s.t. v := (1− ε)x+ εw′ ∈ P . It follows that

SAvA = (1− ε)SAxA + εSAw
′
A = (1− ε)Dαx + εSAw

′
A

6= (1− ε)Dαx + εDα = D ((1− ε)αx + εα) ∀α ∈ Rk

⇒ SAvA 6= Dα ∀α ∈ Rk.

This is a contradiction, since v ∈ P .
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Case t = 0: Since Sw = 0, it follows by definition of x that there exists an ε > 0
s.t. v := x+ εw′ ∈ P . It follows that

SAvA = SAxA + εSAwA = Dαx + εSAwA

6= Dαx + εDα = D(αx + εα) ∀α ∈ Rk

⇒ SAvA 6= Dα ∀α ∈ Rk.

This is a contradiction, since v ∈ P . Hence, A is a Q module. �

To obtain a polyhedron with non-empty relative interior, we project to only those vari-
ables that are non-constant. The following simple lemma shows that the modules stay
invariant under this operation.

Lemma 6.2.4 It holds for all A ⊆ V , where V is defined as in (6.2):

A is (linear) P -k-module⇔ A is (linear) prV P -k-module.

Proof By definition of projection, we have the following equivalence (for all d ∈ RM,
D ∈ RM×k):

SAvA = d+Dα ∀v ∈ P∃α ∈ Rk

⇔ SAvA = d+Dα ∀v ∈ prV P∃α ∈ Rk

since A ⊆ V . �

If we allow non-zero constant interface, we can strengthen Lemma 6.2.4:

Lemma 6.2.5 Let P ⊆ {v ∈ RR : Sv = b} and V be defined as in (6.2). It holds for all
A ⊆ R that

A is P -k-module⇔ A ∩ V is prV P -k-module.

Proof We first show that A is a P -k-module iff A ∩ V is a P -k-module.

⇐: By definition.

⇒: Let x ∈ P be arbitrary but fixed. Define f := SA\V xA\V . It follows by definition
of V that f = SA\V vA\V for all v ∈ P . Since A is a P -k-module, there exists a

d ∈ RM, D ∈ RM×k s.t. for all v ∈ P there exists an α ∈ Rk s.t.

d+Dα = SAvA = SA∩V vA∩V + SA\V vA\V = SA∩V vA∩V + f

⇒ d− f +Dα = SA∩V vA∩V .

Hence, also V ∩A is a P -k-module.
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By Lemma 6.2.4 it follows that A ∩ V is a P -module iff A ∩ V is a prV P -module and
hence, the lemma follows. �

Note that the construction does not translate to linear k-modules since then the elimi-
nation of fixed variables can introduce a non-zero constant interface. The differences of
the two theorems consists of the following points:

• For Thm. 6.2.1 we can use Lemma 6.2.5 and obtain results for A ⊆ R, while for
Thm. 6.2.2 we can only use Lemma 6.2.4 and only obtain results for A ⊆ V .

• For Thm. 6.2.1 we can use Lemma 6.2.2, while for Thm. 6.2.2 we have to use
Lemma 6.2.3 and thus, have to extend the stoichiometric matrix by an extra col-
umn.

Thm. 6.2.1 and Thm. 6.2.2 now follow directly from the previous lemmas.

Proof (Thm. 6.2.1) Let vmax, vmin be defined as in (6.2). Define d := b− SR\V vmax
R\V .

By definition of V , it follows that prV P ⊆ {v : SV v = d}. By Lemma 6.2.1 it follows for
A ⊆ R that A∩ V is an prV P -k-module iff A∩ V is a aff(prV P )-k-module. We observe
that aff(prV P ) = {v : SV v = d} and hence aff(prV P ) has non-empty relative interior.
By Lemma 6.2.2 it follows that A∩V is a prV P -k-module iff A∩V is a ker(SV )-k-module.
By Lemma 6.2.5 it follows that A is a P -k-module iff A ∩ V is a ker(SV )-k-module. �

Proof (Thm. 6.2.2) By definition of V , it follows that d is well defined. By definition
of V , it follows that prV P ⊆ {v : SV v = d}.
By Lemma 6.2.1 it follows that A ⊆ V is a linear prV P -k-module iff A is a linear
aff(prV P )-k-module. We observe that aff(prV P ) = {v : SV v = d} and hence aff(prV P )
has non-empty relative interior. By Lemma 6.2.3 it follows that A is a linear prV P -
k-module iff A is a ker(SV |d)-k-module. By Lemma 6.2.4 it follows that A is a linear
P -k-module iff A is a ker(SV |d)-k-module. �

6.2.2 Matroid Theory for k-Modules

In the previous section we observed that we can restrict ourselves to the analysis of linear
vector spaces of the form P = kerS.

Matroid theory is a very powerful theory to analyze discrete properties (like modules)
of linear vector spaces. It turns out that k-modules correspond to (k + 1)-separators in
matroid theory. Here, we only work with unoriented matroids hence, circuits etc. are
just represented by sets of reactions and not by signed-sets.

Definition 6.2.1 (k-separator, [118]) Let M be a matroid on the element set R and
r its rank function (see [118] for details). A set A ⊆ R is a k-separator if and only if

r(A) + r(R \A)− r(R) < k.
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We recall that every matrix defines a matroid, the so called linear matroid (Def. 2.5.3).
This matroid now provides us with the link between matroid theory and modules:

Theorem 6.2.3 A ⊆ R is a (kerS)-k-module if and only if A is a k + 1-separator in
the linear matroid M represented by S. 2

We will now prove Thm. 6.2.3, which connects k-modules to (k + 1)-separators. First,
we characterize the dimension of the interface space:

Lemma 6.2.6 Let A ⊆ R and S ∈ RM×R. Then it holds that

dim(SAprA ker(S)) = dim(ker(S))− dim(ker(S) ∩X⊥)− dim(ker(S) ∩X),

where X = {v ∈ RR : vr = 0 ∀r 6∈ A} and X⊥ = {v ∈ RR : vr = 0 ∀r ∈ A}.

Proof Define L = prA(ker(S)) and consider the linear map

f : ker(S)→ L

v 7→ prA(v).

Since ker(f) = ker(S) ∩ ker(prA) it follows by the fundamental theorem on homomor-
phisms that

dim(L) = dim(ker(S))− dim(ker(S) ∩ ker(prA)).

Observe that ker(prA) = X⊥. Hence, we get

dim(L) = dim(ker(S))− dim(ker(S) ∩X⊥).

We can identify L ⊆ RA with L× 0R\A ⊆ RR. Observe that

dim(S(L)) = dim(SA(L)) = dim(SAprA ker(S)).

It follows again by the fundamental theorem on homomorphisms that

dim(S(L)) = dim(L)− dim(L ∩ ker(S)).

With the identification, we also observe that L = X ∩ ker(S). We conclude

dim(SAprA ker(S)) = dim(S(L)) = dim(L)− dim(L ∩ ker(S))

= dim(ker(S))− dim(ker(S) ∩X⊥)− dim(L ∩ ker(S))

= dim(ker(S))− dim(ker(S) ∩X⊥)− dim(X ∩ ker(S)),

which concludes the proof. �

Lemma 6.2.7 A ⊆ R is a k-module if and only if dim(SAprA kerS) ≤ k.
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Proof We have

dim(SAprA kerS) ≤ k
⇔ ∃D ∈ RM×k : SAprA kerS ⊆ {Dα,α ∈ Rk}
⇔ ∃D ∈ RM×k : {SAvA : v ∈ kerS} ⊆ {Dα,α ∈ Rk}

⇔ ∃D ∈ RM×k ∀v ∈ kerS ∃α ∈ Rk : SAvA = Dα,

which concludes the proof. �

Proof (Thm. 6.2.3) It follows from the definition of rank that

dim(kerS) = |R| − r(R),

dim(kerS ∩X) = |A| − r(A),

dim(kerS ∩X⊥) = |R \A| − r(R \A).

By Lemma 6.2.7 a set A ⊆ R is a k-module if and only if

k ≥ dim(SAprA kerS)

⇔ k ≥ dim(kerS)− dim(kerS ∩X⊥)− dim(kerS ∩X) (by Lemma 6.2.6)

⇔ k ≥ (|R| − r(R))− (|A| − r(A))− (|R \A| − r(R \A))

⇔ k ≥ r(A) + r(R \A)− r(R)

Hence, A is a k + 1-separator if and only if A is a k-module. �

6.2.3 Finding k-Modules

Summarizing the results from the previous two subsections, we conclude that a poly-
hedron contains a k-module if and only if the corresponding matroid contains a k + 1
separator. It follows that if we want to test whether a module contains a non-trivial k-
module, i.e, a k-module containing more than k elements, we only have to check whether
the corresponding matroid is k + 1-connected. Algorithms for testing connectivity have
been developed by Bixby and Cunningham [28, 81, 13, 14]. If k is assumed fixed, the
connectivity test can be performed in polynomial time [14] using matroid intersection.

Algorithms that directly compute decompositions into k-modules have been studied in
the context of branch-decompositions [116, 117].

For the case of 1-separators and 2-separators there are designated algorithms [81, 13],
which are discussed later on in Sec. 6.3.3.3 and Sec. 6.4.1.
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6.3 Flux modules (0-modules)

These results are taken from my first paper on flux modules [100]. The only exception
is the generalization of Thm. 6.3.2.

Here, we consider for a flux space P the properties of flux modules (P -0-modules), simply
called P -modules.

We observe that if and only if P 6= ∅ then the interface of each P -module is well defined.
Hence, all of the following theorems will require P 6= ∅. If P ⊆ {v ∈ RR : Sv = b}, then
R is itself a P -module. We also observe that, given two disjoint P -modules A and B,
their union is again a P -module:

Lemma 6.3.1 Let P ⊆ RR be an arbitrary flux space and let A,B be P -modules with
interfaces dA, dB respectively.

If A and B are disjoint, then A∪̇B is a P -module with interface dA + dB.

If A ⊆ B, then B \ A is a P -module with interface dB − dA. In particular, if P ⊆ {v ∈
RR : Sv = b}, then R \A is a P -module for every P -module A. 2

Proof For every v ∈ P , we have SAvA = dA and SBvB = dB. If A and B are
disjoint, this implies SA∪̇BvA∪̇B = SAvA +SBvB = dA +dB. Hence, A∪̇B is a P -module
with interface dA + dB. Similarly, if A ⊆ B are P -modules, we have SB\AvB\A =

SBvB − SAvA = dB − dA, for all v ∈ P , so B \A is a P -module. �

We remark that Lemma 6.3.1 is generally not true for non-disjoint modules. A coun-
terexample can be found with

S =
(

1 −1 1 −1
)
, P =




1
1
1
1

 ,


0
0
0
0


 .

We now focus on flux spaces consisting of steady-state fluxes and the more restricted
flux spaces, where the fluxes are also thermodynamically feasible. In this section we
refer by thermodynamically feasible as in Sec. 2.6.2, i.e., the case without bounds on the
concentrations.

Definition 6.3.1 (Steady-State and Thermodynamically Constrained Flux Space)
Given a metabolic network N = (M,R = I∪̇E , S) with right-hand side b and flux bounds
`, u, the steady-state flux space F is defined as

F := {v ∈ RR : Sv = b, ` ≤ v ≤ u}. (6.3)
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The thermodynamically constrained flux space T is defined as

T := {v ∈ RR : Sv = b, ` ≤ v ≤ u, v thermo. feasible}. (6.4)

For F -modules (if F 6= ∅) and T -modules (if T 6= ∅) A ⊆ R with interface d we define

FA := {v ∈ RA : SAv = d, `A ≤ v ≤ uA}. (6.5)

If T 6= ∅, we similarly define for T -modules A ⊆ R with interface d

TA :=
{
v ∈ RA : SAv = d, `A ≤ v ≤ uA, v thermo. feasible

}
, (6.6)

and in addition

T̃A := prA(T ). (6.7)

Observe that FA is also well defined if A is both a F -module and a T -module (if T 6= ∅),
because T ⊆ F and thus the interfaces must coincide. We will later see (Application of
Cor. 6.3.1 with I = ∅) that for F -modules A we have FA = prA(F ). While T̃A ⊆ TA

holds for any T -module A, we do not always have T̃A = TA as the following example
shows (see however Cor. 6.3.1):

Example 6.3.1 Consider the network shown in Fig. 6.1.

We observe that in this example reaction g is blocked by thermodynamic constraints,
because it forms an internal cycle with e, which always has to be present. We further
observe that if d is carrying flow, then f cannot carry any flow, since otherwise {d, e, f}
would form an internal cycle. Since ve = 1, it follows that vb + vd ≥ 1, since metabolite
1 has no other inflow.

We further observe that vb ≤ 1. If vd = 0, it follows that vb = 1 and thus vk = 0 and
v` = 1. If vd > 0, it follows as observed above that vf = 0, hence v` ≥ vd + vb ≥ 1. Since
v` + vk = 1, it follows that v` = 1 and vk = 0. We conclude that, in any case, we have
vk = 0 and v` = 1.

Since vk = 0, it follows that vd + vb = 1 and hence, vf = 0. It also follows that vn = 0
and vm = 1.

We observe that reactions g, k, l, f,m, n only carry fixed flows. Hence, they all form
modules by themselves. It follows that A = {g, k, l, f,m, n} is a module, as shown in
Fig. 6.2. In this module, we also have a thermodynamically feasible flux vector v ∈ TA
with vg = vk = vn = vf = 1, v` = vm = 0. Observe that this flux vector has flux through
reactions that we actually derived as blocked in the whole network, i.e., v 6∈ T̃A = prAT .
We conclude that the restriction of `C ≤ 0 is necessary for Cor. 6.3.1.

In what follows, we will use P to denote general flux spaces, while T and F always
denote the flux spaces defined above.
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Figure 6.1: Artificial example network that shows that the restrictions on the flux bounds
are really necessary. The exchange reactions are the reactions that only involve one
metabolite, they all have a fixed flux of 1. All the other reactions are irreversible internal
reactions. For all internal reactions, except reaction e, there exist no flux bounds. The
flux through reaction e is fixed to 1. Furthermore, every metabolite has to be produced
at the same rate as it is consumed.

Before we study the decomposition of the flux space T , we first investigate the decompo-
sition of the flux space of a union of two T -modules. In contrast to the original version
published in [100], we employ the slightly strengthened Thm. 4.5.1 to characterize the
thermodynamically feasible fluxes. Therefore we use ` as defined in Def. 2.1.6 to denote
lower and upper bounds in a uniform way and recall Def. 4.5.1:

C := {r ∈ I : SIv = 0, vIrrev ≥ 0, vr > 0 ∃v ∈ RI}

Note that many of the following theorems can be strengthened in the case `C ≤ 0.

Lemma 6.3.2 Assume T 6= ∅. Then for any disjoint T -modules A and B we have

T̃A∪̇B ⊆ T̃A × TB ⊆ TA × TB ⊆ FA∪̇B.

If `C ≤ 0, then T̃A∪̇B = TA × TB. 2

Proof By the definition of module, we have T̃A∪̇B ⊆ T̃A× T̃B and T̃A ⊆ TA, T̃B ⊆ TB.
Hence, we get T̃A∪̇B ⊆ T̃A× T̃B ⊆ T̃A×TB ⊆ TA×TB. Let dA, dB denote the interfaces
of the T -modules A and B respectively. By Lemma 6.3.1, it follows that A∪̇B is a T -
module with interface dA + dB.
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Figure 6.2: A module of the network shown in Fig. 6.1. The interface fluxes are repre-
sented by new exchange reactions (arcs that only involve one metabolite). All exchange
(interface) fluxes have value 1. It can easily be seen that this network does not contain
any internal cycles, hence every steady-state flux is thermodynamically feasible.

Let x ∈ TA, y ∈ TB be arbitrary but fixed. Define v′ ∈ RA∪̇B by v′A := x and v′B := y.
Since A and B are T -modules, we have SA∪̇Bv

′ = dA + dB. Since `A ≤ x ≤ uA and
`B ≤ y ≤ uB, it follows that v′ ∈ FA∪̇B. Hence, TA × TB ⊆ FA∪̇B.

Now we continue with the case `C ≤ 0. Since T 6= ∅, there exists w′ ∈ T . Define w ∈ RR
by wA∪̇B := v′ and wR\(A∪̇B) := w′R\(A∪̇B)

. Since A∪̇B is a T -module, it follows that

w ∈ F , as defined in (6.3). Let v = vw be the flux vector obtained from w by subtracting
all contained internal cycles using Alg. 4. Since `C ≤ 0, it follows by Thm. 4.5.1 that
v ∈ T and sign(w − v) ⊆ sign(w). With wA = x, this implies sign(x− vA) ⊆ sign(x).

Since A is a T -module, we have SAvA = dA. From SAx− SAvA = dA − dA = 0, we get
SA(x − vA) = 0. If x − vA 6= 0, it follows from sign(x − vA) ⊆ sign(x) that x would
have contained an internal cycle. This is a contradiction and hence, vA = x. By the
same argument, we can show vB = y. Since v ∈ T , we obtain v′ = vA∪̇B ∈ T̃A∪̇B and
since we can do this for every x ∈ TA and y ∈ TB, we get T̃A∪̇B ⊇ TA× TB. Therefore,
T̃A∪̇B = TA × TB. �

Corollary 6.3.1 If T 6= ∅ with `C ≤ 0 and A is a T -module, then TA = T̃A = prA(T ).2

Proof By Lemma 6.3.1, B := R \ A is a T -module. With Lemma 6.3.2, it follows
T̃A∪B = T = TA × TB and by projection TA = prA(T ) = T̃A. �

Using Lemma 6.3.2, we can now show by induction that from a partition of the reaction
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set R into a set of T -modules, we can get a decomposition of the thermodynamically
constrained flux space T .

Theorem 6.3.1 (Product Space from Modules) Assume T 6= ∅. If X = {A1, . . . , An}
is a partition of R into T -modules, then

T ⊆
∏
A∈X

TA ⊆ F.

If `C ≤ 0, then

T =
∏
A∈X

TA.

Proof Define B1 := A1 and Bi := Ai∪Bi−1, i = 2, . . . , n. It follows from the definition
of module and Lemma 6.3.1 that Ai andBi, i = 1, . . . , n, are T -modules. By Lemma 6.3.2
it follows that T̃Bj ⊆ T̃Bj−1 × TAj , for all j = 2, . . . , n. We already observed that
T̃B1 ⊆ TB1 = TA1 , hence it follows by induction that T̃Bj ⊆ ∏j

i=1 T
Ai . Since Bn = R

we obtain that T ⊆∏n
i=1 T

Ai .

To prove
∏n
i=1 T

Ai ⊆ F , let vi ∈ TAi be arbitrary but fixed. Since T 6= ∅, it follows that
there exists a w ∈ T . Let di denote the interface of T -module Ai. We get SAiwAi = di,
for all i = 1, . . . , n, which implies b = Sw =

∑n
i=1 SAiwAi =

∑n
i=1 d

i. Now define v ∈ RR
with vAi := vi, for all i = 1, . . . , n. It follows that Sv =

∑n
i=1 SAiv

i =
∑n

i=1 d
i = b.

Clearly, v also satisfies ` ≤ v ≤ u. We conclude v ∈ F and thus
∏n
i=1 T

Ai ⊆ F .

If in addition, we have `C ≤ 0, then by Lemma 6.3.2 and Cor. 6.3.1 we also get the
equalities T̃Bj = TBj = TBj−1 × TAj and hence, T =

∏n
i=1 T

Ai . �

6.3.1 Uniqueness of the Decomposition

Next we study the existence and uniqueness of the decomposition of a network into
minimal flux modules. When we talk about minimality, we have to exclude ∅ as a
proper module, since otherwise there is only one trivial minimal module.

Definition 6.3.2 (Proper flux module) A P -module A is called proper if A 6= ∅. 2

Definition 6.3.3 (Minimal Flux Module) Let P ⊆ RR be a flux space. A proper
P -module A ⊆ R is minimal if there exists no proper P -module B s.t. B ⊂ A. 2

We will see that there always exists a unique decomposition into minimal modules and
hence the question of finding such a decomposition (as discussed in Sec. 6.3.3) is well
defined.

Theorem 6.3.2 (Uniqueness) Let P ⊆ {v ∈ RR : Sv = 0}. Then the partition of R
into minimal P -modules exists and is unique. 2
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We observe that we can always decompose a proper module into minimal modules.

Proposition 6.3.1 (Existence) Let P be a flux space. Every proper P -module A can
be partitioned into minimal P -modules, i.e., there exist minimal P -modules A1, . . . , Ak
s.t. A = A1 ∪̇A2 ∪̇ . . . ∪̇Ak. 2

Proof Assume the proposition is false. Then there exists a non-minimal P -module
A ⊂ R that cannot be partitioned into smaller P -modules and a minimal P -module
B ⊂ A. By Lemma 6.3.1, C := A \ B is also a P -module. Thus C∪̇B is a partition of
A, which contradicts the assumption. �

Note that this proposition holds for arbitrary flux spaces P . To obtain uniqueness of
the decomposition we also have to require that the flux space satisfies the steady-state
condition.

Originally, the following theorem was stated in a much more restricted form with P = T
under the condition that `C ≤ 0 ≤ uC . However, the recently found characterization of
modules with matroid theory allows me to formulate the theorem in this more general
way. I will give both proofs: The proof of the generalized theorem using matroid theory
and the direct proof, as originally published in [100].

Proof (Proof of Thm. 6.3.2 using matroid theory) First of all, we observe that
every r ∈ R \ V is a minimal module by itself by definition of V , where V is defined
as in (6.2). We also observe that all other minimal modules only consist of reactions in
V , since by Lemma 6.3.1 we can always subtract those reactions not in V and obtain a
smaller module.

Since A ⊆ V is a P -module if and only if A is a 0-module, it follows by Thm. 6.2.1
that A is a P -module if and only if A is a ker(SV )-module and V is defined as in (6.2).
Furthermore, we know this is equivalent by Thm. 6.2.3 to A being a separator of the
linear matroid M on elements V generated by SV .

We observe that the minimality condition for a module A ⊆ V translates by Prop. 6.3.1
into the matroidal condition that the matroid M |A (the matroid obtained from M by
restriction to A) is connected (Prop. 4.2.1 in [118]). By Proposition 4.1.3 in [118] we
know that a matroid is connected if for any two elements x, y there exists a circuit that
contains both. By Prop. 2.5.4 it follows that the decomposition in connected separators
is unique and hence, also the decomposition into minimal modules is unique. �

We will now prove the necessary lemmas for the proof without matroid theory. Note
that we can extend the second proof easily also to full generality by using the same steps
as in the beginning of the first proof.

The following lemma holds for every flux space that satisfies the steady-state assumption.
In particular, it holds for the thermodynamically constrained flux space T .

Lemma 6.3.3 (Modules from Product Space) Let P ⊆ {v ∈ RR : Sv = b}. As-
sume P =

∏n
i=1 Pi with Pi ⊆ RAi, where Ai ⊆ R. Then for every i = 1, . . . , n, there

exists a vector bi ∈ RM s.t. SAivAi = bi, for all v ∈ P , i.e., Ai is a P -module. 2
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Proof Assume the lemma is false. Then there exist i ∈ {1, . . . , n} and v, w ∈ P s.t.
SAivAi 6= SAiwAi . Define w′ ∈ RR by w′Ai

= wAi , w
′
R\Ai

= vR\Ai
. Since P =

∏n
i=1 Pi,

it follows that w′ ∈ P . Since SAiwAi 6= SAivAi , we get Sw′ = SAiwAi + SR\Ai
vR\Ai

=
SAiwAi + b− SAivAi 6= b. Thus w′ 6∈ P , which is a contradiction. �

To prove uniqueness of the decomposition into minimal T -modules (Thm. 6.3.2), we
use Thm. 6.3.1 from the previous section. Given a partition of the reaction set R
into T -modules A, the thermodynamically constrained flux space T can be written as
the product of the flux spaces TA. Assuming that there exist two different partitions
with minimal T -modules, we show that we can write T as a product of smaller factors
(Lemma. 6.3.4). We then go in the reverse direction and show with Lemma 6.3.3 that
from this we can obtain smaller T -modules, contradicting the minimality.

Lemma 6.3.4 Let X, I be sets and P ⊆ XI . Assume P =
∏n
i=1 Pi =

∏m
j=1Qj, where

Pi ⊆ XAi and Qj ⊆ XBj , with Ai, Bj ⊆ I, for i = 1, . . . , n, j = 1, . . . ,m. Then
P =

∏n
i=1

∏m
j=1Rij with Rij = prAi∩Bj

P . 2

Proof For every j = 1, . . . ,m it holds that

Qj = prBj
(P ) = prBj

(
n∏
i=1

Pi

)
=

n∏
i=1

prAi∩Bj
P =

n∏
i=1

Rij .

Since P =
∏m
j=1Qj =

∏m
j=1

∏n
i=1Rij =

∏n
i=1

∏m
j=1Rij , the claim follows. �

Proof (Proof of Thm. 6.3.2 for P = T with `C ≤ 0) Since R is a T -module, it
follows by Prop. 6.3.1 that there always exists a partition into minimal T -modules.
Assume there exist two partitions X 6= Y of R into minimal T -modules. By Thm. 6.3.1
and Cor. 6.3.1, we can write∏

x∈X
prx(T ) =

∏
x∈X

T x = T =
∏
y∈Y

T y =
∏
y∈Y

pry(T ).

By Lemma 6.3.4 it follows that there exists a partition Z of R which is finer than X ,Y,
i.e., every z ∈ Z is contained in some x ∈ X and y ∈ Y. The partition Z also satisfies

T =
∏
z∈Z

prz(T ).

It follows by Lemma 6.3.3 that every z ∈ Z is also a T -module. Since X 6= Y, there
exists at least one T -module of Z that is strictly contained in a T -module of X . This
contradicts the minimality of the T -modules in X . �

6.3.2 Decomposition Theorem for EFMs

An important consequence of the decomposition into T -modules is that we can describe
the set of elementary flux modes in a more compact form. This result follows basically
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directly from the product form of the flux space (Thm. 6.3.1). We recall that the set
of elementary flux modes (EFM) of the thermodynamically constrained flux space T
are the flux modes with minimal support (Def. 2.4.2), respectively minimal sign-support
(Prop. 2.4.1):

EFM(P ) := {v ∈ P : sign(w) 6⊂ sign(v) ∀w ∈ P \ {0}}.

From this, we can derive the following relationships between the elementary flux modes
of FA and TA:

Proposition 6.3.2 Assume T 6= ∅. Let A be a T -module with interface d 6= 0. Let

PA := {(v, x) ∈ RA × R+ : SAv − dx = 0, `A ≤ v ≤ uA}.

Then

a) EFM(TA) ⊆ EFM(FA)

b) {v ∈ RA : (v, 1) ∈ EFM(PA)} ⊆ EFM(TA)

c) If `A∩C ≤ 0, then EFM(TA) = EFM(FA) for A := A ∪ {−r : r ∈ A}.

d) If `r ∈ {−∞, 0} and ur ∈ {0,∞} for all r ∈ A, then {v ∈ RA : (v, 1) ∈
EFM(PA)} = EFM(TA). 2

Proof We show all statements separately:

a) Let v ∈ EFM(TA). Assume v 6∈ EFM(FA). Since TA ⊆ FA, it follows that there
exists w ∈ FA with sign(w) ⊂ sign(v) and w is thermodynamically infeasible. By
Thm. 2.6.1, there exists an internal cycle c ∈ RA with sign(c) ⊆ sign(w). It follows
that sign(c) ⊆ sign(v), contradicting v ∈ TA.

b) Let (v, 1) ∈ EFM(PA). Assume v 6∈ EFM(TA). Since TA ⊆ prA(PA), it follows
that v 6∈ TA. By Thm. 2.6.1, there exists an internal cycle c with sign(c) ⊆ sign(v).
It follows that sign(c) ⊂ sign({v, 1}). This contradicts (v, 1) ∈ EFM(PA).

c) Assume `A∩C ≤ 0, and suppose there exists v ∈ EFM(FA)\EFM(TA). We conclude
that v 6∈ TA, hence v contains an internal cycle c. Since `A∩C ≤ 0, we can
subtract all internal cycles using Alg. 4. By Thm. 4.5.1, we obtain v′ ∈ FA with
sign(v′) ⊂ sign(v), contradicting v ∈ EFM(FA).

Thus, it follows that EFM(FA) ⊆ EFM(TA). Together with a) we get that
EFM(FA) = EFM(TA).

d) We will now consider the case when `r ∈ {−∞, 0} and ur ∈ {0,∞} for all r ∈ A.
Assume there exists v ∈ EFM(TA) with (v, 1) 6∈ EFM(PA). Since (v, 1) ∈ PA,
it follows that (v, 1) is not minimal. Hence, there exists a (w, x) ∈ PA with
sign(w, x) ⊆ sign(v, 1).
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If x > 0 we scale (w, x) to (w′, 1). Since the bounds are only 0 or infinity, the
flux bounds will also be satisfied by w′. It follows that w′ ∈ TA. Since sign(w′) ⊂
sign(v), this is a contradiction to the minimality of v. Therefore, we only need to
consider the case where x = 0.

Let v′ = v − αw, where α is chosen as large as possible such that sign(v′) ⊆
sign(v). Since `A ≤ 0 ≤ uA, it follows that v′ ∈ PA and sign(v′) ⊂ sign(v). Since
(w, 0) ∈ PA, we have Sw = 0 and hence, Sv′ = d. Since v was thermodynamically
feasible, v′ is also thermodynamically feasible, hence v′ ∈ TA, which contradicts
the minimality of v. �

We remark that Condition d) is necessary, because PA does not restrict x to 1 and thus
there can exist flux vectors in PA that satisfy the bounds `, u only by choosing x 6= 1.
The formulation of PA does not contain the constraint x = 1 to allow internal cycles
with x = 0. Note that PA under Condition d) is a flux cone, for which our definition
of EFM coincides with the standard definition in [141]. Condition c) is also necessary,
which can be seen on the following example.

Example 6.3.2 We continue the Example 6.3.1, shown in Fig. 6.1.

If we combine the thermodynamically feasible flux vector v ∈ TA with vg = vk = vn =
vf = 1, v` = vm = 0 in the T -module A = {g, k, l, f,m, n} (see Fig 6.2) with a feasible
flux vector in the module formed by the other reactions {a, b, c, d, e} (see Fig. 6.3), we
still get a steady-state flux vector. However, this flux vector is not thermodynamically
feasible (for example, it contains the cycle {e, g}). Thus, we conclude that we also require
the condition `C ≤ 0 in Thm. 6.3.1.

We also observe that we cannot obtain all (including thermodynamically infeasible)
steady-state flux vectors by combining steady-state flux vectors of the two modules. For
example, it is impossible to obtain the steady-state flux vector w ∈ F with we = wk =
wn = wa = 1, wg = 2, wl = wm = wf = wd = wb = wc = 0. The interface flux enforces
flux through either d or b. 2

We can now characterize the set of elementary modes of the whole network. Modules
that have an interface flux of 0 will not contribute to the set of elementary modes. Hence,
we call N the set of reactions that are contained in such modules and which will have a
0-flux in every elementary mode.

Theorem 6.3.3 Let b 6= 0 and T 6= ∅. Let X = {A1, . . . , An} be a partition of R into
T -modules, then

EFM(T ) ⊆ 0N ×
∏

A∈X :06∈TA

EFM(TA),

EFM(T ) ⊆ EFM(F )

where 0N ∈ RN with 0Nr = 0 for all r ∈ N =
⋃
A∈X :0∈TA A.

If T =
∏
A∈X T

A, then the first inclusion becomes an equality.
If `C ≤ 0, then both inclusions become equalities. 2
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Figure 6.3: A module of the network shown in Fig. 6.1, which partitions the whole net-
work together with the module shown in Fig. 6.2. The interface fluxes are represented by
new exchange reactions (arcs that only involve one metabolite). All exchange (interface)
fluxes have value 1. It can easily be seen that this network does not contain any internal
cycles, hence every steady-state flux is thermodynamically feasible.

Proof We start with the first inclusion. Let v ∈ EFM(T ) be fixed but arbitrary.
Assume there exists A ∈ X with 0 ∈ TA and vA 6= 0. We define w ∈ RR by wB = vB,
for all B ∈ X \{A}, and wA = 0. It follows by Thm. 6.3.1 that w ∈ F . By construction,
we have sign(w) ⊂ sign(v). Since v is thermodynamically feasible, it follows that w is
thermodynamically feasible, hence w ∈ T . Since b 6= 0, it follows that w 6= 0, which is a
contradiction to the minimality of v.

Assume there exists an A ∈ X with 0 6∈ TA s.t. vA 6∈ EFM(TA). Since vA ∈ TA

by Thm. 6.3.1, it follows that there exists wA ∈ TA with sign(wA) ⊂ sign(vA). We
now define w ∈ RR by wB = vB, for all B ∈ X \ {A}, and wA = wA. It follows
by Thm. 6.3.1 that w ∈ F . By construction we have sign(w) ⊂ sign(v). Since v
is thermodynamically feasible, it follows that w is thermodynamically feasible, hence
w ∈ T , which is a contradiction to the minimality of v. Therefore

EFM(T ) ⊆ 0N ×
∏

A∈X :06∈TA

EFM(TA).

The second inclusion follows directly from Prop. 6.3.2 a) by choosing A = R.

Now we consider the case where T =
∏
A∈X T

A. Let vA ∈ EFM(TA) be a fixed but
arbitrary elementary flux mode for each A ∈ X with 0 6∈ TA. By assumption, it follows
that v ∈ RR defined by vA = vA, for A ∈ X with 0 6∈ TA, and vA = 0, for A ∈ X with
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0 ∈ TA, satisfies v ∈ T . Assume there exists a flux vector w ∈ T with sign(w) ⊂ sign(v).
It follows that there exists a reaction r ∈ supp(v) \ supp(w). Since the T -modules
form a partition of R, it follows that there exists a T -module A ∈ X with r ∈ A and
0 6∈ TA. It follows that sign(wA) ⊂ sign(vA). By Thm. 6.3.1 it follows that wA ∈ TA, a
contradiction to the minimality of vA. Hence, we conclude that if T =

∏
A∈X T

A, then

EFM(T ) ⊇ 0N ×
∏

A∈X :06∈TA

EFM(TA),

which implies

EFM(T ) = 0N ×
∏

A∈X :06∈TA

EFM(TA).

If we have `C ≤ 0 and T 6= ∅, it follows by Thm. 6.3.1 that T =
∏
A∈X T

A and thus
we get the first inclusion. The second inclusion follows from Prop. 6.3.2 c) by choosing
A = R. �

6.3.3 Finding Flux Modules

We will now discuss methods for computing the decomposition of R into minimal (w.r.t.
set inclusion) T -modules. We have already shown that this decomposition is always well
defined (Thm. 6.3.2).

There exist currently three methods to compute flux modules or variants of them. The
first method, by Kelk et al. [75] was the starting point for research on flux modules,
since they found that such things as flux modules actually exist in practice. For the
computation they used a highly complicated and inefficient method. The followup works
by myself then improved this method using additional theoretical findings. Although
I consider it nowadays unlikely that anyone would want to implement any of the two
previous methods, I will describe these methods here to give a complete overview.

6.3.3.1 The Vertex Correlation Method

This method was developed by Kelk et al. [75]. I did not contribute in the develop-
ment of this method, it is just stated here as a comparison point to my other two
works.

It is widely know that flux balance analysis (FBA) as introduced in Sec. 4.1 does not
give unique solutions [95]. This is exhibited by flux variability analysis (FVA) which
shows for each reaction the range of values that it can attain. However, FVA does not
tell us anything about the dependencies between the variabilities.
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In their pioneering work Kelk et al. [75] studied the alternative optimal FBA-solutions
P :

P := {v ∈ RR : Sv = 0, ` ≤ v ≤ u, cv = opt}, where

opt := max{cv : Sv = 0, ` ≤ v ≤ u}

In the following we will call P the optimal flux space.

Therefore, they did something related to EFM enumeration: They tried to enumerate
the vertices of the optimal flux space P . However, it is very common that P contains lin-
ealities (for example from thermodynamically infeasible cycles) so that P is not pointed
and hence, does not contain any vertices.

Because of this problem, they first eliminated all the linealities by deleting one of the in-
volved reactions. Since the lineality can operate in any direction it follows that metabolic
flow through the deleted reaction can always be substituted by the other reactions in
the lineality. This way they obtained a flux space P ′ that was pointed.

To analyze P ′, they then computed all the vertices of P ′. Although the number of
vertices also explodes with the network size, they were able to compute the vertices for
genome-scale metabolic networks, since usually only a small portion of the reactions
show variability in the optimal flux space and only these induce vertices.

With a correlation analysis they then discovered that there are clusters of reactions that
are correlated and which are entirely uncorrelated to reactions outside the cluster. These
clusters correspond to what I call flux modules.

We can summarize these findings as follows:

• The method by Kelk et al. [75] was not developed to find flux modules, but flux
modules were actually just a by-product that was found by their novel vertex
enumeration method.

• Due to the “curation”-step of the optimal flux space P to P ′, the computed clusters
do not always coincide with the flux modules. There is another technical difficulty
that we will discuss in a later section in more detail.

If we assume that the flux space P is already pointed (and hence we can omit the steps
for eliminating linealities), then also this method can be considered an application of
Thm. 6.3.1, or more precisely of the following corollary:

Corollary 6.3.2 Let P := {v : Sv = b, ` ≤ v ≤ u} or P := T with P 6= ∅ and `I ≤ 0 ≤
uI . Let X be a partition of R into P -modules. For every A ∈ X let ΩA = prA(P ) be the
sample space of a fixed but arbitrary probability space. Let B ∈ X , r ∈ B, s ∈ R \ B be
arbitrary but fixed. Let

E1 = {v ∈ P : vr ∈ X}, E2 = {v ∈ P : vs ∈ Y }
be events, where X,Y ⊆ R. Then, E1, E2 are independent in the product probability
space P =

∏
A∈X ΩA. 2
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Proof By Thm. 6.3.1, we have P =
∏
A∈X ΩA. The independence follows directly from

the definition of product probability space. �

Let us consider the following discrete probability measure for each module A (under the
assumption b 6= 0 it follows that EFM(P ) is finite):

Pr(v ∈ prA(P )) :=
|{w ∈ EFM(P ) : wA = v}|

|EFM(P )| ,

where P = {v ∈ RR : Sv = b, ` ≤ v ≤ u} and b 6= 0. It follows by Cor. 6.3.2 that the
random variables Xr, Xs : RR → R with Xr : v 7→ vr, Xs : v 7→ vs are independent if r
and s belong to different modules. It follows that Xr and Xs can only be correlated if r
and s belong to the same module.

By Thm. 6.3.3 it follows that the elementary flux modes are uniformly distributed in
the product probability space P , i.e.,

Pr(v ∈ P ) =

{
1

|EFM(P )| v ∈ EFM(P )

0 otherwise.

Thus, Xr, Xs are exactly those flux variables that the vertex correlation method uses to
compute flux correlations.

6.3.3.2 Using Flux Forcing and Several Runs of FVA

This method was developed by me and is published in [100]. It is repeated here for
completeness’ sake, although the algorithm in 6.3.3.3 is much more efficient.

This algorithm for computing T -modules is based on the insight that the flux space T can
be written as the Cartesian product of the flux spaces for the T -modules (Thm. 6.3.1).
From this, we can derive that if we fix the flux value of one reaction to a fixed value,
this will have no influence on the flux variability of a reaction in a different T -module:

Corollary 6.3.3 Let P := {v : Sv = b, ` ≤ v ≤ u} or P := T with `I ≤ 0 ≤ uI . Assume
P 6= 0. Let R be partitioned into P -modules. Let A be a P -module and r ∈ A, s ∈ R\A.
Let x be a feasible flux rate for r, i.e., x ∈ prr(P ). Then

max{cvs : v ∈ P, vr = x} = max{cvs : v ∈ P} for all c ∈ R.

Proof Since x is a feasible flux rate for r, there exists a flux vector w ∈ P with wr = x.
Let v be a flux vector maximizing max{cvs : v ∈ P}. By Thm. 6.3.1 it follows that
v′ ∈ RR, with v′A = wA and v′R\A = vR\A, satisfies v′ ∈ P . Since s 6∈ A, it follows that

cvs = cv′s, showing max{cvs : v ∈ P, vr = x} ≥ max{cvs : v ∈ P}. The other direction is
obvious. �
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We can now use this result to put together this method for computing minimal T -
modules. Since we want to see dependencies between reactions in the same minimal
T -module, we choose extreme values for x (minimal and maximal flux). This will likely
cause big effects on the variability of reactions in the same minimal T -module, but by
Cor. 6.3.3 we will see no effect on the variability in other reactions.

To compute candidate sets of T -modules, we compute a graph G = (R, E) using Alg. 6.
For the algorithm to work, we assume that there exists no pathway that can carry
unbounded flux with thermodynamic constraints (this is only possible if nutrient/energy
uptake is unbounded). Alternatively, this can be achieved by assigning large upper and
lower to the reaction flux rates.

Algorithm 6 Computation of candidate sets for T -modules.

1. Compute thermodynamic flux variability vr ∈ [vmin
r , vmax

r ] for each reaction r in
the network. Define V := {r : vmin

r < vmax
r }.

2. Each reaction r 6∈ V forms a T -module by itself.

3. For each reaction r ∈ V do the following

(a) Fix r to its maximal/minimal flux rate (which exists because of thermody-
namic feasibility)

(b) Compute thermodynamic flux variability vs ∈ [vmin,r
s , vmax,r

s ] for each reaction
s ∈ V .

(c) If and only if vmin,r
s > vmin

s or vmax,r
s < vmax

s , then we say that s is influenced
by r and add the edge (r, s) to E.

(d) If and only if vmin,r
s > vmin

s ≥ 0 or vmax,r
s < vmax

s ≤ 0, we say that r forces
flux through s.

(e) If and only if vmin,r
s = 0 = vmax,r

s , we say that r blocks flux through s.

4. Compute the connected components X = {A1, . . . , An} of G.

To run thermodynamically constrained flux variability analysis (tFVA), we use the fast-
tFVA tool [101]. With it, we are able to run this algorithm on genome-scale networks
like E. coli iAF1260 and S. cerevisiae iND750.

By Cor. 6.3.3 it follows that every connected component of G is a subset of a minimal
T -module. To check if a subset A ⊂ R is indeed a T -module, we run Alg. 7 with P = T .
This algorithm returns YES if and only if A is a P -module, because we individually
minimize and maximize each component (metabolite) of the interface of the candidate
P -module. If and only if A is a P -module, d is a fixed vector, i.e., for each metabolite
the minimum and maximum must be the same. If there were a flux vector v ∈ P with
different interface, then also the maximum or minimum would be different.
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Algorithm 7 Checks if a candidate set A is indeed a P -module. This algorithm works
not only for the flux space P = T , but for arbitrary flux spaces P .

Input: A ⊆ R
M := {m ∈M : ∃r ∈ A : Smr 6= 0}
for m ∈M do

dmin := min{SmAvA : v ∈ P}
dmax := max{SmAvA : v ∈ P}
if dmin 6= dmax then

return NO
end if

end for
return YES

In practice, it rarely happens that the connected components are not T -modules. If,
however, connected components are detected that are not T -modules, these have to be
combined manually to form T -modules. This is an easy task if only two connected
components A and B are not T -modules. Since the T -modules partition the set of all
reactions, it follows that the union of A and B forms a minimal T -module. In general,
however, there are exponentially many combinations possible.

Despite these theoretical problems the algorithm directly computed the modules in
nearly all test cases. Only in two cases (E. coli iJR094 grown on threonine resp. tryp-
tophan), two connected components of the interaction graph were not modules. The
example in Fig. 6.4 with the following flux polytope shows how this can happen:

P =

v ∈ R8

∣∣∣∣∣∣∣∣∣∣


1 1 −1 −1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

 v =


0
1
1
1
1

 , v ≥ 0

 .

For this reason, it is also important in practice to always check at the end of Alg. 6
if the computed connected components are indeed modules (Alg. 7). It follows from
Thm. 6.3.2 that this problem is not an intrinsic property of minimal modules. Instead,
it is caused by how we detect interactions between reactions. We also remark that the
addition of thermodynamic constraints can also not be its sole cause, since the example
network does not involve thermodynamic constraints.

Blocking Graph The blocking graph is a side-product with potential applications
outside module detection. It visualizes reactions that are on alternative pathways. We
define it as the directed graph B = (R, E), where

E := {(r, s) : (vr = vmax
r → vs = 0) ∨ (vr = vmin

r → vs = 0) ∀v ∈ T}.
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r1
r2

r3 r4

r5

r6

r8r7

m1

m2

m3

m5m4

Figure 6.4: The proposed method computes that {r1, r5}, {r2, r6}, {r3, r7}, {r4, r8} are
minimal modules. However, this network only consists of exactly one minimal module.

We observe that these arcs are computed in step 3e of the Alg 6. It follows that no
reactions of different T -modules will be connected in B.

Hence, we will usually only look at the subgraph of the blocking interaction graph
consisting of the nodes of a T -module. We will call this subgraph the blocking graph of
the T -module. An example can be seen in Fig. 6.5.

6.3.3.3 Using Matroid Theory

This method was developed by me in a collaboration with Leen Stougie and is
published in [102]

We recall Thm. 6.2.1 and Thm. 6.2.3, which applied to flux modules (0-modules) give:

Corollary 6.3.4 For P ⊆ {v ∈ RR : Sv = b} it holds for all A ⊆ R that

A is P -module⇔ A ∩ V is ker(SV )-module.

Corollary 6.3.5 A ⊆ R is a ker(S)-module if and only if A is a separator in the matroid
represented by S. 2

We recall further that V was defined as the set of reactions with flux variability:

V := {r ∈ R : vmax
r 6= vmin

r },where (6.2)

vmax
r := sup{vr : v ∈ P}
vmin
r := inf{vr : v ∈ P}

The characterization of modules as separators of matroids allows us to compute the flux
modules of a metabolic network efficiently. By the equivalence of modules and separators
it follows from Thm. 6.3.2 that there exists a unique partition into minimal separators.
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a)

3mob[c]

akg[c]

ala−L[c]

glu−L[c] pyr[c]

val−L[c]

ALATA_LVALTA

VPAMT

b)

ALATA_L

VALTA

VPAMT

Figure 6.5: Graphical representations of a module of E. coli iAF1260.
a) The subnetwork of the module consisting of ALATA L, VPAMT, and VALTA. The partic-
ipating metabolites are drawn in ellipses. Stoichiometric coefficients are not shown.
b) The blocking graph of the module. An arc from reaction r1 to r2 means that if r1

has minimal or maximal flux, then no flux is possible through r2. In this example it
means that VPAMT and VALTA block each other when carrying optimal flux. However,
VALTA does not block ALATA L when carrying optimal flux. This shows that ALATA L is
also necessary for other pathways and crucial for optimal growth.

To understand the algorithm for finding the modules, we observe that the minimal
non-trivial separators are the connected components of the matroid. In the context of
graph-theory these are called 2-connected components (Note the inconsistency of the
terminology between matroid and graph theory. The connected components in graph-
theory are something different.) Formulated in matroid-terminology we recall the fol-
lowing graph-theoretic characterization of 2-connected component: For any 2 elements
(columns of S in the linear matroid, edges in the graph) in the same connected compo-
nent there exists a minimal dependent set (circuit) that contains them both. For pairs
of elements of different connected components this is not true. It turns out that this
also holds for matroids in general (Proposition 4.3.4 in [118]).

Theoretically, we could now build a graph G = (V,E), where V is the set of reactions
defined in (6.2) and there is an edge between two reactions (columns of SV ) if and
only if there exists a circuit that contains both. The connected components (in the
graph-theoretic sense) of G will be the minimal separators. Since the number of circuits
explodes exponentially, it is not efficient to enumerate all circuits in order to compute
the connected components of the graph G. Indeed, this is also not necessary and it
suffices to look at a special set of circuits, so called fundamental circuits [161].
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A set of fundamental circuits is obtained as follows: We start by finding a basis X of
the matroid; i.e., a maximal independent set, which we compute by Alg. 8. Notice that,
starting from the empty set, the algorithm grows X by adding elements only if this keeps
X independent. Since we try to add all elements to X, it follows that at the end of the
algorithm, X will be a basis of the linear matroid represented by SV .

Let Y := V \X. Clearly, for every r ∈ Y , adding r to X will create a cycle Cr ⊆ X∪{r}.
It is easy to see that Cr is actually a circuit, which is called fundamental circuit. In
Alg. 8 the fundamental circuits are constructed simultaneously with constructing X.
This gives us a so-called partial representation.

We now build, by Alg. 9, the graph G′ = (V,E′), where two reactions are connected by an
edge if there exists a fundamental circuit that contains both. Krogdahl and Cunningham
showed that the connected components of G′, found by Alg. 9, are precisely the minimal
separators of the matroid [28, 81].

To each circuit C there exists a flux vector v that is unique up to scaling with C =
supp(v), Sv = 0. If we enter for every circuit in B the corresponding flux values from
v, we obtain a null-space matrix of S. Hence, this approach can be understood as
computing a block-diagonalization of the null-space matrix. Approaches like this in the
context of stoichiometric matrices have already been studied in [142]. However, [142]
does not use matroid theory and it is unclear whether their method will always compute
the finest block-diagonalization.

Algorithm 8 Computes a basis X and its set of fundamental circuits of a matroid
represented by S

function ComputePartialRepresentation(S)
F = ∅
X = ∅
for r ∈ V do

check feasibility of SXv = −Sr
if feasible then

C := supp(v) ∪ {r}
F := F ∪ {C}

else
X := X ∪ {r}

end if
end for
return F

Here we recapitulate all the steps for finding the modules of the optimal flux space of a
metabolic network.

1. Determine the optimal value by LP;

2. Set the objective function equal to the optimum value and add it as a constraint;
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Algorithm 9 Computes the modules of {v : SV v = 0}
function ComputeModules()
F = ComputePartialRepresentation(SV )
Build Graph G = {V,E} with (x, y) ∈ E iff there exists C ∈ C with x, y ∈ C.
A = find connected components of G (e.g. using depth-first search).
return A

3. For each reaction r maximize and minimize the flux through r in the optimal flux
space;

4. Determine the set V of reactions for which the maximum and the minimum are
not equal;

5. Select the set of columns SV corresponding to V of the stoichiometric matrix S
and neglect the non-negativity constraints; i.e., irreversibilities, directions of the
reactions;

6. Apply Alg. 9 to compute the minimal modules A of {v ∈ RV : SV v = 0}.

7. A is the set of minimal modules that contain reactions in V . The reactions with
fixed flux are all minimal modules by themselves.

We notice that steps 3 (and therefore 4) of the algorithm can be parallelized in a trivial
way, reducing the computation times even further.

6.3.4 Comparison of the Methods

First of all we observe that since the FVA-based method (Sec. 6.3.3.2) and the matroid
based method (Sec. 6.3.3.3) work using the same definitions, they also must (as proven)
compute the same results. We also saw that we can see some aspects of the vertex
correlation based method (Sec. 6.3.3.1) in our theoretical framework.

Indeed, we can even observe that the FVA-based method is not much different than the
vertex correlation method. It also can be considered an application of Cor. 6.3.2. The
main difference between the FVA method and the vertex correlation method can hence
be considered in the choice of probability measures and events that are used to detect
interactions between reactions.

Another difference between the FVA method and the vertex correlation method (be-
sides complexity theoretic aspects) lies in how we deal with internal cycles. In the FVA
method we employed NP-hard thermodynamic constraints, while in the vertex corre-
lation method the vertices are directly computed and hence automatically the cycles
(in form of rays) are omitted. Hence, both methods do not solve the original prob-
lem on the steady-state flux space, but slightly modified variants. In particular how
the vertex correlation-based method is dealing with linealities can induce differences, as
Example 6.3.3 shows.
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Example 6.3.3 Let us consider the metabolic network shown in Fig. 6.6. We observe
that there is a reversible cycle involving the metabolites A,B,C,D, which is causing a
lineality. This causes that the network cannot be partitioned into modules w.r.t. to its
steady-state flux space.

Assume now that we break the cycle by deleting the reaction A ↔ D. It can easily be
seen that this implies that no flux through C ↔ B is possible and we get 2 modules; the
upper part and the lower part.

Let us now assume that we break the cycle by deleting the reaction A↔ B. We observe
that we can still use any of the other reactions, but do not have to (except the exchange
reactions). Furthermore, we observe that in this case the network does not partition into
two flux modules (in particular not into an upper and a lower part).

1 1

1 1

A B

CD

Figure 6.6: A metabolic network, where elimination of linealities by deletion causes
partitions into modules that are not well-defined. The exchange fluxes are all fixed to a
rate of 1. The flux rates of all the other reactions are unbounded.

We conclude that although the elimination of linealities by deletion can give us smaller
(and hence more easily comprehensible) modules, the operation of deletion is highly un-
stable and the effect depends on which reaction of the cycle we delete. This effect is
highly undesirable since in a biological analysis of the results, we may end up puzzling
over an artifact caused by the deletion of a reaction in a cycle. Even worse, the results
could end up being not reproducible. 2

The core observation of the matroid based method is however that we do not have to
get rid of internal cycles at all. With this we found a polynomial time algorithm to
compute a decomposition into minimal modules without requiring any restrictions at
all. Additionally we can also apply it to arbitrarily restricted flux spaces - we only have
to be able to identify reactions with flux variability and those without. The practical
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efficiency can be seen in Tab. 6.1.

With the matroid-based method we can compute all flux modules for the optimal flux
space of genome-scale networks in about the same time as is needed for conventional
flux variability analysis. In Tab. 6.1 we see that the matroid-based method outperforms
the previous methods by orders of magnitude. I used the metaopt toolbox [100] (see
also Chapter 4) to solve the flux variability subproblems. Unfortunately, I did not have
access to all the runtime data of [75] which is why some of the data is missing and the
reported runtimes may be only from some of the steps in the pipeline. The computations
for the matroid approach were obtained by computations on a 4-core desktop computer.

Table 6.1: Runtime comparison for module computation in the optimal flux space of
genome-scale networks.

Network Vertex FVA Matroid Matroid based
Correlation based based with thermo.

E. coli iAF1260 133495 sec 755 sec 6.4 sec 40.7 sec
E. coli iJR904 1906 sec 162sec 1.9 sec 6.8 sec
E. coli iJO1366 8.4 sec
H. pylori iIT341 55.5 sec 0.8 sec 2.3 sec
H. sapiens recon. 1 153.3 sec
H. sapiens recon. 2 1131 sec
M. barkeri iAF692 1088 sec 941 sec 1.4 sec 7.3 sec
M. tuberculosis iNJ661 9317 sec 1623 sec 4.3 sec 23.0 sec
S. aureus iSB619 127.8 sec 1.2 sec 2.2 sec
S. cerevisiae iND750 3.0 sec 28.1 sec

I used the metaopt toolbox [99] (see also Ch. 4) to solve the flux variability subproblems.

In particular notice that large networks like Human recon 2 can now also be analyzed. In
addition, the new method is numerically much more stable. In the FVA-based method
it often happens that error tolerances are chosen too small or too large, which causes
that linear programs that should be feasible are detected as infeasible etc. This then
usually caused the algorithm to abort and the tolerance sometimes needed to be adjusted
according to the problem instance.

I experienced that the matroid based method is much more robust in this respect. The
initial tolerances of 10−20 for the optimization step, 10−8 for the flux variability and
10−9 for the final module computation worked in all cases.

Note, that this comparison is slightly unfair, since the methods are solving slightly
different problems as discussed above.

For example, the thermodynamic constraints have the following effect on E. coli iAF1260:
7 of the modules coincide with the steady-state modules and 2 modules contain reactions
which have fixed flux under thermodynamic constraints. The other modules are found
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in the steady-state flux space, but not in the thermodynamically constrained flux space
since they contain only reactions that have fixed flux by thermodynamic constraints.
Usually those modules are formed by a splitted pair of forward and backward reactions.

6.3.5 Computed Modules in Genome-Scale Metabolic Networks

In Table 6.2 we see a statistical summary over the modules computed for the optimal flux
space of classical genome-scale metabolic networks. These results were obtained for the
thermodynamically constrained flux space. Furthermore I tried to compute the optimal
yield elementary modes from the computed decompositions into flux modules. However,
due to the high sensitivity of the EFM solvers to rounding errors, I was not always
able to compute all EFMs through each module. Those cases are indicated in Table 6.2
by a question mark. Detailed lists of the computed modules for different genome-scale
metabolic networks can be found in Appendix A.1. In Appendix A.2, you can also find
the set of optimal-yield EFMs for two selected networks.

Using the blocking graph, we may get additional information on interactions between
the reactions inside of modules (see Sect. 6.3.3.2 and steps 3c, 3d, 3e of Alg. 6). Let us
consider the module consisting of the reactions L-alanine transaminase (ALATA L), valine
transaminase (VALTA), and valine-pyruvate aminotransferase (VPAMT). This is depicted in
Fig. 6.5a and the blocking graph is shown in Fig. 6.5b. By studying Fig. 6.5a, we might
think that VALTA and VPAMT together form an alternative route to ALATA L. However, a
look at Fig. 6.5b reveals that if VALTA carries maximal flux, then VPAMT does not carry
any flux and vice versa. The blocking interaction graph actually shows us that VPAMT

and ALATA L together form an alternative route to VALTA. Furthermore, we can derive
that ALATA L is also important for other pathways, since even maximal or minimal flux
through VALTA cannot force flux through ALATA L to zero.

The blocking graph may also give us information about which reactions may be subject
to regulatory control in order to obtain a specific effect. For example, if we consider the
module of S. aureus iSB619 shown in Fig. 6.7, we see that regulatory control on LDH D

or LDH L will potentially influence what kind of lactate is produced.

6.3.5.1 Sensitivity to Growth Conditions in E. coli

When I analyzed E. coli iAF1260 grown on glucose, I discovered instead of the biggest
module found by [75] three smaller modules, seen in Figs. 6.8, 6.9, 6.10, which mostly
contain the same reactions. It turns out that the difference was actually not caused
by the different analysis methods, but actually by slight modifications of the metabolic
network. [75] used an uptake flux of at most 12.7777mmol/gDW/h (mmol per gram dry
weight per hour) for glucose, while we used an uptake flux of 8mmol/gDW/h for glucose
as originally given in the model. All other bounds on the network were essentially the
same (they additionally allow uptake of Cob(I)alamin, which however is blocked in the
network).
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Table 6.2: Computed modules in genome-scale networks and the number of EFMs.

Model no. reactions no. modules no. efms run time

E. coli iJR904 on Glucose 1075 8 26 × 90× 96 162s
E. coli iJR904 on L-Threonine 1075 12 210 × 6× 90 152s
E. coli iJR904 on L-Arginine 1075 11 28 × 62 × 9 139s
E. coli iJR904 on Citrate 1075 11 28 × 6× 15× 90 138s
E. coli iJR904 on Fumarate 1075 11 28 × 6× 90 144s
E. coli iJR904 on L-glutamine 1075 10 27 × 6× 90× 222 145s
E. coli iJR904 on Lactose 1075 8 26 × 8×? 160s
E. coli iJR904 on L-Malate 1075 10 27 × 6× 15× 90 135s
E. coli iJR904 on L-Tryptophan 1075 7 25 × 18× 96 136s

E. coli iAF1260 on Glucose, aerobic 2382 9 24 × 32 × 6× 54× 5184 755s
E. coli iAF1260 on Glucose, anaerobic 2382 9 26 × 3× 6× 2592 531s
E. coli iAF1260 on Glucose, limited oxygen 2382 6 23 × 3× 2592×? 976s
E. coli iAF1260 on L-Threonine, aerobic 2382 9 24 × 3× 82 × 108× 4944 6836s

H. pylori iIT341 554 5 24 × 18 55.5s

M. barkeri iAF62 690 7 24 × 3× 28× 156 941s

M. tuberculosis iNJ661 1025 10 26 × 33×? 1623s

S. aureus iSB619 743 10 27 × 4× 192 127.8s

S. cerevisiae iND750 1266 8 24 × 5× 6× 80×?

For each of the analyzed networks the table shows the number of computed modules in the optimal flux space with respect to the
specified growth condition. If no growth condition is specified, the default from the BiGG-database [134] was used. I also computed
the number of optimal elementary flux modes through each module. Since every combination of elementary flux modes of the modules
gives an optimal elementary flux mode of the whole network, we did not compute the product and simply stated the factors. I use ’?’
to denote that the we were not able to compute the elementary flux modes through a module, because there were too many elementary
flux modes (≥ 300). I used the original networks from the BiGG-database, where no duplicate reactions were removed.
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D_LACt2

EX_lac_D(e) EX_lac_L(e)

LDH_D LDH_L

L_LACt2r

Figure 6.7: The blocking interaction graph shows clearly that (LDH D, D LACt2,
EX lac D(e)) forms an alternative pathway to (LDH L, D LACt2r, EX lac L(e)).

A careful analysis of the network revealed that fluxes do not scale linearly with the uptake
of glucose as assumed in [75]. This is caused by two reactions with small absolute flux
bounds: The network requires a flux through ATP maintenance of 8.39mmol/gDW/h
and maximal oxygen uptake of 18.5mmol/gDW/h. These values are fixed and do not
scale with the glucose uptake.

If E. coli iAF1260 is allowed to have only an uptake flux of 8mmol/gDW/h for glucose,
it will not consume all the oxygen to achieve optimal growth. However, with an uptake
flux greater than 12mmol/gDW/h for glucose, it will require all the supplied oxygen to
grow optimally. It follows that in this case the structure of the optimal flux space of
E. coli iAF1260 will also change structurally. Consequently the optimal flux space gets
partitioned into different modules.

To understand this structural change, we also analyzed anaerobic growth of E. coli
iAF1260 under glucose. Interestingly, the modules shown in Figs. 6.8, 6.10 also existed
under anaerobic growth conditions. This was unexpected since in the aerobic growth
case with limited oxygen supply as studied by [75], these modules do not exist. Instead
of the module in Fig. 6.9, we find a module consisting only of a subset of the reactions,
as shown in Fig. 6.11.

A comparison of the modules in Fig. 6.9 (aerobic) and Fig. 6.11 revealed that the former is
transforming succinate into fumerate, while the latter is doing the reverse transformation
(see Tab. 6.3). Hence, the modules just look similar but actually perform a different
metabolic function. This also explains why under limited oxygen supply these modules
do not appear.

Furthermore, I found small changes regarding the second largest module found by [75].
Although it stays mostly the same, the reactions ACKr, ACS, ADK1, PTAr, R15BPK, R1PK
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ACt2rpp

ACt4pp

GLUt2rpp

GLUt4pp

GLYCLTt2rpp

GLYCLTt4pp

PROt2rpp

PROt4pp

SERt2rpp

SERt4pp

THRt2rpp

THRt4pp

Figure 6.8: An arrow is drawn between two reactions in this module of E. coli iAF1260
(grown on glucose) if the reactions do not have a blocking interaction. This figure raises
the assumption that we have 6 alternative pathways that realize the same function and
that each of the pathways is realized by the two reactions connected by an edge. Indeed,
this is the case: This module transports sodium from the periplasm to the cytosol in
exchange to hydrogen.

leave and enter the module depending on the amount of oxygen supply. It is interesting
to note that ACKr and PTAr are actually contained in the largest module from [75] (the
module that decomposed into 3 smaller modules under high or no oxygen supply).

6.3.6 Visualizing the Interplay of Flux Modules

This method was developed together with Frank Bruggeman, Brett Olivier and Leen
Stougie and is published in [102].

We observed that the decomposition of flux modules changes under different growth
conditions and objective functions. One approach to understand these changes is to
visualize the interplay of the modules to get a more intuitive understanding of the
changes.

6.3.6.1 Method

By the definition of module, the reactions inside a module have together a fixed function
(the interface flux). Hence, we can represent the module by a single reaction with a
fixed flux in the genome-scale network. The stoichiometry of the representing reaction
is precisely the interface flux of the module.

This way we can create a compressed network that contains all the reactions with fixed
flux rates and artificial reactions that represent the modules. This compressed network
has the following advantages:

• The number of reactions carrying flux is compressed (a module with many reac-
tions, is represented by a single reaction).
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ASPO3

ASPO4

ASPO5

DHORD2

DHORD5

FRD2

FRD3

GLYCTO2

GLYCTO3

GLYCTO4

NADH16pp

NADH17pp

NADH18pp

SUCDi

Figure 6.9: Blocking interaction graph of a module of E. coli iAF1260 (grown on glucose,
aerobic). Here, we see that this module has 4 submodules which interact by the reactions
FRD2, FRD3 and SUCDi.

• All the reactions in the compressed network have a fixed flux rate.

Unfortunately, the number of fixed reactions is still very large. This prevents automatic
visualization of the network and the role of the modules containing variable reactions is
obfuscated. However, reactions that have a fixed flux rate can also be grouped together
into modules by Lemma. 6.3.1.

Theoretically, we could group all reactions with a fixed flux rate into 1 module. This
would result in a compressed metabolic network consisting of k + 1 reactions, where
k is the number of minimal modules containing reactions with variable flux rates. In
particular, the module containing all fixed reactions will likely also contain the biomass-
and nutrient-uptake reactions. If we want to understand the role of the modules for
biomass production or nutrient uptake, this is not very useful. Moreover, modules of
variable reactions may disconnect reactions with fixed flux rates from each other. Such
disconnected reactions are important for the mediation between modules and should also
be displayed separately. Hence, we decided to build a compressed network as follows:

1. Given: A collection Mod of interesting modules (selected by the user). Mod has
to cover all reactions with variable flux rates. Typically Mod contains all mini-
mal modules of variable reactions, a module containing the biomass reaction and
modules containing the nutrient uptake reactions.

2. We compute the setRMod := {r ∈ R : r ∈M ∃M ∈ Mod} of reactions in interesting
modules.

140



6.3. FLUX MODULES (0-MODULES)

DHAPT

F6PA

FBA PFK

PYK

Figure 6.10: Blocking interaction graph of a module of E. coli iAF1260 (grown on
glucose, aerobic). This diagram proposes the thesis that F6PA and DHAPT form an alter-
native pathway to FBA, PFK, and PYK. Indeed, both form two alternative pathways for
transforming D-fructose 6-phosphate and phosphoenolpyruvate into dihydroxyacetone
phosphate, pyruvate and glyceraldehyde 3-phosphate. The reason why the edges from
FBA and PFK are not bidirectional is that these reactions are also used in other pathways.

3. We compute the set RB := {r ∈ R \ RMod : vr = 0 ∀v ∈ P} of blocked reactions.

4. We compute the set MMod := {m ∈ M : ∃ r ∈ RMod such that m ∈ supp(Sr)} of
metabolites involved in the interesting modules.

5. We consider the metabolic network, where RMod,RB and MMod are removed. It is
represented by the stoichiometric matrix S′ := SM\MMod,R\(RMod∪RB).

6. We compute the connected components ModF of S′. We do so by defining the inci-
dence matrix of a bipartite graph, the nodes of which on one side of the bipartition
correspond to the rows of S′, and the ones on the other side tot the columns of S′,
and there is an edge between row-node i and column-node j if and only if S′ij 6= 0.
The column-nodes represent the reactions in R\(RMod∪B), and the corresponding
reactions of the connected components of this bipartite graph, whence ModF, forms
a partition of R\ (RMod∪B). Clearly, every A ∈ ModF is a module, since ModF only
contains fixed reactions.

7. We represent each module in Mod, ModF by a single reaction with the corresponding
interface flux. LetM0 be the set of metabolites that have a net interface flux of 0
in all these modules. We suppress M0, since they would just show up as isolated
metabolites. We obtain a metabolic network with metabolitesM′ :=M\M0 and
reactions R′ := Mod ∪ ModF.
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asp__L[c]fum[c]

h[c]iasp[c] mql8[c]

mqn8[c]succ[c]

ASPO5 ASPO4

FRD2

ASPO5

ASPO4

FRD2

Figure 6.11: In anaerobic growth of E.coli iAF1260 under glucose, fumarate reductase
(FRD2) and two kinds of L-aspartate oxidase (ASPO4, ASPO5) already form a module.
Under aerobic growth, these are only part of a bigger module, which is shown in Fig. 6.9.
This module essentially transforms fumarate and L-aspartate into iminoaspartate and
succinate. FRD2 again is also used in a different pathway and additionally transforms
small amounts of menaquinol 8 into menaquinone 8.

8. We remove reactions disconnected from the network that contain the target re-
action, e.g. because of modules that form thermodynamically infeasible cycles or
otherwise have no role in the metabolism.

In practice, this results in medium-scale networks that can automatically be visualized
with graph-drawing software like GraphViz [54].

6.3.6.2 An Anomaly of Flux Modules

Consider the metabolic network shown in Fig. 6.12. We observe that the upper three
reactions A = {(m1 → m3), (m1 → m5), (m5 → m3)} form a flux module. The interface
flux dA of this flux module satisfies d1 = −1, d3 = 1 and di = 0 for all i = 2, 4, 5.
If we simplify this network, we obtain a network as shown in Fig. 6.13. Note that
the stoichiometry for metabolite m5 in the compressed network in the new reactions
representing the modules is actually 0 (hence, it is drawn with undirected edges).

According to the algorithm presented in Sec. 6.3.6.1 we would not draw these edges
and even omit metabolite m5. This can lead to the misconception that there is no
interplay between the two modules and thus to wrong interpretations. For example in
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Table 6.3: Interface flux comparison of the Modules shown in Fig. 6.9 and Fig. 6.11.

Metabolite
interface flux

aerobic module
interface flux

anaerobic module

L-Aspartate −0.001678 −0.0005999
Iminoaspartate 0.001678 0.0005999
Fumarate 3.729 −0.08771
Succinate −3.729 0.08771
H+ −114.2 0.0005999
H+ (periplasm) 85.67 0
Glyoxylate 0.0004929 0
Glycolate −0.0004929 0
NAD 28.56 0
NADH −28.56 0
(S)-Dihydroorotate −0.2437 0
Orotate 0.2437 0
Ubiquinone-8 −32.53 0
Ubiquinol-8 32.53 0
Menaquinol 8 0 −0.08711
Menaquinone 8 0 0.08711

All metabolites are cytosolic except where stated otherwise. The flux units are in
mmol/gDW/h (mmol per gram dry weight per hour). By definition of module these interface
fluxes are constant for all optimal flux vectors under the corresponding growth condition.

13C labeling experiments, because if metabolite m1 is labeled, it can actually happen
that also metabolite m4 becomes labeled. If the reactions representing modules were
actually proper reactions this would be impossible. Hence, we suggest that metabolites
that are involved in a module but actually do not participate in the interface flux should
also be marked in the compressed network, for example with such an undirected edge.

6.3.6.3 Results

We used the visualization method to create visualizations of the above mentioned genome-
scale networks. In Tab. 6.4, we compare the original size of the networks with the size of
the compressed networks that are used to visualize the interplay of the flux modules with
variable flux rates. Each reaction of the compressed network is a flux module. Every
minimal flux module containing reactions with variable flux rates is represented by ex-
actly one reaction. Reactions with fixed flux rate are grouped together. It is interesting
to see that although the networks have quite different sizes originally, the compressed
sizes do not vary very much.

Visualizations of some of the example networks and their modules, using the tool dot
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m1 m3

m4m2

m5

Figure 6.12: A metabolic network
with two flux modules that share
metabolites.

m1 m2

m4m3

m5

Figure 6.13: Compressed form of
the metabolic network.

Table 6.4: Size of the compressed networks.

No. Metabolites No. Reactions No. Metabolites No. Reactions
Network (original) (original) (compressed) (compressed)
E. coli iAF1260 1668 2382 46 25
E. coli iJR904 761 1075 42 17
E. coli iJO1366 1805 2583 49 27
H. pylori iIT341 485 554 32 20
M. barkeri iAF692 628 690 35 13
M. tuberculosis iNJ661 826 1025 58 26
S. aureus iSB619 655 743 39 22
S. cerevisiae iND750 1061 1266 57 24

[53] from the GraphViz toolbox, can be found on the website https://sourceforge.

net/projects/fluxmodules/, which was created for the publication that described this
method. The MATLAB scripts for module detection can be found there as well.

6.3.7 Conclusion

We observed that the decomposition into minimal flux modules highly depends on the
growth conditions, like available nutrients and objective function. Also, it can be easily
seen that as soon as we relax the optimality condition a bit to also allow suboptimality,
we most likely loose all interesting modules.

In many metabolic networks something like the zero-flow is a feasible solution (usually
there is a maintenance reaction, but for the sake of the argument we can forget about it).
It follows that for many flux modules 0 has to be in the interface space (since SAvA = 0
if vA = 0). Biologically this means that the flux module is isolated from the rest of the
network and hence probably a modeling error.

As soon as we allow suboptimality, we allow convex combinations (to a certain degree)
with the full flux space. It follows that the suboptimal flux space has the same dimension
as the full flux space and hence, by Thm. 6.2.1 also the same flux modules. However,
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biomass yield is almost never the only objective criterion which gives evolutionary ad-
vantage and most organisms usually do not exhibit optimal yield rates. Hence, it is very
important to also consider suboptimal solutions.

There are now two remedies to the problem:

1. Compute modules for many different nutrient sources and objective functions and
try to see a pattern. With the matroid based computation approach, we can now
compute flux modules very efficiently and hence this method became a practical
approach. The visualization method presented in Sec. 6.3.6 is one of the approaches
with which this can be done. However, during the work with the visualization
method, I observed that the visualization is very unstable even w.r.t. to small
changes. Hence, further work will be needed to turn this into a more generally
useful approach.

2. Generalize the notion of flux module to obtain something that is more robust
to perturbations in the growth condition and in particular to suboptimality. A
possible generalization are the already introduced k-modules.

6.4 Decomposition Theorem for Linear 1-Modules

Similar to the decomposition theorem for flux modules, we can derive a decomposition
theorem for linear 1-modules. In the following, we restrict ourselves to polyhedra P =
{v : Sv = b, vIrrev ≥ 0} 6= ∅.
We assume that we are given a partition X ofR into linear 1-modules. If we consider P to
be the flux space of a metabolic network, the decomposition theorem can be understood
as follows: We build a compressed network that contains one reaction for each linear
1-module A ∈ X . The stoichiometry of each reaction will be the variable interface dA

of the corresponding linear 1-module A. In the compressed network, we will also have
irreversible reactions, which represent irreversible 1-modules:

Definition 6.4.1 (irreversible 1-Module) A ⊆ R is called an irreversible 1-module
if there exists a d ∈ RM s.t. for every v ∈ P there exists an α ≥ 0 s.t.

SAvA = dα.

d is called the positive variable interface of A. We call a linear 1-module A reversible if
it is not irreversible. 2

We will assume that if a linear 1-module A is irreversible, then dA will be the positive
variable interface. This leads us to the following result which tells us that every feasible
flux in the compressed network can easily be turned into a feasible flux of the whole
network and vice versa:
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Theorem 6.4.1 For every irreversible 1-module A ∈ X , let vA ∈ RA be an arbitrary
but fixed flux vector satisfying SAv

A = dA, vAIrrev ≥ 0, where dA is the positive variable
interface of A. For every reversible A ∈ X , take two flux vectors vA ∈ RA and v̄A ∈ RA,
arbitrary but fixed, satisfying SAv

A = dA, vAIrrev ≥ 0 and SAv̄
A = −dA, v̄AIrrev ≥ 0, where

dA is the variable interface of A.

Then it holds that:

1. There exists αA ∈ R (and αA ≥ 0, if A is irreversible) for every A ∈ X s.t.∑
A∈X

dAαA = b.

2. For all αA ∈ R (and αA ≥ 0, if A is irreversible) A ∈ X , satisfying∑
A∈X

dAαA = b

we have that v ∈ P for v defined by

vA = αAvA ∀A ∈ X with αA ≥ 0

vA = −αAv̄A ∀A ∈ X with αA < 0

Proof We prove both statements separately.

1. Since P 6= ∅, we can choose a w ∈ P . For each linear 1-module A ∈ X there exists
an αA ∈ R (and αA ≥ 0, if A is irreversible) such that SAwA = dAαA. It follows
that ∑

A∈X
dAαA =

∑
A∈X

SAwA = b.

2. Let αA ∈ R (and αA ≥ 0, if A is irreversible) arbitrary but fixed for every A ∈ X
such that

b =
∑
A∈X

αAdA.

⇒ b =
∑

A∈X :αA≥0

αASAv
A −

∑
A∈X :αA<0

αASAv̄
A (by definition of vA, v̄A)

=
∑
A∈X

SAvA (by definition of v)

= Sv

Since for every A vA is a positive multiple of vA or v̄A and vAirrev ≥ 0, v̄AIrrev ≥ 0,
we have vIrrev ≥ 0 and thus v ∈ P . �
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We can use this theorem to also characterize the set of EFMs using linear 1-modules.
For technical reasons, we will split all reversible reactions in the compressed network.
For notation we will introduce symbolic functions r+(A), r−(A) that simply denote the
forward (resp. backward) reaction that represent a 1-module A. If A is irreversible
then there exists only the forward representative r+(A). Summing up, the compressed
network has the same metabolite set M as the original network, it consists of reactions
R′ = {r+(A) : A ∈ X} ∪ {r−(A) : A ∈ X , A reversible} and its stoichiometric matrix
D satisfies Dr+(A) = dA, Dr−(A) = −dA for every A ∈ X . All reactions in R′ are

irreversible. For a flux vector v ∈ RR′ and an irreversible module 1-module A, we define
v−r (A) := 0 (note that the reaction r−(A) actually does not exist).

The following corollary then states that every EFM in the compressed network can be
turned by simple substitution into an EFM of the whole network and that every EFM
of the whole network can be produced in such a way.

Corollary 6.4.1 Let

• E be the set of elementary flux modes of P ,

• EA+ be the set of elementary flux modes of PA+ := {vA ∈ RA : SAvA = dA, vAIrrev ≥
0},

• EA− be the set of elementary flux modes of PA− := {vA ∈ RA : SAvA = −dA, vAIrrev ≥
0},

• FA be the set of elementary flux modes of QA := {vA ∈ RA : SAvA = 0, vAIrrev ≥ 0},

• E′′ be the set of elementary flux modes of P ′ := {α ∈ RR′ : Dα = b, α ≥ 0}, and

• E′ := {a ∈ E′′ : ar+(A) = 0 ∨ ar−(A) = 0 ∀A ∈ X reversible}.

Then

E =
⋃
a∈E′

 ∏
A∈X

ar−(A)=0

ar+(A)E
A
+ ×

∏
A∈X

ar−(A)>0

ar−(A)E
A
−

 (if b 6= 0)

E =
⋃
a∈E′

 ∏
A∈X

ar−(A)=0

ar+(A)E
A
+ ×

∏
A∈X

ar−(A)>0

ar−(A)E
A
−

 ∪ ⋃
A∈X

FA × 0R\A (if b = 0).

Proof (Corollary 6.4.1) ⊆: Let e ∈ E. By definition of linear 1-module, there
exists an αA ∈ R such that SAeA = dAαA for every A ∈ X . If dA = 0, we assume
w.l.o.g. that αA = 0. We observe that for each module one of the following cases
happens:
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Case 1: αA = 0 and eA 6= 0. e′ ∈ RR with e′R\A = eR\A and e′A = 0 satisfies e′ ∈ P
and has strictly smaller support. Since e is an EFM, it follows that e′ = 0.
Hence, e ∈ FA × 0R\A. This is only possible if b = 0.

Case 2: αA = 0 and eA = 0.

Case 3: αA > 0. It follows that fA := 1
αA eA ∈ PA+ . Assume fA would not have

minimal support, then we can select an f ′ ∈ PA+ with smaller support and
e′ ∈ RR with e′A = αAf ′ and e′R\A = eR\A satisfies e′ ∈ P and supp(e′) ⊂
supp(e). Since dA 6= 0, it follows that e′ 6= 0. Thus, this is a contradiction to
e being an elementary flux mode. Hence, fA ∈ EA+.

Case 4: αA < 0. It follows that fA := 1
−αA eA ∈ PA− . Assume fA would not have

minimal support, then we can select an f ′ ∈ PA− with smaller support and
e′ ∈ RR with e′A = −αAf ′ and e′R\A = eR\A satisfies e′ ∈ P and supp(e′) ⊂
supp(e). Since dA 6= 0, it follows that e′ 6= 0. Thus, this is a contradiction to
e′ being an elementary flux mode. Hence, fA ∈ EA−.

We further observe that if case 1 happens, we have already shown the inclusion.
Hence, we only need to consider cases 2, 3, 4. We observe that we can choose
a ∈ RR′ as follows

ar+(A) := max{αA, 0}
ar−(A) := max{−αA, 0}

and obtain

Da =
∑
A∈X

ar−(A)=0

ar+(A)d
A −

∑
A∈X

ar−(A)>0

ar−(A)d
A =

∑
A∈X

αAdA =
∑
A∈X

SAeA = Se = b.

It follows from the analysis of cases 2, 3, 4 that

e ∈
∏
A∈X

ar−(A)=0

ar+(A)E
A
+ ×

∏
A∈X

ar−(A)>0

ar−(A)E
A
−.

We only need to show that a ∈ E′′. We observe that by construction ar+(A) =
0 ∨ ar−(A) = 0 for all reversible A ∈ X .

Since a ≥ 0 by construction, we obtain a ∈ P ′. Assume a 6∈ E′, i.e., there exists an
elementary mode b ∈ E′ with smaller support. By Theorem 6.4.1 it follows that
there exists a flux mode f ∈ P with

fA :=
br+(A) − br−(A)

ar+(A) − ar−(A)
eA for all A ∈ X with br+(A) 6= 0 or br−(A) 6= 0

fA := 0A for all A ∈ X with br+(A) = 0 ∧ br−(A) = 0.

Since ∅ 6= supp(b) ⊂ supp(a) and dA 6= 0 for every A ∈ X with br+(A) 6= 0 or
br−(A) 6= 0, we conclude that ∅ 6= supp(f) ⊂ supp(e), which is a contradiction.
Hence, a must already have been an elementary mode of P ′.
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⊇: Clearly, if b = 0 then FA × 0R\A is also a set of elementary modes of P .

Hence, we only need to consider the product. Let eA+ ∈ EA+ for every A ∈ X ,
eA− ∈ EA− for every reversible A, and let a ∈ E′′. Let v ∈ RR be defined as

vA := ar+(A)e
A
+ for all A with ar−A) = 0

vA := −ar−(A)e
A
− for all A with ar−(A) > 0

By Thm. 6.4.1 it follows that v ∈ P .

Assume v is not an elementary mode of P . It follows that there exists an e ∈ E
with ∅ 6= supp(e) ⊂ supp(v). Hence, there exists an A ∈ X s.t. supp(e) ∩ A ⊂
supp(v) ∩ A. Since A is a linear 1-module, it follows that there exists an α ∈ R
such that SAeA = dAα.

Case eA = ∅: It follows that we can choose α = 0. For every B ∈ X there exists
a βB ∈ R s.t. dBβB = SBeB. Let a′ ∈ RR′ with

a′r+(B) = max{βB, 0}
a′r−(B) = max{−βB, 0}

It follows that a′ ∈ P ′. If supp(a′) = ∅, it follows that there exists an B ∈ X
with SBeB = 0 and supp(eB) 6= ∅. It follows that eB ∈ FB, a contradiction
to the minimality of either eB+ or eB−.

Hence, ∅ 6= supp(a′) ⊂ supp(a). However, this is a contradiction to the
minimality of a.

Case α > 0: It follows that eA ∈ PA+ . This is a contradicition to the elementarity
of eA+, since ∅ 6= supp(eA) = supp(e) ∩A ⊂ supp(v) ∩A = supp(eA+).

Case α < 0: It follows that eA ∈ PA− . This is a contradicition to the elementarity
of eA−, since ∅ 6= supp(eA) = supp(e) ∩A ⊂ supp(v) ∩A = supp(eA−). �

6.4.1 Computation of Linear 1-Modules

Similar to flux modules, we can employ the connection to matroid theory to efficiently
compute a decomposition into 1-modules. In this case it translates to computing a
decomposition of the matroid into 2-separators.

Therefore, I used an algorithm by Bixby and Cunningham [13] to test 3-connectivity
in matroids. This algorithm assumes that the matroid is simple, i.e., that it does not
contain parallel or coparallel elements. Translated to metabolic networks this means
that our network must not contain parallel or fully-coupled reactions (see Sec. 6.4.2 for
a precise definition). As we will see in the following section (Sec. 6.4.2) sets of parallel and
fully-cupled reactions also form 1-modules, which allows us to compress such reaction
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sets to single reactions and this way obtain a metabolic network that does not contain
parallel or fully-coupled reactions. To find parallel and fully-coupled reactions, I used
a modification of the algorithm implemented by Laszlo David [31] (by matroid duality
the algorithm is also applicable to find parallel reactions). Also, the matroid must be
2-connected. Translated to metabolic networks this means that the network must consist
out of a single flux module. This is easily achieved by application of the flux module
detection algorithm presented in Sec. 6.3.3.3.

The algorithm by Bixby and Cunningham [13] is rather involved and technical, which
is why I will not explain its details here but only explain how I used it to compute a
decomposition into 1-modules. By the previous considerations we can assume that our
metabolic network with flux space P ⊆ {v : Sv = b} consists of only one flux module
(0-module). Since we are interested in linear 1-modules, it follows by Thm. 6.2.2 that
we can assume w.l.o.g. that the flux space of the metabolic network is of the form
P ⊆ {v : (S|b)v = 0}, where an additional reaction with stoichiometry b was added (if
b 6= 0, otherwise we don’t have to do anything).

In the case that the matroid is not 3-connected, the algorithm outputs a 2-separator
A, which is exactly such a 1-module that we are interested in. We note that if A is a
2-separator then also R \ A is a 2-separator and, interpreted as 1-modules, both have
the same variable interface flux dA.

We can now replace the 1-module by a single reaction with the function (interface) of the
1-module, or equivalently consider the matroid generated by (SR\A|dA). Since a matroid
is 3-connected iff it does not contain any non-trivial 2-separator, we can recursively
apply this algorithm to compute a decomposition into 2-separators, i.e., 1-modules. The
algorithm will terminate, when all computed 1-modules cannot be decomposed further.

6.4.2 Linear 1-Modules in Practice

The simplest linear 1-modules are sets of parallel and fully-coupled reactions. Two
reactions r, s are called parallel if their stoichiometries are multiples of each other, i.e.,
Sr = λSs with λ ∈ R. They are called fully coupled if it holds for all fluxes v ∈ P that
vr = λvs with λ ∈ R [21]. A set of parallel reactions is forming a linear 1-module since
they all have the same stoichiometry which then also defines the variable interface of the
linear 1-module (see Fig. 6.14). In the case of fully-coupled reactions, we also obtain a
linear 1-module. There, the variable interface is obtained by Sr + λSs (see Fig. 6.15).

A B

r

s

Figure 6.14: The reaction A → B and B → A are parallel (Sr = −Ss). Together, they
form a reversible linear 1-module.
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A B

C

D

Figure 6.15: The reactions A → B and B + C → D are fully coupled. Together, they
form a linear 1-module with variable interface of A+ C → D.

GLBRAN2

bglycogen[c]

GLCP2

GLDBRAN2

glycogen[c]

GLCP

g1p[c]

GLGC

pi[c]

PPKr

GLCS1

adp[c] h[c]

adpglc[c]ppi[c]

atp[c]

Figure 6.16: This is a 1-module in the full flux space of E. coli iAF1260. It can be
represented by the reaction atp[c] + pi[c]→ adp[c] + ppi[c]. This module is a chain of
parallel and fully coupled reactions. It can easily seen that GLBRAN2 and GLDBRAN2 are
performing the same function only with different directions. Hence, together they form
a module. Together, they are fully coupled to GLCP2 with which they form an alternative
to GLCP. Finally, these 4 reactions are again fully coupled to GLCS1 and GLGC with which
they form an alternative to PPKr.

By definition of linear 1-module, each module can be replaced by a single reaction.
Hence, also chains of parallel and fully-coupled reactions form linear 1-modules. I found
that most of the linear 1-modules in genome-scale metabolic networks can indeed be
obtained by chaining parallel and fully coupled reactions together. An example is shown
in Fig. 6.16. In E. coli iAF1260 grown on glucose, for example, we find the linear 1-
modules shown in Fig. 6.17 and Fig. 6.18. These linear 1-modules are not formed by
chains of parallel and fully coupled reactions.
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CRNDabcpp

adp[c]

crn-D[c]

h[c]

pi[c]

atp[c]

CRNabcpp CTBTabcppCRNt8pp

crn-D[p]

CRNDt2rpp

h2o[c]

h[p]

CRNt2rpp CTBTt2rpp

crn[c]

crn[p]

ctbt[c]

ctbt[p]

Figure 6.17: This is a 1-module in the full flux space of E. coli iAF1260. It can be
represented by the reaction atp[c]+h2o[c]→ adp[c]+pi[c]+h[p]. This module contains
two fully coupled reactions which are marked in red.

DMPPS

dmpp[c]

h2o[c] nad[c]

h2mb4p[c]

IPDPS

h[c] nadh[c]

IPDDI

ipdp[c]

Figure 6.18: This is a 1-module in the full flux space of E. coli iAF1260. It turns
h2mb4p[c], h[c], and nadh[c] into dmpp[c], h2o[c], ipdp[c], and nad[c]. This module is
fully coupled to biomass production.

I used linear 1-modules to compress existing genome-scale metabolic networks. An
overview of the results can be seen in Tab 6.5.
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Table 6.5: Network compression of genome-scale networks.

Network Number Number Size biggest Size after run time run time

reactions modules module compression modules compression

E. coli iAF1260 2382 1 1531 923 28sec 1085sec
E. coli iJR904 1075 2 664 404 4.7sec 31sec
E. coli iJO1366 2583 2 1703 1019 35sec 1781sec
H. pylori iIT341 554 3 431 165 3.4sec 4.7sec
H. sapiens recon. 1 3742 6 2450 1467 85sec 7110sec
H. sapiens recon. 2 7440 13 5795
M. barkeri iAF692

M. tuberculosis iNJ661 1025 3 735 347 4.6sec 53sec
S. aureus iSB619 743 1 450 191 2.1sec 12sec
S. cerevisiae iND750 1266 2 628 353 6.3sec 27sec

As expected there are not many flux modules in the full flux space of genome-scale
metabolic networks. It was always the case that there existed one big module that
contained nearly all the unblocked reactions and a few small modules with about 2− 3
reactions. These small modules usually consist of reactions that form internal cycles that
would be blocked if internal cycles would not be allowed to carry flux. Although the
computation of modules did not give a big improvement in the reduction, its computation
is also not very demanding and it is a prerequisite for the computation of 1-modules.

In nearly all networks the network size could be reduced by about half. Although most
of the reduction is due to fully coupled reactions, the detection of parallel reaction plays
an important role, too. In networks like H. sapiens recon 1 I found more than 50 parallel
reactions. It follows that the number of EFMs in the compressed network can be up to
a factor 250 ≈ 1015 (quadrillion) smaller. Using the decomposition theorem for linear
1-modules it follows that all the EFMs of the uncompressed network can be obtained
from the EFMs of the compressed network.

6.5 Decomposition Theorem for k-Modules

This result is submitted to Discrete and Computational Geometry.

Here, I present a method for EFM enumeration resp. vertex enumeration of polyhedra
using k-modules. While vertex enumeration has been shown to be NP-hard for un-
bounded polyhedra [76] (there exists no enumeration algorithm with polynomial time in
input and output unless P = NP), the problem is still open for bounded polyhedra.

We first observe that enumeration of EFMs of the flux cone is equivalent to vertex
enumeration of bounded polyhedra (Prop. 6.5.1). The enumeration of EFMs that contain
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a given reaction however, already corresponds to vertex enumeration of an unbounded
polyhedron [2].

6.5.1 Elementary Flux Mode Enumeration and Vertex Enumeration

The following result is formulated in terms of vertex enumeration of polyhedra. However,
we can reduce the EFM enumeration problem to vertex enumeration using nearly no
additional overhead as follows:

Proposition 6.5.1 Let N = (M,R, S) be a metabolic network with irreversible reac-
tions Irrev. Let

P := {v ∈ RR : Sv = 0, vIrrev ≥ 0}
Q := {(v+, v−) ∈ RR × RR\Irrev : Sv+ − SR\Irrevv− = 0, v+ ≥ 0, v− ≥ 0,1v+ + 1v− = 1}
and define the function f : P \ {0} → Q by

v 7→ 1

‖v‖1
(
max{v, 0},−min{vR\Irrev, 0}

)
Then it holds that

1. for every vertex (v+, v−) of Q it either holds that there exists a r ∈ R with v+
r = v−r

or for all v ∈ P \ {0} with f(v) = (v+, v−) it holds that v ∈ EFM(P ).

2. for each elementary mode e ∈ EFM(P ) it holds that f(e) is a vertex of Q.

Proof We observe that supp(v) = supp(v+)∪̇supp(v−) for (v+, v−) = f(v). We now
show the two statements:

1. It is easy to see that for every r ∈ R\Irrev it holds that v+, v− with v+
r = 1

2 = v−r ,
v+
s = 0 for all s ∈ R \ {r} and v+

s = 0 for all s ∈ R \ (Irrev ∪ {r}) has a maximal
amount of inequalities satisfied by equality and hence, (v+, v−) is a vertex of Q.

It follows that if (v+, v−) is a vertex of Q and not of this type then it holds
for each r ∈ R \ Irrev that v+

r = 0 or v−r = 0. We now define v ∈ RR by
vR\Irrev = v+

R\Irrev − v
−
R\Irrev and vIrrev = v+

Irrev. It follows that f(v) = (v+, v−)

and for every w ∈ P \ {0} with f(w) = (v+, v−) there exists an α > 0 such that
w = αv. Hence, it suffices to show that v ∈ EFM(P ).

Assume v is not an elementary mode. Then, there exists a x ∈ P \ {0} with
supp(x) ⊂ supp(v). It follows that supp(f(x)) ⊂ supp((v+, v−)) which is a con-
tradiction to (v+, v−) being a vertex of Q.

2. Let e ∈ EFM(P ) and assume that f(e) is not a vertex of Q. We easily verify
that f(e) ∈ Q, hence there must exist a vertex x = (x+, x−) ∈ Q that satisfies
more inequalities than f(e) with equality. Hence, supp(x) ⊂ supp(f(e)). By 1., it
follows that there exists a x′ ∈ P \ {0} with x = f(x′). By the above observation
it follows that supp(x′) ⊂ supp(e), which is a contradiction to e ∈ EFM(P ). �
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We observe that Q is bounded and hence, if we can enumerate the vertices of polytopes
efficiently, we can also enumerate elementary modes very efficiently. Of course, vertex
enumeration questions do not only arise in the context of elementary modes, but also
from a lot of different sources. Hence, I chose to formulate this result in the universal
language of vertex enumerations, since this way it is more accessible to a wider audience.
Therefore, I will use x to denote the vector of variables in the rest of this chapter as it
is the more common notation in the area of polytope theory.

Although I only managed to prove a run time bound for polytopes, the algorithm can also
be applied to enumerate vertices of polyhedra in general. For these cases the algorithm
may be improved by adding additional tests that check whether a face of a module will
only result in unbounded faces of the whole polyhedron etc.

6.5.2 Branch-Width

First, we relate the existence of a certain decomposition of a polyhedron P = {x ∈ RR :
Sx = b, x ≥ 0} 6= ∅ to the branch-width of the linear matroid ([67, 130]) with elements
R, the columns of S.

Definition 6.5.1 (branch-width) Let M be a matroid on a set R of elements. Let
ρ(A) := rank (A) + rank (R \A)− rank (R) + 1 be the connectivity function.

• A branch decomposition (T, τ) consists of a tree T with nodes of degree 3 and 1
and a bijective map τ that maps the leaves of T onto R. For short hand notation
we write for sets A of leaves: τ(A) := {τ(a) : a ∈ A}.

• The width of an edge e of T is ρ(τ(Ae)), where (Ae, Be) is the partition of the
leaves of T given by T \ e. Observe that deleting an edge of T splits T into two
connected components, one with leaves Ae and the other with leaves Be. This is
also well defined, since ρ(A) = ρ(R \A).

• The width of a branch decomposition is the maximal width of an edge e ∈ T .

• The branch-width of M is the minimal width of all possible branch-decompositions.

2

Observe that ρ(A) ≤ k if and only if A is a k-separator of the matroid M (Def. 6.2.1),
which is again the case if and only if A is a P -k-module.

We now interpret the branch-decomposition as a hierarchical structure of k-modules.
This enables us to apply recursive divide-and-conquer algorithms, like the vertex enu-
meration algorithm that we are going to present in this section.

In what follows we use notation A∪̇B to indicate that sets A and B are disjoint and to
denote their union. We call a family W of subsets of R binary rooted if it satisfies the
following properties:

155



CHAPTER 6. MODULES IN METABOLIC NETWORKS

(P1) For each A ∈W , A 6= R there exists exactly one B ∈W with A∪̇B ∈W .

(P2) For each C ∈W, |C| ≥ 2 there exist exactly one pair A,B ∈W with A∪̇B = C.

This describes a binary rooted tree with root R and leaves all the single element sets of
R.

To facilitate the exposition, we assume in this section that for polytope P the set of
variables with constant value is empty; i.e, the set V as defined in (6.2) is equal to R.

Proposition 6.5.2 Let P = {x ∈ RR : Sx = b, x ≥ 0} 6= ∅ and assume V = R. Let M
be the linear matroid generated by the columns of S. There exists a binary rooted family
Mod of k-modules of P if and only if M has branch-width at most k + 1.

Proof ⇒: Define the tree T = (Mod \ {R}, E) with vertex set the sets of Mod except
for R and an edge (A,B) between two sets (vertices) A and B if

• there exists C ∈ Mod with A = B∪̇C or B = A∪̇C or

• A∪̇B = R.

Clearly, this tree defines a branch decomposition. The leaves of T are sets con-
taining a single element and hence the map τ of the branch decomposition has
τ({i}) = i for all i ∈ R. We observe that if we delete an edge e = (A,B) from
T that either A or B is the union of the leaves of its subtree. Let us assume
w.l.o.g. that this is A. Since A is a k-module, it follows by Theorem 6.2.3 and
Theorem 6.2.1 that A is a k + 1 separator of M . Hence, (T, τ) has width at most
k + 1 and thus, the branch-width of M is at most k + 1.

⇐: Let (T, τ) be a branch-decomposition of M with width at most k + 1. We obtain a
rooted binary tree T ′ from T by choosing an arbitrary edge e = (a, b), removing
e and adding a root c with children a, b, and direct all edges away from c. For
each node a of T ′ we define the set A(a) := {τ(i) : i is leaf under a}. By defi-
nition of branch-decomposition, we observe for each node a of T ′ that A(a) is a
(k+1)-separator and hence, a k-module by Theorem 6.2.3 and Theorem 6.2.1. It
follows that Mod = {A(a) : a node of T ′} is a family of k-modules that satisfies
properties (P1) and (P2). �

As we have seen, the last part of the proof of this proposition is constructive, in the sense
that it gives us a binary rooted family Mod of k-modules from a branch decomposition
of width at most k + 1 of the linear matroid defined by the columns of S. We will now
show how such a family Mod can be used to develop a recursive algorithm for vertex
enumeration.
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6.5.3 Decomposition Theorem for Vertex Enumeration

For each module A ∈ Mod let DA ∈ RM×k denote the variable interface and dA ∈ RM
the constant interface and define

PA := {x ∈ RA : SAx = DAα+ dA, x ≥ 0,∃α ∈ Rk}. (6.8)

In what follows we will study faces of P ; i.e., intersections of P with separating hyper-
planes. Notice that every face F is completely characterized by the variables that have
value 0; i.e., xF = 0 for all x ∈ F . Therefore we take the liberty to use the name ‘faces’
for subsets of variables. Note that not for every subset F of variables there exists a face
where only the variables in F have value 0. Other variables may indirectly be also forced
to 0. To capture this issue, we speak about feasible and infeasible faces, even though by
its proper definition every face is feasible.

Definition 6.5.2 (feasible A-face) For A ⊆ R a set F ⊆ A is called a feasible A-face
if there exists a x ∈ P with xF = 0 and xA\F > 0. 2

Definition 6.5.3 (vertex feasible A-face) For A ⊆ R a set F ⊆ A is called vertex
feasible A-face if there exists a vertex v of P with vF = 0 and vA\F > 0. 2

We note, that whereas testing for A ⊆ R if a subset F defines a feasible A-face can be
done easily by linear programming (see Prop. 6.5.7), testing however if F ⊆ A is a vertex
feasible A-face is NP-hard [52].

To approximate vertex feasible faces, we introduce the relaxed notion of minimal A-face:

Definition 6.5.4 (minimal A-face) For A ∈ Mod a set F ⊆ A is a minimal A-face if
there exist no distinct y, z ∈ {x ∈ PA : xF = 0} with SAy = SAz, i.e., SA is injective on
{x ∈ PA : xF = 0}. 2

Algorithm 10 enumerates all minimal feasible C-faces for a given k-module C ∈ Mod,
by recursively enumerating all minimal A-faces and all minimal B-faces for the two
k-modules A,B ∈ Mod that constitute C; i.e., C = A∪̇B.

That this is correct follows from the following theorem.

Theorem 6.5.1 Algorithm 10 computes all the minimal feasible C-faces for a given
C ∈ Mod. 2

To prove Thm. 6.5.1, we observe the following decomposition property of minimal faces:

Lemma 6.5.1 Let A,B,C ∈ Mod with C = A∪̇B. For every minimal feasible C-face
FC there exists a minimal feasible A-face FA and a minimal feasible B-face FB with
FC = FA ∪ FB.
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Algorithm 10 Algorithm to compute all minimal feasible C-faces for C ∈ Mod. For
C = R, this algorithm will compute all vertices.

function F = getMinimalFeasibleFaces(C)
if |C| = 1 then
F := ∅.
if ∅ feasible for C then
F := F ∪ {∅}.

end if
if C minimal feasible for C then
F := F ∪ {C}.

end if
else

Let A,B ∈ Mod with C = A∪̇B.
FA := getMinimalFeasibleFaces(A)
FB := getMinimalFeasibleFaces(B)
F := {FA ∪ FB : FA ∈ FA, FB ∈ FB}.
for F ∈ F do

if F not minimal for C or F not feasible for C then
F := F \ {F}.

end if
end for

end if

Proof Let FC be an arbitrary but fixed minimal C-face. Hence, there exists a x ∈ P
with xFC = 0 and xC\FC > 0.

Define FA := FC∩A and FB := FC∩B. Since C = A∪̇B, it follows that FC = FA∪FB.
Furthermore, FA is a feasible A-face and FB is a feasible B-face, since it follows from
xFC = 0 that xFA = 0, xFB = 0 and from xC\FC > 0 that xA\FA > 0 and xB\FB > 0.

We only have to show that FA and FB are also minimal. For proof by contradiction
assume that FA is not minimal (the case FB non minimal is analogous). It follows that
there exist distinct y, z ∈ PA with yFA = 0, zFA = 0 and SAy = SAz. Define w ∈ RC by
wA = y − z and wB = 0. We observe that SCw = SAwA = 0 and supp(w) ⊆ supp(xC).
It follows that there exists an α > 0 such that xC + αw ∈ PC and xC − αw ∈ PC . This
is a contradiction to minimality of FC , since y 6= z and hence, w 6= 0. �

Proof (Thm. 6.5.1) First notice that the only two possible faces of a k-module C with
|C| = 1 are ∅, and C itself.

Any k-module C ∈ Mod with |C| ≥ 2 is constituted by two disjoint k-modules A,B ∈
Mod: C = A∪̇B. By Lemma. 6.5.1 we know that for any minimal feasible C-face FC ,
there exist a minimal feasible A-face FA and a minimal feasible B-face FB, such that
FC = FA ∪FB. Since Algorithm 10 tests every possible pair consisting of a minimal A-
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face and a minimal B-face on feasibility and minimality for C, this implies the theorem
for any set C ∈ Mod with |C| ≥ 2. �

That Algorithm 10 eventually outputs all vertices of P is a corollary of the following
theorem:

Theorem 6.5.2 Let A ∈ Mod be a 0-module. Then, a feasible A-face is minimal if and
only if it is vertex feasible. 2

Corollary 6.5.1 The minimal feasible R-faces are the vertices of P and Algorithm 10
applied to C = R computes all vertices of P .

Proof By Theorem 6.5.1 all computed R-faces are minimal feasible and thus, by The-
orem 6.5.2 vertex feasible, since R is a 0-module.

Since there are no further variables, every vertex feasible R-face is a vertex. �

Before we prove Thm. 6.5.2, we observe the following property that allows us to relate
minimal feasible faces and vertex feasible faces.

Proposition 6.5.3 Every vertex feasible A-face F for A ∈ Mod is a minimal A-face.

Proof By definition of vertex feasible A-face, there exists a vertex v of P with vF = 0
and vA\F > 0. For proof by contradiction, we assume now that F is not a minimal A-

face. It follows that there exist distinct y, z ∈ {x ∈ PA : xF = 0} with SAy = SAz. We
observe that w′ := y − z satisfies SAw

′ = SAy − SAz = 0. Define w ∈ RR by wA = w′A
and wR\A = 0. We observe that supp(w) ⊆ supp(v). Hence, there exists an α > 0 such
that v − αw ∈ P and v + αw ∈ P . This is a contradiction to the assumption that v is a
vertex. �

Proof (Thm. 6.5.2) Proposition 6.5.3 shows that every vertex feasible A-face is a min-
imal A-face.

Let F be minimal feasible A-face. Since A is a 0-module it holds for all x ∈ PA that
SAxA = dA. It follows by definition of minimal A-face that x ∈ PA with xF = 0 is
unique. Since F is also feasible such x exists and satisfies xA\F > 0.

We observe that by construction P is pointed. Since F is a feasible A-face, it follows
that P̂ := {x ∈ P : xF = 0} is a non-empty pointed polyhedron. Hence, there exists a
vertex y of P̂ . Clearly, y is also a vertex of P and satisfies yA ∈ PA and yF = 0. Thus,
yA = xA and F is a vertex feasible A-face. �

Now we will show that in case P is a polytope (i.e., P bounded) the existence of a set
Mod of k-modules makes Algorithm 10 run in polynomial time, for fixed k. Therefore, we
will do a number of observations that allow us to bound the number of minimal feasible
faces and finally obtain the runtime bound. The following proposition still also holds for
unbounded polyhedra:

159



CHAPTER 6. MODULES IN METABOLIC NETWORKS

Proposition 6.5.4 For every minimal A-face F for A ∈ Mod holds that dim f ≤ k with
f = {x ∈ PA : xF = 0}.

Proof Since A is a k-module, it follows that SA maps every point in f into a k-
dimensional space. If dim f > k, it follows that SA is not injective on f and hence, F
would not be minimal. �

We observe the following corollary, which may give another intuition for the final com-
plexity bound.

Corollary 6.5.2 Every vertex feasible A-face F for A ∈ Mod satisfies dim{x ∈ PA :
xF = 0} ≤ k.

Proof Directly from Prop. 6.5.3 and Prop. 6.5.4. �

Lemma 6.5.2 Assume P is bounded. Suppose for A ∈ Mod that F is a feasible A-face
and let h = dim f with f = {x ∈ PA : xF = 0}. Then there exist a set of ` ≤ h + 1
vertex feasible A-faces F 1, . . . , F ` such that F = F 1 ∩ F 2 ∩ . . . ∩ F `.

Proof Since F is a feasible A-face, there exists a y ∈ P with yF = 0 and yA\F > 0.
Therefore, y lies in the face {x ∈ P : xF = 0} of P . Since P is bounded, there exist a
set of vertices V f of P such that y ∈ conv(V f ) and wF = 0 for all w ∈ V f .

It follows that yA ∈ conv(prAV
f ) and prAV

f ⊆ PA. Since dim{x ∈ PA : xF = 0} = h,
there exist by Carathéodory’s theorem [139] ` ≤ h + 1 points w1, w2, . . . , w` ∈ prAV

f

with yA ∈ conv(w1, . . . , w`).

Clearly F i = {j ∈ R : wij = 0} is a vertex feasible A-face and F ⊆ F i for each

i = 1, . . . , `. For every j ∈ A \ F with j ∈ F i for all i = 1, . . . , ` it follows that
yj = 0, since yA ∈ conv(w1

A, . . . , w
`
A), and hence, F ⊇ F 1 ∩ F 2 ∩ . . . ∩ F `. Thus,

F = F 1 ∩ F 2 ∩ . . . ∩ F `. �

Proposition 6.5.5 If P is bounded then holds for all A ∈ Mod that

|{F ⊆ A : F minimal feasible A-face}| ≤ |{F ⊆ A : F vertex feasible A-face}|k+1.

Proof By Prop. 6.5.4 every minimal feasible A-face has dimension at most k. Hence, by
Lemma 6.5.2 there exists an injective map that assigns to each minimal feasible A-face
a non-empty set of at most k+ 1 vertex feasible A-faces. Let cvert denote the number of
vertex feasible A-faces. There are at most

k+1∑
i=1

(
cvert

i

)
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non-empty subsets of at most k + 1 elements. For cvert = 1, we have
∑k+1

i=1

(
cvert
i

)
= 1 =

ck+1
vert and for cvert ≥ 2, we can estimate

k+1∑
i=1

(
cvert

i

)
≤

k+1∑
i=1

civert

i!
≤

k+1∑
i=1

2k+1−icivert

k + 1
≤ (k + 1)

ck+1
vert

k + 1
= ck+1

vert ,

since 2k+1−i ≥ k+1
i! for all i ≤ k ∈ N.

By injectivity it follows that this is also a bound on the number of minimal feasible
A-faces. �

Proposition 6.5.6 For A ∈ Mod holds that

|{F ⊆ A : F vertex feasible A-face}| ≤ |{v ∈ RR : v is a vertex of P}|.

Proof Let F 1, F 2 be distinct vertex feasible A-faces and let v1, v2 be representing
vertices. It follows that supp(v1

A) = A \ F 1 6= A \ F 2 = supp(v2
A). Hence, v1 6= v2 and

the result follows. �

Theorem 6.5.3 Assume P is bounded. Let A,B,C ∈ Mod with C = A∪̇B. Assume the
set of minimal feasible A-faces FA and the set of minimal feasible B-faces FB are given.
Then the set of minimal feasible C-faces FC can be computed in time

O
(
|V|2k+2t

)
,

where V is the set of vertices of P and t is the time needed to check if a face is feasible
and minimal.

Proof By Lemma 6.5.1 every minimal feasible C-face can be obtained from a combina-
tion of one minimal feasible A-face and a minimal feasible B-face. It follows that we have
to consider at most |FA| · |FB| combinations. By Proposition 6.5.6 and Proposition 6.5.5
it follows that

|FA| · |FB| ≤ |V|k+1 · |V|k+1 ≤ |V|2k+2.

For each candidate we have to check if it is feasible and minimal, which gives the final
runtime bound. �

We now observe that the time for checking if a face is minimal feasible can be done in
polynomial time, which then leads us to the final result on the runtime of Alg. 10.

Proposition 6.5.7 Given A ∈ Mod, it can be checked in input polynomial time if a
A-face F is minimal feasible.
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Proof To check feasibility, we just have to solve the following LP:

max z

s.t. Sx = b

xF = 0

xi − z ≥ 0 ∀i ∈ A \ F
x ≥ 0

If the LP is unbounded or the optimal value is greater than 0 then we have found a
solution x∗ ∈ P with x∗F = 0 and x∗A\F > 0, which proves feasibility of F . If F is
feasible, there exists a solution of the LP with z > 0 and hence, the optimal value of the
LP has to be positive.

To check minimality, do the following: By minimizing / maximizing each i ∈ A using
linear programming, we compute the following set G:

G := {i ∈ A : ui > `i} , where

ui := sup{xi : x ∈ PA, xF = 0} ∀i ∈ A
`i := inf{xi : x ∈ PA, xF = 0} ∀i ∈ A

Observe that G ∩ F = ∅.

Claim 6.5.1 F is minimal if and only if SG : RG → RM is injective.

Proof ⇒: Assume SG is not injective, i.e., there exists a x′ ∈ RG\{0} with SGx
′ = 0.

Define x ∈ RA by xG = x′ and xA\G = 0. By construction of G and convexity,

there exists a v ∈ PA with vF = 0 and `G < v < uG. Hence, there exists
an α > 0 such that v + αx ≥ 0 and v − αx ≥ 0. We observe further that
SA(v ± αx) = SAv ± αSAx = SAv and hence, v ± αx ∈ P with (v ± αx)F = 0.
This is a contradiction to minimality of F .

⇐: Assume F is not minimal. Hence, there exist x, y ∈ PA with xF = yF = 0 and
SAx = SAy. It follows that w := x−y satisfies SAw = 0 and by definition of G, we
have wA\G = 0. Hence, SGwG = SAw = 0, which is a contradiction to injectivity
of SG. �

Since we can check injectivity of matrices by computing the nullspace matrix in polyno-
mial time, we can also check minimality of F in polynomial time. �

Theorem 6.5.4 If P is a polytope and Mod is a family of k-modules satisfying Prop-
erties (P1) and (P2) for constant k, then Algorithm 10 runs in total polynomial time.
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Proof As mentioned before, Mod can be represented as a binary tree, rooted at R,
with leaves the single element modules. We observe that the time spend for the leaves
(modules A ∈ Mod with |A| = 1) is O(Rt), where t is the time needed to check if the
corresponding face is minimal and feasible. Let C be the set of interior nodes, then the
total time needed for determining the minimal feasible faces of all modules corresponding
to interior nodes is, by Theorem 6.5.3,

O
(
|C||V|2k+1t

)
,

where t is the time needed to check if a given face is minimal and feasible. By Prop. 6.5.7
t grows polynomially in the input size. Since the number of internal nodes |C| of a binary
tree is linear in the number of leaves |R|, the result follows. �

6.6 Conclusion

In this chapter I presented methods to decompose metabolic networks into smaller, more
easily understandable parts. We saw that in the case of the optimal flux space, this
works very well: We can compute the flux modules very efficiently and most genomes-
scale networks also decompose rather nicely. Most of the flux modules can themselves
be visualized using standard graph-drawing applications and we saw how metabolic
interactions inside a flux module can be understood using the blocking graph. Also, it
is possible to compress the whole metabolic network using flux modules into a network
that fits on one page and can again be drawn using standard graph-drawing tools.

However, the practical applicability of flux modules always requires that we work on
the optimal yield flux space. If we do not, it is very likely that we do not find any flux
modules at all. This is a problem, since yield-optimality is a very artificial criterion that is
usually not attained in nature. Hence, we also looked at k-modules, which generalize flux
modules. The strength of k-modules, their flexibility, of course also makes it harder to
find them and to derive nice decomposition theorems for them. In the case of 1-modules,
we can state a decomposition theorem that at least resembles the original decomposition
theorem for flux modules. In the more general case for k-modules, we had to follow a
new approach by recursively splitting the network into 2 pieces. There, the concept of
branch-width allowed us to derive a novel parametrized complexity-theoretic result.
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Chapter 7

Sublinear Growth & Flux Forcing
Reactions

Abstract Chlamydomonas reinhardtii is a eukaryotic green algae that is commonly
studied in the context of biofuel production. Green algae, like C. reinhardtii and also
cyanobacteria essentially grow on light and carbon dioxide. Hence, those organisms
are highly interesting for the biofuel industry, since the nutrients needed to feed these
organisms are basically available for free.

When growing C. reinhardtii in a bioreactor, we observe an effect that does not occur for
cyanobacteria: Very quickly the total growth rate in the bioreactor is reaching the limit
predicted by flux balance analysis (FBA). However, after some time the total growth
rate decreases, although the only parameter that is changing over time is the density of
cells in the bioreactor.

In this chapter, we analyze this effect using metabolic network analysis. We observe
that this effect must be caused by reactions through which the flux cannot decrease
proportionally as in the rest of the network.

To detect potential sets of reactions that can cause such effects, we will develop a method
to solve bilevel optimization problems with mixed integer problems as inner problems to
optimality.

This work is the result of a collaboration with Guillaume Cogne, who presented the
problem to me in a series of meetings. Unfortunately, we did not yet manage to
bring this project close to publication yet.
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7.1 Motivation

The group of G. Cogne is analyzing the growth of the green algae C. reinhardtii in a torus
photo-bioreactor as shown in Fig. 7.1 [25]. It is supplied with a one-sided light source
that illuminates the cells and supplies them with the necessary light for growth. Other
nutrient concentrations (like CO2) are kept constant using a chemostat mechanism.
Additionally the cells are moved around, so that the system stays well mixed. This has
the effect that cells move between the illuminated (front) part of the bio reactor to the
dark (back) part in a few seconds. The only parameter that is growing over time is the
number of cells in the bioreactor. The changing number of cells of course also has an
effect on which parts of the bioreactor stay illuminated by light, i.e., the higher the cell
density, the shorter becomes the illuminated zone at the front of the bioreactor.

Figure 7.1: A torus photobioreactor. The figure is taken from http://www.

mazenalamir.fr/ANR_CLPP/bioreacteur.html.

In this experimental setup, G. Cogne and coworkers (according to oral communication
with G. Cogne) observed that the growth rate is decreasing over time, i.e., with increas-
ing density of the cells (see Fig. 7.2). This is surprising, since the amount of energy (in
form of light) supplied to the system stays constant and hence, the total metabolic ca-
pacity should also stay constant. They also found that the largest growth rate that they
measured also corresponds to the FBA optimum (see Sec. 4.1) that they computed from
their metabolic network reconstructions. In contrast to this, if instead the cyanobac-
terium A. platensis is grown in the same experimental setup, this effect is observed and
no decrease in growth-rate is observed (see Fig. 7.3).

When looking for explanations for this effect we have to consider two potential causes:

1. The effect is caused because of the time. It is for example known that too much
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Figure 7.2: Cell density Cx of C. reinhardtii 137AH over time. We observe that after
some time, the growth rate decreases. Note that the growth rate is the gradient of the
curve.

light damages the plant cells and thus, inhibits light uptake and hence, growth.
This effect is known as photo-inhibition. However, we can rather safely exclude
this effect, since the cells are stirred and frequently moved to the dark side of
the bioreactor. Indeed, the effect should be strong at the beginning and diminish
for later time points, since the dark region increases with time. Hence, we would
expect that it is working against the effect that we observe.

2. The effect is caused by the changing cell concentration and hence, by the decreasing
amount of light that each cell can take up.

Since we could not find a reasonable explanation of why a change in time might cause the
effect, we focus on understanding the effects of a changing cell concentration. Therefore,
I built a mathematical model that models the local light intensity for each cell with the
following modeling assumptions (see Fig. 7.4):

1. We model the container as the 1-dimensional interval [0, X], the light input is at
0. This means, that we assume that only the distance to the front is relevant.

2. We assume that the cells are uniformly distributed in the bioreactor with density
D ∈ R+. The density D is a variable.

3. We assume that the light input is fixed to intensity `in.

4. We model the light intensity at position x ∈ [0, X] by `D(x), where D denotes the
cell density introduced above. We assume that `D satisfies that

• `D(x) ≥ 0 for all x ∈ R+.
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Figure 7.3: Cell density Cx of the cyanobacterium A. platensis PCC 8005 over time.
We observe that the growth rate does not decrease. Note that the growth rate is the
gradient of the curve.

• `D(x) = `1(Dx) for all D ∈ R+, since with density D there are D times more
cells between 0 and x than with density 1.

• `D is continuous.

5. We assume that the growth rate of each cell only depends on the light intensity at
the cell, i.e., there exists a continuous function g : R+ → R where g(`) gives the
growth rate for local light intensity ` ∈ R+.

6. On any interval [x, x+ ∆] are ∆D cells and the light intensity for each cell in this
interval ranges between g(`D(x)) and g(`D(x+ ∆)). Approximating the cells as a
continuous medium, we obtain by continuity of g and `D a total growth rate of

G =

∫ X

0
g(`D(x))Ddx.

We observe that the total light energy supplied to the bioreactor by the light function
increases with increasing density, since∫ X

0
`D(x)Ddx =

∫ X

0
`1(Dx)Ddx =

∫ DX

0
`1(x)dx.

Furthermore, we can characterize the relationship between growth-rate and cell density
as follows:

Theorem 7.1.1 ∂G(D)
∂D = Dg(`D(X)) for all D ≥ 0.
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Figure 7.4: Schematic drawing of the bioreactor as assumed in the mathematical model.

Proof Define

G1(T ) :=

∫ T

0
g(`1(x))dx.

We observe that

G′1(T ) = g(`1(T ))

and it holds that

∂G(D)

∂D
=

∂

∂D

∫ X

0
g(`D(x))Ddx

=
∂

∂D

∫ X

0
g(`1(Dx))Ddx

=
∂

∂D

∫ DX

0
g(`1(x))dx

=
∂

∂D
G1(DX)

= DG′1(DX)

= Dg(`1(DX))

= Dg(`D(X)),

which had to be proven. �

The following corollary follows directly

Corollary 7.1.1 If g(`) ≥ 0 for all ` ≥ 0, then ∂G
∂D ≥ 0 for all D ≥ 0. 2
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We conclude that if there exist densities D′ for which we observe negative ∂G
∂D (D′), then

this can only be due to negative growth rate. If `D is monotonically decreasing and we
observe the effect for high densities, this means that g(`) < 0 for small enough `.

Therefore, under our model assumptions (which are not very strong), it follows that
to observe the effect the cells must exhibit sublinear (actually even negative) growth
for low light intensities. Since each cell passes through bright and dark areas, there
is no cell that effectively has negative growth (which would be physically impossible).
However, we can interpret the result as follows: While the cell is in the bright area it is
accumulating resources that are then used up in the dark area. This way, we still end
up with a positive growth rate for long-term averages.

We also remark that the sublinear growth is most likely also not characterized by the
fact that the cell cannot grow more efficiently, but that the regulatory state, which also
has to be efficient for the illuminated zone, does not permit a higher growth rate. If the
green algae would be subject to constant low light conditions, it would very likely adapt
using its regulatory mechanisms and grow better than under changing light conditions
(with the same average light uptake). In particular, it would be no contradiction if C.
reinhardtii can survive for long times in absolute darkness.

We also observe that we only have to measure the light intensity at the back of the
container `D(X), the density D, and the change in growth-rate ∂G(D)

∂D to obtain the
function g(`), since by Thm. 7.1.1 we have

g(`D(X)) =
1

D

∂G(D)

∂D

In particular, the assumption that for high light levels the cells grow at the FBA-optimal
level can be verified.

7.2 Flux-Forcing Reactions can Explain the Effect

In the previous section we concluded the following effect for C. reinhardtii : If sufficient
amounts of light (inflow through reaction hν), say y2 = 20, is supplied, then the measured
growth rate matches with the results from FBA. However, if not enough light is supplied,
say y1 = 10, then only suboptimal growth (compared to FBA) is observed.

In the following the precise values of y2, y1 will not be important. We will only require
0 < y1 < y2.

We now want to understand the effect using the methods from FBA. Such an approach
may, at the beginning, sound counter-intuitive, since the cells are moving rather quickly
from the illuminated zone to the dark zone and back and hence, we can exclude a
gene regulatory control of the metabolism. Such a control however is assumed for FBA
optimality.

However, since oscillatory behavior from illuminated areas to dark areas is also common
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in nature (turbulences in the water), we can expect that the organism has evolved to deal
with such an environment. Therefore we would expect that the metabolism is calibrated
in such a way that it can quickly react to rapid changes of light intensities. In the case
of cyanobacteria this seems to be indeed the case. For C. reinhardtii this adaption does
not seem to work so smoothly. This could be due to the fact that C. reinhardtii is a
higher life form (eukaryote) than cyanobacteria (prokaryotes) and hence employs more
sophisticated (and more efficient) mechanisms that on the other hand are also not so
flexible. By applying optimality-based approaches, we may be able to identify these
mechanisms (or rather the reactions participating therein).

Hence, we want to characterize those flux spaces that allow efficient adaptation to lower
light intensities y1 from an optimal light intensity y2.

For the following, let N = (M,R = I∪̇E , S) be the metabolic network describing C.
reinhardtii.

Let P ⊆ RR be an arbitrary but fixed feasible flux space. Let s, t ∈ R be fixed reactions,
where s is the source reaction hν (light) and t is the target reaction (biomass). We define
for a pseudo-reaction r ∈ R (Def. 2.1.2) and y ∈ R the following short-hand notation for
the optimal values of the flux optimization problem through r:

λr(y) := max vr : v ∈ P, vs ≤ y (full flux space)

λrt (y) := max vr : v ∈ P, vs ≤ y, vt = λt(y) (optimal yield flux space)

Throughout this chapter, we will assume that the above optimization problems are well
defined:

Assumption 7.2.1 The optimization problems

max{vt : v ∈ P, vs ≤ y1}
max{vt : v ∈ P, vs ≤ y2}

are feasible and bounded. 2

We observe that we can often simplify this assumption as follows:

Observation 7.2.1 If P is polyhedral and max{vt : v ∈ P, vs ≤ y1} is feasible and
bounded, then max{vt : v ∈ P, vs ≤ y2} is feasible and bounded.

Proof Let P = {v : Av ≤ b}. Feasibility is clear, we only have to show boundedness.
Assume it is unbounded. It follows that there exists a ray, i.e., a vector w satisfying

Aw ≤ 0, ws ≤ 0, wt > 0.

Let v ∈ P with vs ≤ y1. It follows that v+αw ∈ P for all α > 0. This is a contradiction
to the boundedness of max{vt : v ∈ P, vs ≤ y1}. �
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It follows that under Assumption 7.2.1 the optimization problems for λr(y1), λr(y2), λrt (y1), λrt (y2)
are always well defined and feasible for r ∈ R.

Theorem 7.2.1 Let P ⊆ RR be a flux space with the property that v ∈ P and 0 ≤ α ≤ 1
imply αv ∈ P . Then the described effect is not observable, i.e.,

λt(y2)

y2
≤ λt(y1)

y1
.

Proof Let v be an optimal solution vector for the optimization problem of λt(y2).
Chose α = y1

y2
. It follows that αv ∈ P with αvs ≤ αy2 = y1. Hence, αv is a feasible

solution for the optimization problem of λt(y1). It follows that

λt(y1) ≥ αvt = αλt(y2) =
y1

y2
λt(y2).

Division by y1 on both sides of the inequality completes the proof. 2

This result tells us that if the flux space is a cone (i.e., we can uniformly scale down
the flux through all reactions), the cell can always adapt to lower light concentrations
linearly. Since we do not observe this behavior for C. reinhardtii, we conclude that
there must be an obstruction. This obstruction could simply be a reaction r that due
to its kinetic behavior has a flux rate more or less independent from the substrate
concentrations. Because the other reactions would attain lower flux rates due to the lower
supply of substrates, this reaction r would divert the flux away from the other reactions.
For example, the flux could be diverted into a futile cycle or into the production of by-
products and not be used for biomass production anymore. However, not every reaction
with such a diverting behavior can cause a reduction of biomass production. For example
if the reaction r is coupled to the biomass reaction, it at some point will anyway starve
out and reduce its flux rate. Hence, we are interested in finding only those reactions
that with a diverting behavior can produce the observed effect (decrease of biomass
production).

A rough approximation of this behavior can be modeled using fixed positive lower bounds
or negative upper bounds, i.e., by adding constraints that force flux through the reaction.
For the beginning we will work with a fixed positive lower bound for flux through one
pseudo-reaction r ∈ R (Def. 2.1.2). This lower bound should not restrict optimal flux
through the target reaction t at y2, but restrict flux through t at y1. In the following we
will only consider positive lower bounds, because the case for negative upper bounds is
analogous (we only have to reverse the reaction).

The maximal effect that can be achieved using flux forcing for reaction r is the solution
of the following bilevel optimization problem:

min
k

max{vt : v ∈ P, vs ≤ y1, vr ≥ k} (7.1)

s.t. max{vt : v ∈ P, vs ≤ y2, vr ≥ k} = λt(y2)

{vt : v ∈ P, vs ≤ y1, vr ≥ k} 6= ∅
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We require that the inner problem max{vt : v ∈ P, vs ≤ y2, vr ≥ k} attains the FBA
optimum, since this is a property that we observe in the experiments. Also, max{vt :
v ∈ P, vs ≤ y1, vr ≥ k} must be feasible, because otherwise the infeasibility will starve
out the flux forcing reaction r and hence r would be forced to a lower flux. This would
then again reduce (or even cancel the effect).

Definition 7.2.1 (Diverting reaction) A pseudo-reaction r ∈ R is called diverting,
if the optimal value of (7.1) is smaller than max{vt : v ∈ P, vs ≤ y1}. 2

However, we do not have to apply complicated algorithms for bilevel optimization, since:

Theorem 7.2.2 The optimization problem (7.1) is minimized by k = min {λrt (y2), λr(y1)}.

Proof Since λt(y2) = max{vt : v ∈ P, vs ≤ y2}, we have

max{vt : v ∈ P, vs ≤ y2, vr ≥ k} = λt(y2)

⇔∃v ∈ P : vs ≤ y2, vr ≥ k, vt = λt(y2)

⇔max
{
vr : v ∈ P, vs ≤ y2, vt = λt(y2)

}
≥ k

⇔λrt (y2) ≥ k (by def. of λrt )

We also have

∃v ∈ P : vs ≤ y1, vr ≥ k ⇔ max{vr : v ∈ P, vs ≤ y1} ≥ k
⇔ λr(y1) ≥ k.

Thus, the optimization problem (7.1) is feasible if and only if k ≤ λrt (y2) and k ≤ λr(y1).

Looking at the objective function, we see that the feasible domain of

max{vt : v ∈ P, vs ≤ y1, vr ≥ k} (7.2)

is monotonically shrinking (w.r.t. inclusion) for growing k. Thus, the objective value of
(7.2) is shrinking monotonically for growing k. Hence, the optimum of (7.1) is attained
for the largest feasible k.

We conclude that (7.1) is minimized by k = min {λrt (y2), λr(y1)}. �

We can now reformulate the condition for a diverting reaction as follows:

Corollary 7.2.1 A pseudo-reaction r ∈ R is diverting if and only if λrt (y1) is bounded
and

λrt (y1) < min {λrt (y2), λr(y1)} .
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Proof If λrt (y1) is unbounded, it follows that no constraint of the form vr ≥ k is
restricting and hence, r cannot be diverting.

Assume that λrt (y1) is bounded and k := min {λrt (y2), λr(y1)} is unbounded. It follows
that for finite k′ > λrt (y1) it holds that

max{vt : v ∈ P, vs ≤ y2, vr ≥ k′} = λt(y2) (since λrt (y2) unbounded)

{v : v ∈ P, vs ≤ y1, vr ≥ k′} 6= ∅ (since λr(y1) unbounded)

max{vt : v ∈ P, vs ≤ y1, vr ≥ k′} < λt(y1) (since k′ > λrt (y1))

and hence, r is flux forcing.

For the remaining case where k is finite, we observe that by Def. 7.2.1 and Thm. 7.2.2
a pseudo-reaction r ∈ R is flux forcing if and only if

λt(y1) = max{vt : v ∈ P, vs ≤ y1} > max{vt : v ∈ P, vs ≤ y1, vr ≥ k}
⇔ {v : v ∈ P, vs ≤ y1, vt = λt(y1), vr ≥ k} = ∅

⇔ λrt (y1) = max{vr : v ∈ P, vs ≤ y1, vt = λt(y1)} < k = min {λrt (y2), λr(y1)} .

This completes the proof. �

7.3 Sets of Diverting Reactions

In nature, however, it is not guaranteed (and indeed unlikely) that the observed effect
is caused by a single reaction. Hence we will also want to investigate sets of reactions
that may cause the effect. There are practically two different kinds of flux forcing for a
set of reactions.

7.3.1 Diverting Set of Type 1

Let A ⊆ R be a set of pseudo-reactions. Then we can add the flux forcing constraint (of
type 1) kvA ≥ 1, for a k ∈ RA+.

Definition 7.3.1 (Diverting set of type 1) We call A ⊆ R a diverting set of type 1,
if there exists a k ∈ RA+ such that

max{vt : v ∈ P, vs ≤ y1, kvA ≥ 1} < max{vt : v ∈ P, vs ≤ y1} = λt(y1)

max{vt : v ∈ P, vs ≤ y2, kvA ≥ 1} = λt(y2).

By Cor. 7.2.1 we can reformulate this condition by defining

λkA(y) := max{kvA : v ∈ P, vs ≤ y}
λkAt (y) := max{kvA : v ∈ P, vs ≤ y, vt = λt(y)}.
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Proposition 7.3.1 A ⊆ R is a diverting set of type 1 if and only if there exists a
k ∈ RA+ with λkAt (y1) bounded and

λkAt (y1) < min{λkA(y1), λkAt (y2)}

Proof Define a flux space Q ⊆ RR∪̇x with an additional reaction x by

Q := {v ∈ RR∪̇x : vR ∈ P, vx = kvA}.

It follows that λkA(y) = λx(y), λkAt (y) = λxt (y) when applied on Q instead of P and it
holds for all ` ≥ 0 that

max{vt : v ∈ Q, vs ≤ y1, kvA ≥ `} = max{vt : v ∈ Q, vs ≤ y1, vx ≥ `}.

The result follows by Cor. 7.2.1 applied to the new reaction x in the flux space Q. �

We observe on the example of Fig. 7.5 that the notion of diverting set of type 1 is
necessary, since it is not always possible to reduce such a diverting set to a smaller
diverting set. There, the set A = {r1, r2} is a diverting set with the constraint vr1 +vr2 ≥
2. For s ≥ 2, we observe that we can produce t with the FBA optimal rate of 2. For
s = 1 on the other hand, the only feasible solution is attained with vr1 = vr2 = 1. It
follows that no flux through t is possible.

However, if we only choose {r1} as the diverting set with vr1 ≥ k, then the optimal
attainable flux rate for t is vt = vs − k. This is not the FBA optimum. If we chose {r2}
as the diverting set with vr2 ≥ k, we observe that for vs ≥ k, we can have FBA-optimal
vt, but as soon as vs < k, the system becomes infeasible.

s

t

r1

r2

Figure 7.5: A minimal diverting set A = {r1, r2} of type 1. Note that A is not a diverting
set of type 2.

7.3.2 Diverting Set of Type 2

Let A ⊆ R be a set of reactions. Instead of summing up the fluxes through the reactions,
we can also consider separate flux forcing bounds for each of the reactions, i.e., we add
the flux forcing constraint vA ≥ k, for a k ∈ RA+.
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Definition 7.3.2 (Diverting set of type 2) We call A ⊆ R a diverting set of type 2,
if there exists a k ∈ RA+ such that

max{vt : v ∈ P, vs ≤ y1, vA ≥ k} < max{vt : v ∈ P, vs ≤ y1} = λt(y1)

max{vt : v ∈ P, vs ≤ y2, vA ≥ k} = λt(y2).

Again, we can reformulate this definition using Cor. 7.2.1. Therefore we define

λA≥k(y) := max{w : v ∈ P, vs ≤ y, vA ≥ kw}
λA≥kt (y) := max{w : v ∈ P, vs ≤ y, vt = λt(y), vA ≥ kw}.

Proposition 7.3.2 A ⊆ R is a diverting set of type 2 if and only if there exists a
k ∈ RA+ with λA≥kt (y1) bounded and

λA≥kt (y1) < min{λA≥k(y1), λA≥kt (y2)}.

Proof Define a flux space Q ⊆ RR∪̇x with an additional reaction x by

Q := {v ∈ RR∪̇x : vR ∈ P, vA ≥ kvx}.

It follows that λA≥k(y) = λx(y), λA≥kt (y) = λxt (y) when applied on Q instead of P and
for all w ≥ 0

max{vt : v ∈ Q, vs ≤ y1, vA ≥ kw} = max{vt : v ∈ Q, vs ≤ y1, vx ≥ w}.

The result follows by Cor. 7.2.1 applied to the new reaction x in the flux space Q. �

Similar to the case of flux forcing sets of type 1, there also exist flux forcing sets out of
several reactions that cannot be reduced. An example can be seen in Fig. 7.6. Due to the
metabolites X1, Y1 and X2, Y2 it follows that vr1 ≤ vs and vr2 ≤ vs for all steady-state
flux distributions. It follows that neither r1 or r2 alone can induce the flux forcing effect.
Together however with vr1 , vr2 ≥ k, they can produce a demand of 2k that for vs = k
leads to only one feasible solution with vt = 0. A similar example can be observed in
Fig. 7.7

We observe that not every diverting set of type 1 is also a diverting set of type 2, like in
the example shown in Fig. 7.5. However, for polyhedral flux spaces P , every diverting set
of type 2 is also a diverting set of type 1. To prove this result, we first show 2 auxiliary
results:

Lemma 7.3.1 Let P ⊆ RR, A ⊆ R and k ∈ RA+. Then it holds for all row vectors
k′ ∈ RA+ with k′k = 1 that

sup{w : v ∈ P, kw − vA ≤ 0} ≤ sup{k′vA : v ∈ P}.
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Proof Let (v̄, w̄) be a feasible solution of max{w : v ∈ P, kw − vA ≤ 0}. Clearly,
v̄ is a feasible solution of max{k′vA : v ∈ P}. We observe that kw̄ ≤ v̄A and hence,
k′kw̄ ≤ k′v̄A, which implies w̄ ≤ k′v̄A. The result follows. �

Lemma 7.3.2 Let P ⊆ RR be a non-empty polyhedral space, A ⊆ R and k ∈ RA+. If
max{w : v ∈ P, kw − vA ≤ 0} is bounded then there exists a row vector k′ ∈ RA+ with
k′k = 1 such that

max{w : v ∈ P, kw − vA ≤ 0} = max{k′vA : v ∈ P}

Proof Since P is polyhedral, there exists a matrix B and a vector b such that P = {v :
Bv ≤ b}.
Since max{w : v ∈ P, kw − vA ≤ 0} is feasible and bounded by assumption, it holds by
LP duality that the dual of

opt := max{w : Bv ≤ b, kw − vA ≤ 0}

satisfies

opt = minαb

s.t.αBA − β = 0

αBR\A = 0

βk = 1

α, β ≥ 0

For an optimizer ᾱ, β̄ it follows that

opt = minαb

s.t.αBA = β̄

αBR\A = 0

α ≥ 0

and again, by LP-duality

opt = max{β̄vA : Bv ≤ b}

Hence, the result follows by choosing k′ = β̄, since β̄ satisfies β̄ ≥ 0 and β̄k = 1. �

Theorem 7.3.1 Let P = {v : Bv ≤ b} be a polyhedral flux space and let A ⊆ R be a
diverting set of type 2. Then A is also a diverting set of type 1.
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Proof Since A is a diverting set of type 2, it follows (Prop. 7.3.2) that there exists a
k ∈ RA+ with

λA≥kt (y1) < min{λA≥k(y1), λA≥kt (y2)}

and λA≥kt (y1) is bounded.

By Lemma 7.3.2 it follows that there exists a row vector k′ ∈ RA+ with k′k = 1 and

λk
′A
t (y1) = λA≥kt (y1).

By Lemma 7.3.1 it follows that

λA≥k(y1) ≤ λk′A(y1)

λA≥kt (y2) ≤ λk′At (y2).

Hence, we can conclude that

λk
′A
t (y1) < min{λk′A(y1), λk

′A
t (y2)}.

By Prop. 7.3.1 it follows that A is a diverting set of type 1. �
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Figure 7.6: The diverting set A = {r1, r2} of type 2 with k = (1, 1) for y1 = 1, y2 = 2
cannot be decomposed into smaller diverting sets. It is easy to see that vr1 ≤ vs and
vr2 ≤ vs, but vr1 = vr2 = vs is possible.

7.3.3 Finding Flux Forcing Coefficients for Diverting Sets of Type 2

In the previous section we saw how we can easily check if a set of reactions A with known
coefficients k is diverting. However, the coefficients k are usually unknown. Hence, we
now want to compute these coefficients if only the set A of reactions is given.

Although, we have seen that diverting sets of type 1 are more general for polyhedral flux
spaces, we will focus here on diverting sets of type 2. This seems to be the mathematically
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s

t

r1
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Figure 7.7: Another example for a minimal diverting set A = {r1, r2} of type 2.

easier case, since otherwise kvA becomes a quadratic term for variable k. To find the k
for which the diversion effect is maximal, we recall that we need to solve

min
k

max{vt : v ∈ P, vs ≤ y1, vA ≥ k}

s.t. max{vt : v ∈ P, vs ≤ y2, vA ≥ k} = λt(y2)

{v : v ∈ P, vs ≤ y1, vA ≥ k} 6= ∅.

This can also be rewritten as the following bilevel (min-max) programming problem:

min
k,w,v′

max{vt : v ∈ P, vs ≤ y1, vA ≥ k}

s.t. w ∈ P,ws ≤ y2, wA ≥ k,wt = λt(y2) (7.3)

v′ ∈ P, v′s ≤ y1, v
′
A ≥ k

We call max{vt : v ∈ P, vs ≤ y1, vA ≥ k} the inner optimization problem in contrast to
the outer optimization problem, which controls k,w, v′ and contains the inner problem
as a constraint / objective.

If P is convex we can use the Karush-Kuhn-Tucker (KKT) conditions to reformulate
this problem as a mathematical program with equilibrium constraints (MPEC) [93]. If P
is a polytope, this MPEC will have linear constraints and complementarity constraints.
Hence, it can be solved by reformulation as a MILP [26].

If P is not convex, solving the bilevel problem becomes difficult. In particular, if we add
thermodynamic constraints we will have a non-convex P .

It is important to consider also thermodynamic (loop-law) constraints, because without
these constraints we will never be able to have diverting reactions contained in internal
cycles. Hence, we will now look at thermodynamically constrained P .
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7.3.4 Thermodynamically Constrained P

In Chapter 4 we discussed several ways on how to formulate thermodynamic constraints.
Although we saw that the MILP formulation is not the best formulation for the problem,
it still uses the most standardized theoretical framework. This is an important feature,
since the chances are high that bilevel optimization for MILPs has already been studied.

Indeed, there exists a lot of (theoretical and practical) work in the area of bilevel opti-
mization. However, most of the work is focusing on problems where either all variables
are continuous (and KKT conditions can be applied to obtain criteria for local optimal-
ity) or where all variables are discrete and a lot of techniques from game theory are
available.

For the case of MILP, I found a work by Gümüş and Floudas [61] and a work by Fáısca et
al. [41], which study how general bilevel problems with MILP in the inner problem can
be solved to optimality. Other works in the literature either only allow integer variables
in the outer problem [165] or are only properly developed for inner problems, where
the outer variables appear only in the objective of the inner problem [34] (Remark: For
diverting sets of type 1 this would be sufficient).

Gümüş and Floudas [61] present an algorithm that does not only work for MILPs but also
allows certain types of nonlinear constraints. They exploit the fact that the inner MILP
can be described by its integer hull. This way, they obtain a convex inner problem, which
they then can reformulate using KKT conditions into a nonlinear one-level optimization
problem. This nonlinear optimization problem they then solve with an MINLP solver
to global optimality.

Fáısca et al. [41] approach the problem from a different perspective. They apply a
method by Dua and Pistikopoulos [37] for multi-parametric MILP (mpMILP) to solve
the inner problem for all possible parameters from the outer problem. The mpMILP
solution will be a piece-wise affine linear function. For each linear piece (also called
critical region), they then evaluate the outer problem and take the minimum.

In our case, the method proposed in [41] is the more promising approach. In our appli-
cation the inner problem only depends on k and hence, is of low dimension. Since the
method is formulated in a very general sense, we can even apply it to thermodynamically
constrained fluxes without using the MILP formulation.

In the next section we will discuss how we can solve the parametrized problem for our
special case of thermodynamically constrained FBA.

7.4 Multi-Parametric Thermodynamically Constrained Flux
Balance Analysis (mpTFBA)

Although the area of multi-parametric linear programming (mpLP) is quite well re-
searched, there are only few works on mpMILP. Of these works the method by Dua and
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Pistikopoulos [37] looks the most promising.

7.4.1 The Algorithm by Dua and Pistikopoulos

Before we look at our special case of thermodynamically constrained FBA, let us reca-
pitulate the idea of the algorithm by Dua and Pistikopoulos [37]. Let us assume that
we want to solve the following parametrized optimization on parameters k ∈ Q ⊆ R`,
where Q is a polyhedral parameter space, g, h are row-vectors, A,B,C are matrices and
d is a column vector with corresponding dimensions, where m,n are integers:

v̂(k) := max{gx+ hy : Ax+By ≤ Ck + d, x ∈ Rm, y ∈ {0, 1}n}

The central idea is to reduce the problem to multi-parametric linear programming (mpLP)
by fixing integer variables. However, we use MILP to find good assignments for the in-
teger values, to keep the number of mpLP solves minimal. For mpLP several efficient
algorithms, like the simplex-based criss-cross algorithm, which walks from facet to facet
of the polyhedron, exist. By fixing the integer variables y to ỹ1, we obtain a polyhedral
subset of the feasible domain. On this subset, we can compute a parametrized solution
using standard mpLP algorithms.

v̂1(k) := hỹ1 + max{gx : Ax ≤ Ck + d−Bỹ1, x ∈ Rm}∀k ∈ Q

Since this solution is surely feasible, it is a lower bound on the solution set (v̂1(k) ≤ v̂(k)).
We observe that the critical regions CRi ⊆ R` (linear piece of the parametrized solution)
of this mpLP solution are polyhedral and partition the whole parameter space Q. For
each critical region CRi, they check if there exists another solution (with a different
assignment of the integer variables) that is at least as good by solving a MILP:

(x̄, ȳ, k̄) := arg max gx+ hy

Ax+By − Ck ≤ d
gx+ hy − v̂1(k) ≥ 0

yi(1− y) + (1− yi)y ≥ 1 ∀ previously computed sol. yi (no-good cut)

x ∈ Rm

y ∈ {0, 1}n

If they find a solution, they check for all critical regions, whether it can be improved
with the assignment ȳ. If the assignment yields larger values (gx̄+hȳ > v̂1(k̄)), they use
the improved assignment of the integer variables ỹ2 = ȳ and repeat the same procedure
on the critical region:

v̂2(k) := hỹ2 + max{gx : Ax ≤ Ck + d−Bỹ2, x ∈ Rm}∀k ∈ CRi

When no better solution can be found, the critical region is solved to optimality and the
algorithm continues with the other critical regions.
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7.4.2 Adaptation to Thermodynamically Constrained FBA

In the case of thermodynamically constrained FBA (TFBA), we observed (Thm. 4.5.1)
that we do not have to fix all the integer variables (reaction directions) to guarantee that
the LP solution value equals the MILP solution value. We will exploit this property also
for multi-parametric thermodynamically constrained FBA (mpTFBA).

Let N = (M,R = I∪̇E , S) be a metabolic network. Let G ⊆ R be a set of reactions, for
which additional linear constraints are defined by an affine linear function g : RG → Rn,
n ∈ N. Let ` ≤ 0 be flux lower bounds and u ≥ 0 flux upper bounds.

We consider the steady-state flux space P and the flux space T with additional thermo-
dynamic constraints.

P =

v ∈ RR

∣∣∣∣∣∣∣
Sv = 0

` ≤ v ≤ u
g(vG) ≤ 0


T =

{
v ∈ RR

∣∣∣∣∣ v ∈ P
sign(v) 6⊇ C ∀ internal circuits C

}

Let A ⊆ G be a set of reactions that we want to parametrize over. Let K ⊆ RA be a
convex set of parametrizations. Given a cost function c ∈ RG we want to find a function
v̂ : K → R s.t.

v̂(k) = max cvG : v ∈ T, vA ≥ k (7.4)

if max{cvG : v ∈ T, vA ≥ k} is feasible and we write v̂(k) = −∞ otherwise.

Note that if we want to parametrize on upper bounds, we can simply change the direction
of the corresponding reactions.

To compute the optimal function, we run Algorithm 11. It differs from the method by
Dua and Pistikopoulos [37] in the following points:

• Instead of fixing all decision variables, we only fix a subset, a so-called blocking
set:

Definition 7.4.1 (Blocking Set) Let (M,R = I ∪E , S) be a metabolic network
with lower and upper bounds `, u and objective function c ∈ RR. A set Z ⊆ R is
called a blocking set w.r.t. c if there exists no v ∈ RI with

SIv = 0, vIrrev ≥ 0, vZ ≥ 0, cIv > 0,

where Irrev denotes the set of irreversible pseudo-reactions as defined in Def. 2.1.7.2
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We use a function Z : RR → 2R that computes for a given flux distribution w ∈ T
a set Z = Z(w) ⊆ R with wZ ≥ 0 which is a blocking set w.r.t. the objective
function c, for each of the additional constraints g, and for each of the flux forcing
constraints (including the parametrization vA ≥ k).

It follows that when we add the additional constraint vZ ≥ 0 to the FBA problem
(without thermodynamic constraints), every flux vector v can be turned into a
thermodynamically feasible flux vector without violating flux through any objective
or reaction with flux fixed by parametrization (Thm. 4.5.1). The condition wZ ≥ 0
enforces that w stays feasible. Since w is a thermodynamically feasible flux such a
Z can always be computed (by fixing the sign of all reactions).

Often, we can obtain Z (partially) from the variable fixings of the MILP solver for
the computation of w. Ideally, we want to compute a Z, which contains as few
elements as possible, because this allows the greatest amount of flexibility in the
LP. We will discuss the computation of Z in more detail in Sec. 7.4.3.

• Since no-good cuts are a rather expensive MILP technique, I turn the constraint
gx+ hy ≥ v1(k) into the objective. In terms of the general MILP formulation this
corresponds to solving the MILP:

(x̄, ȳ, k̄) := arg max{gx+ hy − v̂i(k) : Ax+By − Ck ≤ d, x ∈ Rm, y ∈ Zn, k ∈ CRi}

In the special case of TFBA, we can formulate this as:

(v̄, k̄) := arg max{cvG − v̂iG(k) : v ∈ T, vA ≥ k, k ∈ CRi}

We observe that if there exists a point where the objective value is bigger than the
current LP solution v̂i(k), then this point is found. If no such point exists, we can
see this also immediately by an objective value of 0. Since we maximize the MILP,
it follows that the computed optimizer (v̄) cannot be improved further and hence,
the critical region which contains v̄ will also be part of the final solution.

A drawback of this approach is that I do not enumerate all optimal integer-
assignments, but only one for each critical region. Since we are however, only
interested in the optimal value, this problem is negligible. Also, I do not extend
the mpLP solution for CRi to other critical regions, where it also may provide an
improvement. However, such a step also comes with the cost of solving the mpLP
problem on a larger domain. If this is really worth the effort is unclear to me and
should be investigated experimentally.

Theorem 7.4.1 After Algorithm 11 has finished, we have computed a list of critical
regions CRi with value functions v̂i for i = 1 . . . n such that

v̂(k) = {v̂i(k) : k ∈ CRi ∧ i has no children}

is single-valued and the value is a solution to (7.4) for each k ∈ K. 2
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Algorithm 11 Compute critical regions for tFBA

CR0 := K, v̂0 := −∞
i := 0
n := 1
while i < n do

if v̂i = −∞ then
solve (w, k̄) := arg max{cvG : v ∈ T, vA ≥ k, k ∈ CRi}
if w exists then

compute Z := Z(w)
{(CRn, v̂n), . . . , (CRn+l−1, v̂n+l−1)} := critical regions computed by the fol-

lowing mpLP for k ∈ CRi:

v̂(k) = max{cvG : v ∈ P, vA ≥ k, vZ ≥ 0}

for j = n to n+ l − 1 do register j as child of i.
end for
n := n+ l

end if
else

solve (w, k̄) := arg max{cvG − v̂iG(k) : v ∈ T, vA ≥ k, k ∈ CRi}
if cwG > 0 then

Compute Z := Z(w)
{(CRn, v̂n), . . . , (CRn+l−1, v̂n+l−1)} := critical regions computed by the fol-

lowing mpLP for k ∈ CRi:

v̂(k) = max{cvG : v ∈ P, cvG ≥ v̂i(k), vA ≥ k, vZ ≥ 0}

for j = n to n+ l − 1 do
if v̂j = −∞ (CRj infeasible) then

v̂j := v̂i

end if
register j as child of i.

end for
n := n+ l

end if
end if
i := i+ 1

end while
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To prove this theorem we will first have to show a couple of simple lemmas.

Lemma 7.4.1 Let i ∈ {1, . . . , n} that has no children and v̂i = −∞. Then {v ∈ T :
vA ≥ k} = ∅ for all k ∈ CRi.

Proof Since critical regions computed by mpLP always partition the space of the prob-
lem, it follows that the only reason why i has no children is because max{cvG : v ∈
T, vA ≥ k, k ∈ CRi} is infeasible (by the if-statement of the algorithm). Hence {(v, k) :
v ∈ T, vA ≥ k, k ∈ CRi} = ∅. It follows that {v : v ∈ T, vA ≥ k} = ∅ for every fixed
k ∈ CRi. �

Lemma 7.4.2 Let i ∈ {1, . . . , n} with v̂i 6= −∞. For every k ∈ CRi there exists a v ∈ T
with vA ≥ k and cvG = v̂i(k).

Proof By construction we know that there exists a w ∈ T with Z = Z(w) such v̂i is
the solution on CRi of the mpLP

max{cvG : v ∈ P, vA ≥ k, vZ ≥ 0)}.

By definition of Z and Thm. 4.5.1 it follows that

v̂i(k) = max{cvG : v ∈ P, vA ≥ k, vZ ≥ 0)} = max{cvG : v ∈ T, vA ≥ k, vZ ≥ 0)},

which was to be shown. �

Lemma 7.4.3 Let i ∈ {1, . . . , n} that has no children and v̂i 6= −∞. Then v̂i(k) =
max{cvG : v ∈ T, vA ≥ k} for all k ∈ CRi.

Proof Since critical regions computed by mpLP always partition the space of the prob-
lem, it follows that the only reason why i has no children is because max{cvG − v̂iG(k) :
v ∈ T, vA ≥ k, k ∈ CRi} ≤ 0 (by the if-statement in the algorithm).

It follows that v̂iG(k) ≥ max{cvG : v ∈ T, vA ≥ k} for every k ∈ CRi. Since v̂i(k) is a
feasible solution for every k ∈ CRi by Lemma 7.4.2, this lemma follows. �

Proof (of Theorem 7.4.1) From the structure of the algorithm it is easy to see that
every critical region is either partitioned into smaller critical regions or not. If a critical
region CRi is partitioned into smaller critical regions, it has children. Since it is a
partition, there will exists for every k ∈ CRi exactly one child critical region CRj with
k ∈ CRj .
If a region is not partitioned, it does not have children.

Hence, v̂(k) is single-valued for every k ∈ K. By Lemma 7.4.1 the value of v̂(k) is −∞ if
there exists no solution and by Lemma 7.4.3 the returned value is optimal for any given
k with v̂(k) 6= −∞. �
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Theorem 7.4.2 Algorithm 11 terminates in finite time.

Proof We show that the value of v̂ is monotonically increasing during the algorithm.
Since there are only finitely many assignments of reaction directions, it follows that there
can only be finitely many increases and hence, the algorithm terminates in finite time.

If v̂i = −∞ on a critical region CRi, then the value of v̂ can only increase on CRi for
any subdivision of CRi.

If v̂i 6= −∞, we recall that we solve the following mpLP problem to obtain the child-
regions:

v̂(k) = max{cvG : v ∈ P, cvG ≥ cv̂i(k), vA ≥ k, vZ ≥ 0}

By the constraint cvG ≥ cv̂i(k) we enforce that every feasible solution of this mpLP is
at least as good as the original solution. Regions, where the mpLP would otherwise be
worse become infeasible. Child critical regions that are infeasible just take the solution
of the parent critical region. Hence, the objective value of v̂ is also increasing in this
case. �

7.4.3 Finding Cut Sets for Blocking Internal Cycles

Now, we discuss how to compute a minimal blocking set Z w.r.t. an objective function
c. We recall that c can either be the real objective function, or it can be an artificial
objective function that simply forces flux through one of the flux forcing reactions. In
either case, the theory for finding such a blocking set is similar.

We recall that a blocking set Z does not really block reactions entirely, but only one
direction of the reaction. The effect must be that there exists no internal circulation
v ∈ RI for which the objective value cv becomes positive. Additionally, we have a
few reactions for which we are not allowed to block certain directions, because the
thermodynamically feasible MILP solution w must stay feasible, i.e., Z has to satisfy
wZ ≥ 0.

We observe that this problem is related to the cut set problem [79]:

Problem 7.4.1 (MinimumCut)

Given: Metabolic network (M,R, S), a reaction r ∈ R

Want: Minimum cardinality set X ⊆ R such that Sv = 0, v ≥ 0, vX = 0 implies vr = 0.

2

We see the similarity to the computation of a blocking set by considering the metabolic
network (M, I, SI). The only difference between the two problems is that for blocking
sets, we are also allowed to block single directions of a reaction and some directions we
are not allowed to block.
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Acuña et al. [1] showed that the Problem 7.4.1 is APX-hard and that there is no o(log n)
approximation unless P = NP. This result also transfers to finding minimal blocking
sets:

Proposition 7.4.1 There exists no algorithm (unless P = NP) that computes for a
given metabolic network (M,R = I∪̇E , S), irreversible reactions Irrev ⊆ R, c ∈ RR,
and w ∈ T a blocking set Z ⊆ R with wZ ≥ 0 that is at most a factor o(log |R|) bigger
than the smallest such blocking set.

Proof We reduce Problem 7.4.1 to finding a minimal blocking set Z. Let (M,R, S) be
a metabolic network and r ∈ R. Define I = Irrev = R, c ∈ RR with cr = 1 and cs = 0
for all s 6= r. It follows that wZ ≥ 0 is no restriction and blocking a reaction direction
is equivalent to blocking the reaction completely. It follows that computing a minimal
blocking set is precisely the same as computing a minimal-cut set. �

However, we remark that for the correct functioning of Alg. 11 we do not have to compute
a minimum blocking set. It is only advantageous for the run time to compute small
blocking sets. Hence, it is sufficient to rely on suboptimal heuristics or approximation
algorithms for computing blocking sets.

Acuña et al. [1] propose for MinimumCut an iterative algorithm that computes fluxes
in the network and then blocks the reaction in that mode with the smallest weight.
They show that this algorithm is a λ-approximation, where λ is the length of the longest
elementary mode. This approach can also be extended for computing blocking sets.

Here, however, I follow a different approach (more closely related to the approaches
suggested in [87, 7]), for which I do not even have a weak quality guarantee like Acuña
et al., but which was simpler to implement. The idea is that if we maximize flux through
the objective reaction, the reduced costs of the dual linear problem tell us which reactions
are rate limiting. If we block all these reactions, then no flux through the target reaction
is possible anymore. We assume w.l.o.g. for the following theorem that all reactions are
oriented in such a way that their bounds allow positive flux.

Theorem 7.4.3 Let N = (M,R = I∪̇E , S) be a metabolic network with lower and
upper bounds ` ≤ u > 0. Let v be a thermodynamically feasible flux and c ∈ RR an
objective function.

The following LP is always feasible and bounded:

max cx

SIx = 0

ar := 0 `r ≥ 0
ar := −1 vr ≥ 0, `r < 0
ar := −∞ else

 ≤ xr ≤
{
br := 1 vr ≤ 0

br :=∞ else
∀r ∈ I

Let x∗ be the maximizer. Let c̄ be the corresponding reduced costs, i.e., c̄ = c − µSI ,
where µ is the dual variable to the constraints SIx = 0.
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Then Z := {−r : x∗r = 1 ∧ c̄r > 0, r ∈ R} is a blocking set w.r.t. c with vZ ≥ 0.

Proof The LP is feasible, since x = 0 is a feasible solution. Assume it were not
bounded. It follows that there exists an x ∈ RI with cx > 0, SIx = 0, xr ≥ 0 for all
r ∈ I with vr ≥ 0 and xr ≤ 0 for all r ∈ I with vr ≤ 0. It follows that sign(x) ⊆ sign(v)
and x 6= 0. This is a contradiction to v being thermodynamically feasible (Thm. 2.6.1).

Since the LP is bounded, there exists a feasible optimal dual solution µ, α, β, where µ is
the dual variable for SIx = 0, α ≤ 0 is the dual variable for x ≥ a and β ≥ 0 is the dual
variable for x ≤ b. Central to the following observation is the dual constraint

µSI + α+ β = c.

By complementary slackness, we know for a feasible optimal primal solution x∗ that it
holds for all r ∈ R that

x∗r = 1 ⇒ x∗r > 0 ⇒ x∗r > ar ⇒ αr = 0 ⇒ c̄r = c− µSr ≥ 0 (7.5)

x∗r = −1 ⇒ x∗r < 1 ⇒ x∗r < br ⇒ βr = 0 ⇒ c̄r = c− µSr ≤ 0. (7.6)

We conclude that (let Irrev be defined as in Def. 2.1.7)

• x∗r > 1 implies c̄r = 0 for all r ∈ R by complementary slackness.

• x∗r = 1 implies c̄r = 0 for all r ∈ R with −r 6∈ Z since by definition of Z we have
c̄r ≤ 0 and by (7.5) (resp. (7.6)) it holds that c̄r ≥ 0.

• x∗r < 1 implies c̄r ≤ 0 for all r ∈ Irrev, since Irrev ⊆ R.

• −1 < x∗r < 1 implies c̄r = 0 for all r ∈ R \ Irrev by complementary slackness.

• x∗r = −1 implies c̄r ≤ 0 for all r ∈ R by (7.6) (resp. (7.5)).

• x∗r < −1 implies c̄r = 0 for all r ∈ R by complementary slackness.

Assume there exists a y ∈ RI with cy > 0, SIy = 0, yZ ≥ 0 and yIrrev ≥ 0. We observe
that for each r ∈ sign(y) we have −r 6∈ Z and −r 6∈ Irrev. Hence, c̄sign(y) ≤ 0 and thus,

0 ≥ c̄y = cy − µSIy = cy > 0,

a contradiction. Hence, Z is a blocking set. �
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7.5. TIGHT INTEGRATION OF BILEVEL PROGRAMMING INTO
PARAMETRIC PROGRAMMING

7.5 Tight Integration of Bilevel Programming into Para-
metric Programming

When we want to check whether a set of reactions A is diverting, it is sufficient to
compute one optimal (minimal) solution of the bilevel program (7.3). In particular, if
we know that a certain critical region cannot yield anything better than the current best
(incumbent) solution, then we do not have to split up the critical region any further.

During the mpMILP algorithm, we frequently compute optimal solutions to the inner
problem. Each such solution gives rise to a feasible solution of the outer problem, hence
a candidate for an incumbent solution.

We can obtain lower bounds for a critical region by assuming a collaborative inner
problem, i.e., by dropping the optimality condition of the inner problem.

7.5.1 Min-Max Problems

If the bilevel problem is a min-max problem, like in our case of (7.3), we can even derive
stronger lower bounds.

We know that during the mpTFBA algorithm the solution v̂ increases monotonically
with each subdivision (since the inner problem is a maximization problem). Since the
objective value of the outer problem is the objective value of the inner problem, it
follows that also the objective value of the outer problem increases. It follows that for
any critical region CRi mink∈CRi cGv̂

i
G(k) is a lower bound.

7.6 Implementation

For the analysis of C. reinhardtii 137AH, I computed the parametrized solutions using
the multi parametric toolbox (MPT) [84]. The MPT toolbox offers an implementa-
tions for multi-paramteric linear programming and other tools for computational geom-
etry. However, the MPT toolbox only works with full dimensional polyhedra. Since,
the polyhedra obtained from FBA problems contain a lot of direct equality-constraints
(steady-state assumption) and several indirect equality constraints by flux bounds that
fix reaction fluxes, I wrote additional code to remove unnecessary dimensions. In par-
ticular the identification and elimination of indirect inequality constraints introduced
numerical instabilities and it occurred several times that the LP solver falsely reported
that no solution exists for LPs that were constructed to be feasible.

I did not implement the bilevel optimization method, since the parametrized result
can also be used to generate pretty pictures, which may give a deeper insight into the
functions behind the effect.
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7.7 Results

For the analysis, Guillaume Cogne supplied me with a core metabolic network and a
genome-scale metabolic network. Since the genome-scale metabolic network contains
many internal cycles, it was not possible to run even ordinary thermodynamic flux
variability analysis on it. Hence, we focused on the analysis of the core metabolic
network. In addition to the steady-state constraints of the core network, we also added
two additional energetic constraints derived from phosphate-oxygen ratios (P/O-ratios)
that could be formulated using linear equality constraints (vr denotes the flux through
reaction r) [25]:

P/O(2e−)(
1

2
vPSI − 1vFQR) = vCF−ATPase, P/O(2e−) = 1.4273

P/O(NADH) vNADH − P/O(Succ)(vNADH + vQCR) = vMF−ATPase, P/O(NAD) = 1.76, P/O(Succ) = 1.17

Since G. Cogne thought that NADH-Glutamine oxoglutarate aminotransferase (NADH-GOGAT)
might be a trouble maker, I ran computations for the network with NADH-GOGAT and
without NADH-GOGAT (i.e., by blocking NADH-GOGAT).

The maximal growth rate under the low light intensity of vhν = 9.5059 computed by
FBA is 0.0292, both with NADH-GOGAT and without.

I found that ferredoxin NADPH reductase (FNR) is the only reaction that by itself can
divert so much flux that the cell would stop growing for the lower light intensity. In-
terestingly, this effect only kicks in on a very small segment of the range of feasible
flux values (see Fig. 7.8). Other reactions that have large diverting effect are transketo-
lase (TRK1, TRK2), ribulose-phosphate 3-epimerase (RPE), ribulose 5-phosphate isomerase
(RPI), phosphoribulokinase (PRK), ribulose bisphosphate carboxylase (Rubisco), phospho-
glycerate kinase (PGK). Tab. 7.1 gives an overview of all reactions where flux forcing could
reduce the maximal yield of 0.0292 under the low light intensity (vhν = 9.5059), while
still allowing FBA optimal growth for the high light intensity (vhν = 19.0118).

For some of the reactions, the diversion effect can be increased by allowing two flux
forcing reactions. Interestingly, all combinations that I found consist of reactions with
already rather high flux diversion, like RPE, RPI, TRK1, TRK2 and a reaction with low
flux diversion like glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or the hydrogen
transport (TH: NAD + NADPH↔ NADH + NADP). The maximal effect can be read from Ta-
bles 7.2, 7.3 and can also be seen in Figs. 7.11, 7.12.

We observe that it does not make much of a difference if NADH-GOGAT is part of the
network. We can conclude that if the effect is caused by flux forcing reactions as modeled
in this computational study, then NADH-GOGAT likely does not play a central role.

Furthermore, we observe that GAPDH and TH induce exactly the same effect. When we
however consider the flux modules (see Chapter 6) of the metabolic network, we see that
GAPDH together with GAPDHr form an alternatve to TH. This the case, both in the network
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7.7. RESULTS

Table 7.1: Single diverting reactions and their maximal effect.

Diverting without with Diverting without with
reaction NADH-GOGAT NADH-GOGAT reaction NADH-GOGAT NADH-GOGAT

PGI 0.0268 0.0268 PFK 0.0269 0.0269
FBPase 0.0262 0.0262 FBA 0.0244 0.0244
TPI 0.0211 0.0211 GAPDH 0.0268 0.0265
GAPDHr 0.0222 0.0217 PGK 0.0203 0.0203
PGM 0.0238 0.0238 ENO 0.0238 0.0238
PK 0.0267 0.0267 PD 0.0261 0.0261
CS 0.0266 0.0266 ACON 0.0266 0.0266
IDH 0.0266 0.0266 OGDH 0.0269 0.0269
SCS 0.0269 0.0269 SDH 0.0269 0.0269
FH 0.0268 0.0268 MDH 0.0267 0.0267
G6PDH 0.0269 0.0269 PGL 0.0269 0.0269
GND 0.0269 0.0269 RPE 0.0208 0.0208
RPI 0.0211 0.0211 TRK1 0.0209 0.0209
TAL 0.0262 0.0262 TRK2 0.0207 0.0207
PRK 0.0209 0.0209 Rubisco 0.0209 0.0209
SBA 0.0254 0.0254 SBPase 0.0254 0.0254
ICL 0.0268 0.0268 MS 0.0268 0.0268
PEPC 0.0268 0.0268 PEPCK 0.0269 0.0269
MME1 0.0267 0.0267 MME2 0.0267 0.0267
PPDK 0.0269 0.0269 ADK 0.0267 0.0267
FNR 0.0000 0.0000 NADH 0.0256 0.0256
QCR 0.0256 0.0256 COX 0.0256 0.0256
UCP 0.0256 0.0256 MF-ATPase 0.0256 0.0256
ATPM 0.0269 0.0269 TH 0.0268 0.0265
PPase 0.0266 0.0266

The effect is measured in the maximal possible biomass yield under low light conditions when
the corresponding reaction is maximally diverting, i.e., it is the objective value of the bilevel
problem (7.3). The results were computed with the reaction NADH-GOGAT included in the
network and without it.

Table 7.2: Maximal diversion for pairs of reactions with large effect for the network
without NADH-GOGAT.

single RPE RPI TRK1 TRK2

single 0.0208 0.0211 0.0209 0.0207

GAPDH 0.0268 0.0163 0.0171 0.0166 0.0161
TH 0.0268 0.0163 0.0171 0.0166 0.0161
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Figure 7.8: Flux forcing effect of reaction ferredoxin NADPH reductase (FNR) in the
network without NADH-GOGAT. The x-axis specifies the flux forcing parameter and the
f -axis gives the maximal flux rate through biomass possible with vFNR ≥ x.

Table 7.3: Maximal diversion for pairs of reactions with large effect for the network with
NADH-GOGAT.

single RPE RPI TRK1 TRK2

single 0.0208 0.0211 0.0209 0.0207

GAPDH 0.0265 0.0153 0.0161 0.0156 0.0151
TH 0.0265 0.0153 0.0161 0.0156 0.0151

with NADH-GOGAT (Fig. 7.9) and without (Fig. 7.10).

7.8 Discussion

First I want to remark a technical detail: The careful reader may have observed that in
the flux forcing plots with the GAPDH-reaction (Fig. 7.11), the reaction RPE (for example)
alone seems to be able to achieve a large diversion and reduce flux through biomass to
a value less than 0.018 and not only to 0.0208 as predicted in Tab. 7.1. If on the other
hand, we look at Fig. 7.12, we see that indeed RPE alone cannot cause a reduction to
0.018. The effect is probably caused by thermodynamic constraints. An infinitesimally
small flux through GAPDH already prohibits flux through other reactions and hence the
flux diversion becomes larger. Since the parameter space for which vGAPDH = 0 is allowed
has measure 0, it is not drawn in the figure and hence, the misleading impression is
produced.

Biologically, the results do not answer our hope of identifying eukaryotic mechanisms
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GAPDH GAPDHr

GOGAT

NADH−GOGAT

FNRTH

Figure 7.9: Module containing TH and GAPDH without NADH-GOGAT blocked. From this
blocking graph, we can see that TH and GAPDH also here are blocking each other and
hence, form alternatives.

that could be responsible for the different growth behavior of C. reinhardtii compared to
the cyanobacterium A. platensis. All reactions with large diversion effect that we found
are catalyzed by enzymes that are also available in the cyanobacterium A. platensis. On
the contrary, the reaction NADH-GOGAT, which does not exist in cyanobacteria, only
has very little effect even on the flux forcing behavior of the other reactions.

Since flux diversion is also a systemic effect, it seems at this point important to do the
same computations also on a model of a cyanobacterium like A. platensis. It could be
that a reaction common to both C. reinhardtii and A platensis becomes flux diverting
because of other additional (or missing) reactions. In this case an analysis to where the
flux will be diverted will give the necessary insights into the mechanism. If the diversion
leads to the production of by-products, then this would generate a hypothesis that could
be verified experimentally. In the best case such predictions can even be exploited
in biotechnological applications. In the case of C. reinhardtii it is for example not
necessarily a bad effect that the growth rate decreases. If with decreasing growth rate the
production of carbohydrates increases, this would be positive, because the carbohydrates
can more easily be turned into bio-fuel than other biomass compounds.

193



CHAPTER 7. SUBLINEAR GROWTH & FLUX FORCING REACTIONS

GAPDH GAPDHr

TH

cyt.pi
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cyt.nad
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GAPDH
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TH

Figure 7.10: Module containing TH and GAPDH with NADH-GOGAT blocked. On the left
the blocking graph (see Sec. 6.3.3.2) of the module is shown and on the right we see the
subnetwork itself.
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Figure 7.11: Flux diverting sets containing glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), whose flux forcing parameter is always marked down on the axis x1. The flux
forcing parameter of the other reaction is given on x2. The results are for the network
without NADH-GOGAT.
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Figure 7.12: Flux diverting sets containing a hydrogen transporter
(TH: NAD + NADPH↔ NADH + NADP), whose flux forcing parameter is always marked
down on the axis x2. The flux forcing parameter of the other reaction is given on x1.
The results are for the network without NADH-GOGAT.
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Chapter 8

Flux Coupling Analysis with
Thermodynamic Constraints

Abstract Flux coupling analysis (FCA) has proven to be a useful tool for aiding
metabolic reconstructions and guiding genetic manipulations. It originally has been
introduced for constraint-based models under the steady-state assumption. Recently,
it has been shown that the steady-state assumption can be replaced by much weaker
lattice theoretic properties. This allowed the extension of efficient algorithms for FCA
also to certain classes of qualitative models.

In this work, we further generalize FCA to arbitrary qualitative models and present
an efficient computation method. We illustrate this on the example of steady-state
metabolic networks with loop-law thermodynamic constraints, which do not satisfy the
lattice theoretic properties required in the previous methods.

We will discuss how thermodynamic constraints will alter the coupling results obtained
by ordinary FCA theoretically and practically on the example of a set of genome-scale
metabolic networks.

This is work done together with Yaron Goldstein and Alexander Bockmayr. Yaron
worked on applications of lattice theory to metabolic networks and flux coupling
analysis in particular [57]. Although thermodynamic constraints actually break the
lattice theoretic axioms Yaron was working with, we found a way to apply his con-
cepts also to the metabolic networks with thermodynamic constraints and in the end
to arbitrary qualitative models. This is submitted as “Qualitative and thermody-
namic flux coupling analysis” to Journal of IEEE Transactions on Computational
Biology and Bioinformatics [127]
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CHAPTER 8. FLUX COUPLING ANALYSIS WITH THERMODYNAMIC
CONSTRAINTS

8.1 Introduction

One of the central applications of FBA (see Chapter 4) is to check if a certain gene-
respective reaction-knockout will be lethal. However, it is often the case that not all
reactions can carry flux independently from each other. For instance, if one reaction
is knocked out, we may implicitly also disable flux through another reaction. This is
useful information for identifying drug and knock-out targets, because some reactions
may be easier to manipulate than others [63] and hence, this information can be used to
reduce the number of wet lab experiments. Such coupling information can also be used
to validate and check consistency of metabolic network reconstructions [19] and to find
co-regulated reactions [109].

Flux coupling analysis (FCA) was introduced by Burgard et al. [21] to comprehensively
analyze these kinds of dependencies between reactions. They introduced the following
three types of reaction coupling between two reactions r, s (see also Sec. 2.1.2). Note
that I use here the notation introduced in [90] to not confuse this with directed flux
coupling.

• r and s are directionally coupled (r
=0−−→ s) if for each steady-state flux vector v zero

flux through r implies zero flux through s (vr = 0 ⇒ vs = 0) but not necessarily
the reverse.

• r is partially coupled to s if r
=0−−→ s and s

=0−−→ r.

• r is uncoupled to s if neither r
=0−−→ s nor s

=0−−→ r.

While methods like elementary flux mode analysis [141] can be used to obtain even
more comprehensive coupling information between reactions, combinatorial explosion
makes it prohibitive for application on genome-scale networks. FCA on the other hand
convinces with its performance even on genome-scale metabolic networks with thousands
of reactions. With the theoretical results by Larhlimi et al. [86, 85, 31, 90] we are now
able to run FCA in a couple of seconds for genome-scale metabolic networks.

We observe that in the definition of flux coupling analysis we do not consider the quan-
tity of flux through reactions, but only the question whether there is some flux is of
importance. Hence, FCA is a purely qualitative analysis. Hence, one may be temped
to also apply FCA to qualitative flux models of metabolic networks as introduced in
[150, 23]. These models are motivated by the fact that the steady-state assumption is
rather strong, which may not hold for short time scales.

Goldstein and Bockmayr [58] generalized FCA to constraint-based models that do not
necessarily have to satisfy the steady-state constraints as long as they satisfy certain
axioms of lattice theory. The generalization to lattices already allows us to analyze a
wide range of network models. For example, we may use lattices to also analyze models
where bounds on the flux rates are given.

198



8.1. INTRODUCTION

The following example however shows that sometimes the lattice assumption is too strong
and that we actually want to generalize FCA to models that do not even satisfy lattice
theoretic axioms. Let us consider the network shown in Fig. 8.1. There, reaction 3 is
not coupled to reaction 1, because v = (0, 0, 1, 1) is a steady-state flux. However, this
flux is an internal circulation, which violates the second law of thermodynamics (see
Sec. 2.6). We already see at this example that with thermodynamic constraints reaction
3 is fully coupled to 1 and thus, we get a stronger result than without thermodynamic
constraints.

1 2

3

4

a b

Figure 8.1: Without thermodynamic constraints reaction 3 is not directionally coupled
to reaction 1, but it is with thermodynamic constraints, since reactions 3 and 4 form an
internal cycle (dashed arrows).

The main property of a lattice of metabolic pathways is that you can combine the
pathways by taking the union of the sets of involved reactions. However, this is not always
possible if the pathways have to satisfy thermodynamic constraints. For example, in the
network shown in Fig. 8.2 the pathways {r, b, s, d, e}, {r, a, s, c, e} are thermodynamically
feasible, but the combination {r, a, b, s, c, d, e} is not thermodynamically feasible, since
it contains the internal cycle {r, a, d}.

r

a

b

c

d

se

Figure 8.2: The only exchange reaction in this network is e. If r carries flux, then
s must also carry flux. But s can carry both positive or negative flux. All reactions
are irreversible except those with two arrows (black and white), where the white arrow
indicates the reverse direction.

Here, we show why we can circumvent this problem and incorporate thermodynamic
constraints into FCA. More generally, we show that the same algorithm as proposed
in [58] can be applied on effectively any qualitative model. In particular, this implies
that the algorithm poses no restrictions on what kinds of constraints may be added to
the stoichiometric model. As an example, we show how to solve thermodynamically
constrained FCA (tFCA).
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To do this, we extend the flux coupling relation
=0−−→ to lattices in general and define

a lattice LT that represents the thermodynamically feasible fluxes. The application of
the flux coupling relation on LT gives then the desired thermodynamically constrained
FCA.

8.2 Lattice Theory

Lattices generalize the concept of flux pathways in a qualitative way. Although lattice
theory is a much more general concept (see [29]), we only work here with lattices L
represented by a collection of reaction-sets. Each of the reaction-sets can be interpreted
as a pathway in the metabolic network. In the case of flux conservation pathways, the
lattice of flux conserving pathways LF is defined as the set of supports of steady-state
fluxes, i.e.,

LF := {supp(v) : Sv = 0, vIrrev ≥ 0}

As introduced in [58], we can generalize the notion of flux coupling of two unblocked

reactions r, s as follows: Reactions r, s are directionally coupled (r
=0−−→ s) in a lattice L

if and only if
∀a ∈ L : r 6∈ a⇒ s 6∈ a

In the case of L = LF , this corresponds to ordinary flux coupling on

F := {v ∈ RR : Sv = 0, vIrrev ≥ 0}.

Clearly, we can apply this definition also to the supports of thermodynamically feasible
fluxes in

LT := {supp(v) : v ∈ T}, where

T := {v ∈ F : v thermo feas. w.r.t. Q = RM by Def. 2.6.4}.

However, LT is not a lattice in general and thus we cannot use the results of [58] directly.
Every lattice is closed with respect to taking unions, i.e., if a1, a2 ∈ L, it follows that
a1 ∪ a2 ∈ L. As already shown in the introduction, using Fig. 8.2, LT is not a lattice.

8.2.1 FCA for arbitrary P

Here, we will discuss a generalization of FCA that not only works on LT ⊆ LF but on
arbitrary P ⊆ 2R with P 6= ∅. We define

r
=0−−→P s :⇔ ∀a ∈ P : r 6∈ a⇒ s 6∈ a

and observe:
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Observation 8.2.1 Let P̃ ⊆ RR and P = {supp(v) : v ∈ P}. Then it holds that

r
=0−−→P s⇔ r

=0−−→P̃ s.

To show that we can use the method introduced in [58] to find the coupling pairs, we
first need to define the irreducible elements J (P ) of a set of reaction-sets:

J (P ) :=

{
b ∈ P \ {∅} : ∀A ⊆ P : b =

⋃
a∈A

a⇒ b ∈ A
}
.

Next we define the closure of P :

〈P 〉 =

{⋃
a∈A

a : A ⊆ P
}
.

It is easy to see that 〈P 〉 is the smallest lattice that contains P . We say P is a generator
of 〈P 〉.
We observe that for each lattice L, J (L) is the unique minimal generator: L = 〈J (L)〉.
Thus, 〈J (P )〉 = 〈P 〉 and J (P ) = J (〈P 〉).
Now we are prepared to prove our main result:

Theorem 8.2.1 Let ∅ 6= P ⊆ 2R and B ⊆ 2R with J (P ) ⊆ B ⊆ 〈P 〉.
Then the following are equivalent:

(a) r
=0−−→P s,

(b) r
=0−−→〈P 〉 s,

(c) r
=0−−→B s,

(d) r
=0−−→〈B〉 s. 2

Proof It is J (P ) ⊆ B ⊆ 〈P 〉 and therefore 〈P 〉 = 〈B〉.
Thus, it is sufficient to prove (c)⇔ (d).

⇒: Assume r 6=0−−→〈B〉 s. It follows by definition that there exists an a ∈ 〈B〉 such that
r 6∈ a 3 s. Since J (〈B〉) is a generator of 〈B〉 it follows that there exists a b ∈ J (〈B〉)
with r 6∈ b 3 s. Since b ∈ 〈B〉, it follows that there exists by definition of 〈B〉 an
A ⊆ B ⊆ 〈B〉 with b =

⋃
a∈A a. Since b is irreducible, it follows that b ∈ A and thus,

b ∈ B. This proves that r is not directionally coupled to s in B.

⇐: Assume r is not directionally coupled to s in B. It follows that there exists an
a ∈ B such that r 6∈ a 3 s. Since B ⊆ 〈B〉, we have a ∈ 〈B〉. It follows that r is not
directionally coupled to s in 〈B〉. �
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8.2.2 Algorithm for FCA in P

In [58] an algorithm that works on any lattice L was introduced. To use it we only
need to implement a test method isCoupled(r, s) that returns a lattice element a ∈ L
with r 6∈ a 3 s if such an element exists, otherwise ∅. Now the same holds for our flux
coupling in LT or P respectively.

By Thm. 8.2.1 it is sufficient to define isCoupledB(r, s) in a way that selects a ∈ B with
J (P ) ⊆ B ⊆ 〈P 〉.
Theorem 8.2.2 Let L be a lattice, P ⊆ L and B with J (P ) ⊆ B ⊆ 〈P 〉.
Let further isCoupledB be a function that fulfills the following conditions:

isCoupledB(r, s) =

{
a ∃a ∈ B : r /∈ a 3 s,
∅ otherwise.

Then r
=0−−→P s if and only if isCoupledB(r, s) = ∅. 2

Proof Because of Thm. 8.2.1 we know that r
=0−−→P s holds if and only if r

=0−−→B s.

By definition of isCoupledB we further know that isCoupledB(r, s) = ∅ if and only if

r
=0−−→B s. �

Corollary 8.2.1 The algorithm introduced in [58] implemented with usage of isCoupledB
performs FCA for P . 2

8.3 FCA in T

For our implementation of thermodynamically constrained FCA, we do not operate on
the space of thermodynamically feasible fluxes directly, but we employ the result of
Thm. 8.2.1 and work on the space

B :=

{
supp(v) :

Sv = 0, vIrrev ≥ 0,
@w 6= 0 : SIw = 0, wIrrev ≥ 0, supp(w) ⊆ supp(v)

}
.

We observe that B ⊆ LT , because by Thm. 2.6.1 it holds that

T :=

{
v :

Sv = 0, vIrrev ≥ 0,
@w 6= 0 : SIw = 0, sign(w) ⊆ sign(v)

}
.

We further observe that B can be strictly smaller than LT . For example in LT we allow
flux through parallel reactions, which is not allowed in B, because parallel reactions
together form an internal cycle. However, we will now show that all irreducible elements
of LT are contained in B. Therefore, we use the following result:
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Proposition 8.3.1 (Cor. 5 in [99]) Let N = (M,R = I ∪ E , S) be a metabolic net-
work with irreversible reactions Irrev and potential space Q ⊆ RM. Then it holds for
the space T of thermodynamically feasible fluxes w.r.t. Q that

conv(T ) = conv{e elementary mode : e ∈ T}.

Now we can state the desired result:

Proposition 8.3.2 J
(
LT
)
⊆ B

Proof By Prop. 8.3.1, every e ∈ J
(
LT
)

is an elementary mode and hence, minimal
in LF . Thus, there is no a ∈ LF \ {∅} with a ( e. Assume e 6∈ B. Then there exists
w ∈ RI \{0} with SIw = 0, wI∩Irrev ≥ 0, and supp(w) ⊆ e. If supp(w) ( e, then e is not
minimal in LF . If supp(w) = supp(e), then e is the support of the internal circulation
w, and it follows e 6∈ LT . In both cases, we get a contradiction, hence e ∈ B. �

Hence, J (L)T ⊆ B ⊆ LT ⊆ 〈L〉T and by Thm. 8.2.1 it follows that the FCA results on
B are the same as the FCA results on LT .

To check if two elements are coupled in B, we implemented the method isCoupled in
which we solve the following MILP, where C denotes the set of unoriented circuits of
the internal circuit matroid (Def. 2.5.6) and M is a sufficiently large constant (typically
1000):

min 0v (8.1)

s.t. Sv = 0

vIrrev ≥ 0

−Mai ≤ vi ≤Mai (ai = 0⇒ vi = 0)∑
i∈c

ai ≤ |c| − 1 ∀c ∈ C (circuit-constraints)

vr = 0

vs = 2b− 1 (vs ∈ {−1, 1})
ai, b ∈ {0, 1} ∀i ∈ R

The idea of this MILP is the following: The variables a denote the support of the flux
vector v. However, we require only the relation ai = 0→ vi = 0, because the ai are only
used in the circuit-constraints. Violated circuit-constraints cannot be turned feasible by
setting additional ai = 1. The decision variable b is used to force positive or negative
flux through reaction s.
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Algorithm 12 Implementation of isCoupled(r, s) for the flux space B.

function isCoupled(r, s)
solve (8.1)
if the MILP is infeasible then

return ∅
else

return {i ∈ R : vi 6= 0}.
end if

8.4 Implementation

The high speed of the algorithm introduced in [58] results from a search via nested
intervals approach: The reactions not coupled to r in a lattice L are the elements of

maxr := 1L⊥{r} :=
⋃

A∈L⊥{r}

A,

where L⊥{r} is the lattice defined by

L⊥{r} := {a ∈ L : r 6∈ a}.

The algorithm searches for maxr via lower and upper bounds, where lb ⊆ maxr is union
of known (witness) pathways that do not contain r and an upper bound ub ⊇ maxr with
reactions missing who are known to be blocked or to be knocked out by r. Thus, only
the difference reactions s ∈ ub \ lb have to be tested.

Traditional FCA tests the feasibility of
{
v ∈ RR : Sv = 0, vIrrev ≥ 0, vr = 0, |vs| ≥ 1

}
.

Supports of feasible solution vectors extend the lower bound (by at least adding s),
infeasible tests lead to an update ub← ub \ {s}.
One could now implement tFCA be just replacing these LP feasibility tests by the
function isCoupled as mentioned above. Note, that in isCoupled we have to solve
an NP-hard problem due to the thermodynamic constraints (see Ch. 3). Since solving
isCoupled is computationally hard, we decided to use our knowledge of the lattice
structure to minimize the number of isCoupled tests by introducing a relaxation as
pre-processing: It is 〈T 〉 ⊆ LF , thus we can start with ub = 1LT ∩ 1LF

⊥{r}
, where 1LT are

the unblocked reactions under thermodynamic constraints and 1LF
⊥{r}

the set of reactions

that are uncoupled to r in traditional FCA [58].

Our software is implemented in Java and alternates between traditional FCA and tFCA,
where the results of the FCA calculation steps are used to deduce tFCA properties as
often as possible.

To run traditional FCA and to solve isCoupled we use CPLEX to solve the LPs and
MILPs. The internal circuits of the network are computed using a variant of the WW-
algorithm [168] using the efmtool by Terzer et al. [155]. All the networks analyzed in
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this study have a low number of internal cycles, which made this approach feasible and
easy to implement.

The current implementation does not respect concentration information that may be
available. An integration of concentration information can also be done in a similar
fashion using the results from Sec. 2.6.3.3 about infeasible sets or the methods from
Chapter. 4. Note however that the transformation from Section 8.3 cannot be applied
directly since we used specific properties of the infeasible sets. Here, a method that
solves the thermodynamically constrained flux problem in full generality is needed, like
it is used in [69, 25].

8.5 Minimal Representation of Coupling Data

This is work done together with Alexandra Grigore and Yaron Goldstein [128].

When we analyze all coupled pairs of reactions, we have a lot of redundant information.

For example, if we have the couplings a
=0−−→ b, b

=0−−→ c, a
=0−−→ c then the third coupling

can be inferred from the previous two couplings. In practice this can lead to a quadratic
blow-up of redundant couplings and hence the numbers of coupled pairs does not really
show the gained information. Hence, we computed a minimum set of couplings from
which all couplings can be deduced (for the case of FCA) and a minimum extension set
of couplings from which all additional couplings in tFCA can be deduced.

Since the number of couplings can grow quadratically simply by transitive closure, we
only compared the size of minimal generators / extension of the transitive closure. Here,
we will formally define our minimality condition and present the algorithms used in
computing the size of such minimal generators / extensions.

We assume that the coupling data of the FCA results is given as a directed graph

DFCA = (R, AFCA), where (a, b) ∈ AFCA if and only if a
=0−−→ b. The results of tFCA

are given as a directed graph DtFCA = (R, AtFCA), where (a, b) ∈ AtFCA if and only if

a
=0−−→ b in T .

Our minimality condition is an extension of transtive reductions [4] and minimal equiv-
alent subgraphs [98]. A transitive reduction of a digraph D = (V,A) is defined to be a
smallest digraph Dmin = (V,Amin) that has the same transitive closure as D [4]. Simi-
larly, a minimal equivalent subgraph of a digraph D = (V,A) is defined to be a smallest
digraph Dmin = (V,Amin) with Amin ⊆ A that has the same transitive closure and D
[98]. We observe that these two notions are equivalent if D is transitively closed.

It is easy to see that if one additional arc (one piece of information) is added, the
size of Amin will increase by at most 1. Here, we now address the question of how the
additional information of a digraph D compared to a smaller digraph D′ can be measured
and computed.
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We write V 2 := V × V to denote the set of ordered 2-tuples of a set V . Furthermore,
we write D|X for digraphs D = (V,A) to denote the induced subgraph (X,X2 ∩ A). In
the following we always assume that D is simple, i.e., that it does not contain loops and
parallel edges must have different orientation.

8.5.1 Minimal Extensions

For digraphs D = (V,A), D′ = (V,A′) with A′ ⊆ A we define f(D,D′) as the minimum
number of arcs from D that have to be added to D′ so that the transitive closures become
the same. Formally,

f(D,D′) := min
E⊆A

{
|E| : 〈D〉 =

〈
(V,A′ ∪ E)

〉}
.

We call a minimizer E ⊆ A a minimal extension. A set E ⊆ A with 〈D〉 = 〈(V,A′ ∪ E)〉
is called an extension.

We observe that for a digraph D, f(D, ∅) gives the size of a minimum equivalent sub-
graph. Computing f(D, ∅) is NP-hard [98]. If, however, D is transitively closed, this
corresponds to computing the transitive reduction of D, which can be done in polynomial
time [4].

We note that in general f(D,D′) 6= f(D, ∅) − f(D′, ∅), see Figure 8.3 for an example.
There, D = ({A,B,C}, {1, 2, 3}) and D′ = ({A,B,C}, {2, 3}). Then f(D, ∅) = 2 (the
set {1, 2}), f(D′, ∅) = 2 (the set {2, 3}), but f(D,D′) = 1 (the set {1}).

A B C

3

1 2

Figure 8.3: Example why f(D,D′) = f(D, ∅) − f(D′, ∅) does not always hold. The set
D′ is drawn with continuous edges, while D also contains the dashed edge.

8.5.2 Computation of Minimal Extensions

We now discuss how to compute f(D,D′) for digraphs D = (V,A), D′ = (V,A′) with
A′ ⊆ A. Let K ⊆ 2V be the set of maximal strongly connected components (represented
as the corresponding sets of vertices) of D.

We now define digraphs D̃, D̃′, where the strongly connected components of D are con-
tracted to single nodes (see Fig. 8.4 for an example):

(K, Ã) = D̃ := D/K
(K, Ã′) = D̃′ := D′/K,
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where for graphs G = (W,B) and partitions P of W we define

G/P := (P, B̃) with

B̃ :=
{

(C1, C2) ∈ P2 : ∃(a, b) ∈ B, a ∈ C1, b ∈ C2

}
.

A B

Figure 8.4: A) D is the digraph containing both the continuous and the dashed edges,
while D′ is the subgraph of D that contains only the continuous edges. The individ-
ual connected components of K are shaded in grey. B) D̃ is the digraph drawn with
continuous and dashed edges, while D̃′ is the one drawn only with continuous edges.

Proposition 8.5.1 D̃ and D̃′ are acyclic.

Proof If D̃ would contain a cycle, this would contradict the maximality of the compo-
nents in K.

Since Ã′ ⊆ Ã, if X is a cycle in Ã′, then X is also a cycle in Ã. This contradicts the
acyclicity of D̃ proven above. Hence, D̃′ is also acyclic. �

Proposition 8.5.2 If D is transitively closed, then D̃ is transitively closed.

Proof Assume (C1, C2) ∈ Ã and (C2, C3) ∈ Ã. By definition, there exists a ∈ C1, b ∈
C2, b

′ ∈ C2, c ∈ C3 with (a, b) ∈ A and (b′, c) ∈ A. Since D|C2 is strongly connected
and transitively closed, b, b′ ∈ C2 implies that (b, b′) ∈ A. Therefore, there exists a path
(a, b, b′, c) from a to c, and, from the transitivity of A, there must exist also an edge
(a, c) ∈ A. It then follows that (C1, C3) ∈ Ã. �

Lemma 8.5.1 Let D = (V,A) and D′ = (V,A′) be digraphs with A′ ⊆ A and P a
partition of V . Then it holds for D′/P = (P, B̃′) and E ⊆ A that

〈D〉 =
〈
(V,A′ ∪ E)

〉
⇒ 〈D/P〉 =

〈
(P, B̃′ ∪ Ẽ)

〉
,

where Ẽ := {(C1, C2) ∈ P2 : s ∈ C1, t ∈ C2, (s, t) ∈ E}.
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Proof Let D/P = (P, B̃) and G = (P, B) :=
〈

(P, B̃′ ∪ Ẽ)
〉

. Let e = (C1, C2) ∈ B̃ be

arbitrary but fixed. Since 〈D〉 = 〈(V,A′ ∪ E)〉 it follows that there exists s ∈ C1, t ∈ C2

with (s, t) ∈ A and a path (s = p1, p2, . . . , pn = t), n ≥ 2 using only edges in A′∪E from
s to t. Let Q := (q1, q2, . . . , qn) with qi being the set of P that contains pi, i = 1, . . . , n.
Note that q1 = C1 and qn = C2. It follows that Q is a path in (P, B̃′∪ Ẽ). Hence, e ∈ B
and B̃ ⊆ B. Since B̃′ ∪ Ẽ ⊆ B̃, the lemma follows. �

Theorem 8.5.1 It holds that

f(D,D′) = f(D̃, D̃′) +
∑
C∈K

f(D|C , D′|C).

Proof ≥: Let E ⊆ A minimal s.t. 〈D〉 = 〈(V,A′ ∪ E)〉. Clearly, each edge of E
either lies inside a single strongly connected component of D, or connects two
different strongly connected components of D.

Claim 8.5.1
〈
(C, (A′ ∪ E) ∩ C2

〉
= 〈D|C〉 for all C ∈ K.

Proof Let B be the edges of the graphG :=
〈
(C, (A′ ∪ E) ∩ C2)

〉
. Let e = (s, t) ∈

A∩C2 arbitrary but fixed. Since 〈D〉 = 〈(V,A′ ∪ E)〉 it follows that there exists a
path P that only uses edges in A′ ∪E from s to t. Since C is a strongly connected
component, it follows that all the edges in P are contained in C. Hence, the path
also exists in G and thus, e ∈ B and A ∩ C2 ⊆ B. Since (A′ ∪ E) ∩ C2 ⊆ A ∩ C2,
the claim follows. �

From the Claim 8.5.1 it follows that E is an extension for each connected compo-
nent C ∈ K of size |E ∩C ×C| ≥ f(D|C , D′|C) and by Lemma 8.5.1 (with P = K)
it also induces a valid extension Ẽ for D̃′ to D̃ of size |{(s, t) ∈ E : s ∈ C1 ∈ K, t ∈
C2 ∈ K, C1 6= C2}| ≥ |Ẽ ∩ K × K| ≥ f(D̃, D̃′). Since an edge is either inside a
connected component or between two connected components, the ≥ relation of the
formula follows.

≤: Let EC ⊆ A be an extension for each connected component C ∈ K, i.e.,
〈(C, (A′ ∩ C × C) ∪ EC)〉 = 〈D|C〉. Let Ẽ ⊆ Ã be a vaild extension from D̃′

to D̃, i.e.
〈
D̃
〉

=
〈

(K, Ã′ ∪ Ẽ)
〉

.

We now construct a valid extension for D′ to D with
∑

C∈K |EC |+ |Ẽ| edges. For

each e = (C1, C2) ∈ Ã′ choose an arbitrary but fixed s(e) ∈ C1, t(e) ∈ C2 with
(s(e), t(e)) ∈ A′, and for each e = (C1, C2) ∈ Ẽ choose an arbitrary but fixed
s(e) ∈ C1, t(e) ∈ C2 with (s(e), t(e)) ∈ A. Define Ē := {(s(e), t(e)) : e ∈ Ẽ} and
E := Ē ∪⋃C∈KEC .

Claim 8.5.2 〈D〉 = 〈(V,A′ ∪ E)〉
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Proof Let G = (V,B) := 〈(V,A′ ∪ E)〉.
Let s ∈ C1 ∈ K, t ∈ C2 ∈ K with (s, t) ∈ A. By definition of Ẽ there exists a path
Q = (C1 = q1, q2, . . . , qn = C2), n ≥ 1 using edges in Ã′ and Ẽ from C1 to C2. Let
P := (s, s(q1, q2), t(q1, q2), s(q2, q3), t(q2, q3), . . . , s(qn−1, qn), t(qn−1, qn), t). By
construction, there exist edges from s(qi, qi+1) to t(qi, qi+1), i = 1, . . . , n − 1 in
Ē ∪A′ ⊆ B.

We observe that {s, s(q1, q2)}, {t(qi−1, qi), s(qi, qi+1)} for i = 1, . . . , n − 1, and
{t(qn−1, qn), t} are each in the same connected component. Since EC ⊆ E is a
valid extension for each connected component C ∈ K, there exists for all a, b ∈
C a path using edges in A′ ∪ EC from a to b. Hence, (a, b) ∈ B. Hence, it
follows that (s, s(q1, q2)) ∈ B, (t(qi−1, qi), s(qi, qi+1)) ∈ B for i = 1, . . . , n− 1, and
(t(qn−1, qn), t) ∈ B.

It follows that P is a path connecting s to t using only edges in B. Since G is
transitively closed, it follows that (s, t) ∈ B. Thus, B ⊇ A and since A′ ∪ E ⊆ A,
we have G = 〈D〉. �

We observe that |E| = |Ẽ|+∑C∈K |EC | and the theorem follows. �

By Thm. 8.5.1 it follows that we only need to be able to compute f(D,D′) for digraphs
that are acyclic and for digraphs where D forms one strongly connected component. We
first analyze the case of acyclic digraphs. The following proposition characterizes the
arcs in a minimal extension. It should be noted that it does not apply for digraphs in
general, since in general there exists no unique minimal extension.

Proposition 8.5.3 (Locality) Assume D,D′ are acyclic and let E be minimal s.t.
〈D〉 = (V,B) = 〈(V,A′ ∪ E)〉. Then it holds for e = (a, b) ∈ A that e ∈ E if and only if
there exists no c ∈ V with (a, c) ∈ B and (c, b) ∈ B.

Proof ⇒: Assume there exists (a, c), (c, b) ∈ B. Due to the acyclicity of D it follows
that there exists no path in A that connects a to c and uses (a, b) and there exists
no path in A that connects c to b and uses (a, b). Thus, there exists no path in
A′ ∪ E that connects a to c or c to b and uses (a, b). It follows that there exists a
path from a to b that does not use (a, b). Hence, (a, b) /∈ E.

⇐: Assume there exists no c ∈ V with (a, c) ∈ B and (c, b) ∈ B. Since 〈D〉 is closed
under transitivity, it follows that there exists no path from a to b in A that does
not use (a, b). Hence (a, b) ∈ E. �

Note that computing the minimal extension for D̃, D̃′ is equivalent to finding the transi-
tive reduction of D̃, which has already been shown to be unique in Thm. 1 of [4]. There-
fore, we can compute a minimal extension for D̃, D̃′ in time O(|K|α), if two |K| × |K|
matrices can be multiplied in time O(|K|α) [4].

209



CHAPTER 8. FLUX COUPLING ANALYSIS WITH THERMODYNAMIC
CONSTRAINTS

Alternatively, we observe from the locality property (Prop. 8.5.3) that we can easily
compute a minimal extension (hence f(D̃, D̃′)) by computing the length of the longest
simple path between each pair of vertices. This is possible in time O(|K| · |Ã|) using
topological sort. We now only have to show how to compute the size of a valid extension
for each of the strongly connected components.

Theorem 8.5.2 (Full extension) Let D = (V,A), V 6= ∅ be the complete digraph and
D′ = (V = S∪̇T,A′) be a bipartite digraph with edges only going from the sources S
to the sinks T and assume each vertex is used by at least one edge. Then f(D,D′) =
max{|S|, |T |}.
Proof Since each node in S has at least one ingoing arc from the extension and each
node in T has at least one outgoing arc from the extension, it can be easily seen that
f(D,D′) ≥ max{|S|, |T |}. Hence, we only show the other direction.

Define F ⊆ A′ by iteratively removing one edge e = (s, t) and its vertices (including
incident edges) from G = D′ and adding e to F until it is not possible anymore. Let
V ′ be the vertices used by edges in F . We observe that (V ′, F ) consists of |F | weakly
connected components (each a single edge). It follows that there exist |F | edges E ⊆
(V ′ ∩ T )× (V ′ ∩ S) such that 〈(V ′, E ∪ F )〉 is one strongly connected component.

We further observe that for each s ∈ S there exists t ∈ V ′ with (s, t) ∈ A′ and for each
t ∈ T there exists s ∈ V ′ with (s, t) ∈ A′ (otherwise we could add another edge to F .) It
follows that in (V,A′ ∪E) we can reach from every s ∈ S every v ∈ V ′, and every t ∈ T
can be reached from every v ∈ V ′.
We now iteratively add edges (t, s) to E where t ∈ T and s ∈ S are not yet used by
any edge in E. We observe that after this operation |E| = min{|S|, |T |} and either only
sources with no in-arc or sinks with no out-arc are left. For each of these nodes we now
add an edge to E to connect it to a node that has in-arcs and out-arcs. It follows that
finally |E| = max{|S|, |T |}.
It can be easily seen that now every source can also be reached from at least one sink
(and hence from any node) and from each sink we can reach a source and hence, the
whole network. �

Usually, however, the connected components C ∈ K do not have the form as in Thm. 8.5.2,
i.e., D|C is not bipartite. Hence, we have to bring them into that form first. As a first
step, we show that for acyclic D′ it is sufficient to look at sources and sinks (see Fig. 8.5
B and C).

Corollary 8.5.1 Let D = (V,A), V 6= ∅ be a complete digraph and D′ be a directed
acyclic graph. Then

f(D,D′) = 0 if |V | = 1

f(D,D′) = max{|S|, |T |}, otherwise

where S is the set of sources (nodes without in-arc) and T is the set of sinks (nodes
without out-arc) of D′.
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Proof If |V | = 1, we obviously do not have to add any arcs.

We observe that in D′ every node that is not a source can be reached from a source, and
from each node that is not a sink we can reach a sink. It follows that for each E ⊆ A
where every source is reachable from every sink and vice versa in (V,A′∪E) it holds that
(V,A′ ∪ E) is strongly connected. Hence, we can ignore nodes that are neither sources
nor sinks (see Fig. 8.5 C).

Since D′ contains more than one node, it follows that we have to add one in-arc and
one out-arc for each isolated node (which is sink and source at the same time) in D′.
Hence, we can split up each isolated node into a sink and a source without having to
invest more edges to build a valid extension (see Fig. 8.5 D). Finally, Thm. 8.5.2 applied
to D′ yields f(D,D′) = max{|S|, |T |}. �

To deal with strongly connected components K′ of D′, we contract them to single nodes
(see Fig. 8.5 A and B) and reconstruct an extension in the component graph D′/K′ to
D′ (see Fig. 8.5 E and F).

Lemma 8.5.2 Let D = (V,A), V 6= ∅ be a complete digraph, D′ = (V,A′) be a digraph,
and D̄′ = (K′, Ā′) := D′/K′ be the component graph of D′, where K′ are the strongly
connected components of D′. Then E ⊆ A is an extension of D′ to D if and only if

Ē := {(C1, C2) ∈ K′2 : a ∈ C1, b ∈ C2, (a, b) ∈ E}

is an extension of D̄′ to the complete digraph on K′.

Proof ⇒: Follows directly from Lemma 8.5.1 with P = K′.

⇐: Let G = (V,B) := 〈(V,A′ ∪ E)〉. By construction of Ā′, we can choose for each
e = (C1, C2) ∈ Ā′ arbitrary but fixed s(e) ∈ C1, t(e) ∈ C2 with (s(e), t(e)) ∈ A′.
Similarly, by construction of Ē, we can choose for each e = (C1, C2) ∈ Ē arbitrary
but fixed s(e) ∈ C1, t(e) ∈ C2 with (s(e), t(e)) ∈ E.

Let s ∈ C1 ∈ K′, t ∈ C2 ∈ K′ with (s, t) ∈ A. Since Ē is an extension, there exists a
path Q = (C1 = q1, q2, . . . , qn = C2), n ≥ 1 using edges in Ā′ and Ē from C1 to C2.
Let P := (s, s(q1, q2), t(q1, q2), s(q2, q3), t(q2, q3), . . . , s(qn−1, qn), t(qn−1, qn), t).
By construction there exist edges from s(qi, qi+1) to t(qi, qi+1), i = 1, . . . , n− 1 in
E ∪A′ ⊆ B.

We observe that {s, s(q1, q2)}, {t(qi−1, qi), s(qi, qi+1)} for i = 1, . . . , n − 1, and
{t(qn−1, qn), t} are each in the same strongly connected component of D′. Hence,
it follows that (s, s(q1, q2)) ∈ B, (t(qi−1, qi), s(qi, qi+1)) ∈ B for i = 1, . . . , n − 1,
and (t(qn−1, qn), t) ∈ B.

It follows that P is a path connecting s to t using only edges in B. Since G is
transitively closed, it follows that (s, t) ∈ B. Thus, B ⊇ A and since A′ ∪ E ⊆ A,
we have G = 〈D〉. �
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Theorem 8.5.3 Let D = (V,A), V 6= ∅ be a complete digraph, D′ = (V,A′) be a
digraph, and D̄′ be the component graph of D′. Then

f(D,D′) = 0 if 〈D′〉 = D

f(D,D′) = max{|S|, |T |}, otherwise

where S is the set of sources (nodes without in-arc) in D̄′ and T is the set of sinks (nodes
without out-arc) in D̄′.

Proof Let D̄ be the complete digraph on K′, where K′ is the set of strongly connected
components of D′. By Lemma 8.5.2, we have f(D,D′) = f(D̄, D̄′). Since D̄′ is a directed
acyclic graph, the result follows by Corollary 8.5.1. �

s1

s2

m6

m2

t2

t1 s1

s2

c3

t2

t1

m3

m5

m4

s1

s2

c2

t2

t1

c3

s1

s2

t3

t2

t1

s3

s1

s2

t3

t2

t1

s3

A B C

D E s1

s2

m6

m2

t2

t1

m3

m5

m4

F

Figure 8.5: A) An example for D′. B) Compressed strongly connected components.
C) Ignored nodes that are neither sources nor sinks. D) Splitted isolated nodes. E)
Extension of D′ (in dashed edges). F) Extension in the original digraph.

Note that in Thm. 8.5.1 and Prop. 8.5.3 we do not require that D is transitively closed.
This property is however important for Thm. 8.5.2 because otherwise a minimal exten-
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sion cannot be computed in polynomial time. This can be seen by studying f(D, ∅),
where 〈D〉 is the complete digraph. This corresponds to finding a Hamiltonian cycle in
D [4, 98].

8.6 Discussion

8.6.1 Theoretical Differences

8.6.1.1 Old Couplings are Retained

If r
=0−−→F s, it also follows that r

=0−−→T s, since we cannot turn an infeasible system
feasible by adding constraints. Thus, it follows that if two reactions are partially coupled,
they are also partially thermodynamically coupled.

8.6.1.2 New Partial Couplings

In Fig. 8.2 we see an example where r
=0−−→F s, but s 6=0−−→F r and thus r is not partially

coupled to s in F . However, s
=0−−→T r, hence r is partially thermodynamically coupled to

s. Further examples are the pairwise uncoupled reactions a, b, c, d. With thermodynamic
constraints however, a and c are partially coupled and b is partially coupled to d in T .
In particular, we can deduce va = vc and vb = vd for every thermodynamically feasible
flux vector.

8.6.1.3 New Directional Couplings

In Fig. 8.6 we see an example where reactions a, b are uncoupled (because of flux vectors
with supports {a, c, d} and {b, d}. But, a and b are directionally thermodynamically cou-

pled (a
=0−−→T b) since flux only through the cycle {b, c} is thermodynamically infeasible.

a
b

c

d

Figure 8.6: Example with uncoupled reactions that are thermodynamically coupled. The
white arrow-heads indicate that the reactions are reversible.

8.6.2 Practical Differences

We ran the analysis on several genome-scale reconstructions from the BiGG-database
[136]. A statistical overview on the results in H. pylori iIT341 can be seen in Fig. 8.7.
The types of couplings are depicted in a set-diagram style:
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• The set of reactions already blocked without thermodynamic constraints (blocked
by FCA) is contained in the box of reactions blocked with thermodynamic con-
straints (blocked by tFCA). The number of reactions that are only blocked due to
thermodynamic constraints is marked on the set difference. In the case of H. py-
lori one can observe that there are 6 reactions that are not blocked by steady-state
constraints alone but blocked together with thermodynamic constraints.

• Since there are more reactions blocked with thermodynamic constraints than with-
out, some of the coupled reactions that we found by ordinary FCA contain reactions
that are blocked with thermodynamic constraints. This is why the set of reactions
coupled by FCA intersects the set of thermodynamically blocked reactions and the
set of thermodynamically coupled reactions. For both intersections we wrote down
how many pairs of reactions fall into the respective category.

• In the set difference of the thermodynamically coupled reactions and the ordinarily
coupled reactions we included the number of coupling pairs that fell into this
category.

In the case of H. pylori we see that the couplings of FCA can be represented by 516 cou-
plings of which 6 are actually blocked by thermodynamic constraints. Thermodynamic
constraints give additional information on 10 couplings. Thermodynamic constraints
also merged 6 groups of partially coupled reactions to 2 groups.

blocked by tFCA

blocked
by FCA

coupled by tFCA

H. pylori iIT341
Reactions: 554

LPs solved: 2485
MILPs solved: 83

coupled by FCA

118 reactions
11 pairs 61995 pairs

6 additional

1630 pairs

gen. coup.6 gen. coup. 510 gen. coup.
10 additional

reactions

3 coup.
classes

147 coup.
classes

6 coup.
classes

merged to 2

Figure 8.7: Results for H. pylori iIT341. We found that homoserine O-trans-acetylase
(HSERTA), O-Acetyl-L-homoserine succinate-lyase (adding cysteine) (METB1r) and O-
succinylhomoserine lyase (SHSL1r, SHSL2r) are not only necessary for biomass produc-
tion (as computed by ordinary FCA) but cannot work without this function. Together
with the biomass reaction and all its partially coupled reactions they form one of the
new coupling classes. Furthermore, the under tFCA partially coupled (but not fully
coupled) SHSL2r and HSERTA were originally (in FCA) uncoupled.

We obtained that on all of these networks, we were able to find additional blocked and
coupled reactions using tFCA. However, the influence of thermodynamic constraints de-
pends heavily on the network (see Tab. 8.1). In average we found around 1% − 6% of
additional couplings (in the minimal generator). In general however, it should be noted
that the new directional couplings of previously uncoupled reactions were found most
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often. On the other extreme, in only one case we found that previously uncoupled reac-
tions became partially coupled. We also observed that the reaction cystathionine g-lyase
(CYSTGL) was part of new directional couplings in M. tuberculosis, while in S. cerevisiae
thermodynamic constraints blocked the reaction.

In the case of H. pylori iIT341 we observe that many new couplings are found because
reactions are part of the main biomass production pathway, i.e., if one of the reactions in
the pathway is blocked, the pathway becomes unfunctional and this induces couplings.
If a reaction of the pathway, however, is part of an internal cycle, ordinary FCA allowed
to operate the reaction via the cycle. This way ordinary FCA did not detect that the
reaction is only part of the pathway.

The reactions homoserine O-trans-acetylase (HSERTA), O-Acetyl-L-homoserine succinate-
lyase (adding cysteine) (METB1r) and O-succinylhomoserine lyase (SHSL1r, SHSL2r) in
H. pylori iIT341 are an example for this effect.

Table 8.1: Comparison of results for different genome-scale networks.

Model no. blocked generating runtime
reactions couplings

E. coli iAF1260

FCA 839 2101 36.35 s

tFCA 848 2128 47.74 s

extension 9 49

S. cerevisiae iND750

FCA 635 885 7.73 s

tFCA 640 935 12.43 s

extension 5 58

M. tuberculosis iNJ661

FCA 281 831 6.08 s

tFCA 287 834 9.46 s

extension 6 9

S. aureus iSB619

FCA 278 544 3.02 s

tFCA 279 546 3.95 s

extension 1 3

H. pylori iIT341

FCA 118 516 2.2 s

tFCA 124 515 5.05 s

extension 6 10

The number of computed couplings is measured using the minimal number of couplings from
which all couplings can be inferred by transitive closure (see Sec. 8.5).
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We also observe (Tab. 8.1) that our new tFCA algorithm runs only slightly slower than
the FCA algorithm introduced in [58]. This is caused by the pre-processing step that
runs regular FCA. This way we already know many couplings (see Sec. 8.6.1.1) and many
witnesses are found that prove some reactions to be also thermodynamically unblocked,
or uncoupled. Only for those few cases, where we cannot already deduce any information
from the previous run, we start the MILP solver.

8.7 Conclusion

We presented a refined version of FCA that finds more coupled reactions than ordinary
FCA. Although thermodynamic constraints were used that are usually NP-hard, it was
possible to also analyze genome-scale networks like E. coli iAF1260 in a few seconds.
We observed that thermodynamic constraints do not only give additional blocked reac-
tions but also additional coupled reactions. The impact however depends highly on the
network that is analyzed.

We also observed in Thm. 8.2.1 that the presented approach is not only applicable to
loop-law thermodynamic constraints but to any kind of restrictions of the flux space.
Extensions of this method to also include concentration information or other constraints
are straight-forward.
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Chapter 9

Sampling the Thermodynamically
Constrained Flux Space

Abstract Sampling methods have proven to be a very efficient and intuitive method
to understand genome-scale metabolic networks. These methods are used to detect
properties of the flux space by randomly computing feasible flux vectors.

Here we consider the problem of sampling thermodynamically feasible fluxes and focus on
the variability of the fluxes through reactions. We show that there exists no polynomial
time sampling algorithm that leads to reliable predictions for the flux variability of
reactions unless NP = RP.

Methods based on sampling the thermodynamically constrained flux space are likely to
be unreliable. This is illustrated on the example of flux correlation analysis.

9.1 Background

Sampling methods [135, 72] have been used in many practical cases [158, 17, 94, 6]
to study the steady-state flux space, when deterministic methods like enumeration of
elementary flux modes [141] or extreme pathways [138] fail due to the size of the networks.
To study the set of solutions, sampling methods compute a random sample set of feasible
solutions. Usually, a variant of the Markov Chain Monte Carlo (MCMC) method called
Artificial Centering Hit and Run (ACHR) is used to compute the samples. ACHR seems
to perform well for flux polytopes in practice [135], although convergence to a uniform
distribution has not been proven as it has been done for MCMC [74]. Using statistical
methods, we can then use this sample set to derive properties of the flux space itself.
Typical properties that are analyzed are correlations between fluxes through different
reactions [121, 132, 75, 169], or the distribution of flux rates through a given reaction
[134].

This information can then be used to further constrain the solution space or to design
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experiments that are likely to yield a high amount of new information.

Thermodynamic constraints are an additional source of constraints that have been used
in the analysis of metabolic networks [10, 11, 43, 46, 71, 82, 83, 69, 64, 148] and were
also used in sampling methods [134, 123, 25]. However, thermodynamic constraints are
mathematically difficult, since they are non-convex. Here, we define the concept of non-
trivial polynomial time sampling algorithm and show how it can be used to solve decision
problems in randomized polynomial time. The complexity class of such problems is called
RP [119]. We show that unless NP = RP, which is one of the major open problems
in theoretical computer science, there exists no polynomial time method for sampling
the thermodynamically constrained flux space without the risk of observing artifacts
that do not exist in reality. In particular, we will study the artifact that all samples
have zero flux through a given reaction, although a non-zero flux through the reaction is
possible. We show that this indeed is likely to happen for any kind of sampling method
on some networks. We discuss the consequences for other sampling-based methods like
correlation analysis.

9.2 Theoretical Obstructions to Sampling

Let Prob : I→ {0, 1} be an NP-hard decision problem on a set I of inputs (commonly
we use the set of words over the alphabet {0, 1} as input, i.e., I = {0, 1}∗ and the length
of an input is just the length of the word). To solve Prob by sampling, we require that
the structure of the sampling space represents Prob in a certain way:

Definition 9.2.1 (Sampling space) Given a decision problem Prob : I→ {0, 1}, we
call (X , f) a sampling space for X : I→ Rn and f : I×Rn → R if f(I, x) is continuous
in x for all x ∈ Rn, f can be computed in time polynomial in the encoding length of I
and x, and

Prob(I) =

{
1 ∃x ∈ X (I) : f(I, x) > 0

0 otherwise.

We observe that we can formulate the ThermoFlux problem (Prob. 3.1.1) in such a
form. There, a problem instance I encodes a metabolic network (M,R = I∪̇E , S) and
a target reaction r(I) ∈ R. It follows that (X , f) with X (I) := T (I) and f(I, x) :=
prr(I)(x) for all I ∈ I is a sampling space, where T (I) is the thermodynamically con-

strained flux space (Def. 2.6.4 with Q = RM):

T (I) = {v ∈ RR : Sv = 0, vIrrev ≥ 0, v thermo. feas.}

Note, that this construction works with all NP-hard problems from Chapter 3.

Let (Ω,F , P ) be a probability space. It will serve us as the space from which we draw
the seeds for the sampling algorithm. Here, we assume that the sampling method is
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given as a function S : I×N×Ω→ Rn, i.e., for every time point we get a sample. With
this formalism we want to capture the behaviour of ACHR sampling methods that do
a random walk through X (I) and can be run for arbitrarily long times to improve the
sampling result. Classical sampling algorithms can also be captured by this formalism
by iteratively running the sampling method and computing a consensus value. If the
sampling algorithm did not produce a result for an (early) time point, it could simply
return a default value. Since we will only consider asymptotic behavior, this will not be
of any importance.

Definition 9.2.2 (Feasible Sampling Algorithm) S : I×N×Ω→ Rn is a feasible
sampling algorithm, if there exists a polynomial p : N→ R such that

S(I, k, ω) ∈ X (I) ∀k ≥ p(|I|), I ∈ I, ω ∈ Ω

Definition 9.2.3 (Polynomial Time Sampling Algorithm) S : I×N×Ω→ Rn is
a polynomial time sampling algorithm if there exists a polynomial q : N×R+ → R+ and
for every I ∈ I a random variable X : Ω→ Rn such that

• S(I, k, ω) for I ∈ I and ω ∈ Ω can be computed in time O(k),

• S(I, k, ·)→ X in distribution for k →∞, and

• S(I, k, ·) converges to X in polynomial time, i.e., for every closed set A ⊆ Rn holds
|P (S(I, k, ·) ∈ A)− P (X ∈ A)| < ε for all k > q(|I|, ε−1).

Assume there exists such a sampling method S : I×N→ Rn that samples the feasibility
space X (I) of the NP-hard optimization problem Prob for each given instance I ∈ I
in a non-trivial way, i.e., without losing any features (represented by f):

Definition 9.2.4 (Non-trivial Sampling Algorithm) S : I×N×Ω→ Rn is a non-
trivial sampling algorithm w.r.t. f : I×Rn → R if for every I ∈ I there exists a random
variable X : Ω→ Rn such that

• S(I, k, ·)→ X in distribution for k →∞.

• If ∃x ∈ X (I) with f(I, x) > 0, then P (f(I,X) ≤ 0) = t < 1 (with 1
1−t ≤ p(|I|) for

a polynomial p).

We can then use S to construct a probabilistic algorithm that will decide Prob. The
probabilistic algorithm that we are going to construct will belong to the class RP [119].

Definition 9.2.5 (Complexity Class RP) A decision problem p is in RP if there
exists a probabilistic algorithm that

• runs in polynomial time,
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• if the answer to p is NO, it outputs NO, and

• if the answer to p is YES, it outputs YES with probability at least 1
2 . 2

Since RP = NP is an open problem in theoretical computer science, it is very unlikely
that a given probabilistic polynomial-time sampling algorithm of the thermodynamically
constrained flux space actually solves the RP = NP problem. Hence, it is much more
likely that the sampling algorithm samples the feasible flux space incompletely.

Theorem 9.2.1 Let Prob : I→ {0, 1} be an NP-hard decision problem with sampling
space (X , f). Unless RP = NP, there exists no feasible, non-trivial, polynomial time
sampling algorithm S : I× N× Ω→ Rn. 2

Proof Assume there exists such a sampling algorithm. We construct an algorithm in
RP for Prob.

For I ∈ I define t(I) := P (X ∈ A(I)) for A(I) := {x ∈ Rn : f(I, x) ≤ 0}. Since f(I, ·)
is continuous, it follows that A(I) is closed and measurable. Hence, t(I) is well defined.

By Def. 9.2.2 and Def. 9.2.3 there exist polynomials k0 : N→ R+, q : N×R+ → R+ with

S(I, k, ω) ∈ X (I) ∀k ≥ k0(|I|), I ∈ I, ω ∈ Ω. (9.1)

P (S(I, k, ·) ∈ A(I))− P (X ∈ A(I)) < ε ∀k > q
(
|I|, ε−1

)
(since A is closed) (9.2)

We assume w.l.o.g. that q(m, ε) ≥ k0(m) for all m ∈ N, ε ∈ R+.

Algorithm 13 Probablisitic Algortihm for Prob. k0 is the polynomial from Def. 9.2.2
and q is the polynomial from Def. 9.2.3.

k = max{q
(
|I|, 2

1−t

)
, k0(I)}

choose random ω ∈ Ω
compute a sample Xk := S(I, k, ω)
if f(I,Xk) ≤ 0 then

return NO
else

return YES
end if

Claim 9.2.1 For a given input I ∈ I and t ≥ t(I) Algorithm 13 returns NO with
probability at most t+1

2 although Prob(I) = 1 and it always returns NO if Prob(I) = 0.2

Proof Case: There exists a x ∈ X (I) with f(x) > 0: It follows by (9.2) that

P (f(S(I, k, ·)) ≤ 0) < t(I) + ε ≤ t+ ε ∀k > q
(
|I|, ε−1

)
.

By choosing ε = 1−t
2 , we obtain P (S(I, k, ·) ∈ A) < t+1

2 . Thus, Alg. 13 will return
NO although the correct answer is YES with probability at most t+1

2 .
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Case f(x) ≤ 0 for all x ∈ X (I): It follows that f(S(I, k, ω)) ≤ 0 for all ω ∈ Ω, k ≥
k0(I) by Def. 9.2.2. Hence, the answer of the algorithm will always be NO, if the
correct answer is NO. �

To prove that the problem would be in RP, we still have to increase the probability of
YES in the positive case. This can be done by re-running the algorithm.

By Def. 9.2.4 there exists a polynomial p with 1
1−t(I) ≤ p(|I|). We choose t := p(|I|)−1

p(|I|)
and it follows that 1

1−t = p(|I|) and t(I) ≤ t. Hence, we can apply Claim 9.2.1 without
having to know t(I).

By construction of Alg. 13 the computation of Xk takes time O(q(|I|, 2
1−t)). We observe

that the encoding for the computed sample Xk is bounded by the computation time
O(q(|I|, 2

1−t)). Hence, by Def. 9.2.1 there exists a polynomial g such that the runtime of

Alg. 13 is bounded by O
(
g
(
|I|, q(|I|, 2

1−t)
))

.

To obtain a correct result if the correct answer is YES with probability at least 1
2 , we

re-run the algorithm at least 1
log2( 2

t+1)
times with independent choice of ω ∈ Ω for each

run and return YES if one of the runs returned yes.

Since the probability of NO in one run is at most t+1
2 , it follows that the probability for

NO in all runs is at most(
t+ 1

2

) 1

log2( 2
t+1)

= 2

log2( t+1
2 )

log2( 2
t+1) = 2

−
log2( 2

t+1)
log2( 2

t+1) =
1

2
.

We can estimate the number of iterations by observing that

t =
p(|I|)− 1

p(|I|)

⇒ 2

t+ 1
=

2
p(|I|)−1
p(|I|) + 1

=
2p(|I|)

2p(|I|)− 1

⇒ 1

log2

(
2
t+1

) =
1

log2

(
2p(|I|)

2p(|I|)−1

) .
Using the Theorem of l’Hopital we have

lim
p→∞

p−1

ln( p
p−1)

= lim
p→∞

p−1

ln p− ln(p− 1)
= lim

p→∞

−p−2

1
p − 1

p−1

= lim
p→∞

−p−2

p−1−p
p(p−1)

= lim
p→∞

p−2(p2 − p) = 1

Hence, we can bound the number of iterations by

1

log2

(
2
t+1

) =
1

log2

(
2p(|I|)

2p(|I|)−1

) = O(p(|I|)).
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Thus, we get a YES if the correct answer is YES with probability at least 1
2 after a

running time of

O

(
g

(
|I|, q

(
|I|, 2

1− t

)))
1

log2

(
2
t+1

) ≤ O(g(|I|, q(|I|, 2p(|I|)))p(|I|)).
We have shown under the assumption of the existence of a sampling algorithm with the
given properties that Prob is in RP. Since Prob is also NP-hard, the existence of
such a sampling algorithm implies RP = NP. Hence, no such sampling algorithm can
exist if RP 6= NP. �

9.3 Practical Obstructions to Sampling

9.3.1 Method

To verify the impact of the theoretical results, I implemented the following experiment
to analyze the difference between sampling with thermodynamic constraints and without
thermodynamic constraints. For a given metabolic network with flux space P (with or
without thermodynamic constraints) I do the following:

1. Sample n points in the flux space P .

2. Run flux variability analysis (FVA) on P .

3. Define 4 sets of reactions

• RC := reactions that are contained in an internal cycle (compute by block-
ing all exchange reactions and performing ordinary FVA on the remaining
reactions),

• RNC := R \RC reactions that are not contained in an internal cycle,

• R+ := reactions that can have positive flux (obtained from FVA),

• R− := reactions that can have negative flux (obtained from FVA).

4. From these 4 sets of reactions, I define the following 4 sampling classes:

• RC+ := RC ∩R+

• RNC+ := RNC ∩R+

• RC− := RC ∩R−
• RNC− := RNC ∩R−

5. For each sampling class A ⊆ R, I count the number of reactions for which I never
sampled negative flux nPA and I compute the ratio rPA := nA

|A| .
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I do this for the steady-state flux space F (without thermodynamic constraints) and
for the thermodynamically constrained flux space T . Since positive lower bounds and
negative upper bounds for reactions in internal cycles make it already NP-hard to find
a thermodynamically feasible flux distribution, I set all positive lower bounds and all
negative upper bounds to 0.

For the sampling method I chose to use the method implemented in the COBRA toolbox
[137], since it is one of the most advanced algorithms (ACHR) for sampling flux spaces.
They also offer a flag to activate thermodynamic constraints. Unfortunately this flag has
no effect in the current version (2.0.5). Hence, I implemented a simple post-processing
step to turn thermodynamically infeasible fluxes into thermodynamically feasible fluxes
by deleting internal cycles. By Thm. 4.5.1 this is possible in polynomial time. I decided
not to implement the method by Schellenberger et al. [134], since it solves an MILP in
the post-processing step. Note that because I selected the sampling method for the ther-
modynamically constrained flux space, the experimental result may not be statistically
fair.

I selected a set of genome-scale metabolic networks based from the BiGG-database [136]
as my test-set, since these networks are well curated. I did not select Human Recon 1.,
since I am not able to run thermodynamically constrained flux variability analysis on
it. Instead, I also added the more recent E. coli iJO1366 network [113]. For the M.
barkeri network the reduceModel subset of the sampling algorithm from the COBRA
toolbox did not work for me. Hence, I also excluded this network and ended up with
the following test-networks:

• E. coli iAF1260

• E. coli iJO1366

• H. pylori iIT341

• M. tuberculosis iNJ661

• S. aureus iSB619

• S. cerevisiae iND750

From our theoretical analysis we would expect the following results:

• With thermodynamic constraints more reactions (in internal cycles) are always
sampled to have zero flux than when sampled without thermodynamic constraints,
i.e., rTRC

+
> rFRC

+
and rTRC

−
> rFRC

−
. Note that I compare the ratios because the

number of reactions that can have positive/negative flux is different for T and F .

• When we look at the reactions that are not in internal cycles, we do not expect
any differences, i.e., rTRNC

+
= rFRNC

+
and rTRNC

−
= rFRNC

−
. Actually, this property

223



CHAPTER 9. SAMPLING THE THERMODYNAMICALLY CONSTRAINED
FLUX SPACE

is already guaranteed by the experimental setup (the cycle subtraction step only
manipulates fluxes through reactions in internal cycles).

• Since I do not deal with reactions in internal cycles in a special way without
thermodynamic constraints, I expect that the ratio for reactions in cycles and
not in cycles should be the same for the flux space F , i.e., rFRC

+
= rFRNC

+
and

rFRC
−

= rFRNC
−

.

9.3.2 Results

The computed results for 2000 and 10000 samples can be seen in Figs. 9.1, 9.2.
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Figure 9.1: Sampling results with 2000 sample points. The y-axis shows the ratio for
how many reactions that can have positive/negative flux the sampling method actually
sampled such a flux at least once. A value of 0.1 for t.clb for example means that
for every tenth reaction that is contained in a cycle and can have negative flux with
thermodynamic constraints no negative flux was sampled. For each sampling class we
get several data points, because we ran the analysis on 6 genome-scale networks. The
naming of the sampling classes is according to the following scheme: t denotes that
thermodynamic constraints were used, nt denotes that no thermodynamic constraints
were used. We use c to denote that the sampling class consists of the reactions in cycles
and nc to denote that the sampling class consists of reactions not in cycles. Finally, lb
means that the lower bound is negative and correspondingly ub that the upper bound
is positive.
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Figure 9.2: Sampling results with 10000 sample points. The labeling is the same as in
Fig. 9.1.

We observe that indeed, the ratio of reactions where no positive/negative fluxes were
sampled is larger for the case with thermodynamic constraints than without. Also,
as expected, the results for RNC are the same. Moreover, the ratios in the non-
thermodynamic case for reactions in internal cycles and reactions not in internal cycles
seem to be very similar, although the number of test-cases is too small to get a sure
result.

Another interesting observation is that even with 10000 sample points (even without
thermodynamic constraints), we miss about 10% of all possible reaction directions.

9.4 Discussion

We observe that the conditions that we require for Thm. 9.2.1 on the sampling algo-
rithm are very weak. We do not require uniform distribution, we only require that with
some polynomially small probability we also sample fluxes unequal to zero in our target
distribution and that we converge in polynomial time to this target distribution.

Assuming RP 6= NP, it follows that every sampling algorithm on the thermodynamic
flux space has one of the following properties:

• The sampling algorithm does not converge in polynomial time to the target distri-
bution, or
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• the target distribution is trivial (i.e., the probability of sampling 0 is 1).

Of course, we may be lucky and the algorithm actually samples a non-trivial distribution
for the input networks. However the result says that there are networks for which the
sampling algorithm will only sample 0 fluxes for some reactions and indeed, we saw that
this happens also in practice not only for sampling the thermodynamically constrained
flux space but also the ordinary steady-state flux space. This is very critical, since we
then may be led to the false assumption that the reaction is never used, although it
actually could be. To make sure that such results are true, it is essential to verify them
with a deterministic method. In the case of deciding whether flux is possible through a
given reaction, we can decide this by solving some optimization problem [134, 101].

We have shown that sampling artifacts happen for the flux variability problem with
thermodynamic constraints (and in practice they even happen without thermodynamic
constraints). However, sampling is used to check a wide variety of different properties.
Although the result does not directly imply that sampling results for these other prop-
erties are unreliable as well, caution is highly advised. For example, consider correlation
/ flux coupling analysis [169]. If a reaction always carries zero flux in all samples by
an artifact, although it can also carry non-zero flux, it follows that this reaction seems
uncorrelated to all other reactions. However, it may very well be correlated / coupled.
In Fig. 9.3, we see such an example. Assume the flux space (see Fig. 9.4) is sampled
using a uniform distribution. Then we will almost surely never sample non-zero flux
through reaction r1. Correlation analysis would yield that flux through r1 is uncorre-
lated (they are even independent) to flux through r2 and r3, although the fluxes are
actually exclusive (e.g. r1 and r2 cannot carry flux at the same time).

r1

r3
r2

r4

Figure 9.3: By thermodynamics, it is not possible to have non-zero flux through r1 and
also to have a non-zero flux through one of r2, r3 or r4 at the same time.

9.5 Conclusion

Although sampling has been used successfully for the analysis of metabolic networks, the
results obtained by sampling should be used with caution. In particular, if we sample
thermodynamically feasible fluxes, we have seen (assuming RP 6= NP) that for every
polynomial-time sampling method there exist networks for which the sampling method
will produce artifacts. Hence, results obtained by sampling the thermodynamically con-
strained flux space should always be double checked by a different method.
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9.5. CONCLUSION

v1

v3 = v4

v2

1

1

1

Figure 9.4: The gray area denotes the flux space. In this example it was assumed
that input/output flux values are constrained to at most 1. It can be seen that flux v1

through r1 is exclusive to fluxes v2 and v3 through r2 and r3 respectively. Since fluxes
through r2 can be combined with fluxes through r3, the flux space with v2, v3 > 0 is
two-dimensional, while the flux space with v1 > 0 is only one-dimensional. Hence, a
uniform sample of the flux space would almost surely have zero flux through r1.
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Appendix A

Computational Results on Flux
Modules

A.1 Flux Modules

A.1.1 Summary on E. coli iJR904 grown on L-tryptophan

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.106, actACP[c] = 0.106, co2[c] = 0.106,
coa[c] = 0.106, h[c] = −0.106, malACP[c] = −0.106

2

ADK1, ADK3, ADNK1, DADK,
DGK1, DURIPP, GK1, GSNK,
NDPK1, NDPK2, NDPK5,
NDPK6, NDPK8, NTD1,
NTD6, NTD8, PUNP1,
PUNP2, PUNP3, PUNP4,
PYNP2r, RNDR1, RNDR2,
RNDR4, RNTR1, RNTR2,
RNTR4, UMPK, URIDK2r,
URIK2

2dr1p[c] = 0.04937, ade[c] = −0.002309, adp[c] = 5.691,
amp[c] = −2.523, atp[c] = −3.174, datp[c] = 0.008149,
dgtp[c] = 0.00838, dump[c] = 0.008149, gdp[c] = −0.1724,
gmp[c] = −0.09185, gtp[c] = 0.2559, h2o[c] = 0.02468,
h[c] = 0.05168, pi[c] = 0.05168, r1p[c] = −0.05168,
trdox[c] = 0.07405, trdrd[c] = −0.07405, udp[c] =
−0.01742, ump[c] = −0.1158, utp[c] = 0.1251

96 ∗

ALAR, ALARi ala-D[c] = 0.01821, ala-L[c] = −0.01821 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.1326, akg[c] = 0.3209, ala-L[c] = 0.1883,
glu-L[c] = −0.3209, pyr[c] = −0.1883, val-L[c] = 0.1326

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FRD2,
FRD3, GLYCTO2, GLYCTO3,
GLYCTO4, SUCD1i, SUCD4

asp-L[c] = −0.0009007, dhor-S[c] = −0.104, fum[c] = 5.021,
glx[c] = 0.0165, glyclt[c] = −0.0165, iasp[c] = 0.0009007,
orot[c] = 0.104, q8[c] = −5.142, q8h2[c] = 5.142, succ[c] =
−5.021

18

GALU, GALUi g1p[c] = −0.006532, h[c] = −0.006532, ppi[c] = 0.006532,
udpg[c] = 0.006532, utp[c] = −0.006532

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.06411, atp[c] = −0.06411, cdp[c] = −0.06411,
ctp[c] = 0.05573, dctp[c] = 0.00838, h2o[c] = 0.00838,
trdox[c] = 0.00838, trdrd[c] = −0.00838

2

∗ the MILP method sometimes missed up to 3 EFMs.
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A.1.2 Summary on E. coli iJR904 grown on L-Threonine

Module Exchange flux (right hand side of the module) EFMs

ACALDi, GLYATi,
THRAr, THRD

accoa[c] = 7.755, coa[c] = −7.755, gly[c] = 7.755,
h[c] = 7.755, nad[c] = −7.755, nadh[c] = 7.755,
thr-L[c] = −7.755

2

ACCOAL, PPCSCT,
SUCOAS new

adp[c] = 0.2558, atp[c] = −0.2558, coa[c] = −0.2558,
pi[c] = 0.2558, succ[c] = −0.2558, succoa[c] = 0.2558

2

ACOATA, KAS14, KAS15 accoa[c] = −0.1645, actACP[c] = 0.1645, co2[c] =
0.1645, coa[c] = 0.1645, h[c] = −0.1645, malACP[c] =
−0.1645

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 4.007, amp[c] = −1.799, atp[c] = −2.209,
dgtp[c] = 0.013, gdp[c] = −0.41, gtp[c] = 0.397,
h2o[c] = 0.013, trdox[c] = 0.013, trdrd[c] = −0.013

6

ALAR, ALARi ala-D[c] = 0.02826, ala-L[c] = −0.02826 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.2058, akg[c] = 0.498, ala-L[c] = 0.2922,
glu-L[c] = −0.498, pyr[c] = −0.2922, val-L[c] =
0.2058

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.001398, co2[c] = 8.574, dhor-S[c] =
−0.1613, for[c] = −8.574, fum[c] = 4.764, glx[c] =
0.0256, glyclt[c] = −0.0256, h[c] = −25.72, h[e] =
17.15, iasp[c] = 0.001398, orot[c] = 0.1613, q8[c] =
−13.53, q8h2[c] = 13.53, succ[c] = −4.764

90

GALU, GALUi g1p[c] = −0.01014, h[c] = −0.01014, ppi[c] = 0.01014,
udpg[c] = 0.01014, utp[c] = −0.01014

2

NAt3 1, THRt2r, THRt4
new

h[c] = 10, h[e] = −10, thr-L[c] = 10, thr-L[e] = −10 2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.1941, atp[c] = −0.1941, dudp[c] = 0.01264,
h2o[c] = 0.01264, trdox[c] = 0.01264, trdrd[c] =
−0.01264, udp[c] = −0.2068, utp[c] = 0.1941

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.09947, atp[c] = −0.09947, cdp[c] =
−0.09947, ctp[c] = 0.08647, dctp[c] = 0.013, h2o[c] =
0.013, trdox[c] = 0.013, trdrd[c] = −0.013

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.01264, datp[c] = 0.01264, h2o[c] =
0.01264, trdox[c] = 0.01264, trdrd[c] = −0.01264

2

newThis is only a module with thermodynamic constraints.
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A.1.3 Summary on E. coli iJR904 grown on glucose

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.2962, actACP[c] = 0.2962, co2[c] =
0.2962, coa[c] = 0.2962, h[c] = −0.2962, malACP[c] =
−0.2962

2

ADK1, ADK3, ADNK1,
DADK, DGK1, DURIPP,
GK1, GSNK, NDPK1,
NDPK2, NDPK5, NDPK6,
NDPK8, NTD1, NTD6,
NTD8, PUNP1, PUNP2,
PUNP3, PUNP4, PYNP2r,
RNDR1, RNDR2, RNDR4,
RNTR1, RNTR2, RNTR4,
UMPK, URIDK2r, URIK2

2dr1p[c] = 0.4766, ade[c] = −0.006454, adp[c] = 6.387,
amp[c] = −2.123, atp[c] = −4.281, datp[c] = 0.02277,
dgtp[c] = 0.02342, dump[c] = 0.02277, gdp[c] =
−0.4818, gmp[c] = −0.2567, gtp[c] = 0.715, h2o[c] =
0.06896, h[c] = 0.4831, pi[c] = 0.4831, r1p[c] =
−0.4831, trdox[c] = 0.5456, trdrd[c] = −0.5456,
udp[c] = −0.04868, ump[c] = −0.3237, utp[c] = 0.3496

96

ALAR, ALARi ala-D[c] = 0.05089, ala-L[c] = −0.05089 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.3706, akg[c] = 0.8969, ala-L[c] = 0.5262,
glu-L[c] = −0.8969, pyr[c] = −0.5262, val-L[c] =
0.3706

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.002517, co2[c] = 0.3387, dhor-S[c] =
−0.2905, for[c] = −0.3387, fum[c] = 4.022, glx[c] =
0.0461, glyclt[c] = −0.0461, h[c] = −1.016, h[e] =
0.6774, iasp[c] = 0.002517, orot[c] = 0.2905, q8[c] =
−4.7, q8h2[c] = 4.7, succ[c] = −4.022

90

DHAPT, F6PA, FBA, PFK,
PYK

adp[c] = 6.586, atp[c] = −6.586, dhap[c] = 7.003,
f6p[c] = −7.003, g3p[c] = 7.003, h[c] = 6.586,
pep[c] = −0.4173, pyr[c] = 0.4173

2

GALU, GALUi g1p[c] = −0.01825, h[c] = −0.01825, ppi[c] = 0.01825,
udpg[c] = 0.01825, utp[c] = −0.01825

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.1791, atp[c] = −0.1791, cdp[c] = −0.1791,
ctp[c] = 0.1557, dctp[c] = 0.02342, h2o[c] = 0.02342,
trdox[c] = 0.02342, trdrd[c] = −0.02342

2
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A.1.4 Summary on E. coli iJR904 grown on L-Arginine

Module Exchange flux (right hand side of the module) EFMs

ACCOAL, PPCSCT,
SUCOAS new

adp[c] = 3.219, atp[c] = −3.219, coa[c] = −3.219,
pi[c] = 3.219, succ[c] = −3.219, succoa[c] = 3.219

2

ACOATA, KAS14, KAS15 accoa[c] = −0.2135, actACP[c] = 0.2135, co2[c] =
0.2135, coa[c] = 0.2135, h[c] = −0.2135, malACP[c] =
−0.2135

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 3.229, amp[c] = −1.348, atp[c] = −1.88,
dgtp[c] = 0.01688, gdp[c] = −0.5323, gtp[c] = 0.5154,
h2o[c] = 0.01688, trdox[c] = 0.01688, trdrd[c] =
−0.01688

6

ALAR, ALARi ala-D[c] = 0.03669, ala-L[c] = −0.03669 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.2672, akg[c] = 0.6465, ala-L[c] = 0.3794,
glu-L[c] = −0.6465, pyr[c] = −0.3794, val-L[c] =
0.2672

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FRD2,
SUCD1i, SUCD4

asp-L[c] = −0.001814, dhor-S[c] = −0.2094, fum[c] =
6.898, iasp[c] = 0.001814, orot[c] = 0.2094, q8[c] =
−7.109, q8h2[c] = 7.109, succ[c] = −6.898

6

ASPT, ASPTA, FUM,
GLUDy, IDOND,
IDOND2, MDH, ME1,
ME2, NADTRHD, PPCK,
PYK

adp[c] = 3.566, akg[c] = 16.36, asp-L[c] = 1.701,
atp[c] = −3.566, co2[c] = 8.071, fum[c] = −7.408,
glu-L[c] = −16.36, h2o[c] = −22.06, h[c] = 17.56,
nad[c] = −13.82, nadh[c] = 13.82, nadp[c] = −8.245,
nadph[c] = 8.245, nh4[c] = 14.66, oaa[c] = −2.364,
pep[c] = 3.566, pyr[c] = 4.504

9

GALU, GALUi g1p[c] = −0.01316, h[c] = −0.01316, ppi[c] = 0.01316,
udpg[c] = 0.01316, utp[c] = −0.01316

2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.252, atp[c] = −0.252, dudp[c] = 0.01642,
h2o[c] = 0.01642, trdox[c] = 0.01642, trdrd[c] =
−0.01642, udp[c] = −0.2684, utp[c] = 0.252

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.1291, atp[c] = −0.1291, cdp[c] = −0.1291,
ctp[c] = 0.1123, dctp[c] = 0.01688, h2o[c] = 0.01688,
trdox[c] = 0.01688, trdrd[c] = −0.01688

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.01642, datp[c] = 0.01642, h2o[c] =
0.01642, trdox[c] = 0.01642, trdrd[c] = −0.01642

2

newThis is only a module with thermodynamic constraints.
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A.1.5 Summary on E. coli iJR904 grown on citrate

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.2048, actACP[c] = 0.2048, co2[c] =
0.2048, coa[c] = 0.2048, h[c] = −0.2048, malACP[c] =
−0.2048

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 3.455, amp[c] = −1.472, atp[c] = −1.983,
dgtp[c] = 0.01619, gdp[c] = −0.5106, gtp[c] = 0.4944,
h2o[c] = 0.01619, trdox[c] = 0.01619, trdrd[c] =
−0.01619

6

ALAR, ALARi ala-D[c] = 0.03519, ala-L[c] = −0.03519 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.2563, akg[c] = 0.6202, ala-L[c] = 0.3639,
glu-L[c] = −0.6202, pyr[c] = −0.3639, val-L[c] =
0.2563

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.00174, co2[c] = 0.03636, dhor-S[c] =
−0.2009, for[c] = −0.03636, fum[c] = 10.29, glx[c] =
0.03188, glyclt[c] = −0.03188, h[c] = −0.1091, h[e] =
0.07271, iasp[c] = 0.00174, orot[c] = 0.2009, q8[c] =
−10.56, q8h2[c] = 10.56, succ[c] = −10.29

90

ASPT, ASPTA, FUM,
GLUDy, HPYRI, HPYRRx,
HPYRRy, IDOND,
IDOND2, MDH, ME1,
ME2, NADTRHD, PPCK,
PYK, TRSAR

2h3oppan[c] = −0.01594, adp[c] = 3.471, akg[c] =
−3.561, asp-L[c] = 1.811, atp[c] = −3.471, co2[c] =
8.149, fum[c] = −10.96, glu-L[c] = 3.561, glyc-R[c] =
0.01594, h2o[c] = −5.585, h[c] = 0.8904, nad[c] =
−10.85, nadh[c] = 10.85, nadp[c] = 5.28, nadph[c] =
−5.28, nh4[c] = −5.372, oaa[c] = 0.9963, pep[c] =
3.471, pyr[c] = 4.679

15

FUMt2 2, SUCCt2 2,
SUCFUMt

h[c] = 20, h[e] = −20, succ[c] = 10, succ[e] = −10 2

GALU, GALUi g1p[c] = −0.01262, h[c] = −0.01262, ppi[c] = 0.01262,
udpg[c] = 0.01262, utp[c] = −0.01262

2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.2417, atp[c] = −0.2417, dudp[c] = 0.01575,
h2o[c] = 0.01575, trdox[c] = 0.01575, trdrd[c] =
−0.01575, udp[c] = −0.2575, utp[c] = 0.2417

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.1239, atp[c] = −0.1239, cdp[c] = −0.1239,
ctp[c] = 0.1077, dctp[c] = 0.01619, h2o[c] = 0.01619,
trdox[c] = 0.01619, trdrd[c] = −0.01619

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.01575, datp[c] = 0.01575, h2o[c] =
0.01575, trdox[c] = 0.01575, trdrd[c] = −0.01575

2
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A.1.6 Summary on E. coli iJR904 grown on fumarate

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.1294, actACP[c] = 0.1294, co2[c] =
0.1294, coa[c] = 0.1294, h[c] = −0.1294, malACP[c] =
−0.1294

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 2.183, amp[c] = −0.9302, atp[c] = −1.253,
dgtp[c] = 0.01023, gdp[c] = −0.3226, gtp[c] = 0.3124,
h2o[c] = 0.01023, trdox[c] = 0.01023, trdrd[c] =
−0.01023

6

ALAR, ALARi ala-D[c] = 0.02223, ala-L[c] = −0.02223 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.1619, akg[c] = 0.3918, ala-L[c] = 0.2299,
glu-L[c] = −0.3918, pyr[c] = −0.2299, val-L[c] =
0.1619

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.0011, co2[c] = 0.02297, dhor-S[c] =
−0.1269, for[c] = −0.02297, fum[c] = 3.864, glx[c] =
0.02014, glyclt[c] = −0.02014, h[c] = −0.06891, h[e] =
0.04594, iasp[c] = 0.0011, orot[c] = 0.1269, q8[c] =
−4.035, q8h2[c] = 4.035, succ[c] = −3.864

90

ASPT, ASPTA, FUM,
GLUDy, HPYRI, HPYRRx,
HPYRRy, IDOND,
IDOND2, MDH, ME1,
ME2, NADTRHD, PPCK,
PYK, TRSAR

2h3oppan[c] = −0.01007, adp[c] = 2.193, akg[c] =
−2.25, asp-L[c] = 1.144, atp[c] = −2.193, co2[c] =
8.831, fum[c] = −14.29, glu-L[c] = 2.25, glyc-R[c] =
0.01007, h2o[c] = −10.89, h[c] = 4.245, nad[c] =
−11.58, nadh[c] = 11.58, nadp[c] = 0.7001, nadph[c] =
−0.7001, nh4[c] = −3.394, oaa[c] = 4.312, pep[c] =
2.193, pyr[c] = 6.638

15

FUMt2 2, SUCCt2 2,
SUCFUMt

fum[c] = 10, fum[e] = −10, h[c] = 20, h[e] = −20 2

GALU, GALUi g1p[c] = −0.007975, h[c] = −0.007975, ppi[c] =
0.007975, udpg[c] = 0.007975, utp[c] = −0.007975

2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.1527, atp[c] = −0.1527, dudp[c] = 0.009949,
h2o[c] = 0.009949, trdox[c] = 0.009949, trdrd[c] =
−0.009949, udp[c] = −0.1627, utp[c] = 0.1527

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.07826, atp[c] = −0.07826, cdp[c] =
−0.07826, ctp[c] = 0.06803, dctp[c] = 0.01023,
h2o[c] = 0.01023, trdox[c] = 0.01023, trdrd[c] =
−0.01023

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.009949, datp[c] = 0.009949, h2o[c] =
0.009949, trdox[c] = 0.009949, trdrd[c] = −0.009949

2
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A.1.7 Summary on E. coli iJR904 grown on L-glutamine

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.195, actACP[c] = 0.195, co2[c] = 0.195,
coa[c] = 0.195, h[c] = −0.195, malACP[c] = −0.195

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 3.29, amp[c] = −1.402, atp[c] = −1.888,
dgtp[c] = 0.01542, gdp[c] = −0.4862, gtp[c] = 0.4707,
h2o[c] = 0.01542, trdox[c] = 0.01542, trdrd[c] =
−0.01542

6

ALAR, ALARi ala-D[c] = 0.0335, ala-L[c] = −0.0335 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.244, akg[c] = 0.5904, ala-L[c] = 0.3464,
glu-L[c] = −0.5904, pyr[c] = −0.3464, val-L[c] =
0.244

2

ASNS1, ASNS2, ASPT,
ASPTA, FUM, G6PDA,
GF6PTA, GLUDy, GLUN,
GLUSy, HPYRI, HPYRRx,
HPYRRy, IDOND,
IDOND2, MDH, ME1,
ME2, NADTRHD, PPCK,
PYK, TRSAR

2h3oppan[c] = −0.01517, adp[c] = 3.304, akg[c] = 6.61,
amp[c] = 0.139, asn-L[c] = 0.139, asp-L[c] = 1.585,
atp[c] = −3.443, co2[c] = 8.238, f6p[c] = −0.0437,
fum[c] = −11.39, gam6p[c] = 0.0437, gln-L[c] =
−8.889, glu-L[c] = 2.28, glyc-R[c] = 0.01517, h2o[c] =
−25.12, h[c] = 11.47, nad[c] = −12.25, nadh[c] = 12.25,
nadp[c] = −4.014, nadph[c] = 4.014, nh4[c] = 13.59,
oaa[c] = 1.428, pep[c] = 3.304, ppi[c] = 0.139,
pyr[c] = 4.934

222

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.001657, co2[c] = 0.03461, dhor-S[c] =
−0.1913, for[c] = −0.03461, fum[c] = 10.75, glx[c] =
0.03035, glyclt[c] = −0.03035, h[c] = −0.1038, h[e] =
0.06923, iasp[c] = 0.001657, orot[c] = 0.1913, q8[c] =
−11.01, q8h2[c] = 11.01, succ[c] = −10.75

90

GALU, GALUi g1p[c] = −0.01202, h[c] = −0.01202, ppi[c] = 0.01202,
udpg[c] = 0.01202, utp[c] = −0.01202

2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.2302, atp[c] = −0.2302, dudp[c] = 0.01499,
h2o[c] = 0.01499, trdox[c] = 0.01499, trdrd[c] =
−0.01499, udp[c] = −0.2451, utp[c] = 0.2302

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.1179, atp[c] = −0.1179, cdp[c] = −0.1179,
ctp[c] = 0.1025, dctp[c] = 0.01542, h2o[c] = 0.01542,
trdox[c] = 0.01542, trdrd[c] = −0.01542

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.01499, datp[c] = 0.01499, h2o[c] =
0.01499, trdox[c] = 0.01499, trdrd[c] = −0.01499

2
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A.1.8 Summary on E. coli iJR904 grown on Lactose

Module Exchange flux (right hand side of the module) EFMs

ACCOAL, PPCSCT, SUCOAS new adp[c] = 0.6389, atp[c] = −0.6389, coa[c] =
−0.6389, pi[c] = 0.6389, succ[c] = −0.6389,
succoa[c] = 0.6389

2

ACKr, ACt2r, ADK1, ADK3,
ADNK1, ASAD, ASPK, ASPTA,
ATPS4r, CO2t, DADK, DGK1,
DHAPT, DRPA, DURIPP, ENO,
EX ac(e), EX co2(e),
EX for(e), EX h2o(e),
EX h(e), F6PA, FBA, FORt,
FTHFD, G6PDH2r, GAPD, GHMT2,
GK1, GND, GSNK, H2Ot, HSDy,
HSK, MTHFC, MTHFD, NDPK1,
NDPK2, NDPK5, NDPK6, NDPK8,
NTD1, NTD6, NTD8, PDH, PFK,
PFL, PGCD, PGI, PGK, PGL,
PGM, PPC, PPM, PPM2, PSERT,
PSP L, PTAr, PUNP1, PUNP2,
PUNP3, PUNP4, PYK, PYNP2r,
RNDR1, textttRNDR2, RNDR4,
RNTR1, RNTR2, RNTR4, RPE,
RPI, TALA, THD2, THRAr, THRS,
TKT1, TKT2, TPI, TRDR, UMPK,
URIDK2r, URIK2

10fthf[c] = 1.337, ac[c] = −0.7325, accoa[c] =
6.131, ade[c] = −0.008951, adp[c] = −98.79,
akg[c] = 5.697, amp[c] = −2.944, asp-L[c] =
2.333, aspsa[c] = 0.4522, atp[c] = 101.7,
co2[c] = −3.501, coa[c] = −6.131, datp[c] =
0.03158, dgtp[c] = 0.03248, dhap[c] = 0.2146,
dump[c] = 0.03158, e4p[c] = 0.5256, f6p[c] =
0.09207, for[c] = −0.07293, g3p[c] = −0.06905,
g6p[c] = −19.78, gdp[c] = −0.6682, glu-L[c] =
−5.697, gly[c] = 1.355, gmp[c] = −0.356,
gtp[c] = 0.9917, h2o[c] = 33.88, h[c] = 177.2,
h[e] = −227.5, hom-L[c] = 0.1867, mlthf[c] =
0.2823, nad[c] = −37.14, nadh[c] = 37.14,
nadp[c] = −19.44, nadph[c] = 19.44, oaa[c] =
0.07953, pep[c] = 1.14, pi[c] = −90.4, pyr[c] =
3.407, r5p[c] = 1.202, ru5p-D[c] = 0.05373,
s7p[c] = 0.03222, ser-L[c] = 0.7087, thf[c] =
−1.62, thr-L[c] = 0.6611, trdox[c] = −0.3305,
trdrd[c] = 0.3305, udp[c] = −0.06752, ump[c] =
−0.449, utp[c] = 0.4849

≥ 300 ∗

ACOATA, KAS14, KAS15 accoa[c] = −0.4109, actACP[c] = 0.4109,
co2[c] = 0.4109, coa[c] = 0.4109, h[c] =
−0.4109, malACP[c] = −0.4109

2

ALAR, ALARi ala-D[c] = 0.07059, ala-L[c] = −0.07059 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.514, akg[c] = 1.244, ala-L[c] =
0.7299, glu-L[c] = −1.244, pyr[c] = −0.7299,
val-L[c] = 0.514

2

ASPO3, ASPO4, ASPO5, DHORD2,
DHORD5, FRD2, SUCD1i, SUCD4

asp-L[c] = −0.003491, dhor-S[c] = −0.4029,
fum[c] = −3.836e − 06, iasp[c] = 0.003491,
orot[c] = 0.4029, q8[c] = −0.4064, q8h2[c] =
0.4064, succ[c] = 3.836e− 06

8

GALU, GALUi g1p[c] = −0.02532, h[c] = −0.02532, ppi[c] =
0.02532, udpg[c] = 0.02532, utp[c] = −0.02532

2

NDPK3, NDPK7, RNDR3, RNTR3 adp[c] = 0.2485, atp[c] = −0.2485, cdp[c] =
−0.2485, ctp[c] = 0.216, dctp[c] = 0.03248,
h2o[c] = 0.03248, trdox[c] = 0.03248,
trdrd[c] = −0.03248

2

∗ both tools metatool and the MILP enumeration failed to enumerate all EFMs. We aborted
the MILP computation after the computation of 300 elementary modes.

new This is only a module with thermodynamic constraints.
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A.1.9 Summary on E. coli iJR904 grown on L-malate

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.1294, actACP[c] = 0.1294, co2[c] =
0.1294, coa[c] = 0.1294, h[c] = −0.1294, malACP[c] =
−0.1294

2

ADK1, ADK3, NDPK1,
NDPK5, RNDR2, RNTR2

adp[c] = 2.183, amp[c] = −0.9302, atp[c] = −1.253,
dgtp[c] = 0.01023, gdp[c] = −0.3226, gtp[c] = 0.3124,
h2o[c] = 0.01023, trdox[c] = 0.01023, trdrd[c] =
−0.01023

6

ALAR, ALARi ala-D[c] = 0.02223, ala-L[c] = −0.02223 2

ALATA L, VALTA, VPAMT 3mob[c] = −0.1619, akg[c] = 0.3918, ala-L[c] = 0.2299,
glu-L[c] = −0.3918, pyr[c] = −0.2299, val-L[c] =
0.1619

2

ASPO3, ASPO4, ASPO5,
DHORD2, DHORD5, FDH2,
FDH3, FHL, FRD2, FRD3,
GLYCTO2, GLYCTO3,
GLYCTO4, HYD1, HYD2,
HYD3, SUCD1i, SUCD4

asp-L[c] = −0.0011, co2[c] = 0.02297, dhor-S[c] =
−0.1269, for[c] = −0.02297, fum[c] = 3.864, glx[c] =
0.02014, glyclt[c] = −0.02014, h[c] = −0.06891, h[e] =
0.04594, iasp[c] = 0.0011, orot[c] = 0.1269, q8[c] =
−4.035, q8h2[c] = 4.035, succ[c] = −3.864

90 ∗

ASPT, ASPTA, FUM,
GLUDy, HPYRI, HPYRRx,
HPYRRy, IDOND,
IDOND2, MDH, ME1,
ME2, NADTRHD, PPCK,
PYK, TRSAR

2h3oppan[c] = −0.01007, adp[c] = 2.193, akg[c] =
−2.25, asp-L[c] = 1.144, atp[c] = −2.193, co2[c] =
8.831, fum[c] = −4.286, glu-L[c] = 2.25, glyc-R[c] =
0.01007, h2o[c] = −0.8925, h[c] = 4.245, mal-L[c] =
−10, nad[c] = −11.58, nadh[c] = 11.58, nadp[c] =
0.7001, nadph[c] = −0.7001, nh4[c] = −3.394, oaa[c] =
4.312, pep[c] = 2.193, pyr[c] = 6.638

15

GALU, GALUi g1p[c] = −0.007975, h[c] = −0.007975, ppi[c] =
0.007975, udpg[c] = 0.007975, utp[c] = −0.007975

2

NDPK2, NDPK6, RNDR4,
RNTR4

adp[c] = 0.1527, atp[c] = −0.1527, dudp[c] = 0.009949,
h2o[c] = 0.009949, trdox[c] = 0.009949, trdrd[c] =
−0.009949, udp[c] = −0.1627, utp[c] = 0.1527

2

NDPK3, NDPK7, RNDR3,
RNTR3

adp[c] = 0.07826, atp[c] = −0.07826, cdp[c] =
−0.07826, ctp[c] = 0.06803, dctp[c] = 0.01023,
h2o[c] = 0.01023, trdox[c] = 0.01023, trdrd[c] =
−0.01023

2

NDPK8, RNDR1, RNTR1 atp[c] = −0.009949, datp[c] = 0.009949, h2o[c] =
0.009949, trdox[c] = 0.009949, trdrd[c] = −0.009949

2

∗ we observed that sometimes the MILP method was missing one EFM
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A.1.10 Summary on E. coli iAF1260 grown on glucose, aerobic

Module Exchange flux (right hand side of the module) EFMs

ACKr, ACS, ADK1, ADK3, ADNK1,
ADPT, FLDR, GRXR, GTHOr, NDPK1,
NDPK2, NDPK3, NDPK5, NDPK6,
NDPK7, NDPK8, PAPSR, PAPSR2,
PPKr, PPM, PRPPS, PTAr, PUNP1,
R15BPK, R1PK, RNDR1, RNDR1b,
RNDR2, RNDR2b, RNDR3, RNDR3b,
RNDR4, RNDR4b, RNTR1c, RNTR2c,
RNTR3c, RNTR4c, TRDR new

ac[c] = −0.428, accoa[c] = 0.428, ade[c] =
−0.0003286, adp[c] = 2.476, amp[c] = −0.9813,
atp[c] = −1.513, cdp[c] = −0.1333, coa[c] =
−0.428, ctp[c] = 0.1134, datp[c] = 0.01928,
dctp[c] = 0.01991, dgtp[c] = 0.01991, dudp[c] =
0.01928, gdp[c] = −0.5803, gtp[c] = 0.5604,
h2o[c] = 0.07837, h[c] = 0.7897, nadp[c] =
0.2598, nadph[c] = −0.2598, pap[c] = 0.1815,
paps[c] = −0.1815, pi[c] = 2.724, ppi[c] =
−2.296, prpp[c] = 0.6863, r5p[c] = −0.6866,
so3[c] = 0.1815, udp[c] = −0.3133, utp[c] =
0.294

5184 ∗

ACOATA, KAS14, KAS15 accoa[c] = −0.2621, actACP[c] = 0.2621,
co2[c] = 0.2621, coa[c] = 0.2621, h[c] =
−0.2621, malACP[c] = −0.2621

2

ACt2rpp, ACt4pp, GLUt2rpp,
GLUt4pp, GLYCLTt2rpp,
GLYCLTt4pp, PROt2rpp,
PROt4pp, SERt2rpp, SERt4pp,
THRt2rpp, THRt4pp new

h[c] = −0.00349, h[p] = 0.00349, na1[c] =
0.00349, na1[p] = −0.00349

6

ALATA L, VALTA, VPAMT 3mob[c] = −0.3118, akg[c] = 0.7412, ala-L[c] =
0.4294, glu-L[c] = −0.7412, pyr[c] = −0.4294,
val-L[c] = 0.3118

2

ASPO3, ASPO4, ASPO5, DHORD2,
DHORD5, FRD2, FRD3, GLYCTO2,
GLYCTO3, GLYCTO4, NADH16pp,
NADH17pp, NADH18pp, SUCDi

asp-L[c] = −0.001678, dhor-S[c] = −0.2437,
fum[c] = 3.729, glx[c] = 0.0004929, glyclt[c] =
−0.0004929, h[c] = −114.2, h[p] = 85.67,
iasp[c] = 0.001678, nad[c] = 28.56, nadh[c] =
−28.56, orot[c] = 0.2437, q8[c] = −32.53,
q8h2[c] = 32.53, succ[c] = −3.729

54

DHAPT, F6PA, FBA, PFK, PYK adp[c] = 5.164, atp[c] = −5.164, dhap[c] =
6.191, f6p[c] = −6.191, g3p[c] = 6.191, h[c] =
5.164, pep[c] = −1.027, pyr[c] = 1.027

2

DMPPS, IPDDI, IPDPS dmpp[c] = 0.0002048, h2mb4p[c] = −0.00176,
h2o[c] = 0.00176, h[c] = −0.00176, ipdp[c] =
0.001555, nad[c] = 0.00176, nadh[c] = −0.00176

3

EX fe2(e), EX fe3(e),
EX h2o(e), EX h(e), EX o2(e),
FE2tex, FE3tex, FEROpp,
H2Otex, Htex, O2tex

fe2[p] = 0.005564, fe3[p] = 0.005235, h2o[p] =
−37.24, h[p] = −6.766, o2[p] = 16.27

3 ∗∗

GLCtex, GLCtexi glc-D[e] = −8, glc-D[p] = 8 2

∗ computed with metatool only, MILP method took too long.

∗∗ computed with MILP method only. metatool did not find any pathways.

new This is only a module with thermodynamic constraints.
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A.1.11 Summary on E. coli iAF1260 grown on glucose, anaerobic

Module Exchange flux (right hand side of the module) EFMs

DHAPT, F6PA, FBA, PFK, PYK adp[c] = 1.92, atp[c] = −1.92, dhap[c] = 12.55,
f6p[c] = −12.55, g3p[c] = 12.55, h[c] = 1.92,
pep[c] = −10.63, pyr[c] = 10.63

2

ACt2rpp, ACt4pp, GLUt2rpp,
GLUt4pp, GLYCLTt2rpp,
GLYCLTt4pp, PROt2rpp,
PROt4pp, SERt2rpp, SERt4pp,
THRt2rpp, THRt4pp new

ac[c] = −10.84, ac[p] = 10.84, glyclt[c] =
−0.0001762, glyclt[p] = 0.0001762, h[c] =
−10.84, h[p] = 10.84, na1[c] = 0.001247,
na1[p] = −0.001247

6

DMPPS, IPDDI, IPDPS dmpp[c] = 7.321e − 05, h2mb4p[c] = −0.0006291,
h2o[c] = 0.0006291, h[c] = −0.0006291,
ipdp[c] = 0.0005559, nad[c] = 0.0006291,
nadh[c] = −0.0006291

3

ADK1, ADK3, ADNK1, ADPT, FLDR,
GRXR, GTHOr, NDPK1, NDPK2,
NDPK3, NDPK5, NDPK6, NDPK7,
NDPK8, PAPSR, PAPSR2, PPKr,
PPM, PRPPS, PUNP1, R15BPK,
R1PK, RNDR1, RNDR1b, RNDR2,
RNDR2b, RNDR3, RNDR3b, RNDR4,
RNDR4b, RNTR1c, RNTR2c,
RNTR3c, RNTR4c, TRDR new

ade[c] = −0.0002349, adp[c] = 0.7322, amp[c] =
−0.3508, atp[c] = −0.3881, cdp[c] = −0.04764,
ctp[c] = 0.04052, datp[c] = 0.006892, dctp[c] =
0.007116, dgtp[c] = 0.007116, dudp[c] =
0.006892, gdp[c] = −0.2075, gtp[c] = 0.2003,
h2o[c] = 0.02802, h[c] = 0.2824, nadp[c] =
0.09288, nadph[c] = −0.09288, pap[c] = 0.06486,
paps[c] = −0.06486, pi[c] = 0.8211, ppi[c] =
−0.8209, prpp[c] = 0.2453, r5p[c] = −0.2456,
so3[c] = 0.06486, udp[c] = −0.112, utp[c] =
0.1051

2592 ∗

ASPO4, ASPO5, FRD2 asp L[c] = −0.0005999, fum[c] = −0.08771,
h[c] = 0.0005999, iasp[c] = 0.0005999,
mql8[c] = −0.08711, mqn8[c] = 0.08711,
succ[c] = 0.08771

2

ACCOAL, PPCSCT, SUCOAS new adp[c] = 0.1382, atp[c] = −0.1382, coa[c] =
−0.1382, pi[c] = 0.1382, succ[c] = −0.1382,
succoa[c] = 0.1382

2

ACOATA, KAS14, KAS15 accoa[c] = −0.09371, actACP[c] = 0.09371,
co2[c] = 0.09371, coa[c] = 0.09371, h[c] =
−0.09371, malACP[c] = −0.09371

2

ALATA L, VALTA, VPAMT 3mob[c] = −0.1114, akg[c] = 0.265, ala L[c] =
0.1535, glu L[c] = −0.265, pyr[c] = −0.1535,
val L[c] = 0.1114

2

∗ computed with metatool only, MILP method took too long.

new This is only a module with thermodynamic constraints.

The module {GLCtex, GLCtexi} is not listed, since we ran the analysis on a network, where
GLCtexi was removed, since it is just a duplicate of GLCtex.
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A.1.12 Summary on E. coli iAF1260 grown on L-Threonine

Module Exchange flux (right hand side of the module) EFMs

ACALD, GLYAT, THRAi, THRD accoa[c] = 7.762, coa[c] = −7.762, gly[c] = 7.762,
h[c] = 7.762, nad[c] = −7.762, nadh[c] = 7.762,
thr-L[c] = −7.762

2

ACKr, ACS, ADK1, ADK3, ADNK1,
ADPT, FLDR, GRXR, GTHOr, NDPK1,
NDPK2, NDPK3, NDPK5, NDPK6,
NDPK7, NDPK8, PAPSR, PAPSR2,
PPKr, PPM, PRPPS, PTAr, PUNP1,
R15BPK, R1PK, RNDR1, RNDR1b,
RNDR2, RNDR2b, RNDR3, RNDR3b,
RNDR4, RNDR4b, RNTR1c, RNTR2c,
RNTR3c, RNTR4c, TRDR new

ac[c] = −0.2545, accoa[c] = 0.2545, ade[c] =
−0.0001953, adp[c] = 4.277, amp[c] = −1.986,
atp[c] = −2.302, cdp[c] = −0.07923, coa[c] =
−0.2545, ctp[c] = 0.06739, datp[c] = 0.01146,
dctp[c] = 0.01183, dgtp[c] = 0.01183, dudp[c] =
0.01146, gdp[c] = −0.345, gtp[c] = 0.3332, h2o[c] =
0.04659, h[c] = 0.4695, nadp[c] = 0.1545, nadph[c] =
−0.1545, pap[c] = 0.1079, paps[c] = −0.1079,
pi[c] = 1.62, ppi[c] = −1.365, prpp[c] = 0.408,
r5p[c] = −0.4082, so3[c] = 0.1079, udp[c] =
−0.1863, utp[c] = 0.1748

4944 ∗

ACOATA, KAS14, KAS15 accoa[c] = −0.1559, actACP[c] = 0.1559, co2[c] =
0.1559, coa[c] = 0.1559, h[c] = −0.1559,
malACP[c] = −0.1559

2

ACt2rpp, ACt4pp, CA2t3pp,
CAt6pp, GLUt2rpp, GLUt4pp,
GLYCLTt2rpp, GLYCLTt4pp,
NAt3pp, PROt2rpp, PROt4pp,
SERt2rpp, SERt4pp, THRt2rpp,
THRt4pp new

ca2[c] = 0.002075, ca2[p] = −0.002075, h[c] =
7.998, h[p] = −7.998, thr-L[c] = 8, thr-L[p] = −8

8

ALATA L, VALTA, VPAMT 3mob[c] = −0.1854, akg[c] = 0.4407, ala-L[c] =
0.2553, glu-L[c] = −0.4407, pyr[c] = −0.2553,
val-L[c] = 0.1854

2

ASPO3, ASPO4, ASPO5, DHORD2,
DHORD5, FDH4pp, FDH5pp,
FRD2, FRD3, GLYCTO2, GLYCTO3,
GLYCTO4, NADH16pp, NADH17pp,
NADH18pp, SUCDi

asp-L[c] = −0.0009977, co2[c] = 0.001074,
dhor-S[c] = −0.1449, for[p] = −0.001074, fum[c] =
5.281, glx[c] = 0.000293, glyclt[c] = −0.000293,
h[c] = −83.35, h[p] = 62.51, iasp[c] = 0.0009977,
nad[c] = 20.84, nadh[c] = −20.84, orot[c] = 0.1449,
q8[c] = −26.27, q8h2[c] = 26.27, succ[c] = −5.281

108

DMPPS, IPDDI, IPDPS dmpp[c] = 0.0001218, h2mb4p[c] = −0.001046,
h2o[c] = 0.001046, h[c] = −0.001046, ipdp[c] =
0.0009246, nad[c] = 0.001046, nadh[c] = −0.001046

3

DSERDHr, LSERDHr, SERD D,
SERD L, TRPAS2, TRPS1, TRPS2,
TRPS3

3ig3p[c] = −0.0249, g3p[c] = 0.0249, h2o[c] =
0.0249, nh4[c] = 3.104, pyr[c] = 3.104, ser-L[c] =
−3.129, trp-L[c] = 0.0249

8

EX fe2(e), EX fe3(e),
EX h2o(e), EX h(e), EX o2(e),
FE2tex, FE3tex, FEROpp,
H2Otex, Htex, O2tex

fe2[p] = 0.003308, fe3[p] = 0.003112, h2o[p] =
−17.6, h[p] = 3.977, o2[p] = 13.13

2 ∗∗

∗ computed with metatool only, MILP method took too long. Number of computed EFMs varies
from run to run.

∗∗ computed with MILP method only. metatool did not find any pathways.
new This is only a module with thermodynamic constraints.
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A.1.13 Summary on H. pylori iIT341

Module Exchange flux (right hand side of the module) EFMs

ACOATA, KAS14, KAS15 accoa[c] = −0.2317, actACP[c] = 0.2317, co2[c] =
0.2317, coa[c] = 0.2317, h[c] = −0.2317, malACP[c] =
−0.2317

2

ALAt2, ALAt4,
EX nh4(e), EX orn(e),
EX pro L(e), G5SADr,
GLUDy, NAt3 1, NH4t,
ORNTA, ORNt2r, P5CD,
P5CR, PROt2r, PROt4r,
PUTA3

akg[c] = −2.731, ala-L[c] = 10, ala-L[e] = −10,
glu-L[c] = 3.376, h2o[c] = 1.441, h[c] = 8.068,
h[e] = −8.863, nad[c] = −0.6452, nadh[c] = 0.6452,
nadp[c] = 2.086, nadph[c] = −2.086, nh4[c] = −21.78,
orn[c] = −1.927, pro-L[c] = 0.1455

18

FTHFLi, GARFTi, GART 10fthf[c] = −0.3514, adp[c] = 0.02359, atp[c] =
−0.02359, fgam[c] = 0.375, for[c] = −0.02359,
gar[c] = −0.375, h[c] = 0.375, pi[c] = 0.02359,
thf[c] = 0.3514

2

H2CO3D, H2CO3D2,
HCO3E

co2[c] = −2.233, h2o[c] = −2.233, h[c] = 2.233,
hco3[c] = 2.233

2

TRPS1, TRPS2, TRPS3 3ig3p[c] = −0.03741, g3p[c] = 0.03741, h2o[c] =
0.03741, ser-L[c] = −0.03741, trp-L[c] = 0.03741

2
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A.1.14 Summary on M. barkeri iAF692 grown on methanol

Module Exchange flux (right hand side of the module) EFMs

ACGK, ACOTA, AGPR,
DROPPRx, DROPPRy,
G5SADr, G5SD2, GAPD,
GAPD nadp , GLU5K,
GLUDxi, GLUDyi,
IPDDI3x, IPDDI3y,
MDH, MDHi2, MDHy,
ORNCD, ORNTAC, P5CRx,
SLDx, SLDxi2, SLDy

13dpg[c] = −0.06378, 25dhpp[c] = −0.00015,
25dthpp[c] = 0.00015, 3spyr[c] = 0.0005603, adp[c] =
0.01638, akg[c] = −0.22, atp[c] = −0.01638, dmpp[c] =
0.002206, f420-2[c] = −0.002206, f420-2h2[c] =
0.002206, g3p[c] = 0.06378, glu-L[c] = 0.2036,
h2o[c] = 0.2364, h[c] = −0.2022, ipdp[c] = −0.002206,
mal-L[c] = −0.1162, nad[c] = 0.007163, nadh[c] =
−0.007163, nadp[c] = 0.195, nadph[c] = −0.195,
nh4[c] = −0.2298, oaa[c] = 0.1162, orn[c] = 0.009791,
pi[c] = 0.08016, pro-L[c] = 0.006592, sl-L[c] =
−0.0005603

156

ADK1, ADK2, ADK3,
ADK4, H4MPTGL atp ,
H4MPTGL gtp , NDPK1,
NDPK5, NDPK9, PPK2,
RNDR2, RNTR2

adp[c] = 0.3672, amp[c] = −0.175, atp[c] = −0.1922,
dgtp[c] = 0.0005867, gdp[c] = −0.01674, glu-L[c] =
−0.0006436, gtp[c] = 0.01616, h2o[c] = 0.0005867,
h4mpt[c] = −0.0006436, h4spt[c] = 0.0006436,
h[c] = 0.0006436, pi[c] = 0.0006436, ppi[c] =
0.0001292, pppi[c] = −0.0001292, trdox[c] = 0.0005867,
trdrd[c] = −0.0005867

28

ADKd, DADK, NDPK8,
RNDR1, RNTR1

atp[c] = −0.0009025, datp[c] = 0.0009025, h2o[c] =
0.0009025, trdox[c] = 0.0009025, trdrd[c] =
−0.0009025

3 ∗

F4D, F4NH, F4RHi, H2td f420-2[c] = 2.534, f420-2h2[c] = −2.534, h2[c] =
−0.7356, h[c] = −5.885, h[e] = 5.885, mphen[c] =
−3.269, mphenh2[c] = 3.269

2

NDPK2, NDPK6, RNDR4,
RNTR4 new

adp[c] = 0.008677, atp[c] = −0.008677, dudp[c] =
0.001489, h2o[c] = 0.001489, trdox[c] = 0.001489,
trdrd[c] = −0.001489, udp[c] = −0.01017, utp[c] =
0.008677

2

TRPS1, TRPS2, TRPS3 3ig3p[c] = −0.001695, g3p[c] = 0.001695, h2o[c] =
0.001695, ser-L[c] = −0.001695, trp-L[c] = 0.001695

2

UMPK, URIDK1 adp[c] = 0.009305, atp[c] = −0.009305, udp[c] =
0.009305, ump[c] = −0.009305

2

∗ metatool looses sometimes one EFM

new This is only a module with thermodynamic constraints.
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A.1.15 Summary on M. tuberculosis iNJ661

Module Exchange flux (right hand side of the module) EFMs

ACACCT, ACGK, ACKr, ACONT,
ACOTA, ADK1, ADK2, ADK3,
ADK4, ADNK1, ADNK3, ADNK4,
AGPR, AICART, AICART2,
ATPS4r, CITLr, CO2t, CYO1a,
CYO1b, CYSTGL, CYTBD,
CYTBD2, DHORD2, DHORD3,
DHORD5, ENO, EX co2(e),
EX h2(e), EX h2co3(e),
EX h2o(e), EX h(e),
EX lac L(e), EX ppa(e),
EX succ(e), FHL, FORMCOAL,
FRD, FRD2, FRD3, FRD5,
FRDO2r, FRDO3r, FTHFL, FUM,
G5SD, G5SD2, GCCa, GCCb,
GCCc, GHMT2, GLU5K, GLUDx,
GLXO1, GLYCL, H2CO3D,
H2CO3TP, H2Ot, H2td, HSDx,
HSDy, HSK, HSST, ICL,
LDH L, L LACD2, L LACD3,
L LACt2r, MALS, MDH, ME1,
MMCD, MME, MMM2r, MTHFC,
MTHFD, MTHFD2, NADH10,
NADH2r, NADH5, NADH9,
NADTRHD, NDPK1, NDPK5,
NDPK9, OCOAT1r, ORNTA,
ORNTAC, OXACOAL, OXCDC,
P5CR, P5CRx, PEPCK re,
PFL, PGCD, PGM, PHTHCLR1,
PHTHCLR2, PPAtr, PPCKr,
PPCSCT, PPK2, PROD2, PSERT,
PSP L, PTAr, PYK, QRr,
SHSL1r, SHSL4r, SUCCt2r,
SUCOAS, THD1, THRD Lr, THRS
new

10fthf[c] = 0.02051, 1pyr5c[c] = −0.007205,
2obut[c] = 0.00458, 3pg[c] = −2.817, aacoa[c] =
−0.0001514, ac[c] = −0.00297, acac[c] =
0.0001514, accoa[c] = 0.4068, adn[c] =
−0.003235, adp[c] = −3.891, aicar[c] =
−0.02263, akg[c] = −0.8243, amp[c] = −0.07882,
aspsa[c] = −0.01356, atp[c] = 3.973, co2[c] =
−0.718, coa[c] = −0.4244, cys-L[c] = −0.001821,
cyst-L[c] = 0.001821, dhor-S[c] = −0.02065,
fprica[c] = 0.02263, fum[c] = −0.03006,
gdp[c] = −0.00956, glu5sa[c] = 0.007205,
glu-L[c] = 0.8108, gly[c] = 0.03803, gtp[c] =
0.00956, h2o[c] = 3.325, h[c] = −9.37, h[e] =
−0.6588, icit[c] = 0.6822, mlthf[c] = 0.006381,
mmcoa-S[c] = 0.01328, nad[c] = 3.831, nadh[c] =
−3.831, nadp[c] = −0.09375, nadph[c] = 0.09375,
nh4[c] = −0.8758, o2[c] = −0.9784, oaa[c] =
0.07757, orn[c] = 0.006286, orot[c] = 0.02065,
pep[c] = 0.01389, pi[c] = −1.265, pro-L[c] =
0.007205, pyr[c] = 0.07894, ser-L[c] = 0.0118,
succ[c] = −0.004519, succoa[c] = 0.004519,
thf[c] = −0.02689, thr-L[c] = 0.007157

≥ 300 ∗

ARI, DCPDPP, DCPDPP2, DCPE,
DCPT, DCPT2

decd tb[c] = −0.002938, decda tb[c] = 0.002938,
h2o[c] = −0.002938, pi[c] = 0.002938, ppi[c] =
0.002938, prpp[c] = −0.002938

2

DCPDPS, DPPS, UDCPDPS,
UDPDPS, UDPDPS2

frdp[c] = −0.0002459, ipdp[c] = −0.001967,
ppi[c] = 0.001967, udcpdp[c] = 0.0002459

3

DESAT16, FACOAL160,
FACOAL161, FAS160, FAS161

amp[c] = 0.0004313, atp[c] = −0.0004313,
co2[c] = 0.02898, coa[c] = 0.02855, h2o[c] =
0.03013, h[c] = −0.08752, hdca[c] = 0.02798,
hdcea[c] = 0.0005711, malcoa[c] = −0.02898,
nadp[c] = 0.05854, nadph[c] = −0.05854, o2[c] =
−0.0005711, pmtcoa[c] = 0.0004313, ppi[c] =
0.0004313, ttdca[c] = −0.02898

2

Continued on next page.
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Module Exchange flux (right hand side of the module) EFMs

DESAT18, FACOAL180,
FACOAL181, FAS180, FAS181

amp[c] = 7.318e − 05, atp[c] = −7.318e − 05,
co2[c] = 0.01147, coa[c] = 0.0114, h2o[c] =
0.01265, h[c] = −0.03501, hdca[c] = −0.01147,
malcoa[c] = −0.01147, nadp[c] = 0.02353,
nadph[c] = −0.02353, o2[c] = −0.0005873,
ocdca[c] = 0.01089, ocdcea[c] = 0.0005141,
odecoa[c] = 7.318e− 05, ppi[c] = 7.318e− 05

3

DMPPS, IPDDI, IPDPS dmpp[c] = 0.0002459, h2mb4p[c] = −0.002704,
h2o[c] = 0.002704, h[c] = −0.002704, ipdp[c] =
0.002459, nad[c] = 0.002704, nadh[c] = −0.002704

3

G16MTM2, G16MTM6, MANAT1,
MANAT2

Ac1PIM1[c] = 8.775e − 05, Ac1PIM2[c] =
0.0002771, PIM1[c] = −0.0007399, PIM2[c] =
0.0003751, coa[c] = 0.0003648, gdp[c] =
0.0006522, gdpmann[c] = −0.0006522, h[c] =
0.0006522, pmtcoa[c] = −0.0003648

2

NDPK2, NDPK6, RNDR4, RNTR4 adp[c] = 0.0211, atp[c] = −0.0211, dudp[c] =
0.0001907, h2o[c] = 0.0001907, trdox[c] =
0.0001907, trdrd[c] = −0.0001907, udp[c] =
−0.02129, utp[c] = 0.0211

2

TRPS1, TRPS2, TRPS3 3ig3p[c] = −0.00105, g3p[c] = 0.00105, h2o[c] =
0.00105, ser-L[c] = −0.00105, trp-L[c] = 0.00105

2

UMPK, URIDK1 adp[c] = 0.016, atp[c] = −0.016, udp[c] = 0.016,
ump[c] = −0.016

2

∗ both tools metatool and the MILP enumeration failed to enumerate all EFMs. We aborted
the MILP computation after the computation of 300 elementary modes.

new This is only a module with thermodynamic constraints.
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A.1.16 Summary on S. aureus iSB619

Module Exchange flux (right hand side of the module) EFMs

AGMT, ARGDC, ARGN,
ORNDC

arg-L[c] = −13.72, co2[c] = 0.001374, h2o[c] =
−13.72, h[c] = −0.001374, orn[c] = 13.71, ptrc[c] =
0.001374, urea[c] = 13.72

2

AKP1, DNMPPA, DNTPPA,
PPA

ahdt[c] = −0.00206, dhnpt[c] = 0.00206, h2o[c] =
−137.9, h[c] = 137.9, pi[c] = 275.9, ppi[c] = −137.9

2

ALAR, ALAt2r,
DALAt2r, EX ala D(e),
EX ala L(e)

ala-D[c] = −29.6, ala-L[c] = 0.4876, h[c] = −29.12,
h[e] = 29.12

2

CAT, CO2t, DKMPPD,
DKMPPD2, EX co2(e),
EX for(e), EX h(e),
FDHr, FORt3, PDH,
PFLr, POX2, PTAr

2kmb[c] = 0.0006868, accoa[c] = 491.9, actp[c] =
−0.1889, co2[c] = −516, coa[c] = −491.9, dkmpp[c] =
−0.0006868, for[c] = 0.5947, h2o[c] = 172.3, h[c] =
−139.9, h[e] = −457.2, nad[c] = −286.4, nadh[c] =
286.4, o2[c] = −86.16, pi[c] = 0.1895, pyr[c] = −491.7

4

CYTD, CYTDK2, CYTK1,
CYTK2, DCMPDA, MEVK1,
MEVK2, MEVK3, MEVK4,
NDPK1, NDPK2, NDPK3,
NDPK5, NDPK6, NDPK7,
NDPK9, RNDR2, RNDR3,
RNDR4, RNTR2, RNTR3,
RNTR4, UMPK, URIDK2r,
URIK1, URIK2, URIK3

5pmev[c] = 0.00206, adp[c] = 210.8, atp[c] = −210.8,
cmp[c] = −83.29, ctp[c] = 83.44, cytd[c] = −0.524,
dcmp[c] = 0.0364, dgdp[c] = 0.04121, dump[c] =
0.05013, gdp[c] = −0.6016, gtp[c] = 0.5604, h2o[c] =
−0.2088, h[c] = 0.1895, mev-R[c] = −0.00206, nh4[c] =
0.3365, trdox[c] = 0.1277, trdrd[c] = −0.1277,
udp[c] = −26.36, ump[c] = −7.938, utp[c] = 34.58

192

D LACt2, EX lac D(e),
EX lac L(e), LDH D,
LDH L, L LACt2r

h[c] = −892.1, h[e] = 446, nad[c] = 446, nadh[c] =
−446, pyr[c] = −446

2

MDH, ME1 rev, PPCK,
PYK

adp[c] = −403.5, atp[c] = 403.5, co2[c] = 55.82,
h[c] = −230.9, mal-L[c] = −228.4, nad[c] = −228.4,
nadh[c] = 228.4, oaa[c] = 172.6, pep[c] = −403.5,
pyr[c] = 459.3

2

NAt3, NAt3 1 h[c] = 372, h[e] = −372, na1[c] = −372, na1[e] = 372 2

NDPK8, RNDR1, RNTR1 adp[c] = −0.1044, atp[c] = 0.05219, dadp[c] = 0.1044,
datp[c] = −0.05219, h2o[c] = 0.05219, trdox[c] =
0.05219, trdrd[c] = −0.05219

2
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A.1.17 Summary on S. cerevisiae iND750 grown on D-glucose

Module Exchange flux (right hand side of the module) EFMs

2DDA7Ptm, 34HPPt2m,
AASAD1, AASAD2, ACGKm,
ACOAH, ACOTAim, ACRNtm,
ADHAPR SC, AGPRim, AHSERL2,
ALDD2y, ASADi, ASPKi,
ASPTA, ASPTAm, ASPt2m,
ATPtm H, CITtam, CITtbm,
CO2tm, CRNCARtm, CRNtim,
CSNAT, CSNATifm, CYSS,
CYSTL, DDPA, DDPAm,
DHAPtm, DHFRi, DHFRim,
DHFtm, DICtm, E4Ptm,
ENO, FDH, FDNG, FRDcm,
FRDm, FTHFL, FUM, FUMm,
G3PD1ir, G3PD1irm,
G3PDm, G5SD, G5SD2, G6PI,
GAT1 SC, GAT2 SC, GCC2am,
GCC2bim, GCC2cm, GCCam,
GCCbim, GCCcm, GHMT2r,
GHMT2rm, GLU5K, GLUDxi,
textttGLUDy, GLUK, GLUt2m,
GLYC3Ptm, GLYCLm, GLYt2m,
H2Otm, HCO3E, HEX1, HEX7,
HSDxi, HSDyi, HSERTA,
ICDHxm, ICDHym, MALtm,
MDH, MDHm, MLTHFtm, MTHFC,
MTHFD, MTHFD2, NADH2 u6cm,
NADH2 u6m, NH4tm, OAAt2m,
ORNTA, ORNTACim, ORNt3m,
PC, PDHcm, PDHm, PGCD, PGI,
PGM, PIt2m, PPND, PPND2,
PSERT, PSP L, PYK, PYRDC,
PYRt2m, SBTD D2, SBTR,
SERATi, SERt2m, SHSL1,
SHSL4r, SUCCtm, SUCD1m,
SUCD2 u6m, SUCD3 u6m,
SUCFUMtm, THFtm, THRA,
THRD L, TYRTA, TYRTAi,
TYRTAm, TYRt2m new

10fthf[c] = 0.02553, 1ag3p SC[c] = 2.404e −
05, 2dda7p[c] = 0.02572, 3pg[c] = −1.428,
L2aadp6sa[c] = 0.02785, L2aadp[c] = −0.02785,
accoa[c] = 0.07685, accoa[m] = 0.127, adp[c] =
−6.283, adp[m] = 5.439, akg[c] = −0.1932,
akg[m] = 0.02785, amp[c] = 0.02785, asp-L[c] =
0.08607, atp[c] = 6.255, atp[m] = −5.439,
co2[c] = 2.417, co2[m] = −0.1022, coa[c] =
−0.07444, coa[m] = −0.127, cys-L[c] = 0.0006423,
dcacoa[c] = −4.808e − 05, ddcacoa[c] =
−0.0001442, dhap[c] = −0.002404, dhf[c] =
−0.0003504, e4p[c] = −0.02572, f6p[c] = 0.8337,
for[c] = −0.0002141, fum[c] = −0.03646,
g6p[c] = 0.1663, glc-D[c] = −1, glu5sa[c] =
0.01603, glu-L[c] = 0.2328, gly[c] = 0.0378,
h2o[c] = 10.26, h2o[m] = −10.24, h2s[c] =
−0.005577, h[c] = −13.98, h[m] = 10.98,
hco3[c] = 0.0651, hcys-L[c] = 0.004934,
hdcoa[c] = −0.0004087, icit[m] = −0.09915,
mlthf[c] = 0.007105, nad[c] = 1.502, nad[m] =
0.02785, nadh[c] = −1.502, nadh[m] = −0.02785,
nadp[c] = −0.1855, nadp[m] = −0.07335,
nadph[c] = 0.1855, nadph[m] = 0.07335, nh4[c] =
−0.4601, nh4[m] = −0.01875, oaa[m] = 0.09915,
ocdycacoa[c] = −0.0002163, odecoa[c] =
−0.0005769, orn[c] = 0.01564, pep[c] = 0.02572,
pi[c] = −5.881, pi[m] = 5.439, pmtcoa[c] =
−0.000649, pphn[c] = −0.009927, ppi[c] =
0.02785, pyr[c] = 0.04189, pyr[m] = 0.128,
q6[m] = −4.846, q6h2[m] = 4.846, ser-L[c] =
0.022, stcoa[c] = −0.0001202, tdcoa[c] =
−0.0002404, thf[c] = −0.03228, thr-L[c] =
0.03738, tyr-L[c] = 0.009927

≥ 300 ∗

ACONT, ACONTm, CITtcm cit[m] = −0.09915, icit[m] = 0.09915 2

Continued on next page.
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A.1. FLUX MODULES

Module Exchange flux (right hand side of the module) EFMs

ADK1, ADK3, ADK4, MEVK1,
MEVK2, MEVK3, MEVK4, NDPK1,
NDPK2, NDPK3, NDPK5, NDPK6,
NDPK9, RNDR2, RNDR4, RNTR2,
RNTR4 new

5pmev[c] = 0.001285, adp[c] = 0.4597, amp[c] =
−0.1018, atp[c] = −0.3579, cdp[c] = 0.002647,
ctp[c] = −0.002647, dgdp[c] = 0.0002336,
dudp[c] = 0.0005839, gdp[c] = −0.09014,
gtp[c] = 0.08991, h2o[c] = 0.0008175, h[c] =
0.001285, mev-R[c] = −0.001285, trdox[c] =
0.0008175, trdrd[c] = −0.0008175, udp[c] =
−0.1681, utp[c] = 0.1675

80

DESAT18, FACOAL180,
FACOAL181, FAS180, FAS181

FACOAL140, FACOAL160,
FACOAL180, FAS160,
FAS160COA, FAS180,
FAS180COA

co2[c] = 0.00654, coa[c] = 0.00654, h2o[c] =
0.00654, h[c] = −0.01962, malcoa[c] = −0.00654,
nadp[c] = 0.01308, nadph[c] = −0.01308,
pmtcoa[c] = 0.002398, stcoa[c] = 0.002071,
tdcoa[c] = −0.004469

5

FBA, FBA3, PFK, PFK 3, TALA adp[c] = 0.7271, atp[c] = −0.7271, dhap[c] =
0.7271, e4p[c] = −0.001171, f6p[c] = −0.7282,
g3p[c] = 0.7282, h[c] = 0.7271, s7p[c] =
0.001171

2

GALT, GALU, UGLT g1p[c] = −0.1632, h[c] = −0.1632, ppi[c] =
0.1632, udpg[c] = 0.1632, utp[c] = −0.1632

2

GBEZ, GLCS2, GLYGS glycogen[c] = 0.05046, h[c] = 0.05046, udp[c] =
0.05046, udpg[c] = −0.05046

2

GK1, GK2, NDPK8, RNDR1,
RNTR1

adp[c] = −0.0001168, atp[c] = −0.0002336,
dadp[c] = 0.0003504, gdp[c] = 0.0002336,
gmp[c] = −0.0002336, h2o[c] = 0.0003504,
trdox[c] = 0.0003504, trdrd[c] = −0.0003504

6

∗ both tools metatool and the MILP enumeration failed to enumerate all EFMs. We aborted
the MILP computation after the computation of 300 elementary modes.

new This is only a module with thermodynamic constraints.
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APPENDIX A. COMPUTATIONAL RESULTS ON FLUX MODULES

A.2 Optimal-Yield Elementary Flux Modes

A.2.1 Elementary Flux Modes of E. coli iJR904 grown on L-Arginine

Only the reactions with variable flux rate are listed:

EFM =

{
{SUCOAS},
{ACCOAL, PPCSCT}

}
×
{
{KAS15},
{ACOATA, KAS14}

}

×


{ADK3, NDPK1, RNTR2},
{ADK1, NDPK1, RNTR2},
{ADK1, ADK3, RNTR2},
{ADK3, NDPK1, NDPK5, RNDR2},
{ADK1, ADK3, NDPK5, RNDR2},
{ADK1, NDPK1, NDPK5, RNDR2}


×
{
{ALARi},
{ALAR}

}
×
{
{ALATAL, VALTA},
{ALATAL, VPAMT}

}

×


{ASPO5, DHORD2, SUCD1i, SUCD4},
{ASPO3, DHORD2, SUCD1i, SUCD4},
{ASPO4, DHORD5, FRD2, SUCD1i, SUCD4},
{ASPO3, DHORD5, FRD2, SUCD1i, SUCD4},
{ASPO5, DHORD5, FRD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FRD2, SUCD1i, SUCD4}



×



{ASPT, ASPTA, FUM, GLUDy, MDH, PPCK, PYK},
{ASPTA, FUM, GLUDy, MDH, ME1, NADTRHD, PPCK},
{ASPTA, FUM, GLUDy, MDH, NADTRHD, PPCK, PYK},
{ASPT, ASPTA, FUM, GLUDy, MDH, ME1, PPCK},
{ASPTA, FUM, GLUDy, MDH, ME2, NADTRHD, PPCK},
{ASPT, ASPTA, FUM, GLUDy, MDH, ME2, PPCK},
{ASPTA, FUM, GLUDy, IDOND, IDOND2, MDH, PPCK, PYK},
{ASPTA, FUM, GLUDy, IDOND, IDOND2, MDH, ME2, PPCK},
{ASPTA, FUM, GLUDy, IDOND, IDOND2, MDH, ME1, PPCK}


×
{
{GALUi},
{GALU}

}
×
{
{NDPK2, RNDR4},
{NDPK2, NDPK6, RNTR4}

}
×
{
{NDPK3, RNTR3},
{NDPK3, NDPK7, RNDR3}

}
×
{
{RNTR1},
{NDPK8, RNDR1}

}
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APPENDIX A. COMPUTATIONAL RESULTS ON FLUX MODULES

A.2.2 Elementary Flux Modes of E. coli iJR904 grown on L-Threonine

The following only lists the reactions with variable flux rate:

EFM =

{
{GLYATi, THRD},
{ACALDi, THRAr}

}
×

{
{SUCOAS},
{ACCOAL, PPCSCT}

}
×

{
{KAS14, KAS15},
{ACOATA, KAS14}

}

×



{ADK3, NDPK1, RNTR2},
{ADK1, NDPK1, RNTR2},
{ADK1, ADK3, RNTR2},
{ADK3, NDPK1, NDPK5, RNDR2},
{ADK1, ADK3, NDPK5, RNDR2},
{ADK1, NDPK1, NDPK5, RNDR2}


×

{
{ALARi},
{ALAR}

}
×

{
{ALATA L, VPAMT},
{ALATA L, VALTA}

}
×

{
{GALUi},
{GALU}

}
×

{
{THRt2r},
{NAt3 1, THRt4}

}
×

{
{NDPK2, RNDR4},
{NDPK2, NDPK6, RNTR4}

}
×

{
{NDPK3, RNTR3},
{NDPK3, NDPK7, RNDR3}

}
×

{
{RNTR1},
{NDPK8, RNDR1}

}

×



{ASPO5, DHORD2, FDH2, GLYCTO2, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH2, GLYCTO2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FDH2, FRD2, GLYCTO2, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH2, FRD2, GLYCTO3, SUCD1i, SUCD4},
{ASPO5, DHORD2, FDH2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD2, FDH2, FRD2, GLYCTO3, SUCD1i, SUCD4},
{ASPO4, ASPO5, DHORD2, FDH3, FRD2, GLYCTO2, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, GLYCTO2, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH2, FRD2, GLYCTO2, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH2, FRD2, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH2, FRD2, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH2, FRD2, GLYCTO2, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FRD2, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH3, FRD2, GLYCTO2, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, GLYCTO2, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH3, FRD2, GLYCTO2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FDH2, FRD2, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH3, FRD2, GLYCTO2, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FDH3, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FDH3, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FDH3, FRD2, GLYCTO2, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH3, FRD2, GLYCTO3, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH3, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH3, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH3, FRD2, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD2, DHORD5, FDH3, FRD2, GLYCTO2, GLYCTO3, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD3, GLYCTO2, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, GLYCTO2, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, GLYCTO2, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD3, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, FRD3, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, FRD3, GLYCTO2, HYD3, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH3, FRD2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH3, FRD2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD2, FDH3, FRD2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, FRD3, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD2, FDH3, FRD2, FRD3, GLYCTO2, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH2, FRD2, FRD3, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO5, DHORD5, FDH2, FRD2, FRD3, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FRD2, FRD3, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD2, FDH3, FRD2, FRD3, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH3, FRD2, FRD3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO4, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO4, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FDH2, FDH3, FRD2, FRD3, GLYCTO3, GLYCTO4, SUCD1i, SUCD4},
{ASPO4, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD2, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO3, DHORD2, DHORD5, FDH3, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, GLYCTO2, GLYCTO3, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD3, GLYCTO2, GLYCTO4, HYD1, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, FRD3, GLYCTO2, HYD3, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, FRD3, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, FRD3, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FDH2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, FRD3, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO5, DHORD2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, FRD3, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD2, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO4, DHORD5, FDH2, FHL, FRD2, FRD3, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FDH2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD1, SUCD1i, SUCD4},
{ASPO3, DHORD5, FDH2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD5, FHL, FRD2, FRD3, GLYCTO4, HYD2, SUCD1i, SUCD4},
{ASPO4, DHORD2, FHL, FRD2, FRD3, GLYCTO2, GLYCTO4, HYD3, SUCD1i, SUCD4},
{ASPO5, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO3, DHORD2, FHL, FRD2, FRD3, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD5, FHL, FRD2, FRD3, GLYCTO2, GLYCTO3, HYD3, SUCD1i, SUCD4},
{ASPO4, DHORD2, DHORD5, FHL, FRD2, FRD3, GLYCTO3, HYD3, SUCD1i, SUCD4}
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Appendix B

Notation

Here I summarize all the notation I use in the thesis:

• R denotes the set of real numbers.

• N denotes the set of natural numbers (excluding 0).

• R∞ := R ∪ {−∞,∞}.

• P denotes the complexity class of problem solvable in polynomial time

• NP denotes the complexity class of problems solvable in non-deterministic poly-
nomial time

• RP denotes the complexity class of problems solvable with a probabilistic algo-
rithm in polynomial time

• vi denotes the i.th element of a vector v.

• vA denotes the vector containing only the elements of the index set A.

• Sij denotes the element at row i and column j of S.

• Si∗ denotes the i.th row of matrix S.

• S∗i denotes the i.th column of matrix S.

• SA denotes the matrix containing only the elements of the index set A ⊂ N2. If
it is clear from the context, A may also be of one dimension and then SA only
contains the columns respectively the rows indexed by A.

• (S|T ) for matrices S, T denotes the horizontal concatenation of S and T .

• ker(S) for a matrix S denotes the null space of S (ker(S) := {x : Sx = 0})

• prA is the linear map v 7→ vA.

• prAP := prA(P ) := {vA : v ∈ P}

• P ×Q := {v : vA ∈ P, vB ∈ Q} for P ⊆ RA, Q ⊆ RB

• ∏i∈I P
Ai := {v : vAi ∈ PAi for all i ∈ I}

• 1 denotes the all ones vector of appropriate size.
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APPENDIX B. NOTATION

• 0A denotes the all zero vector for components A. If the dimension is clear, I also
just write 0.

• X ∈ {−, 0,+}E is called a signed subset of E.

• (X+, X−) with X+ ∩X− = ∅ is another notation of a signed set X ∈ {−, 0,+}E ,
where

X+ = {i ∈ E : Xi = +} and X− = {i ∈ E : Xi = −}.

• X := X+∪̇X− is the support of a signed set (X+, X−).

• sign : RE → {−, 0,+}E is the component wise sign operation, see Definition 2.5.4.

• (X+, X−) ⊆ (Y +, Y −)⇔ X+ ⊆ Y + ∧X− ⊆ Y −.

• supp(v) denotes the support of v.

• A for a A ⊆ Rn denotes the closure of A in the topological sense.

• aff(A) for A ⊆ Rn denotes the affine hull of A

• conv(A) for A ⊆ Rn denotes the convex hull of A

• cone(A) for A ⊆ Rn denotes the conical hull of A

• span(A) for A ⊆ Rn denotes the linear space spanned by A

• 〈G〉 for a digraph G denotes the transitive closure of G

• 〈L〉 for a lattice L denotes the closure of the lattice L

• −r for a (pseudo-)reaction r ∈ R denotes the reversed reaction (Def. 2.1.2)

• r+ := {m ∈M : Smr > 0} for r ∈ R is the set of metabolites produced by r

• r− := {m ∈M : Smr < 0} for r ∈ R is the set of metabolites consumed by r

• r := {m ∈M : Smr 6= 0} for r ∈ R is the set of metabolites involved in r

• ` ∈ RR for given lower and upper bounds `, u us defined by `r = `r, `−r = −ur for
all r ∈ R.

• EFM(P ) denotes the set of elementary modes of the flux space P (Def. 2.4.2)

• N s for a sign-vector s ∈ {−, 0,+}I denotes the subnetwork according to Def. 2.6.5

• 2A for a set A denotes the powerset of A.

• M \ A for a (oriented) matroid M denotes the (oriented) matroid obtained by
deletion of A from M
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• M |A for a (oriented) matroid M denotes the (oriented) matroid obtained by re-
striction of M to A

• r(A) for a set of elements A in a matroid denotes the rank of A

Usual names of variables are:

• R for the set of reactions,

• R for the set of pseudo-reactions (Def. 2.1.2)

• M for the set of metabolites,

• I for the set of internal reactions,

• E := R \ I for the set of exchange reactions,

• S for the stoichiometric matrix,

• C set of circuits (either internal or all),

• C denotes the set of reactions in internal cycles,

• Irrev for the set of irreversible reactions,

• v for the flux vector,

• µ for the potentials,

• µ0 for the equilibrium constants of formation

• ∆µ for the potential differences,

• ∆µ0 for the equilibrium constants of reactions

• c for the cost function (sometimes also concentrations),

• ` for lower bounds,

• u for upper bounds,

• `v for lower bounds on the fluxes,

• uv for upper bounds on the fluxes,

• `µ for lower bounds on the potentials,

• uµ for the upper bounds on the potentials,

• P is a flux space

• F is the steady-state flux space (Def. 6.3.1)
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• T is the thermodynamically constrained flux space (Def. 6.3.1)

• FA for a flux module A is the steady-state flux space with the interface flux of
module A. (Def. 6.3.1)

• TA for a flux module A is the thermodynamically constrained flux space with the
interface flux of module A. (Def. 6.3.1)

• T̃A = prA(T ) (Def. 6.3.1)

• PA for a k-module A is the flux space of the module A.

• P is the set of paths (each consumed metabolite is also produced and vice versa),

• Ps is the set of steady-state paths

• F denotes the set of fundamental circuits

• K denotes the set of strongly connected components

• Mod is a family of modules
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Kurzzusammenfassung

Biologische Experimente sind zeitraubend und teuer. Deshalb werden Computer immer
häufiger benutzt um solche Experimente zu bestimmen, die am ehesten erfolgreich sind
und zu neuen Erkenntnissen führen.

In dieser Arbeit betrachte ich Varianten der Constraint-Basierten Methode Flussbalance-
Analyse. Mittels Nebenbedingungen werden biologisch unrealistische Verhaltensweisen
ausgeschlossen. Viele der Nebenbedingungen (z.B. Flusserhaltung) lassen sich mit linea-
ren Ungleichungen beschreiben, was effiziente Analyse mittels linearer Programmierung
ermöglicht. Thermodynamische Nebenbedingungen sorgen dafür, dass auch energetische
Aspekte berücksichtigt werden. Allerdings sind diese Nebenbedingung nicht linear und
induzieren zudem oft einen nicht abgeschlossenen Lösungsraum.

In dieser Arbeit zeige ich, dass diese nicht-Linearität der thermodynamischen Nebenbe-
dingungen häufig zu NP-schweren Problemen führt, was sich z.B. auf die Verlässlichkeit
von Samplingmethoden auswirkt. Aber ich diskutiere auch Lösungsansätze, wie dennoch
in der Praxis Optimierungsprobleme und qualitative Analysemethoden, wie Flusskopp-
lungsanalse, mit thermodynamischen Nebenbedingungen effizient gelöst werden können.
Anwendung finden diese Erkenntnisse in der Analyse des Wachstum der Grünalge C.
reinhardtii, wo ich eine Methode zum Lösen von bilevel-Optimierungsproblemen mit
thermodynamischen Nebenbedingungen entwickle.

Ein weiteres Gebiet meiner Arbeit umfassen Flussmodule. Inspiriert von einer Arbeit
von Kelk et al. gebe ich eine mathematische Definition von Flussmodul und zeige dass
die Definition die erwünschten Eigenschaften erfüllt. Die Definition erlaubt mir auch
mehrere Zerlegungsätze zu zeigen, die die Analyse metabolischer Netzwerke vereinfachen,
und Module effizient mittels Matroidtheorie zu finden. Mit der Definition von k-Modul
zeige ich auch einen Zerlegungssatz für die Eckenenumeration allgemeiner Polyeder und
nutze hierfür das Konzept der Branchweite in Matroiden.

Mittels Flussmodulen und algorithmischen Ansätzen um auch komplizierte Nebenbe-
dingungen zu integrieren, zeige ich in dieser Arbeit Methoden auf, die die Analyse
metabolischer Netzwerke vereinfachen und beschleunigen. Dadurch können biologische
Erkenntnisse schneller gewonnen werden und bessere Methoden in der Biotechnologie
zur Herstellung von Biotreibstoffen und in der Medizin für Krebstherapien entwickelt
werden.
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