
Dissertation
zur Erlangung des akademischen Grades

des Doktors der Naturwissenschaften

(Dr. rer. nat)

Analysis of Offloading Decision Making
in

Mobile Cloud Computing

eingereicht

am Institut für Informatik

des Fachbereichs Mathematik und Informatik

der Freien Universität Berlin

von

Huaming Wu

Berlin, 2015

Gutachter:

Prof. Dr. Katinka Wolter
Department of Computer Science
Freie Universität Berlin, Germany

Prof. Dr. William J. Knottenbelt
Department of Computing
Imperial College London, United Kingdom

Tag der Disputation: 23. November 2015

Eidesstattliche Erklärung

Ich versichere, dass ich die Doktorarbeit selbständig verfasst, und keine anderen als die angegebenen

Quellen und Hilfsmittel benutzt habe. Die Arbeit hat keiner anderen Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass bei Verwendung von Inhalten aus dem Internet ich diese zu kennzeichnen

und einen Ausdruck mit Angabe des Datums sowie der Internet-Adresse als Anhang der Doktorar-

beit anzugeben habe.

Author’s Declaration

I hereby declare to have written this thesis on my own. I have used no other literature and resources

than the ones referenced. All text passages that are literal or logical copies from other publications

have been marked accordingly. All figures and pictures have been created by me or their sources are

referenced accordingly. This thesis has not been submitted in the same or a similar version to any

other examination board.

Huaming Wu

Berlin, den 2, September 2015

Abstract

Besides lightweight Internet applications, there is an increasing demand from mobile users for

computation-heavy and energy-hungry applications that are being deployed to mobile devices. Run-

ning complex applications on such devices is however challenging due to the strict constraints on

their resources, e.g. limited computational capacity, battery lifetime and network connectivity. Off-

loading computation-intensive parts of mobile applications to a capable cloud server is an effective

way to alleviate a tussle between resource-constrained mobile devices and resource-hungry mobile

applications, and thus boosting the device’s performance.

Offloading decisions may involve multiple factors such as resource and component availability,

connectivity intermittence and network capacity. Potential benefits obtained from mobile cloud off-

loading include time and energy saving, which can be achieved by deciding what, where, how and

when to offload correctly. Unlike previous works that only focus on some specific issues in the

offloading process, our time- and energy-aware offloading decision process is based on multiple

perspectives. For instance, what defines the name of the candidate tasks to be offloaded through

application partitioning; where describes the type of surrogate and choosing the appropriate off-

loading target (e.g. local, cloudlet and cloud) in which the application has to be offloaded; how

introduces offloading plans that enable the device to schedule offloading operations; when considers

the offloading conditions and dynamic changes of context, since sometimes offloading may not be

worthwhile at all.

This work covers both the theoretical and practical sides of offloading decision making. Mathe-

matical and queueing models are applied and evaluated by numerical simulations and real world

experiments. Specifically, the contributions of this thesis can be summarized as follows:

• Studying how to effectively and dynamically partition a given application into local and re-

mote parts while keeping the total cost as small as possible.

• Proposing static and dynamic methods based on multi-criteria decision making, in order to

find out what resource is the most appropriate one for offloading.

i

• Comparing different offloading operations of a mobile terminal equipped with multiple radio

access technologies (e.g. 3G, LTE, Bluetooth, WLAN) and determining how to leverage the

complementary strength of WLAN and cellular networks by choosing heterogeneous wireless

interfaces for offloading.

• Exploring the energy-delay tradeoffs for different types of applications (e.g. delay-tolerant

and delay-sensitive applications) based on some combined metrics.

ii

Zusammenfassung

Neben leichtgewichtigen Internetanwendungen verwenden Besitzer mobiler Geräte immer stärker

berechnungsintensive und energiehungrige Programme, die dafür nutzbar gemacht werden. Solche

Anwendungen auf mobilen Geräten laufen zu lassen, erweist sich allerdings als schwierig, da sie

in Bezug auf ihre Ressourcen stark limitiert sind: Sie verfügen über eine geringere Rechenleistung,

eine begrenzte Akkulaufzeit und über eine schlechtere Netzanbindung. Um trotzdem komplexe An-

wendungen auf mobilen Geräten laufen zu lassen, können deren berechnungsintensive Anteile auf

einen performanten Cloud-Server ausgelagert werden (Computation Offloading). Dadurch können

die Probleme durch ressourcenfordernde Anwendungen auf ressourcenbeschränkten mobilen Gerä-

ten drastisch gemildert und somit die Leistung dieser Geräte gesteigert werden.

Offloading-Entscheidungen werden aufgrund diverser Faktoren getroffen: So werden unter an-

derem die Verfügbarkeit von Ressourcen und Komponenten, Verbindungsschwankungen und die

Netzwerkauslastung berücksichtigt. Vorteile der Verwendung von Offloading sind reduzierte An-

wendungslaufzeiten und ein geringerer Energieverbrauch des mobilen Gerätes. Um dies zu errei-

chen, werden korrekte Antworten für folgende Fragestellungen benötigt: Was wird was, wohin,

wie und wann ausgelagert. Im Gegensatz zu vorherigen Arbeiten, die sich nur auf eine dieser Fra-

gen des Offloading-Prozesses konzentriert haben, beruht unser Zeit und Strom berücksichtigender

Offloading-Entscheidungsprozess auf mehreren dieser Aspekte. Was bestimmt mithilfe von Anwen-

dungspartitionierung die auszulagernden Anwendungsteile; wohin beschreibt den Ort, wohin ein

Anwendungsteil ausgelagert und ausgeführt wird (z.B.: mobiles Gerät, Cloudlet oder Cloud); wie

erlaubt es dem mobilen Gerät, auszuführende Offloading-Operationen in ihrer Reihenfolge zu be-

stimmen (Offloading-Pläne); wann berücksichtigt die kontinuierlichen Veränderungen der Umge-

bung, da Offloading sich unter bestimmten Bedingungen nicht lohnt.

Diese Arbeit beschäftigt sich sowohl mit der theoretischen als auch mit der praktischen Seite

der Offloading-Entscheidungsfindung. Zur Anwendung kommen mathematische Modelle und War-

teschlangenmodelle, die durch numerische Simulationen und reale Experimente evaluiert werden.

iii

Genauer können die Beiträge dieser Arbeit wie folgt zusammengefasst werden:

• Erforschung einer Methode, die eine gegebene Anwendung effektiv und dynamisch in lokal

und remote berechnete Anteile partitioniert, während die totalen Kosten dabei so gering wie

möglich bleiben.

• Entwicklung statischer und dynamischer Methoden, die mithilfe von Multikriterien-Entsc-

heidungsfindung diejenige Ressource bestimmen, die sich am besten für Offloading eignet.

• Vergleich verschiedener Offloading-Operationen bei einem mobilen Gerät mit Zugriff auf

mehrere Funk-Technologien (z.B.: 3G, LTE, Bluetooth, WLAN) und Ermittlung, wie die

ergänzenden Stärken von WLAN und Mobilfunknetzen durch Nutzung heterogener Funk-

Schnittstellen für Offloading nutzbar gemacht werden können.

• Untersuchung, inwiefern sich der Konflikt zwischen Energieeinsparung und Reduzierung Off-

loading-bedingter Verzögerung bei verschiedenen Anwendungsarten (z.B.: verzögerungstole-

rante und -sensitive Anwendungen) auswirkt. Dazu werden kombinierte Metriken verwendet.

iv

Acknowledgements

My study is under the financial support by China Scholarship Council (CSC) and has been carried

out at Computer Systems & Telematics (CST) group at Freie Universität Berlin, Germany. I am very

thankful to CSC and CST for providing me with such a valuable learning opportunity. I would like

to express my sincere gratitude to everyone who contributed to the completion of this thesis. All of

you made my study in Berlin so wonderful!

First and foremost, I would like to thank my supervisor Prof. Dr. Katinka Wolter for her invaluable

advice and encouragement. She has been more than a perfect supervisor during my life at FUB, she

has been an advisor, mentor, and a good friend. During my early days at FUB, she made it much

easier for me to adjust to a new culture. She provided me with much guidance and valuable feedback

in the research leading to this dissertation. Without her advice and patience, this thesis would have

never been possible. I really appreciate everything she has done for me.

I would like to take this opportunity to thank my colleagues for creating an ever nice and friendly

working atmosphere in the institute. I enjoyed working with them very much. I wish to thank Yubin

Zhao and Yuan Yang, who were an inexhaustible source of inspiration and helped whenever I was

in need. Without their countless discussions I had certainly been stuck in blind alleys several times.

Thanks to my Chinese colleagues Yi Sun, Qiushi Wang, Tianhui Meng, Jialu Hu, Chenxu Pan

and Zhihao Shang for their help and memorable time. I earned a solid friendship. I also would like

to thank Prof. Dr.-Ing. Jochen Schiller, Prof. Dr. Marcel Kyas, Prof. Dr. Mesut Güneş, Dr. Philipp

Reinecke, Dr. Matthew Orlinski, Norman Dziengel, Stephanie Bahe, Matthias Wählisch, Alexandra

Danilkina, Dr. Emmanuel Baccelli, Oliver Hahm, Martin Seiffert, Stephan Adler and all the mem-

bers of CST for their kindly daily help and for sharing with me their PhD study experience, which

makes me quickly get involved into the life of German research.

Last but not least, I am very grateful for the love, support and patience of my parents, who have

dedicated their entire life for my education.

v

vi

Contents

Abstract i

Acknowledgement v

1 Introduction 1
1.1 Problem Statement . 1

1.2 Main Challenges and Research Questions . 2

1.3 Contribution of this Dissertation . 4

1.4 Thesis Structure . 6

2 Aspects of Mobile Cloud Offloading 7
2.1 The Context of Mobile Cloud Offloading . 7

2.1.1 Generic Offloading System . 7

2.1.2 Classification of Applications . 9

2.1.3 Heterogeneous Wireless Environments 10

2.2 Offloading Process . 11

2.2.1 Profiling . 12

2.2.2 Metrics . 15

2.2.3 Partitioning . 18

2.2.4 Offloading Decision Making . 19

2.3 Related Work . 20

2.3.1 Time Saving . 20

2.3.2 Energy Saving . 22

2.3.3 Time and Energy Combined Saving . 23

3 Offloading Decision Making: What to Offload 25

vii

3.1 Partitioning Problems . 25

3.1.1 Partitioning Process . 26

3.1.2 Classification of Application Tasks . 27

3.2 Partitioning Models . 28

3.2.1 Classification of Topologies . 28

3.2.2 Construction of Weighted Consumption Graph 29

3.2.3 Cost Models . 32

3.3 Partitioning Algorithm for Offloading . 35

3.3.1 Steps . 35

3.3.2 Algorithmic Process . 36

3.3.3 Computational Complexity . 40

3.3.4 Case Study . 41

3.4 Evaluation of the Partitioning Algorithm . 43

3.4.1 Setup . 43

3.4.2 Evaluation in Computational Complexity 44

3.4.3 Evaluation in Dynamic Conditions . 45

3.5 Summary . 50

4 Offloading Decision Making: Where to Offload 51
4.1 Multi-Criteria Decision Making in Cloud Selection 52

4.1.1 Problem Formulation . 52

4.1.2 Steps of Cloud Service Selection . 54

4.1.3 Methods of AHP and Fuzzy TOPSIS . 55

4.2 Energy-Efficient Offloading Decisions . 61

4.2.1 Mobile Cloud Offloading Services . 62

4.2.2 Mathematical Model . 66

4.2.3 Lyapunov-based Algorithm . 71

4.2.4 LARAC-based Algorithm . 74

4.2.5 Simulation and Results . 75

4.3 Performance Analysis of Offloading Systems . 81

4.3.1 Offloading Systems with Failures . 81

4.3.2 Analytical Evaluation . 85

4.4 Summary . 88

5 Offloading Decision Making: How to Offload 89

viii

5.1 The Queueing Model . 90

5.2 Offloading Policies . 91

5.2.1 Model and Problem Formulation . 92

5.2.2 Static Offloading Policy . 94

5.2.3 Dynamic Offloading Policy . 97

5.2.4 Numerical Examples . 101

5.3 Offloading Assignment Models . 105

5.3.1 Problem Formulation . 106

5.3.2 Uninterrupted Offloading Strategy . 109

5.3.3 Interrupted Offloading Strategy . 114

5.3.4 Generalised Offloading Strategies . 116

5.3.5 Numerical Examples . 119

5.4 Summary . 122

6 Offloading Decision Making: When to Offload 123
6.1 Tradeoff Analysis . 124

6.1.1 Time and Energy Tradeoffs . 124

6.1.2 Computation and Communication Tradeoffs 127

6.2 Dynamic Transmission Scheduling . 128

6.2.1 Adaptive Link Selection . 130

6.2.2 Lyapunov-based Link Selection . 132

6.2.3 Transmission Schedulers . 137

6.2.4 Simulation Results . 143

6.3 Delayed Offloading Model . 146

6.3.1 Partial Offloading Model . 147

6.3.2 Full Offloading Model . 153

6.3.3 Analytical Evaluation . 157

6.4 Summary . 160

7 Concluding Remarks 161
7.1 Conclusions . 161

7.2 Suggestions . 162

Bibliography 163

ix

List of Figures 175

List of Tables 179

Glossary 181

List of Publications 183

About the Author 185

x

Chapter 1

Introduction

1.1 Problem Statement

Mobile devices, such as smartphones, smartwatches, tablets and notebooks, are restricted by their

battery lifetime, computational and storage capacity [44]. These constraints prevent mobile devices

from performing complicated tasks and widely running content-rich or computation-intensive mo-

bile applications. This is not just a temporary limitation of current mobile hardware technology, but

is intrinsic to mobility [105].

Battery life is the top concern of mobile users. An investigation1 engaged by thousands of users

around the world indicated that “over 75 percent of respondents said better battery life is the main

feature they want from a future converged device”. Longer battery life is more important than all

other features, including cameras or storage. Mobile devices are getting advanced in terms of pro-

cessing speed, sharper screen and more sensors which lead to higher energy consumption. Smart-

phones are no longer used only for voice communication but are more and more frequently used

for watching videos, web surfing, interactive gaming, augmented reality and other purposes which

consume huge power and seriously shorten the smartphones’ battery life as a result. Further, these

applications are too computation intensive to be executed on a mobile system. Even though battery

technology has been steadily improving, it is not able to keep up with the rapid growth of power

consumption of the mobile systems [106].

Response time is another primary constraint for mobile systems. Mobile applications (e.g. face

recognition, speech and object recognition, interactive games and mobile augmented reality) are

becoming increasingly intensive and sophisticated that require ever increasing amounts of compu-
1Battery life concerns mobile users. http://edition.cnn.com/2005/TECH/ptech/09/22/phone.

study/

1

http://edition.cnn.com/2005/TECH/ptech/09/22/phone.study/
http://edition.cnn.com/2005/TECH/ptech/09/22/phone.study/

CHAPTER 1. INTRODUCTION

tational capabilities [57]. Response time is important because most of these mobile applications are

usually operated in real-time and user-interactive [70]. It may take a long time to obtain the results

due to the limited processing speed of the mobile systems.

Cloud computing is becoming increasingly popular these days due to its features like elasticity,

scalability, low cost and so on [35]. Mobile cloud computing (MCC), which combines the strength

of cloud computing with the convenience of mobile terminals, is emerging as a new computing

paradigm that aims to augment computational capabilities of mobile devices, taking advantage of

the abundant resources hosted by clouds. It refers to an infrastructure where both the data storage

and processing happen outside of mobile devices [28]. Mobile users can access the applications,

data, and cloud services from anywhere at any time through the internet using a thin mobile client

or a web browser, etc.

Along with the maturity of mobile cloud computing, mobile cloud offloading (MCO) is becom-

ing a promising method to reduce execution time and extend battery life of mobile devices [71].

Its main idea is to augment execution through migrating heavy computation from mobile devices to

resourceful cloud servers and then receive the results from them via wireless networks. Offloading

is an effective way to overcome the resources and functionalities constraints of the mobile devices

since it can release them from intensive processing and increase performance of the mobile appli-

cations, in terms of response time [31]. Offloading brings many potential benefits, such as energy

saving, performance improvement, reliability improvement, ease for the software developers and

better exploitation of contextual information [17].

1.2 Main Challenges and Research Questions

While offloading has been widely considered for saving energy and time, it still faces many chal-

lenges due to heterogeneous wireless environments, different applications and resources, which may

significantly impede the improvement of service quality [31]. According to Fig. 1.1, offloading de-

cisions in mobile cloud computing may involve multiple factors as follows:

• Resource: resource heterogeneity between mobile devices and available cloud services is

a challenge for offloading. A mobile client can be thin (no computation on the offloading

task) or thick (doing computation on tasks before offloading). It can opt for offloading when

its available resource is not adequate either to execute the tasks or to achieve the desired

performance (e.g. short execution time and/or low battery energy requirements). There are

a variety of cloud resources that can be selected, a mobile device can offload its application

either to a remote cloud or a nearby cloudlet [105], which is a cluster of multi-core computers

2

1.2. MAIN CHALLENGES AND RESEARCH QUESTIONS

Resource

What to
Offload

Component Intermittence Data

Where to
Offload

How to
Offload

When to
Offload

Time- and Energy-Aware
Offloading Decisions

One

Partial

Thin client

Never

Sometimes

Always

No

Partial

Full

Local

Cloudlet

Cloud

Target

Challenges

Criteria

Decisions

Figure 1.1: Structure of this dissertation

located at one-hop latency accessible through a WLAN hotspot. Mobile devices can discover

unknown surrogates and automatically establish service connection using a service discovery

technique [84].

• Component: an application can consist of several components, and some should be uncondi-

tionally processed locally on the mobile device while others are flexible that can be processed

either locally or remotely in a cloud. Since offloading a whole application to the cloud is

not always possible or effective, a decision of which portion of the application should be off-

loaded and where to place the execution (locally or remotely) should be made based on either

the minimum response time or the minimum energy consumption.

• Intermittence: mobile users use heterogeneous wireless interfaces to access the cloud service

and offload tasks. Different types of networks usually have different bandwidth and network

latency. For example, tasks that require low response time should not be offloaded using

high latency wireless networks; data-intensive tasks should not be offloaded using low-rate

networks. Intermittent connectivity issues may exist due to heterogeneous wireless environ-

ments, device mobility and cloud resource availability [56]. Unstable connectivity of mobile

networks can have a great impact on the offloading decisions [25]. High latency and energy

3

CHAPTER 1. INTRODUCTION

consumption can be caused by the intermittent nature of wireless networks, which makes ex-

ecuting applications locally more advantageous in certain circumstances [12]. If a mobile

device moves outside the network coverage area, then offloading will be interrupted until the

device arrives at a covered area again.

• Data: the amount of data for an offloading task includes: (i) the size of the task’s code and

input data when initially the task is offloaded for remote execution, (ii) the amount of code

offloading when native and remote modules communicate during remote execution, and (iii)

the amount of output data generated from remote execution of the task [84]. Data transfers

will incur additional communication costs, which could be critical for data intensive tasks that

might not benefit from offloading. For example, remote execution may reduce the execution

time of a task, however, data transfer during remote execution may consume more energy

than during local execution. Therefore, offloading decisions must include: how to effectively

transmit data and when to offload data from mobile devices to cloud servers in order to save

time and energy.

1.3 Contribution of this Dissertation

Response time and energy consumption are two primary aspects for mobile systems that must be

considered when making offloading decisions. The performance of an offloaded task is judged based

on the goals set by the user. Accordingly, we consider three objectives as follows:

• Shorten response time: from the perspective of a mobile device, response time is defined as

the duration between sending the application to the cloud and receiving the results back from

it. Reducing the response time is becoming increasingly important, especially for computation-

intensive mobile applications. When the amount of computation is very large, it will take such

a long time to get the result that it fails to meet the user’s need, and thus the application should

be offloaded to the cloud, in order to save time and improve performance. Therefore, we take

decisions to offload only if response time will reduce no matter the impact on energy con-

sumption.

• Reduce energy consumption: the energy spent on a mobile device during the offloading

period, is another primary aspect that must be considered. We aim to optimize the energy

consumption of a mobile device by estimating and evaluating the tradeoff between the energy

consumed by local processing versus offloading the application for remote execution [46]. In

this situation, offloading is applied only if energy consumption is expected to reduce no matter

the expected impact on response time.

4

1.3. CONTRIBUTION OF THIS DISSERTATION

• Achieve combination of the above: both energy and time saving are crucial design targets.

We do offloading only if both the response time and energy consumption are expected to

improve [58]. It is possible that achieving one offloading goal may affect the other goal, e.g.

executing a task on a service node might decrease the response time of the task, however, it

might not be energy-efficient. We study the tradeoff between the mean energy consumption

and mean response time, which is a non-trivial multi-objective optimization problem. For

example, sometimes a short remote execution time for a task is more important even though

more energy will be spent due to offloading than for local execution, and vice-versa [84].

According to Fig. 1.1, the major contributions of this work are fourfold:

1) What to offload: by effectively and dynamically partitioning an application into local and

remote parts while keeping the total cost as small as possible, we determine which portions

of the application to run on mobile devices and which portions on cloud servers [119, 124,

128, 134]. We propose an application partitioning algorithm [124], which aims at finding the

optimal partitioning scheme under various cost models in dynamic mobile environments. It

provides a stable low time complexity method and can significantly reduce execution time

and energy consumption by optimally distributing tasks between mobile devices and cloud

servers, and in the meantime, it can well adapt to wireless environment changes.

2) Where to offload: we try to find an optimal cloud service for offloading when considering

multiple criteria simultaneously [127, 129]. An energy-efficient decision making algorithm

based on Lyapunov optimization is proposed in [126] (i.e. to determine whether each appli-

cation component should be run locally, or remotely on a cloud infrastructure, directly or via

a cloudlet under available wireless networks). The algorithm has low complexity and can

significantly reduce the energy consumption while leveraging delay tolerance. Further, we

would like to know how effective and efficient offloading systems are and what factors influ-

ence their performance. With this purpose, we introduce a mathematical model and analyze

offloading systems with and without failures [135].

3) How to offload: we explore the methods of how to deploy offloadable applications in a

more optimal way, by dynamically and automatically determining which application mod-

ules should be deployed on the cloud server and which should execute on the mobile device to

achieve a particular performance target. A queueing model has been proposed to capture the

tradeoff between the energy consumption and the response time based on an additive energy-

performance metric, where static and dynamic offloading polices are analyzed. We propose

two types of offloading models: the uninterrupted and interrupted strategies [132,133], which

are compared based on several metrics [121]. Further, we generalize the offloading models to

5

CHAPTER 1. INTRODUCTION

the scenario with more than two types of networks.

4) When to offload: this is done by exploring the decision whether to offload or not and by

means of which communication interface to use [130] in its effect on different tradeoff metrics

for response time and energy consumption. Through dynamic scheduling and link selection

between the mobile device and the cloud, energy consumption can be minimized by leveraging

delay tolerance. Different transmission schedulers with energy-efficient link selection policies

are proposed and compared [131]. Further, we develop an analytical framework for delayed

offloading systems with reneging (not offload) and service interruptions [125]. Some tasks

are abandoned from the offloading process and executed locally when the deadline expires,

which can be used to predict the average performance and energy consumption.

1.4 Thesis Structure

According to Fig. 1.1, this thesis is structured mainly in four chapters, each one addressing one

objective of offloading decision making. The chapters are organized as follows:

Chapter 2 describes characteristics of mobile cloud offloading, general offloading model and off-

loading process. We survey existing research efforts regarding mobile offloading on time saving,

energy saving, and time and energy combined saving.

Chapter 3 illustrates the issue of what to offload. We construct weighted consumption graphs

according to the estimated computational and communication costs, and further design a partitioning

algorithm for offloading.

In Chapter 4 we focus on where to offload. First we use multi-criteria decision analysis to find the

most suitable resource for offloading. Then a dynamic offloading decision algorithm is proposed to

determine where to offload to. Finally we analyze the performance of offloading systems.

In Chapter 5 we analyze how to perform offloading via wireless local area network (WLAN) or

cellular networks. First we present a general queueing model for offloading where both static and

dynamic offloading polices are analyzed. Then two types of offloading assignment strategies are

proposed and compared. Finally, energy-delay tradeoffs are evaluated by using different metrics.

Chapter 6 shows our efforts on when to offload in heterogeneous wireless environments. First

we analyze the tradeoff (time vs. energy or computation vs. communication) in offloading decision

making. Then transmission schedulers are proposed to minimize the energy consumption. Finally

an analytical framework for delayed offloading with reneging and service interruption is developed.

Chapter 7 concludes this thesis by integrating the current efforts into offloading decision making

in mobile cloud computing. We describe the future directions opened by our work.

6

Chapter 2

Aspects of Mobile Cloud Offloading

In this chapter, we provide a brief introduction to mobile cloud offloading. A general offloading

process is described, which covers multiple aspects such as profiling, metrics, application partition-

ing, and offloading decisions. We focus on time- and energy-aware offloading decision making by

dividing into: what, where, how and when to offload. Existing work on energy and/or time saving is

investigated.

2.1 The Context of Mobile Cloud Offloading

In this section we provide an elementary material on offloading by describing a generic offloading

system. Throughout the section, we refer to the most important aspects that lead to offloading for

mobile devices: different types of mobile applications, mobile characteristics like heterogeneous

wireless environments.

2.1.1 Generic Offloading System

The emergence of cloud computing allows to solve a number of problems affecting mobile com-

puting, since the cloud can be seen as a system characterized by unlimited resources that can be

accessed anytime and anywhere in the world. A large number of cloud infrastructures are appear-

ing these days for data storage and processing, e.g. Amazon EC2 [5], Apple iCloud [8], Microsoft

Windows Azure [81], and Google App Engine [41]. Such systems use proprietary cloud platforms

to provide different kinds of services.

The convergence of mobile and cloud computing has been studied for a number of years and is

still a hot topic, because of the dynamics in mobile computing and the challenges that continue to

7

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

arise [3]. Cloud offloading is one of the emerging trends in distributed computing involving mobile

devices. Figure 2.1 illustrates a generic mobile cloud offloading system which is organized as a two-

or three-level hierarchy:

iCloud

4G LTE

Celular
Network WiFi AP3G

WiFi AP

Cloudlet Cloudlet

Figure 2.1: A generic mobile cloud offloading system

• Two-Level Offloading: mobile devices have limited computational capacity and battery life,

heavy multimedia and signal processing are unable to run on them [87]. Rather than running

applications locally and directly requesting data from content providers, a mobile device can

offload parts of its workload to a powerful cloud server via one or more communication net-

works, taking advantage of the abundant cloud resources to help gather, store, and process

data. This offloading scheme critically depends on a reliable end-to-end communication and

on the availability of the cloud [107]. In addition, it suffers from high network access latency

and low network bandwidth. Access to the cloud is usually influenced by uncontrollable fac-

tors, such as the instability and intermittency of wireless networks.

• Three-Level Offloading: rather than relying on a remote cloud, the resource poverty of a

mobile device can be addressed by using a nearby resource-rich cloudlet via a WLAN hotspot

to decrease latency and lower battery consumption. A cloudlet is viewed as a trusted, resource-

rich computer or cluster of computers that is well-connected to the internet and is available

8

2.1. THE CONTEXT OF MOBILE CLOUD OFFLOADING

for use by nearby mobile devices [105]. Therefore, the application task is first offloaded

to the cloudlet, and then onto the remote cloud through a stable internet connection. This

architecture reduces latency by using a single-hop network and potentially saves battery by

using WiFi or short-range radio instead of broadband wireless which typically consumes more

energy [23]. Besides, loss or destruction of a cloudlet is not catastrophic since it only contains

soft state such as cache copies of data or code that is also available elsewhere.

Mobile users are easily subject to dynamically changing network conditions due to their mobility,

which makes it hard to make good offloading decisions in mobile environments [65]. Mobile net-

work environments have a great influence on the performance of offloading systems. For example, if

a mobile device has a stable network connectivity and plenty of network bandwidth, then offloading

will result in better performance in terms of response time. Thus, taking a high-quality offloading

decision requires a good understanding of network conditions. Also, near-future network conditions

should be taken into account [65].

2.1.2 Classification of Applications

Different types of applications usually give different relative importance to both factors of response

time and energy consumption. There exists a fundamental tradeoff between the mean energy con-

sumption and mean response time for different applications [103, 114].

• Delay-Tolerant Applications: many mobile applications (e.g. iCloud, Dropbox and participa-

tory sensing) deal with video, audio, sensor data, or access large databases on the Internet,

which are less sensitive to network delays. Participatory sensing applications are a good ex-

ample of data-intensive yet delay-tolerant applications. The collective sampling of sensor data

acquired by a number of sensor nodes creates a body of knowledge on parameters such as per-

sonal resource consumption, dietary habits and urban documentation [103]. Data is uploaded

from a smartphone to a back-end cloud server either through the cellular network or any avail-

able WiFi network. Some of the sensor information is not time-critical and its submission to

the server may be delayed until the device enters an energy-efficient network [19]. Users can

browse or search the obtained archives through a website at the server side. For delay-tolerant

applications, response time is less critical and optimizing energy usage is more relevant.

• Delay-Sensitive Applications: when running delay-sensitive applications (e.g. language trans-

lator, face recognition, video conferencing, vehicular communications) on mobile devices,

mobile users desire a fast response which is comparable to their normal cognitive capabilities.

Thus, for better user experience the response time of cognitive applications should be low.

Task offloading can be exploited to use cognitive applications ubiquitously by executing them

9

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

remotely on computing nodes. For delay-sensitive applications, fast response is a primary

concern. The offloading scheme in which cloud services are available with short network

latencies (e.g. WiFi networks) can serve in a better way by providing low response time.

2.1.3 Heterogeneous Wireless Environments

Mobile devices often have multiple wireless interfaces with varying availability, delay and energy

cost, such as 2G, EDGE, 3G, 4G, LTE and WiFi for data transfer. The difference between WiFi and

cellular networks is as shown in Fig. 2.2.

Cellular WiFi

Delay High Low

Availability High Low

Energy-

Efficiency
Low High

Figure 2.2: Comparison of WiFi and cellular networks

• Data Rate: the achievable data rates for different radio transmissions depend on the environ-

ment and can vary significantly: EDGE supports tens of Kbps to a few hundred Kbps, 3G

supports 2 Mbps peak stationary and 384 Kbps peak mobile bandwidth are becoming widely

used [21], WiFi provides faster connection to an infrastructure network with several Mbps

being common, at orders of magnitude faster speeds than 3G and LTE supports 1 Gbps peak

stationary and 100 Mbps peak mobile bandwidth.

• Availability: cellular networks such as EDGE and 3G, usually have much higher availability

than WiFi, in particular EDGE has very high coverage. There are WiFi hotspots at home,

office, and public places like universities and cafes, however their coverage is limited. LTE

networks can achieve much faster speed than common WiFi routers, but are still not widely

available.

• Energy-Efficiency: the energy usage for transferring a fixed amount of data can differ by an

order of magnitude or more [103]. In general, the WiFi interface is more energy-efficient than

the cellular interface. WiFi consumes less power compared to EDGE which in turn consumes

10

2.2. OFFLOADING PROCESS

less power than 3G. While in most situations LTE uses most energy and WiFi the least.

Not only the availability and quality of access points (APs) may vary from place to place, but also

the uplink and downlink bandwidths fluctuate frequently due to multiple factors such as weather,

mobility and building shield [72]. Data transmission in good connectivity consumes much less

energy than that under bad conditions.

2.2 Offloading Process

Offloading
decision makingProfiling Metrics Offloading

Application

Local partition

Remote partition

ClassClassClass

ClassClassClassClassClassClass

ClassClassClass

Partitioning
Remote partition

ClassClassClass

Remote
execution

Cloud
discovery

Minimize
energy

Minimize
storage

Minimize
cost

Maximize
performance

Maximize
security

Maximize
robutness

CPU utilization

Battery level

Speed

Network

!

Transmit

Receive

Cloud SideMobile Side

Data flow

Control flow
Collect flow

Device load

Wireless
Netorks

what

where

when/how

Figure 2.3: System architecture of the offloading service

Figure 2.3 describes a general offloading process [137]. On the mobile side, upon receipt of an

offloading request, resource information such as CPU utilization, battery level, speed and network

bandwidth, are collected by the profiling module. On the basis of the collected information and the

metrics module, the offloading decision module invokes the partitioning module to cut the compos-

ing classes of the application into local partition and remote partition, where the former is executed

locally on the mobile device and the latter will be offloaded to a dedicated cloud server (what to

offload). Then the cloud discovery module is invoked to find an appropriate cloud service for off-

loading (where to offload). The remote partition classes are migrated to the cloud side via wireless

networks by the offloading module for remote execution (how and when to offload). The offloaded

classes can interact with the classes in the local partition. Once completed, the results are sent back

to the mobile side. The main modules are further analyzed in the following subsections.

11

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

2.2.1 Profiling

Profiling is the process of gathering the information required to make offloading decisions. Such

information may consist of the computation and communication costs of the execution units (pro-

gram profiler), the network status (network profiler), and the mobile device specific characteristics

such as energy consumption (energy profiler). Profilers are needed to collect information about the

device and network characteristics, which is a critical part of the partitioning algorithm: the more

accurate and lightweight they are, the more correct decisions can be made, and the lower overhead

is introduced [58]. We will in the following introduce all types of profilers.

Program Profiler

A program profiler (static or dynamic) collects characteristics of applications, such as the execution

time, the memory usage and the size of data.

Static analysis obtains the control flow graph of an application by analyzing the bytecode with

nodes representing objects and edges representing relations between objects. We can get all the

objects and the relations between them based on method invocations by traversing the graph. Con-

structing call graphs by hand and without the help of analysis tools would have cost far more time

and resources. Many tools and frameworks have been developed to generate the call graph, e.g.

Spark [67], Cgc [4], and Soot2.

Dynamic profiling is also adopted to obtain weights of the nodes and edges. Since there is a certain

ratio of execution time to the total bytecode instruction count for Java programs, execution time of

objects can be evaluated by the corresponding bytecode instruction count [14]. Data transmission

between objects include parameters and return values of method invocations. With Java bytecode

rewriting and combined with pretreatment information, we can obtain the execution time for each

object (node weight) and the transmission time for each invocation (edge weight), respectively.

These weights can be dynamically assigned according to the different processing capabilities of the

cloud server and the wireless bandwidth.

Network Profiler

A network profiler collects information about wireless connection status and available bandwidth.

It measures the network characteristics at initialization, and it continuously monitors environmental

changes. Network throughput can be obtained by measuring the time duration when sending a

2Fully implemented in Java http://sable.github.io/soot/, is a framework for analyzing and transforming
Java and Android applications

12

http://sable.github.io/soot/

2.2. OFFLOADING PROCESS

certain amount of data as in [20]. Due to the mobile nature, the status of a wireless connection could

change frequently (e.g. user moves to other location). Fresh information about a wireless connection

is critical for the optimizer to make correct offloading decisions.

The profiler tracks several parameters for the WiFi and 3G interfaces, including the number of

packets transmitted and received per second, and receiving and transmitting data rate [58]. These

measurements enable better estimation of the current network performance being achieved.

We use Speedtest3 to measure the mobile network bandwidth. Actual devices (see Table 2.1)

are applied in mobile cloud environments with various mobile communication networks. Here, we

measure wireless bandwidth statistics under representative scenarios as shown in Table 2.2. Specifi-

cally, during one week in May, 2015, I stayed inside some buildings or randomly walked around our

campus, carrying two smartphones (Xiaomi Redmi 2 and Samsung Galaxy S6) equipped with WiFi

and cellular interfaces.

Table 2.1: Mobile Device Specifications
Device CPU Memory Communication Technology

Method
Quad-core 2.1 GHz WiFi IEEE 802.11g

Xiaomi Red 2 Cortex-A57 1GB RAM 3G HSPAP/HSUPA
4G LTE

Quad-core 1.2 GHz WiFi IEEE 802.11g
Samsung Galaxy S6 Snapdragon 410 3GB RAM 3G HSPAP/HSUPA

4G LTE

Table 2.2: Network Trace Data Acquisition
Scene Place Mobility

Office, Library, Classroom, Lecture Hall,
Indoor (Static) Kitchen, Washing Room, Meeting Room, Low

Student Cafeteria, Laboratory
Outdoor (Dynamic) Walking around the campus Medium

The measured mobile network traces are depicted in Figs. 2.4-2.6. It is found that the band-

widths of both WiFi and cellular networks (3G and LTE) vary considerably over time and are highly

unpredictable. Indoor WiFi, which has a good coverage, is stable and fast. Even in the same sce-

nario, different mobile devices may record different levels of transmission speeds for example, the
3A free connection analysis tool, which shows real-time download and upload graphs, stores results both locally and

on the Internet for sharing, http://www.speedtest.net/

13

http://www.speedtest.net/

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

Samsung S6 has much higher bandwidth than the Xiaomi Redmi 2 in indoor environments. This

is because the two devices consist of different hardware and software. The mobility of users has a

significant impact on the network connection bandwidth quality. Outdoor WiFi experience varying

signal strength and frequent intermittent connectivity make it unavailable from time to time. On

the contrary, cellular networks are much more stable and also provide near-ubiquitous connectivity.

Further, cellular connections can suffer from high latencies or round-trip time (RTT) and slow data

transfers when compared with WiFi.

Counts
0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

5

10

15

20

25

30

35

40

45

Downlink
Uplink

RTT=22.54ms

(a) Xiaomi Redmi 2
Counts

0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

5

10

15

20

25

30

35

40

45

Downlink

UplinkRTT=19.08ms

(b) Samsung Galaxy S6

Figure 2.4: The downlink and uplink bandwidths of WiFi in indoor environments

Counts
0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

1

2

3

4

5

6

7

8

Downlink
Uplink

RTT=29.38ms

(a) Xiaomi Redmi 2
Counts

0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

1

2

3

4

5

6

7

8

Downlink
Uplink

RTT=24.05ms

(b) Samsung Galaxy S6

Figure 2.5: The downlink and uplink bandwidths of WiFi in mobile environments

14

2.2. OFFLOADING PROCESS

Counts
0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

1

2

3

4

5

6

7

8

Downlink
Uplink

RTT=68.62ms

(a) 3G with Samsung Galaxy S6
Counts

0 100 200 300 400 500 600 700 800 900 1000

N
et

w
or

k
B

an
dw

id
th

 (
M

B
/s

)

0

1

2

3

4

5

6

7

8

Downlink
Uplink

RTT=58.04ms

(b) LTE with Samsung Galaxy S6

Figure 2.6: The downlink and uplink bandwidths of cellular networks in mobile environments

Energy Profiler

There are two ways to estimate the energy consumption, namely, software and hardware monitors.

For example, some works [23, 47] used a power meter attached to the smartphone’s battery to build

an energy profile. Power Monitor (e.g. Monsoon monitor) is a device that measures energy con-

sumption when data is transmitted from the mobile device to the cloud server by supplying a certain

level of power to the mobile device. We use PowerTutor 4 to measure the power consumption of the

applications. Although PowerTutor does not give as accurate results as a hardware power monitor

does, the result is still reasonable and does provide some value because it gives the detailed energy

consumption information for each hardware component.

In Fig. 2.7 both energy consumption and transmission time increase in proportion to transferred

file sizes. When the same volume of data was transferred, WiFi has relatively lower energy con-

sumption than 3G. Moreover, the device’s energy consumption via each communication network is

proportional to its data transmission time.

2.2.2 Metrics

The execution cost for a task is a user-defined metric, which could be a task’s execution time, usage

of CPU power, and consumption of battery energy by the task, etc. In this thesis, we investigate

modeling and optimality by considering two parameters: the energy consumption on the mobile

4PowerTutor is an application for Android phones that provides accurate, real-time power consumption estimates for
power-intensive hardware components, http://ziyang.eecs.umich.edu/projects/powertutor/

15

http://ziyang.eecs.umich.edu/projects/powertutor/

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

File size
10KB 100KB 500KB 1MB 5MB

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

20

40

60

T
ra

ns
m

is
si

on
 T

im
e

(s
)

0

20

40

60

 WiFi (Energy)
 3G (Energy)
 WiFi (Time)
 3G (Time)

Figure 2.7: The energy consumption and transmission time when using the Xiaomi Redmi 2

device and the application response time, via various derived metrics.

Energy-Response time Weighted Sum (ERWS)

The ERWS metric is addressed by setting the cost function as the weighted sum of the average

values:

ERWS = ωE[E] + (1− ω)E[T], (2.1)

where E is used for expectation of a random variable, E[T] and E[E] are mean response time and

mean energy consumption, respectively, and ω (ranging between 0 and 1) is a weighting parameter

that represents the relative significance of energy consumption and response time for the mobile

device. To focus on performance, ω should be less than 0.5; to focus on power consumption, ω

should be greater than 0.5. When ω is exactly 0.5, the focus is on both increasing performance and

reducing power consumption.

The ERWS metric has the advantage of being analytically well tractable since the expectation is

additive over time and thus can be optimized via a Markov decision process (MDP) [37]. From

the view of minimization, this metric allows comparing arbitrary offloading policies to the optimal

offloading policy in our work. However, it has the disadvantage of a linear combination of two

metrics on different scales.

16

2.2. OFFLOADING PROCESS

To obtain deeper insights, we compare it to the scheme without offloading:

ERWS = ω · E[E]

E[Elocal]
+ (1− ω) · E[T]

E[Tlocal]
, (2.2)

where E[Tlocal] and E[Elocal] are average local response time and average energy consumption, re-

spectively. If E[E]/E[Elocal] is less than 1, offloading operations will reduce the energy consumption.

Similarly, if E[T]/E[Tlocal] is less than 1, offloading operations will improve the application’s per-

formance [63]. In some special cases performance can be traded for power consumption and vice

versa, and thus the ω parameter can be used to express preferences for different types of applications.

Energy-Response time Product (ERP)

The ERP metric is also widely accepted as a suitable metric to capture energy-performance tradeoffs,

which is defined as:

ERP = E[E] · E[T]. (2.3)

Minimizing the ERP metric can be seen as maximizing the ‘performance-per-joule’, with perfor-

mance being defined as jobs per time unit [37].

The ERP metric does not suffer from comparison of different scales. While the ERWS metric

implies that a reduction in mean response time from 1000 to 999 second is of the same value as a

reduction from 2 to 1 second the ERP implies that a reduction in mean response time from 2 to 1

second is much better than a reduction from 1000 to 999 second, which is indeed a more realistic

view on the actual system [37]. However, since ERP is the product of two mean values, it is a

difficult metric to address analytically.

Energy-Response time Weighted Product (ERWP)

To overcome the disadvantages as aforementioned, we propose a new metric named ERWP, which

combines the strengths of ERWS and ERP. It is defined as:

ERWP = E[E]ω · E[T]1−ω. (2.4)

We can rewrite (2.4) as: ERWP = eω·ln(E[E])+(1−w)·ln(E[T]), which inherits the characteristics

of the ERWS metric that assigns different importance weights to energy consumption and response

time, and has the advantage of being analytically tractable since the logarithmic expectation is ad-

ditive over time. Meanwhile, the mean energy consumption and mean response time have equal

17

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

importance when ω = 0.5, also in (2.4): ERWP =
√
E[E] ∗ E[T], which indicates that the ERWP

metric has the advantages of the ERP metric that is insensitive to difference of scales.

To the best of our knowledge, the ERWP metric has not been treated analytically before. We

obtain tight optimality results by deriving explicit expressions in mobile cloud offloading systems

to capture energy-performance tradeoffs.

2.2.3 Partitioning

Application partitioning plays a critical role in high-performance offloading systems. It involves

splitting the execution of the application between the mobile side and the cloud side so that the

total execution cost is minimized [91]. Through partitioning, a mobile device can benefit most from

offloading. Applications can be partitioned statically during development or dynamically during

execution.

• Static Partitioning: determined beforehand which parts of the application should run locally

and which parts should be offloaded, depending on contextual parameters, such as computa-

tional intensity of each module, size of data and state to exchange, battery level, and delay

constraints [26]. Optimal partitioning for offloading is calculated based on the estimation of

communication and computational costs before the program execution. Static partitioning

applies to a fixed number of partitions. It has the advantage of requiring a low overhead dur-

ing execution, but it works well only if the parameters related to the offloading decisions are

accurately known in advance or predicted well [25].

• Dynamic Partitioning: the requirement of resources for a task may change in its input data

and the user-defined goals (e.g. response time, battery consumption). Also, the availability

of resources may change at the service nodes (available CPU power, memory, file cache, etc.)

and at the wireless network (bandwidth, network latency, etc.) [84]. Thus, optimal partitioning

decisions must be made dynamically at runtime to adapt to different operating conditions.

Given the variability of the wireless channel, dynamic partitioning seems more appropriate,

but it has an associated higher signaling overhead, which must be taken under control. A

dynamic approach to computation offloading consists of establishing a rule to decide which

parts of the computations may be advantageously offloaded, depending on channel conditions,

server state, delay constraints, and so on [26].

18

2.2. OFFLOADING PROCESS

2.2.4 Offloading Decision Making

Benefits obtained from offloading greatly depend on whether it is applied at the right time in the

right way. Offloading decisions can be made in different ways (e.g. what, where, how and when).

What to offload?

Except for typical applications (e.g. chess games, face recognition) that are suitable for offload-

ing, there are many computation tasks that are hard to be classified as “suitable for offloading" or

“suitable for local processing”. Offloading decisions should be made to determine what kinds of

applications are suitable for offloading. A mobile application can be decomposed into a set of fine-

grained tasks, however it is not always necessary or possible to offload all components to the cloud

mainly due to the high communication delay that may be generated or because some tasks must

access local features (sensors, user interface, etc.). Among the sets of partitions offered by the parti-

tioning result, we should judiciously determine what portion of an application is worth offloading to

the cloud and what should be executed locally. A partial offloading strategy selects a subset of tasks

to be offloaded, considering the balance between how much the offloading saves and how much

extra cost is incurred.

Where to offload?

Applications can deploy their components on multiple application processing nodes such as mobile

device, cloudlet and cloud, i.e. there could be multiple offloading destinations and targets [120].

Based on the computational requirements and constraints, offloading decisions should be made on

where to offload:

1) Computation is performed locally on the mobile device.

2) Computation is performed on a nearby cloudlet with data transferred between the mobile

device and the cloudlet, e.g. via Bluetooth.

3) Computation is performed on a remote cloud server with data transferred between a mobile

device and the cloud, e.g. via a cellular network.

How to offload?

Mobile cloud offloading migrates heavy computation from mobile devices to powerful cloud servers

using one or more of possibly several available communication networks. There are several ways to

offload tasks to a dedicated resource, either using a cellular connection (e.g. 2G, 3G or LTE) or via

an intermittently available WLAN hotspot [50]. The wireless bandwidth plays an important role in

19

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

the offloading decision process. A weak wireless link can slow down the communication and raise

power consumption. Therefore, how to offload tasks through different wireless channels to achieve

an overall optimal objective is worth studying.

When to offload?

Offloading is not an always advantageous strategy in that under some circumstances the overhead in

time and energy may turn out to be greater than the offloading saving. One may consider sometimes

executing a program locally and to offload only when available networks seem favorable to the

desired metric. Offloading is worthwhile when the estimated execution time of the task on the

mobile device is greater than the sum of its estimated execution time on the cloud sever plus the

predicted costs of transferring the related data. Offloading is beneficial when large amounts of

computation are needed with relatively small amounts of communication. Therefore, we should

determine when offloading a computational task to the dedicated server is optimal and when, on the

contrary, local execution is more advisable.

2.3 Related Work

The issues of time and energy saving on mobile devices are becoming increasingly critical. For ease

of reference, all related works are summarized in Table 2.3.

2.3.1 Time Saving

Offloading becomes an attractive solution for meeting response time requirements on mobile sys-

tems as applications become increasingly complex [60]. Many research efforts have been devoted

to offloading computation to remote servers in order to shorten execution time.

The offloading inference engine proposed in [44] can adaptively make decisions at runtime, dy-

namically partition an application and offload part of the application execution to a powerful nearby

surrogate. The partitioning algorithm introduced in [144] aims at reducing the response time of tasks

on mobile devices. It finds the offloading and integrating points on a sequence of calls by depth-first

search and a linear time searching scheme, and can achieve low user-perceived latency while largely

reduce the partitioning computation on cloud. Some application partitioning solutions [40,44,59,80]

heavily depend upon programmers and middleware to partition the applications, which limits their

uses.

Satyanarayanan et al. [105] proposed a virtual machine (VM)-based cloudlet in mobile comput-

20

2.3. RELATED WORK

Table 2.3: Comparison of Current Offloading Works
Year Paper Contribution Decision Partition Time Energy Time &Energy

Saving Saving Saving
2001 [68] Partition scheme Static

√ √

2002 [80] Use a distributed platform to offload program Static
√ √

2004 [44] Adaptive offloading for pervasive computing Dynamic
√ √

2007 [92] Performance analysis of offloading systems Dynamic
√

2007 [104] Context-sensitive energy-efficient offloading Static
√

2008 [118] Use bandwidth to make offloading decision Dynamic
√

2009 [40] Enable mobile phones as interfaces to cloud Static
√

2009 [105] Cloudlet-based resource-rich mobile computing Dynamic
√

2010 [21] Dynamic partition between devices and clouds Dynamic
√ √

2010 [23] Fine grained energy-aware code offload Dynamic
√ √

2010 [61] Study energy tradeoffs Static
√

2010 [103] Stable and adaptive link selection algorithm Dynamic
√

2011 [20] Elastic execution between devices and clouds Static
√ √

2012 [58] Dynamic resource allocation and parallel execution Dynamic
√

2012 [59] Mobile augmentation cloud services (MACS) Dynamic
√ √

2012 [48] Present a dynamic offloading algorithm Dynamic
√ √

2012 [144] Propose an efficient code partition algorithm Static
√ √

2013 [86] Efficient multisite offloading (EMSO) algorithm Dynamic
√ √

2013 [107] Energy-efficient data transmission strategy Dynamic
√

2013 [70] Develop an offloading framework (TDM) Dynamic
√

2013 [12] Feasibility of mobile cloud systems in a real setting Dynamic
√

2013 [30] Measure the energy consumption Dynamic
√

2013 [36] Power control for a multi-tier wireless network Dynamic
√

2013 [143] Energy-efficient scheduling policy for offloading Dynamic
√ √

2014 [85] Partition scheme taking the bandwidth as a variable Dynamic
√ √

2014 [69] Energy and performance-aware task scheduling Dynamic
√ √

2014 [78] A queueing analytic model for delayed offloading Dynamic
√ √

2015 [50] A stochastic model for dynamic offloading Dynamic
√

2015 [101] An energy-aware computation offloading system Dynamic
√ √

ing, to which a smartphone connects over a WLAN, with the argument against the use of the cloud

due to higher latency and lower bandwidth available when connecting. In essence, cloudlets make

use of smartphones simply as a thin-client to access local resources, rather than using the smart-

phone’s capabilities directly and offloading only when required.

A stochastic model for dynamic offloading has been developed in [50] using various performance

metrics and also intermittently available access links. The mobile nature of mobile devices and the

unstable connectivity of wireless links affect the predictability of the performance of a pervasive

service running under the control of offloading systems. Ou et al. [92] analyzed the performance of

offloading systems in mobile wireless environments when considering system failure and recovery.

However, they did not consider how to make offloading decisions. Further, a framework using esti-

mated bandwidth to make offloading decisions was investigated in [118], which formulated decision

21

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

problems for computational offloading systems according to the bandwidth prediction between the

local and remote systems. It assumed that the network reliability was not an issue, while in a realistic

scenario, the network may even not be available due to mobility or other reasons.

2.3.2 Energy Saving

Extending battery lifetime is one of the most crucial design objectives of mobile devices because

they are usually equipped with limited battery capacity.

Partitioning technologies were adopted to identify offloaded parts for energy saving [23, 48, 68].

The energy cost of each function of the application was profiled. According to the profiling result,

they constructed a cost graph, in which each node represented a function to be performed, and each

edge indicated the data to be transmitted. Finally, the server parts were executed on remote servers

for reducing energy consumption.

MAUI [23] is a system that enables energy-aware offloading of mobile code to the infrastructure.

Its main aim is to optimize energy consumption of a mobile device, by estimating and trading off

the energy consumed by local processing vs. transmission of code and data for remote execution.

It decides at runtime which methods should be remotely executed, and achieves the best energy

savings possible under the mobile device’s current connectivity constraints.

Jade [97–102] is a system that adds sophisticated energy-aware computation offloading capabili-

ties to Android applications. It monitors device and application status by adapting to workload vari-

ation, communication costs, and energy status, and then automatically decides where code should

be executed. Jade can effectively reduce up to 39% of average power consumption for mobile appli-

cation while improving application performance.

Some works like [30, 61, 143] built energy models to approximate the energy consumption of

offloading. The energy models can be used to construct the aforementioned cost graph or make

offloading decisions. However, they did not provide an effective method to obtain optimal offloading

decisions.

Karthik et al. [61] argued that offloading could potentially save energy for mobile users, but

not all applications were energy-efficient when migrated to the cloud. It depends on whether the

computational cost saved due to offloading outperforms the extra communication cost. A large

amount of communication combined with a small amount of computation should preferably be

performed locally on the mobile device, while a small amount of communication with a large amount

of computation should preferably be executed remotely.

Energy consumption in mobile devices has become an important issue for network selection.

Gribaudo et al. [42] developed a framework based on the Markovian agent formalism, which could

22

2.3. RELATED WORK

model the dynamics of user traffic and the allocation of the network radio resources. A power

control scheme suitable for a multi-tier wireless network was presented in [36]. It maximized the

energy-efficiency of a mobile device transmitting on several communication channels while at the

same time ensuring the required minimum quality of service (QoS).

Some works consider a response time constraint for the application when partitioning application

tasks for execution on mobile devices and cloud servers. This deadline is an important issue for

many interactive applications [122]. To achieve energy saving while satisfying given application

deadline, dynamic offloading algorithms were presented in [48, 143]. They showed low complexity

to solve the offloading decision making problem (i.e. to determine which software components to

execute remotely under mobile network environments).

2.3.3 Time and Energy Combined Saving

Both time and energy saving are crucial for mobile devices. Many research efforts have been devoted

to optimizing the two objectives simultaneously.

CloneCloud [20] used a combination of static analysis and dynamic profiling to partition appli-

cations automatically at a fine granularity while optimizing execution time and energy usage for a

target computation and communication environment. However, this approach only considers lim-

ited input/environmental conditions in the offline pre-processing and needs to be bootstrapped for

every new application built. Dynamic partitioning of applications between weak devices and clouds

was presented in [21,85], to better support applications running on diverse devices in different envi-

ronments. They addressed how dynamic partitioning can address these heterogeneity problems by

taking the bandwidth as a variable.

ThinkAir [58] exploited the concept of smartphone virtualization in the cloud and provided

method-level computation offloading. Advancing on previous work, it focused on the elasticity

and scalability of the cloud and enhanced the power of MCC by parallelizing method execution

using multiple VM images.

Beraldi et al. [12] showed that rather than always offloading the whole application remotely, run-

ning partial components locally can be more advantageous. They proposed a novel generic architec-

ture that can be integrated in any MCC application in order to automate the offloading decision and

improve the application response time while minimizing the overall energy consumed by the mobile

device.

Recently, several groups have worked on optimizing the tradeoff between the energy consump-

tion and response time. Rahmati et al. [104] suggested seamless offloading operation by switching

between several transmission technologies, and examined the tradeoff between energy consumption

23

CHAPTER 2. ASPECTS OF MOBILE CLOUD OFFLOADING

for WiFi search and transmission efficiency when the WiFi network was intermittently available.

Energy-efficient delayed network selection has been suggested in [103,107] to optimize the tradeoff

between energy usage and delay in data transmission by intentionally deferring data transmission

until the device meets an energy-efficient network. Researchers have further suggested the use of

“delayed offloading”: if no WiFi connection is available, (some) traffic can be delayed up to a chosen

deadline, or until WiFi becomes available [78].

24

Chapter 3

Offloading Decision Making: What to
Offload

Since offloading all computation components of an application to the remote cloud is not always

necessary or effective, we should judiciously determine which part of the application should be

deployed on the cloud server and what should be left on the mobile device to achieve a particular

performance target (low response time and/or energy consumption, etc.).

Calculations can naturally be described as graphs in which vertices represent computational costs

and edges reflect communication costs [45]. By partitioning the vertices of a graph, the calculation

can be divided among processors of local mobile devices and remote cloud servers. Graph parti-

tioning algorithms traditionally applied in the context of mobile applications (e.g. [4, 15, 109, 139])

cannot be applied directly to the mobile offloading systems, because they only consider the weights

on the edges of the graph, neglecting the weight of each node. Our research is situated in the context

of resource-constrained mobile devices, in which there are often multi-objective cost functions, such

as minimizing the total response time or energy consumption by offloading partial workloads to a

cloud server. We explore the methods of how to deploy application tasks in a more optimal way, by

dynamically and automatically determining which portion of the application should be offloaded to

the cloud and what should be performed on the mobile device.

3.1 Partitioning Problems

Application partitioning is very important for designing an adaptive, cost-effective, and efficient

offloading system. Some critical issues concerning the partitioning problem include:

25

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

• Weighting: when choosing an application task to offload, we need to scale the weights of

each task regarding its resource utilization, such as memory, processing time, and bandwidth

utilization [91]. The weights can vary for different mobile devices and in different running

environments. Communication overhead is introduced by the remote communication between

a mobile device and a cloud server.

• Real-Time Adaptability: since available network bandwidth varies in wireless environments,

static partitioning algorithms proposed by previous works with a fixed bandwidth assumption

are unsuitable for mobile platforms [66]. The partitioning algorithms should be adaptive to

network and device changes. For example, an optimal partition for a high-bandwidth network

and low-capacity client might not be a good partition for a high-capacity client with a bad net-

work connection. Since the network condition is only measurable at runtime, the partitioning

algorithm should be a real-time online process [144].

• Partitioning Efficiency: making partitioning decisions for simple applications (e.g. an alarm

clock) in real-time is not difficult, but for some complex applications (e.g. speech/face recog-

nition) that contain a large number of methods [144], a highly efficient algorithm is required

to perform real-time partitioning.

3.1.1 Partitioning Process

To solve the above challenges, the workflow of an environment-adaptive application partitioning

process is proposed in Fig. 3.1. It starts with profiling an application that can be split into mul-

tiple tasks, through static analysis and dynamic profiling technology [85]. We then construct a

weighted consumption (refer to response time or energy consumption) graph of the mobile appli-

cation as shown in Fig. 3.3(b). Based on partitioning cost models, an elastic partitioning algorithm

is proposed to make a proper application partitioning. By calling such an algorithm, we can get

preliminary partitioning results for response time or energy optimization. During the application

execution process, if a mobile environment changes, and these changes meet or exceed a certain

threshold, the application graph will be re-partitioned according to the new parameters. Therefore,

it can ultimately realize the condition-aware and environment-adaptive elastic partitioning. Here in

the context of the mobile environment, it includes mobile computing resources inside the device,

such as battery level, CPU speed and memory, but also involves an external mobile environment,

such as network connection status and speed of the cloud server. After partitioning, it then auto-

matically offloads the distributed application components that require remote execution to the cloud

server and performs the rest locally on the mobile device according to the partitioning results.

The problem of whether or not to offload certain parts of an application to the cloud depends on

26

3.1. PARTITIONING PROBLEMS

Partitioning
Result

Partitioning

Partition Cost
Module

Environment
Changed

End

N

Profiling

Application Static
Analysis

Statistical
Analysis

Graph

Offloading

Y

Start

Figure 3.1: Flowchart of an application partitioning process

the following factors: CPU speed of the mobile device, network bandwidth, transmission data size,

and the speed of the cloud server [74]. When considering such factors, we construct a weighted

consumption graph according to the estimated computational and communication cost, and further

derive a new partitioning algorithm designed especially for mobile offloading systems.

3.1.2 Classification of Application Tasks

Different applications emerge in a mobile device according to some process and each consists of

several tasks. Since not all the application tasks are suitable for remote execution, they need to be

weighted and distinguished as:

• Unoffloadable Tasks: some should be unconditionally executed locally on the mobile de-

vice, either because transferring relevant information would take tremendous time and energy

or because these tasks must access local components (e.g. camera, GPS, user interface, ac-

celerometer or other sensors) [23]. Tasks that might cause security issues when executed

on a different place should also not be offloaded (such as e-commerce). Local processing

consumes the battery power of the device, but there are no communication costs or delays.

• Offloadable Tasks: some application components are flexible tasks that can be processed ei-

27

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

ther locally on the processor of the mobile device, or remotely in a cloud infrastructure. Many

tasks fall into this category, and the offloading decision depends on whether the communica-

tion costs outweigh the difference between local and remote costs or not [60].

We do not need to take offloading decisions for unoffloadable components. However, as for off-

loadable ones, since offloading all the application tasks to the remote cloud is not necessary or

effective under all circumstances, it is worth considering what should be executed locally on the

mobile device and what should be offloaded onto the remote cloud for execution based on avail-

able networks, response time or energy consumption. The mobile device has to take an offloading

decision based on the result of a dynamic optimization problem.

3.2 Partitioning Models

In this section, we will illustrate which assumptions are made, how weighted consumption graphs

for different types of applications are constructed and how the optimization problem is defined.

3.2.1 Classification of Topologies

The granularity levels for partitioning computational-intensive mobile application are not limited to

a specific form [73]. Previous work considers application partitioning at different levels of granu-

larity: classes [2], objects [85], methods [23], components [112, 139], and threads [20]. Without

loss of generality, we refer to application tasks in this thesis. Application developers can choose the

appropriate partition granularity according to different applications.

Construction of weighted consumption graphs is critical for application partitioning. A mobile

application can be represented as a list of fine-grained tasks, formulating different topologies as

depicted in Fig. 3.2, where each node reflects an application task, executed either at the mobile side

or offloaded onto the cloud side for further execution.

(a) Only one active node: representing an entire application (without partitioning). Such a topol-

ogy is often adopted by previous full offloading schemes [20, 105, 130], which can also be

viewed as an example of software as a service. In this case, the whole application is migrated

to a remote server involving complete transfer of code and program state to the server [93].

The main drawback of this solution includes inflexibility and coarse granularity.

(b) Linear topology: representing a sequential list of fine-grained tasks. Each task is sequentially

executed, with the output data generated by one task as the input of next one [52].

(c) Loop-based topology: a loop-based application is one in which most of the functionality is

given by iterating an execution loop, such as all the online social applications, in which we

28

3.2. PARTITIONING MODELS

1

(a) One

1 2 3 4 5

(b) Linear

1

34

5 2

(c) Loop

1

2 3

4 65

(d) Tree

1

2

3

4

5

6

Vc

(e) Mesh

Figure 3.2: Task-flow graphs in different topologies

model their processing with a graph that consists of a cycle [89].

(d) Tree-based topology: representing a tree-based hierarchy of tasks [93]. The node at the top of

the tree is the application entry node (i.e. the main module).

(e) Mesh-based topology: representing a lattice-based topology of tasks, e.g. a Java example of

face recognition as depicted in [85].

When compared with the scheme that offloads the whole application (i.e. Fig. 3.2(a)) into the

cloud, an application partitioning scheme is able to achieve a fine granularity for computation off-

loading when partitioning a topological consumption graph between local and remote executions.

Different partitions can lead to different costs, and the total cost incurred due to offloading depends

on multiple factors, such as device platforms, networks, clouds, and workloads. Therefore, the

application may have different optimal partitions for different mobile environments and workloads.

3.2.2 Construction of Weighted Consumption Graph

There are two types of costs in the offloading systems: one is computational cost for running the

application tasks locally or remotely (including memory cost, processing time cost and so on) and

the other is communication cost for the application tasks’ interaction (associated with movement

of data and requisite messages). Even the same task can have different costs on the mobile device

and the cloud in terms of execution time and energy consumption. As cloud servers usually execute

much faster than mobile devices having a powerful configuration, it can save energy and improve

performance when offloading part of the computation to cloud servers [86]. However, when vertices

29

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

are assigned to different sides, the interaction between them leads to extra communication costs.

Therefore, we try to find the optimal assignment of vertices for graph partitioning and computation

offloading by trading off the computational costs with the communication costs.

Call graphs are widely used to describe data dependencies within a computation, where each

vertex represents a task and each edge represents the calling relationship from the caller to the callee.

Figure 3.3(a) shows a consumption graph example consisting of six tasks [40]. The computational

costs are represented by vertices, while the communication costs are expressed by edges. We denote

the dependency of an application’s tasks and their corresponding costs as a directed acyclic graph

G = (V,E), where the set of vertices V = (v1, v2, · · · , vN) denotes N application tasks and an

edge e(vi, vj) ∈ E represents the frequency of invocation and data access between nodes vi and vj ,

where vertices vi and vj are neighbors. Each task vi is characterized by five parameters:

• type: offloadable or unoffloadable task.

• mi: the memory consumption of node vi on a mobile device platform,

• ci: the size of the compiled code of node vi,

• inij : the data size of input from node vi to node vj ,

• outji: the data size of output from node vj to node vi.

We further construct a weighted consumption graph as depicted in Fig. 3.3(b). Each vertex v ∈
V is annotated with two-cost weights: < wlocal(v), wcloud(v) >, where wlocal(v) and wcloud(v)

represent the computational cost of executing the task v locally on the mobile device and remotely

on the cloud, respectively. Each vertex is assigned one of the weights depending on the partitioning

result of the application graph it finally ends up in or the label it is assigned [108]. The edge set

E ⊂ V × V represents the communication cost amongst tasks. The weight of an edge w(e(vi, vj))

is denoted as:

w(e(vi, vj)) =
inij
Bupload

+
outij

Bdownload
, (3.1)

which is the communication cost of transferring the input and return states when the tasks vi and vj
are executed on different sides, and it closely depend on the network bandwidths (upload bandwidth

Bupload and download bandwidth Bdownload) and the transferred data.

A candidate offloading decision is described by one cut in the weighted consumption graph, which

separates the vertices into two disjoint sets, one representing tasks that are executed on the mobile

device and the other implying tasks that are offloaded to the remote server [54]. Hence, taking the

optimal offloading decision is equivalent to partitioning the weighted consumption graph such that

the cost evaluation function is minimized [113].

The red dotted line in Fig. 3.3(b) is one possible partitioning cut, indicating the partitioning of

30

3.2. PARTITIONING MODELS

1

2

3

4

Vc

5

6

in12
out21

in25

in46

Vc

out64

Vc
in34

Vc
out34

out52

in24
out42

in13
out31

Mobile Side

Graph Cut

Cloud Side

m3, c3

m2, c2

m1, c1

m4, c4

m5, c5

m6, c6

m i = memoryi
ci = code_sizei

in45 out54

��unoffloadable

, offloadable

, offloadable, offloadable

, offloadable

, offloadable

type={offloadable, unoffloadable}

(a) Consumption graph

1

2

3

4 6

Vc

Mobile Side Cloud Side

Ecut

< wlocal (v1),w
cloud (v1) >

w(e(v1,v3))

< wlocal (v2),w
cloud (v2) >

w(e(v1,v2))

Vl

Vc

< wlocal (v3),w
cloud (v3) >

< wlocal (v5),w
cloud (v5) >

< wlocal (v4),w
cloud (v4) > < wlocal (v6),w

cloud (v6) >

w(e(v2 ,v4))

w(e(v2 ,v5))

w(e(v4 ,v6))

w(e(v3,v4))

5

w(e(v4 ,v5))

(b) Weighted consumption graph

Figure 3.3: Construction of consumption graph and weighted consumption graph.

computational workload in the application between the mobile device and the cloud. Vl and Vc are

sets of vertices, where Vl is the local set in which tasks are executed locally and Vc is the cloud set

in which tasks are directly offloaded to the cloud. We have Vl ∩ Vc = ∅ and Vl ∪ Vc = V . Further,

Ecut is the edge set in which the graph is cut into two parts.

31

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

3.2.3 Cost Models

Mobile application partitioning aims at finding the optimal partitioning solution that leads to the

minimum execution cost, in order to make the best tradeoff between time/energy savings and trans-

mission costs/delay.

The optimal partitioning decision depends on user requirements/expectations, device information,

network bandwidth, and the application itself. Device information includes the execution speed of

the device and the workloads on it when the application is launched. If the device computes very

slowly and the aim is to reduce execution time, it is better to offload more computation to the

cloud [138]. Network bandwidth affects data transmission for remote execution. If the bandwidth is

very high, the cost in terms of data transmission will be low. In this case, it is better to offload more

computation to the cloud.

The partitioning decision is made based on the cost estimation (computational and communication

costs) before the program execution. On the basis of Fig. 3.3(b), we have:

Ctotal =
∑
v∈V

Iv · wlocal(v)︸ ︷︷ ︸
local

+
∑
v∈V

(1− Iv) · wcloud(v)︸ ︷︷ ︸
remote

+
∑

e(vi,vj)∈E

Ie · w(e(vi, vj))︸ ︷︷ ︸
communication

, (3.2)

where the total cost is the sum of computational costs (local and remote) and communication costs

of cut affected edges.

The cloud server node and the mobile device node must belong to different partitions. One possi-

ble solution for this partitioning problem will give us an arbitrary tuple of partitions from the vertices

set < Vl, Vc > and the cut of edge set Ecut in the following way:

Iv =

{
1, if v ∈ Vl
0, if v ∈ Vc

and Ie =

{
1, if e ∈ Ecut

0, if e /∈ Ecut
. (3.3)

We seek to find an optimal cut in the weighted consumption graph such that some application

tasks are executed on the mobile side and the remaining ones on the cloud side. The optimal cut

maximizes or minimizes an objective function and meanwhile satisfies a mobile device’s resource

constraints. The objective function expresses the general goal of a partition, this may be, for in-

stance, minimize the energy consumption, minimize the amount of exchanged data, or complete the

execution in less than a predefined time. We only actually perform partitioning when it is beneficial.

Not all applications can benefit from partitioning because of application-specific properties. The

cost estimation of running each application task on the mobile device and cloud server is needed.

32

3.2. PARTITIONING MODELS

Offloading makes sense only if the speedup of the cloud server outweighs the extra communication

cost.

The communication time and energy costs for the mobile device will vary according to the amount

of data to be transferred and the wireless network conditions. According to (3.2), the dynamic

execution configuration of an elastic application can be decided based on some different saving

objectives with respect to response time and energy consumption. A task’s offloading goals may

change due to a change in environmental conditions.

Minimum Response Time

The communication cost depends on the size of data transfer and the network bandwidth, while the

computational cost depends on the computation time. If the minimum response time is selected as

the objective function, we can calculate the total time spent due to offloading as:

Ttotal(I) =
∑
v∈V

Iv · T lv︸ ︷︷ ︸
local

+
∑
v∈V

(1− Iv) · T cv︸ ︷︷ ︸
remote

+
∑
e∈E

Ie · T tre︸ ︷︷ ︸
communication

, (3.4)

where T lv = F · T cv is the computation time of task v on the mobile device when it is executed

locally; F is the speedup factor, the ratio of the cloud server’s execution speed compared to that of

the mobile device, since the computation capacity of cloud infrastructure is stronger than that of the

mobile device, we have F > 1; T cv is the computation time of task v on the cloud server when it is

offloaded; T tre = Dtr
e /B is the communication time between the mobile device and the cloud; Dtr

e

is the amount of data that is transmitted and received; B is the current wireless bandwidth.

In this scenario, the offloading decision engine then selects the best partitioning candidate that

minimizes the total response time. The aim of this cost model is to find the optimal application

partitioning: Imin =
{
Iv, Ie|Iv, Ie ∈ {0, 1}

}
, which satisfies Imin = arg minI Ttotal(I). For a

given application and a mobile device, the optimal partitioning result also changes according to

different wireless network bandwidth and speedup factor of the cloud server.

The saved response time in the partitioning scheme compared to the scheme without offloading is

calculated as:

Tsave(I) =
Tlocal − Ttotal(I)

Tlocal
· 100%, (3.5)

where Tlocal =
∑

v∈V T
l
v is the local time cost when all the application tasks are executed locally on

the mobile device.

33

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

Minimum Energy Consumption

If the minimum energy consumption is chosen as the objective function, we can calculate the total

energy consumed due to offloading as:

Etotal(I) =
∑
v∈V

Iv · Elv︸ ︷︷ ︸
local

+
∑
v∈V

(1− Iv) · Eiv︸ ︷︷ ︸
idle

+
∑
e∈E

Ie · Etre︸ ︷︷ ︸
communication

, (3.6)

where Elv = pm · T lv is the energy consumed of task v on the mobile device when it is executed

locally; Eiv = pi · T cv is the energy consumed of task v on the mobile device when it is offloaded to

the cloud; Ee = ptr · T tre is the energy spent on the communication between the mobile device and

the cloud; pm, pi and ptr are the powers of the mobile device for computing, while being idle and

for data transfer, respectively.

In this scenario, the offloading decision engine then selects the best partitioning plan that min-

imizes the partitioning cost of energy. The aim is to find the optimal application partitioning:

Imin =
{
Iv, Ie|Iv, Ie ∈ {0, 1}

}
, which satisfies: Imin = arg minI Etotal(I).

The saved energy when compared to the scheme without offloading is:

Esave(I) =
Elocal − Etotal(I)

Elocal
· 100%, (3.7)

where Elocal =
∑

v∈V E
l
v is the local energy cost when all tasks are executed locally.

Minimum of the Weighted Sum of Time and Energy

If we combine both the response time and energy consumption, by using the ERWS metric in (2.2),

we have the cost model for partitioning as follows:

Wtotal(I) = ω · Ttotal(I)

Tlocal
+ (1− ω) · Etotal(I)

Elocal
, (3.8)

and the saved weighted sum of time and energy in the partitioning scheme compared to the scheme

without offloading is calculated as:

Wsave(I) =

[
ω · Tlocal − Ttotal(I)

Tlocal
+ (1− ω) · Elocal − Etotal(I)

Elocal

]
· 100%, (3.9)

34

3.3. PARTITIONING ALGORITHM FOR OFFLOADING

where Ttotal(I) and Etotal(I) are the response time and energy consumption with a partitioning

solution I , respectively. Since we have already normalization, the units of energy and time chosen

will not affect the tradeoff.

In this scenario, we choose the best partitioning plan that minimizes the partitioning cost of the

weighted sum of time and energy. Its aim is to find the optimal application partitioning: Imin ={
Iv, Ie|Iv, Ie ∈ {0, 1}

}
, while satisfying: Imin = arg minI Wtotal(I).

3.3 Partitioning Algorithm for Offloading

In this section, we propose a new partitioning algorithm for arbitrary topology. It takes a weighted

consumption graph as input which represents an application’s operations/calculations as the nodes

and the communication between them as the edges. Each node has two costs: first is the cost of

performing the operation locally (e.g. on the mobile phone) and second is the cost of performing it

elsewhere (e.g. on the cloud). The weight of the edges is the communication cost to the offloaded

computation. It is assumed that the communication cost between operations in the same location are

negligible. The result contains information about the cost and reports which operations should be

performed locally and which should be offloaded.

3.3.1 Steps

The partitoning algorithm can be divided into two steps as follows:

1) Unoffloadable Vertices Merging: An unoffloadable vertex is the one that has special features

making it unable to be migrated outside of the mobile device and thus is located only in

the unoffloadable partition. Apart from this, we can choose any task to be executed locally

according to our preferences or other reasons. Then all vertices that are not going to be

migrated to the cloud are merged into one that is selected as the source vertex. By ‘merging’,

we mean that these nodes are coalesced into one, whose weight is the sum of the weights of

all merged nodes. Let G represent the original graph after all the unoffloadable vertices are

merged.

2) Coarse Partitioning: The target of this step is to coarsen G to the coarsest graph G|V |. To

coarsen means to merge two nodes and reduce the node count by one. Therefore, the algo-

rithm has |V | − 1 phases. In each phase i (for 1 ≤ i ≤ |V | − 1), the cut value, i.e. the

partitioning cost in a graph Gi = (Vi, Ei) is calculated. Gi+1 arises from Gi by merging

“suitable nodes", where G1 = G. The partitioning results are the minimum cut among all the

cuts in an individual phase i and the corresponding group lists for local and cloud execution.

35

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

Furthermore, in each phase i of the coarse partitioning, we still have five steps:

(a) Start with A={a}, where a is usually an unoffloadable node in Gi.

(b) Iteratively add the vertex to A that is the most tightly connected to A.

(c) Let s, t be the last two vertices (in order) added to A.

(d) The graph cut of the phase i is (Vi\{t}, {t}).
(e) Gi+1 arises from Gi by merging vertices s and t.

3.3.2 Algorithmic Process

The algorithmic process is illustrated as the MinCut function in Algorithm 2, and in each phase i, it

calls the MinCutPhase function as described in Algorithm 3. Since some tasks have to be executed

locally, we need to merge them into one node.

The merging function is used to merge two vertices into one new vertex, which is implemented as

in Algorithm 1. If nodes s, t ∈ V (s 6= t), then node s and node t can be merged as follows:

1) Nodes s and t are chosen.

2) Nodes s and t are replaced by a new node xs,t. All edges that were previously incident to s or

t are now incident to xs,t (except the edge between nodes s and t when they are connected).

3) Multiple edges are resolved by adding edge weights. The weights of the node xs,t are resolved

by adding the weights of s and t.

For example, we can merge nodes 2 and 4 as shown in Fig. 3.4.

1

2

3

4

Vc

<0, 0>

<3, 1>

<6, 2><9, 3>

<12, 4> <15, 5>

4

2

3

8 1

5

4

5

6

(a) Step 1

2, 4

5

Vc

VcVc

<0, 0>

<3, 1>

<6, 2>

<12, 4>

<15, 5>

4

2

1

4

1

3
Vc

<9, 3>

8
6

5

(b) Step 2

1

3

2, 4

5

6

Vc

VcVc

<0, 0>

<6, 2>

<3, 1>

<21, 7>

<15, 5>

8

4

1

5

6

(c) Step 3

Figure 3.4: An example of merging two nodes

The core of this partitioning algorithm is to make it easy to select the next vertex to be added to

the local set A, that is Most Tightly Connected Vertex (MTCV), which is defined as the vertex whose

∆(v) into A is maximized, when ∆(v) = w(e(A, v))− [wlocal(v)− wcloud(v)]. In other words, the

potential benefit from offloading, i.e. [wlocal(v)− wcloud(v)]− w(e(A, v)), is the minimum when v

is offloaded to the cloud, thus task v has the most chance to be executed locally.

36

3.3. PARTITIONING ALGORITHM FOR OFFLOADING

Algorithm 1 The Merging function
//This function takes s and t as vertices in the given graph and merges them into one
Function: G′=Merge(G,w, s, t)

Input: G: the given graph, G = (V,E)
w: the weights of edges and vertices
s, t: two vertices in previous graph that are to be merged

Output: G′: the new graph after merging two vertices

1: xs,t ⇐ s ∪ t
2: for all nodes v ∈ V do
3: if v 6= {s, t} then
4: w(e(xs,t, v)) = w(e(s, v)) + w(e(t, v)) //adding weights of edges
5: //adding weights of nodes
6:

[
wlocal(xs,t), w

cloud(xs,t)
]

=
[
wlocal(s) + wlocal(t), wcloud(s) + wcloud(t)

]
7: E ⇐ E ∪ e(xs,t, v) //adding edges
8: end if
9: E′ ⇐ E\{e(s, v), e(t, v)} //deleting edges

10: end for
11: V ′ ⇐ V \{s, t} ∪ xs,t
12: return G′ = (V ′, E′)

Algorithm 2 The MinCut function
//This function performs an optimal offloading partitioning algorithm
Function: [minCut,MinCutGroupsList] = MinCut(G,w, SourceV ertices)

Input: G: the given graph, G = (V,E)
w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept in one side of the cut

Output: minCut: the minimum sum of weights of edges and vertices among the cut
MinCutGroupsList: two lists of vertices, one local list and one remote list

1: w(minCut)⇐∞
2: for i = 1 : length(SourceV ertices) do
3: //Merge all the source vertices (unoffloadable) into one
4: (G,w) = Merge(G,w, SourceV ertices(1), SourceV ertices(i))
5: end for
6: while |V | > 1 do
7: [cut(A− t, t), s, t] = MinCutPhase(G,w)
8: if w(cut(A− t, t)) < w(minCut) then
9: minCut⇐ cut(A− t, t)

10: end if
11: Merge(G,w, s, t) //Merge the last two vertices (in order) into one
12: end while
13: return minCut and MinCutGroupsList

37

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

Further, we have the total cost from partitioning:

Ccut(A−t,t) = C local −
[
wlocal(t)− wcloud(t)

]
+
∑
v∈A\t

w(e(t, v)), (3.10)

where C local =
∑

v∈V w
local(v) is the total of local costs and the cut value Ccut(A−t,t) is the parti-

tioning cost, wlocal(t)−wcloud(t) is the gain of node t from offloading, and
∑

v∈A\tw(e(t, v)) is the

total of extra communication costs due to offloading.

Theorem 1. cut(A− t, t) is always a minimum s− t cut in the current graph, where s and t are the

last two vertices added in the phase, the s− t cut separates nodes s and t on two different sides.

The run of each MinCutPhase function orders the vertices of the current graph linearly, starting

with a and ending with s and t, according to the order of addition into A. We want to show that

Ccut(A−t,t) ≤ Ccut(H) for any arbitrary s− t cut H .

Lemma 1. We define H as an arbitrary s − t cut, Av as a set of vertices added to A before v, and

Hv as a cut of Av ∪{v} induced by H . For all active vertices v, we have Ccut(Av, v) ≤ Ccut(Hv).

 t sa

At
(a) The minimum s− t cut

 t sa

Ht

(b) An arbitrary s− t cut

Figure 3.5: Illustration for the proof of Lemma 1

Proof. As shown in Fig. 3.5, we use induction on the number of active vertices, k.

1) When k = 1, the claim is true,

2) Assume the inequality holds true up to u, i.e. Ccut(Au, u) ≤ Ccut(Hu),

3) Suppose v is the first active vertex after u, and then we have:

Ccut(Av, v) = Ccut(Au, v) + Ccut(Av −Au, v)

≤ Ccut(Au, u) + Ccut(Av −Au, v) (u is MTCV)

≤ Ccut(Hu) + Ccut(Av −Au, v) (Ccut(Au, u) ≤ Ccut(Hu))

≤ Ccut(Hv).

Since t is always an active vertex with respect to H , according to Lemma 1, we can conclude that

38

3.3. PARTITIONING ALGORITHM FOR OFFLOADING

Algorithm 3 The MinCutPhase function
//This function perform one phase of the partitioning algorithm
Function: [cut(A− t, t), s, t]=MinCutPhase(Gi, w)

Input: Gi: the graph in Phase i, i.e. Gi = (Vi, Ei)
w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept in one side of the cut

Output: s, t: the lasted two vertices that are added to A
cut(A− t, t): the cut between {A− t} and {t} in Phase i

1: a⇐ arbitrary vertex of Gi

2: A⇐ {a}
3: while A 6= Vi do
4: max = −∞
5: vmax = null
6: for v ∈ Vi do
7: if v /∈ A then
8: //Performance gain through offloading the task v to the cloud
9: ∆(v)⇐ w(e(A, v))− [wlocal(v)− wcloud(v)]

10: //Find the vertex that is the most tightly connected to A
11: if max < ∆(v) then
12: max = ∆(v)
13: vmax = v
14: end if
15: end if
16: end for
17: A⇐ A ∪ (vmax)
18: a⇐Merge(G,w, a, vmax)
19: end while
20: t⇐ the last vertex (in order) added to A
21: s⇐ the last second vertex (in order) added to A
22: return cut(A− t, t)

39

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

Ccut(A−t,t) ≤ Ccut(H) which says exactly that the cost of cut(A − t, t) is at most as heavy as the

cost of cut(H). This proves Theorem 1.

3.3.3 Computational Complexity

As the running time of the algorithm MinCut is essentially equal to the accumulated running time of

the |V | − 1 runs of MinCutPhase, which is called on graphs with decreasing number of vertices and

edges, it suffices to show that a single MinCutPhase needs at most O(|V | log |V | + |E|) time. The

computation complexity of the min-cost offloading partitioning (MCOP) algorithm can be noted as

O(|V |2 log |V |+ |V ||E|).

As a comparison, a linear-programming (LP) solver is widely used [20, 23]. The LP solver is

based on branch and bound, which is an algorithm design paradigm for discrete and combinatorial

optimization problems, as well as general real valued problems [117]. The number of its optional so-

lutions grows exponentially with the number of tasks, which means higher time complexityO(2|V |).

Therefore, the MCOP algorithm has much lower time complexity when compared to the existing

algorithms, which is proportional to the square of the number of tasks and hence can achieve an

optimal offloading strategy in minimal time.

a

c
Vc

<0, 0>

<3, 1>

<9, 3>

<15, 5>8

2

34

1

5

4

e

f

b

d

8-(3-1)=6

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<6, 2>
<9, 3>

<15, 5>8

2

34

1

5

4

e

fd

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<6, 2>

<9, 3>

<12, 4> <15, 5>8

2

34

1

5

4

f

b

2-(6-2)=-2

1+3-(12-4)=-4
1-(12-4)=-7

b

c c

a

Vc

<0, 0>

<3, 1>

<9, 3>

<15, 5>8

2

34

1

5

4

e

f

b

1+3+4-(12-4)=0
c

e

d d

a

Vc

<0, 0>

<3, 1>

<6, 2>

<9, 3>

<12, 4> <15, 5>8

2

34

1

5

4

e
b

5-(15-5)=-5
c

d f a

Vc

<0, 0>

<3, 1>

<6, 2>
<9, 3>

<12, 4> <15, 5>8

2

34

1

5

4

e
b

c

d f

s t

a

Vc

<0, 0>

<3, 1>

<27, 9>

<9, 3>

8

2

34

1

4

e
b

c

df

s and t merged

<12, 4>

<6, 2> <6, 2>

<12, 4><12, 4>

<6, 2>

G1 : A ={a} G1 : A ={a, c} G1 : A ={a, c, b} G1 : A ={a, c, b, e}

G1 : A ={a, c, b, e, d} G1 : A ={a, c, b, e, d, f}

Figure 3.6: The 1st phase of MinCutPhase function. The induced ordering a, c, b, e, s, t of the
vertices, where s = d and t = f. The 1st cut-of-the-phase corresponds to the partitions {a, c, b, e, d}
and {f} with the cut value: Ccut(A−f,f) = 45− (15− 5) + 5 = 40.

40

3.3. PARTITIONING ALGORITHM FOR OFFLOADING

a

c
Vc

<0, 0>

<3, 1>

<6, 2><9, 3>

8

2

34

1

4

e
b

df

8-(3-1)=6

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<6, 2>
<9, 3>

8

2

34

1

4

e

df

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<6, 2><9, 3>

8

2

34

1

4
b

2-(6-2)=-2

1+3-(27-9)=-14
1-(27-9)=-17

b

c c

a

Vc

<0, 0>

<3, 1>

<6, 2>
<9, 3>

8

2

34

1

4

e
b

1+3+4-(27-9)=-10
c

e

df

df a

Vc

<0, 0>

<3, 1>

<6, 2><9, 3>

8

2

34

1

4

e
b

c

df a

Vc

<0, 0>

<3, 1>

<9, 3>

8

54

1

b

c

def

s t

<27, 9> <27, 9>

<27, 9>
<33, 11>

<27, 9>

<27, 9>

s and t mergedG2 : A ={a, c, b, e}

G2 : A ={a, c, b}G2 : A ={a, c}G2 : A ={a}

G2 : A ={a, c, b, e, {df}}

Figure 3.7: The 2nd phase of MinCutPhase function. The induced ordering of the vertices is a, c,
b, s, t, where s = e and t = {df}. The 2nd cut-of-the-phase corresponds to the partitions {a, c, b, e}
and {d, f} with the cut value: Ccut(A−{d, f}, {d, f}) = 45− (27− 9) + (1 + 3 + 4) = 35.

a

c
Vc

<0, 0>

<3, 1>

<9, 3>

8

54

1

b

def

8-(3-1)=6

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<9, 3>

8

54

1

4-(9-3)=-2

a

Vc

<0, 0>

<3, 1>

<9, 3>

8

54

1

b

1+5-(33-11)=-16
1-(33-11)=-21

b

c c

a

Vc

<0, 0>

<3, 1>

8

4

1

c

bdef

<42, 14>

s and t merged

def

<33, 11> <33, 11> <33, 11>

a

Vc

<0, 0>

<3, 1>

<9, 3>

8

54

1

b

c

<33, 11>

defdef

s t
G3 : A ={a} G3 : A ={a, c} G3 : A ={a, c, b} G3 : A ={a, c, b, {def}}

Figure 3.8: The 3rd phase of MinCutPhase function. The induced ordering of the vertices is a, c, s,
t, where s = b and t = {def}. The 3rd cut-of-the-phase corresponds to the partitions {a, b, c} and {d,
e, f} with the cut value: Ccut({a, b, c}, {d, e, f}) = 45− (33− 11) + (1 + 5) = 29.

3.3.4 Case Study

Figure 3.6 shows that node a is defined as the starting point where the corresponding task will always

be computed by the mobile device. We have s = d and t = f, and the induced ordering a, c, b, e,

d, f of the vertices. Node f is cut off from the graph. The first cut-of-the-phase corresponds to the

partitions {a, c, b, e, d} and {f}. Since the overall local cost is C local =
∑

v∈V w
local(v) = 45, we

can calculate the cut cost by using (3.10) as: Ccut(A−f, f) = 45− (15− 5) + 5 = 40. At the end, we

merge nodes s = d and t = f into one.

41

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

a

c
Vc

<0, 0>

<3, 1>

8

4

1

bdef

8-(3-1)=6

4-(42-14)=-24

a

Vc

<0, 0>

<3, 1>

8

4

1

1+4-(42-14)=-23

c

a

Vc

<0, 0>

12
bcdef

<45, 15>

s and t merged

a

Vc

<0, 0>

<3, 1>

8

4

1

c

bdefbdef

s t

<42, 14><42, 14> <42, 14>

G4 : A ={a} G4 : A ={a, c} G4 : A ={a, c, {bdef}}

Figure 3.9: The 4th phase of MinCutPhase function. The induced ordering of the vertices is a, s, t,
where s = c and t = {bdef}. The 4th cut-of-the-phase corresponds to the partition {a, c} and {b, d,
e, f} with the cut value: Ccut({a, c}, {b, d, e, f}) = 45− (42− 14) + (1 + 4) = 22.

a

Vc<0, 0>

12

12-(45-15)=-18

abcdef

<45, 15>

s and t merged

a

<0, 0>

bcdef

s t

<45, 15>

bcdef

<45, 15>

G5 : A ={a} G5 : A ={a, {bcdef}}

12

Figure 3.10: The 5th phase of MinCutPhase function. The induced ordering of the vertices is s, t,
where s = a and t = {bcdef}. The 5th cut-of-the-phase corresponds to the partition {a} and {b, c, d,
e, f} with cut value Ccut({a}, {b, c, d, e, f}) = 45− (45− 15) + 12 = 27.

a

Vc

<0, 0>

<3, 1>

8

4

1

1+4-(42-14)=-23

c

bdef

<42, 14>

Figure 3.11: The optimal cut in phase 4

From Figs. 3.7-3.10, we repeat the same process of the MinCutPhase function as the first phase

in Fig. 3.6. There are |V | − 1 = 5 phases, and at the end, all nodes are merged into one. Then,

we compare all the cut values, the minimum value refers to the phase which has the optimal parti-

tioning cut. In this scenario, the minimum cut of the graph G is the fourth cut-of-the-phase. The

optimal cut is between {a, c} and {b, d, e, f} as depicted in Fig. 3.11 with the minimum cost of

Ccut({a, c}, {b, d, e, f}) = 45 − (42 − 14) + (4 + 1) = 22. Here, tasks b, d, e, f are offloaded to the

remote cloud server while tasks a and c are executed locally.

42

3.4. EVALUATION OF THE PARTITIONING ALGORITHM

3.4 Evaluation of the Partitioning Algorithm

We combine static analysis and dynamic profiling to construct the weighted consumption graph of

an application. Using the Soot analysis tool, we can get all the tasks and the relations between

tasks based on method invocations by traversing the graph. Combining Java bytecode rewriting

with pretreatment information like speedup factor F and wireless bandwidth B (for convenient, we

assume Bupload = Bdownload), we can obtain the execution time for each task (node weight) and the

transmission time for each invocation (edge weight). These weights can be dynamically updated

according to the varying processing capabilities of the cloud server and the wireless bandwidth.

3.4.1 Setup

We take a face recognition application5 as an example. By analyzing the application with Soot,

the call graph could be constructed as a tree-based topology in Fig. 3.12. Further, from the local

estimated execution time, we can get the remote estimated execution time dividing by the speedup

factor F . When offloading a task to the cloud, the communication cost incurred between the mobile

device and the cloud is the data transfer divided by the bandwidth. Finally, with remote execution

and transmission costs, we now have all information to get the weighted consumption graph.

To evaluate the partitioning algorithm, we need to know three different kinds of values:

• Fixed Values: they are set by the mobile application developer, determined based on a large

number of experiments. For example, the computing power pm, the power consumption while

being idle pi, and the transmission power ptr are parameters specific to the mobile system. We

use an HP iPAQ PDA with a 400-MHz Intel XScale processor that has the following values:

pm ≈ 0.9 W, pi ≈ 0.3 W, and ptr ≈ 1.3 W [61].

• Specific Values: such parameters represent some state of mobile devices, e.g. the size of

transferred data, the value of current wireless bandwidth B and the speedup factor F that

depends on the speed of the current cloud server and the mobile device.

• Calculated Values: these values cannot be determined by application developers. For a given

application, the computational cost is affected by input parameters and device characteris-

tics, which can be measured using a program profiler. The communication cost is related to

transmitting codes/data via wireless interfaces such as WiFi or 3G, which can be tracked by a

network profiler.

Performance evaluation results encompass comparisons with other existing schemes, in contrast

5The face recognition application is built upon an open source code http://darnok.org/programming/
face-recognition/, which implements the Eigenface face recognition algorithm

43

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

to the energy conservation efficiency and execution time. We compare the partitioning results with

two other intuitive strategies without partitioning [6] and, for ease of reference, we list all three

kinds of offloading techniques:

• No Offloading (Local Execution): all computation tasks of an application are running locally

on the mobile device and there is no communication cost. This may be costly since as com-

pared to the powerful computing capability at the cloud side, the mobile device is limited in

processing speed and battery life.

• Full Offloading: all computation tasks of mobile applications (except the unoffloadable tasks)

are moved from the local mobile device to the remote cloud for execution. This may signif-

icantly reduce the implementation complexity, which makes the mobile devices lighter and

smaller. However, full offloading is not always the optimal choice since different application

tasks may have different characteristics that make them more or less suitable for offload-

ing [66].

• Partial Offloading (With Partitioning): with the help of the MCOP algorithm, all tasks includ-

ing unoffloadable and offloadable ones are partitioned into two sets, one for local execution

on the mobile device and the other for remote execution on the cloud server. Before a task

is executed, it may require certain amount of data from other tasks. Thus, data migration via

wireless networks is needed between tasks that are executed at different sides.

We define the saved cost in the partial offloading scheme compared to that in the no offloading

scheme as Offloading Gain, which can be formulated as:

Offloading Gain = 1− Partial Offloading Cost
No Offloading Cost

· 100%. (3.11)

The offloading gains in terms of time, energy and the weighted sum of time and energy are

described in (3.5), (3.7) and (3.9), respectively.

3.4.2 Evaluation in Computational Complexity

We implement the MCOP algorithm in Java6 that can serve as a comparison to the theoretic results.

As an example, we partition the constructed weighted consumption graph in Fig. 3.12 under the

condition of the speedup factor F = 2 and the bandwidth B = 1 MB/s, where the main and check-

Against methods are assumed as unoffloadable nodes. The optimal partitioning result is depicted in

Fig. 3.13. The red nodes represent the application tasks that should be offloaded to the remote cloud

6An optimal partitioning algorithm, the code can be found in https://github.com/carlosmn/
work-offload

44

https://github.com/carlosmn/work-offload
https://github.com/carlosmn/work-offload

3.4. EVALUATION OF THE PARTITIONING ALGORITHM

and the blue nodes are the tasks that are supposed to be executed locally on the mobile device. The

partitioning results will change as B or F varies.

TestFaceRecognition
main

1555.3ms

class name
method name
execution time

EigenFaceCreator
readFaceBudles

1464ms

EigenFaceCreator
checkAgainst

137.8ms

EigenFaceCreator
submitSet
722.2ms

FaceBundle
submitFace

35.9ms

EigenFaceCreator
readImage

80.7ms

JPGFile
<init>
75.2ms

FaceBundle
compute
37.2ms

JPGFile
readImage

77.7ms

1024.2KB600KB

0KB 675.2KB

0KB

0.2KB0.29KB

10206KB

EigenFaceCreator
computeBundle

516.5ms

EigenFaceCreator
saveBundle

192ms

10204KB

10206KB

EigenFaceCreator
submit

516.6ms

Jama.Matrix
times

68.6ms

Jama.Matrix
eig

2.2ms

Jama.Matrix
transpose
33.0ms

12003KB3KB
12000KB

19806KB

Figure 3.12: Call graph of a face recognition application

The running time of the Java implementation under a different number of application tasks is

depicted in Fig. 3.14. We compare it with the theoretic computational complexity, which denoted

as O(|V |2 log |V | + |V ||E|) in Section 3.3.3. We find they match each other well, which further

proves that our partitioning algorithm has much lower time complexity than the LP solver which has

exponential time complexity.

3.4.3 Evaluation in Dynamic Conditions

We build a graphical user interface (GUI) in MATLAB as shown in Fig. 3.15. The GUI is responsible

for user interaction such as receiving input parameters and displaying the application partitioning

results.

The user first inputs or selects the relative parameters, such as Application Graph, Unoffloadable

Nodes and Optimization Model. We can either use the predefined application graphs of “linear”,

“loop”, “tree” and “mesh” or just choose “user” to input any arbitrary consumption graph. Then,

45

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

<75.20, 37.60>

<77.70, 38.85>

0.0

<1555.30, 777.65>

<137.80, 68.90>

0.29

<1464.00, 732.00>

0.2

<35.90, 17.95>

<37.20, 18.60>

0.0

<80.70, 40.35>

675.2

600.0 1024.2

<516.60, 258.30>

<2.20, 1.10>

3.0

<33.00, 16.50>

12000.0

<68.60, 34.30>

12003.0

<516.50, 258.25>

19806.0

<722.20, 361.10>

10204.0

<192.00, 96.00>

10206.0

10206.0

Figure 3.13: Optimal partitioning result of the face recognition application

Number of Tasks
0 100 200 300 400 500 600 700

R
un

ni
ng

 T
im

e/
s

0

10

20

30

40

50

60

70

Simulation

Theory

Figure 3.14: Running time of the MCOP algorithm under different number of tasks

by clicking the “Graph” button, a weighted consumption graph will be constructed based on the

above parameters. Further, by clicking the “Start Partitioning” button, the partitioning process will

begin, by calling the partitioning algorithm of MCOP. We can get the partitioning results such as

Partial Offloading Cost, No offloading Cost, Full Offloading Cost and Offloading Gain. In addition,

the optimal partitioning graph will appear like Fig. 3.16, which further proves the correctness of the

46

3.4. EVALUATION OF THE PARTITIONING ALGORITHM

Figure 3.15: The GUI for demonstration

a:<0,0>

b:<9,3>

c:<3,1>

d:<6,2>

e:<12,4>

f:<15,5>

 4

 8

 3

 2

 1

 4

 5

Figure 3.16: An optimal partitioning result of using the MCOP algorithm

partitioning result in Fig. 3.11 with the minimum cost of 22. We can get different results under the

different parameters of speedup factor F and wireless bandwidth B.

In Fig. 3.17 the speedup factor is set to F = 3. Since the low bandwidth results in much higher

cost for data transmission, the full offloading scheme can not benefit from offloading. Given a

relatively large bandwidth, the response time or energy consumption obtained by the full offloading

scheme slowly approaches to the partial offloading scheme because the optimal partition includes

47

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

Wireless Bandwidth B (MB/s)
0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
T

im
e

(s
)

0

20

40

60

80

100

120

140

No Offloading
Full Offloading
Partial Offloading

(a) Response Time
Wireless Bandwidth B (MB/s)

0 0.5 1 1.5 2 2.5 3 3.5 4

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

20

40

60

80

100

120

140

160

180

No Offloading
Full Offloading
Partial Offloading

(b) Energy Consumption

Figure 3.17: Comparisons of different schemes under different wireless bandwidths when the
speedup factor F = 3

Speedup Factor F
1 2 3 4 5 6 7 8

R
es

po
ns

e
T

im
e

(s
)

5

10

15

20

25

30

35

40

45

50

No Offloading
Full Offloading
Partial Offloading

(a) Response Time
Speedup Factor F

1 2 3 4 5 6 7 8

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

5

10

15

20

25

30

35

40

45

No Offloading
Full Offloading
Partial Offloading

(b) Energy Consumption

Figure 3.18: Comparisons of different schemes under different speedup factors when the bandwidth
B = 3 MB/s

more and more tasks running on the cloud side until all offloadable tasks are offloaded to the cloud.

With the higher bandwidth, they begin to coincide with each other and only decrease because all

possible nodes are offloaded and the transmissions become faster. Both response time and energy

consumption have the same trend as the wireless bandwidth increases. Therefore, bandwidth is a

crucial element for offloading since the mobile system could benefit a lot from offloading in high

48

3.4. EVALUATION OF THE PARTITIONING ALGORITHM

Wireless Bandwidth B (MB/s)
0 1 2 3 4 5 6

O
ffl

oa
di

ng
 G

ai
n

(%
)

0

10

20

30

40

50

60

70

80

90

Min Response Time
Min Energy Consumption
Min Weighted Time and Energy

(a) Wireless bandwidth B (F = 3)
Speedup Factor F

0 2 4 6 8 10 12 14 16 18 20

O
ffl

oa
di

ng
 G

ai
n

(%
)

0

10

20

30

40

50

60

70

80

90

Min Response Time
Min Energy Consumption
Min Weighted Time and Energy

(b) Speedup factor F (B = 3 MB/s)

Figure 3.19: Offloading gains under different environment conditions when ω = 0.5

bandwidth environments, while with low bandwidth, the no offloading scheme is preferred.

In Fig. 3.18 the bandwidth is fixed as B = 3 MB/s. It can be seen that offloading benefits

from higher speedup factors. When F is very small, the full offloading scheme can reduce energy

consumption of the mobile device, however it takes much more response time than the no offloading

scheme. The partial offloading scheme that adopts the MCOP algorithm can effectively reduce

execution time and energy consumption, while adapting to environmental changes.

From Figs. 3.17-3.18, we can tell that the full offloading scheme performs much better than the

no offloading scheme under certain adequate wireless network conditions, because the execution

cost of running methods on the cloud server is significantly lower than on the mobile devices when

the speedup factor F is large. The partial offloading scheme outperforms the no offloading and

full offloading schemes and significantly improves the application performance, since it effectively

avoids offloading tasks in the case of large communication cost between consecutive tasks compared

to the full offloading scheme, and offloads more appropriate tasks to the cloud server. In other words,

neither running all tasks locally on the mobile terminal nor always offloading their execution to a

remote server, can offer an efficient solution, but rather our partial offloading scheme can do.

In Fig. 3.19(a) when the bandwidth is low, the offloading gain for all three cost models is very

small and almost identical. That is because more time/energy will be spent in transferring the same

data due to the low network bandwidth, resulting in increased execution cost. As the bandwidth

increases, the offloading gain first rises drastically and then the increase becomes slower. It can be

concluded that the optimal partitioning plan includes more and more tasks running on the cloud side

49

CHAPTER 3. OFFLOADING DECISION MAKING: WHAT TO OFFLOAD

until all the tasks are offloaded to the cloud when the bandwidth increases. In Fig. 3.19(b) when

F is small, the offloading gain for all three cost models is very low since a small value means very

little computational cost reduction from remote execution. As F increases, the offloading gain first

rises drastically and then approaches to the same value. That is because the benefits from offloading

cannot neglect the extra communication cost. From Fig. 3.19, the proposed MCOP algorithm is able

to effectively reduce the application’s energy consumption as well as its execution time. Further,

it can adapt to environmental changes to some extent and avoids a sharp decline in application

performance once the bandwidth decreases.

3.5 Summary

We have studied how to disintegrate and distribute modules of an application between a mobile de-

vice and a dedicated cloud server, and effectively utilize the cloud resources. For applications under

different scenarios, we construct them into weighted consumption graphs of arbitrary topology. To

tackle the problem of dynamic partitioning in mobile environments, the MCOP algorithm is pro-

posed to find the optimal partitioning plan from many possible partitioning candidates according to

different cost models. Contrary to the traditional graph partitioning problem, our algorithm is not

restricted to balanced partitions but takes the heterogeneity of mobile devices and cloud servers into

account.

The MCOP algorithm has a stable quadratic runtime complexity for determining which parts of

application tasks should be offloaded to the cloud server and what should be executed locally, in

order to save energy of the mobile devices or to reduce application’s execution time. We compared

it with two other approaches, i.e. No Offloading and Full Offloading. Experimental results show

that according to environmental changes (e.g. network bandwidth and cloud server performance),

the proposed algorithm can effectively achieve the optimal partitioning result in terms of time and

energy saving. Offloading benefits a lot from high bandwidth and large speedup factors, while low

bandwidth favors the no offloading scheme.

50

Chapter 4

Offloading Decision Making: Where to
Offload

A variety of clouds with different characteristics are emerging these days, and as a result several

similar cloud services (from different cloud vendors) can be provided to a mobile device. Nearby

cloudlets are also alternative destinations for offloading. Therefore, offloading decisions should be

made to determine which resource to use. Where to offload is becoming a crucial issue due to the

development of mobile cloud computing.

The goal of cloud service selection is to find an optimal cloud among a certain class of clouds

that provide the same service, in order to carry out the offloaded tasks best. Unlike previous work

that only uses one criterion, we combine the methods of analytic hierarchy process (AHP) and fuzzy

technique for order preference by similarity to ideal solution (TOPSIS) based on multiple criteria to

find the optimal cloud service for offloading.

Energy saving from mobile offloading is not guaranteed if the evoked data transfers via wireless

networks consume an unpredictable amount of energy. Therefore, running a certain part of the

application locally on the mobile device can be more advantageous and may save both energy and

response time, especially in the presence of intermittent wireless connectivity. We derive an adaptive

offloading decision algorithm based on Lyapunov optimization, which determines where to perform

each application task (locally, cloud or cloudlet) such that energy consumption is minimized with a

low delay penalty.

51

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

4.1 Multi-Criteria Decision Making in Cloud Selection

Different cloud providers usually offer different types of cloud services that shall not be compa-

rable. Here, we consider a certain class of clouds that provide the same service. A more suitable

example will be the peer cloud storage services such as Dropbox, OneDrive, iCloud, MS Skydrive

and Google Drive. Offloading the same program to different clouds may perform different amounts

of computing within the same duration due to the different speeds of cloud servers, and may cost

different communication time due to the wireless network and cloud’s availability. Therefore, a

method for optimal cloud service selection is needed [115].

4.1.1 Problem Formulation

There are many criteria that need to be considered simultaneously in selecting the optimal cloud

service. Here, we employ some of the QoS criteria from the Cloud Services Measurement Initiative

Consortium (CSMIC) [22].

• Performance: does it do what we need? Its sub-criteria, speed, accuracy and service response

time should be considered. Speed means how fast a cloud server for computing is. Accuracy

is the degree of closeness to user expected actual value or result generated by using the cloud

service [62].

• Bandwidth: how fast is the data transferred? It depends on the wireless link between the

mobile device and the cloud. When the wireless connection is excellent, a large amount of

application execution and data should be offloaded to the cloud, but when it is poor, only

a small amount can be offloaded during limited time [118]. Different network types and

conditions have a large impact on the communication time and energy consumption [21].

While for stable and high-speed networks, the application should be executed on the cloud

server, it should be better executed locally on the mobile device in the situations of unreliable

and weak connectivity.

• Security: is the service safe and privacy well protected? First of all, shifting all data and com-

puting resources to the cloud is dangerous, e.g. tracking individuals through location-based

navigation data offloaded to the cloud. Besides, security and privacy settings depend on the

cloud providers since the data is stored and managed in the cloud [61]. Safely offloading

adds non-trivial latency and energy overhead. Thus, careful choices must be made in de-

ciding whether to encrypt communication and whether specific compute resources should be

used. However, the QoS value of security is difficult to measure, but specific criteria that are

measurable should be used when possible. Furthermore, security is also multi-dimensional in

52

4.1. MULTI-CRITERIA DECISION MAKING IN CLOUD SELECTION

nature and it includes many attributes like data integrity, data privacy and data loss.

• Availability: is it able to connect or access the cloud service? It is related with link failure and

cloud availability during the offloading process. The cloud service may not be available in

some cases and the distance to the cloud also affects the performance. Offloading is difficult

in locations such as the basement of a building, interior of a tunnel, or subway, where the

wireless network bandwidth is so small that cloud computing is not possible [61]. Dependence

on a remote cloud could lead to problems when service outages occur. Failures may occur

due to the mobile nature and unstable connectivity of wireless links, which render a less

predictability of the performance of offloading systems [92].

• Cost: what is the monetary cost for the same amount of computing? It varies in different

cloud services. Comparison results of AWS, Azure and AppEngine are listed in Table 4.1.

The price varies a lot from instance types and different cloud service providers.

Table 4.1: Price for Public Cloud Service
Cloud Provider Instance Type CPU/Number of Cores Price/hr

Small 1 $0.091
Azure Medium 2 $0.182

Large 4 $0.364
Extra Large 8 $0.728
Small 1 $0.12

AWS Medium 2 $0.24
Large 4 $0.48

AppEngine Default N/A $0.08

Therefore, the decision hierarchy for the cloud service selection is formed as shown in Fig. 4.1,

including all the above service measurement criteria and sub-criteria. There are three hierarchies

listed. The first level is called target hierarchy, meaning what the target is. Here, it aims at finding

the optimal cloud service amongst available cloud services which satisfy the essential requirements

of the mobile device. The second level is called criteria hierarchy, and five criteria: performance,

security, bandwidth, availability and cost are considered for cloud service selection. The criteria

can be classified into two categories: subjective criteria and objective criteria. The former is defined

in linguistic/qualitative terms while the latter has monetary/quantitative definition. Root criteria can

be made up of sub-criteria. The bottom level is named decision hierarchy, in which we can make the

final decision in choosing one of the alternative clouds based on the analysis in criteria hierarchy.

53

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

Cloud Service Selection

Performance Bandwidth Security Availability Cost

Speed Accuracy Response
Time

Data
Integrity

Data
Privacy

Data
Loss

VM
Cost

Data
Cost

Storage
Cost

Communication
Cost

Cloud Service 1 Cloud Service 2 Cloud Service M!

Target

Criteria

Sub-criteria

Decision

Figure 4.1: The decision hierarchy of cloud service selection

4.1.2 Steps of Cloud Service Selection

As shown in Fig. 4.2, there are three basic steps to be taken in the process of cloud service selection:

matching, ranking and selecting.

• Matching: to find a list of available cloud services that are functionally matched with a service

request by a mobile user. On the mobile device side, upon receipt of an offloading request,

the service request module invokes the cloud discovery module to find an appropriate cloud

service according to the task of service level agreement (SLA) management that keeps track

of SLAs of customers with cloud providers and their fulfillment history. The candidate cloud

services are registered based on the collected information in the cloud registry module.

• Ranking: to evaluate and rank the available cloud services according to QoS values and the

results of criteria and sub-criteria calculation. The criteria calculator module depends on the

tasks of qualitative and quantitative measurements. Qualitative criteria are those that cannot

be quantified and are mostly inferred based on previous user’s experiences, e.g. security.

Quantitative criteria are those that be measured by using software and hardware monitoring

tools [110], e.g. bandwidth, VM cost and speed.

• Selecting: the decision maker module is invoked to choose the optimal cloud service according

to the ranked list of cloud services. And then the offloading invoker module is triggered

to partition the application into local partition and remote partition, and the latter is then

offloaded to the selected cloud.

54

4.1. MULTI-CRITERIA DECISION MAKING IN CLOUD SELECTION

Cloud
discovery

Cloud
registry

SLA
management

Qualitative
measures

Quantitative
measures

Criteria
calculator

Service
request

Application

Decision
maker

Offloading
invoker Local

partition
Remote
partition

Matching Ranking Selecting Mobile device

Cloud 1 Cloud 2 Cloud M

offload
!

Figure 4.2: Steps of cloud service selection for offloading

4.1.3 Methods of AHP and Fuzzy TOPSIS

The selection process can be a hard task since a variety of data need to be analyzed and many factors

need to be considered. We combine the methods of analytic hierarchy process (AHP) and fuzzy

technique for order preference by similarity to ideal solution (TOPSIS), which are ideal ways to do

multi-criteria decision making [88]. AHP is employed to obtain weights of the criteria for each cloud

service and fuzzy TOPSIS is to determine the priorities of the alternative clouds in decision-making

process [24].

The AHP Method

Analytic hierarchy process (AHP) is a process for determining the relative importance of a set of

alternatives in a multi-criteria decision problem. It converts the evaluations to numerical values that

can be processed and compared and derives a numerical weight or priority for each element of the

hierarchy.

The results of the pairwise comparison on N criteria can be expressed in an evaluation matrix:

A = (aij)N×N =


a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

 , aii = 1, aji = 1/aij ,

55

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

where element aij is based on a standardized comparison scale of nine levels as shown in Table 4.2

[88]. The relative weights are given by eigenvector (w) corresponding to the largest eigenvalue

(λmax) as:

Aw = λmaxw. (4.1)

Table 4.2: Importance Scale and Its Definition
Definition Intensity of importance

Equally important 1

Moderately more important 3

Strongly more important 5

Very strongly more important 7

Extremely more important 9

Intermediate 2, 4, 6, 8

The output of AHP is strictly related to the consistency of the pairwise comparison. The consis-

tency index (CI) is:

CI =
λmax −N
N − 1

. (4.2)

The consistency ratio (CR), usage of which let someone to conclude whether the evaluations are

sufficiently consistent [24], is calculated as:

CR = CI/RI, (4.3)

where the random index (RI) is only relevant with the matrix order. To meet the consistency, CR

must be less than 0.1.

The Fuzzy TOPSIS Method

Technique for order preference by similarity to ideal solution (TOPSIS) is widely used to solve

decision problems in real situation. The reason we adopt fuzzy TOPSIS here is that it is intuitively

easy for the decision-makers to use and calculate through a triangular fuzzy number, which is proved

to be an effective way for formulating decision problems [24]. The process steps of fuzzy TOPSIS

can be outlined as follows [88]:

56

4.1. MULTI-CRITERIA DECISION MAKING IN CLOUD SELECTION

1) Establish a decision matrix for the ranking. The structure of the matrix is expressed by:



C1 C2 · · · Cj · · · CN

A1 x11 x12 · · · x1j · · · x1N

A2 x21 x22 · · · x2j · · · x2N
...

...
... · · ·

... · · ·
...

Ai xi1 xi2 · · · xij · · · xiN
...

...
... · · ·

... · · ·
...

AM xM1 xM2 · · · xMj · · · xMN


where Cj is the jth criterion, Ai is the ith candidate cloud service. There is no need for nor-

malization since the triangular fuzzy number xij ∈ [0, 1]. Figure 4.3 describes membership

functions of linguistic values, which are used for evaluation of alternative weapons in this

step, and the corresponding triangular fuzzy numbers are listed in Table. 4.3.

2) Calculate the weighted normalized decision matrix. The weighted normalized value vij is

calculated as:

vij = xij × wj , i = 1, 2, · · · ,M, j = 1, 2, · · · , N, (4.4)

where wj denotes the weight of the jth criterion, which is obtained from the AHP method.

3) Determine the positive-ideal (A+) and negative-ideal solutions (A−), respectively:

A+ = {v+1 , v
+
2 , · · · , v

+
N} =

{(
max
j
vij |i ∈ I

)
,
(

min
j
vij |i ∈ I ′

)}
, (4.5)

A− = {v−1 , v
−
2 , · · · , v

−
N} =

{(
min
j
vij |i ∈ I

)
,
(

max
j
vij |i ∈ I ′

)}
. (4.6)

For normalized positive triangular numbers, we can define the fuzzy positive-ideal and negative-

ideal solutions. As for benefit criterion, we have v+j = (1, 1, 1) and v−j = (0, 0, 0), while for

cost criterion, v+j = (0, 0, 0) and v−j = (1, 1, 1).

4) Calculate the distance of each alternative from A+ and A− using the Euclidean distance:

D+
i =

N∑
j=1

d(vij , v
+
j), i = 1, 2, · · · ,M, (4.7)

D−i =
N∑
j=1

d(vij , v
−
j), i = 1, 2, · · · ,M, (4.8)

57

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

where d(vij , vj) calculates the Euclidean distance between vij and vj .

5) Calculate the relative closeness to ideal solution, denoted as:

C∗i =
D−i

D+
i +D−i

. (4.9)

6) Rank the alternatives according to C∗i in descending order. The nearer the value C∗i close to 1

means the better the performance of the alternatives.

0 0.1 0.3 0.5 0.7 1

VL L ML F MH H VH

0.9

Figure 4.3: Membership functions of linguistic values

Table 4.3: Fuzzy Membership Functions
Linguistic values Fuzzy ranges

Very low (VL) (0, 0, 0.1)

Low (L) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5)

Fair (F) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1)

Very high (VH) (0.9, 1, 1)

Calculate the Weights of Criteria

The priority of importance depends on what we care about most. For instance, if the offload data

is neither privacy nor confidential, in this case, security is the least important factor among the

five criteria. For mobile offloading systems, bandwidth is considered the most significant because

58

4.1. MULTI-CRITERIA DECISION MAKING IN CLOUD SELECTION

it decides the extra communication cost between the mobile device and the cloud. Besides, per-

formance is also important since it determines the application’s execution time and affects battery

consumption of the mobile device. We assume the priority of importance is ranked as: bandwidth >

performance > availability > security > cost, although the priority of these five criteria can vary in

other situations.

Employing the importance scale given in Table 4.2, we get the pairwise comparison matrix as

shown in Table 4.4. By using the AHP method, we can calculate the weights of the criteria as shown

in Table 4.5. It can be seen that bandwidth and performance are determined as the most important

criteria. Besides, the consistency ratio (CR) is 0.020 < 0.1 (criteria checking point). Thus, the

weights are shown to be consistent which can be used in the decision-making process.

Table 4.4: Pairwise Comparison Matrix for Criteria
Criteria bandwidth cost performance security availability

bandwidth 1 9 3 7 5

cost 1/9 1 1/6 1/2 1/3

performance 1/3 6 1 4 3

security 1/7 2 1/4 1 1/2

availability 1/5 3 1/3 2 1

Table 4.5: Results Obtained from AHP
Criteria Weights λmax, CI, RI CR

bandwidth 0.528
cost 0.042 λmax=5.089
performance 0.252 CI=0.022 0.020
security 0.068 RI=1.12
availability 0.110

Select the Optimal Cloud Service

We assume that there are four candidate cloud services available. Besides, it can be seen that mone-

tary cost is a cost criterion whereas the others are benefit criteria. The results of the fuzzy weighted

decision matrix are given in Table 4.6.

The results of fuzzy TOPSIS analysis are summarized in Table 4.7. D+
i andD−i can be calculated

by using (4.7) and (4.8). On the basis of C∗i values, the ranking of the clouds in descending order

59

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

Table 4.6: Weighted Evaluation Matrix for the Alternative Clouds
Cloud bandwidth cost performance security availability

cloud 1 VL H MH L ML
cloud 2 VH H VH VL L
cloud 3 F ML H H MH
cloud 4 MH L F MH VH

cloud 1 (0, 0, 0.1) (0.7, 0.9, 1) (0.5, 0.7, 0.9) (0, 0.1, 0.3) (0.1, 0.3, 0.5)
cloud 2 (0.9, 1, 1) (0.7, 0.9, 1) (0.9, 1, 1) (0, 0, 0.1) (0, 0.1, 0.3)
cloud 3 (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.7, 0.9, 1) (0.7, 0.9, 1) (0.5, 0.7, 0.9)
cloud 4 (0.5, 0.7, 0.9) (0, 0.1, 0.3) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.9, 1, 1)
Weight 0.528 0.042 0.252 0.068 0.110

cloud 1 (0, 0, 0.053) (0.029,0.038, 0.042) (0.126, 0.176, 0.227) (0, 0.007, 0.020) (0.011, 0.033, 0.055)
cloud 2 (0.475, 0.528, 0.528) (0.029,0.038, 0.042) (0.227, 0.252, 0.252) (0, 0, 0.007) (0, 0.011, 0.033)
cloud 3 (0.158, 0.264, 0.370) (0.004,0.013, 0.021) (0.176, 0.227, 0.252) (0.048, 0.061, 0.068) (0.055, 0.077, 0.099)
cloud 4 (0.264, 0.370, 0.475) (0, 0.004, 0.013) (0.076, 0.126, 0.176) (0.034, 0.048, 0.061) (0.099, 0.110, 0.110)

A+ v+1 = (1, 1, 1) v+2 = (0, 0, 0) v+3 = (1, 1, 1) v+4 = (1, 1, 1) v+5 = (1, 1, 1)

A− v−1 = (0, 0, 0) v−2 = (1, 1, 1) v−3 = (0, 0, 0) v−4 = (0, 0, 0) v−5 = (0, 0, 0)

Table 4.7: Results of Fuzzy TOPSIS
Alternatives D+

i D−i C∗i
cloud 1 3.802 1.225 0.244

cloud 2 3.267 1.743 0.348

cloud 3 3.402 1.624 0.323

cloud 4 3.365 1.662 0.331

are cloud 2, cloud 4, cloud 3 and cloud 1, where cloud 2 with C∗2 = 0.348 is the optimal alternative

among the four clouds. In other words, we should choose cloud 2 for offloading when considering

the five criteria simultaneously.

Qualitative and Quantitative Measurements of Criteria

For the objective criteria and sub-criteria listed in Fig. 4.1, such as the criterion bandwidth and the

sub-criteria of performance: speed, accuracy and response time, the triangular fuzzy numbers can

be used directly. Since it is difficult to measure or acquire in time, we use the historical data based

on the mobile user’s experience to construct the evaluation value, e.g. the triangular fuzzy number

return on assets can be expressed as:
(

mini{hi}, (
∏t
i=1 hi)

1/t
,maxi{hi}

)
, where h1, h2, . . . , ht

denote the return on assets of the past t periods. For example, the results of triangular fuzzy num-

bers are obtained in Table 4.8 when three historical observations are used. The weights of security

and bandwidth are obtained from the AHP method as shown in Table 4.5. Similarly, we can get

60

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

the weights of sub-criteria according to the AHP method. We can also get the graded mean inte-

gration representation from Table 4.8. Let Ai = (ai, bi, ci), i = 1, 2, . . . , n, be n triangular fuzzy

numbers. By the graded mean integration representation method [27], the graded mean integration

representation P (Ai) of Ai is P (Ai) = (ai + 4bi + ci)/6.

Table 4.8: Results of Triangular Fuzzy Numbers
Criteria Sub-criteria Historical data Triangular fuzzy numbers

(Weights) (Weights) Cloud 1 Cloud 2 Cloud 3 Cloud 4 Cloud 1 Cloud 2 Cloud 3 Cloud 4
accuracy 60% 95% 70% 80% (60%, (95%, (70%, (80%,

(0.3) 70% 99% 75% 85% 65.85%, 96.99%, 74.89%, 84.90%,
68% 97% 80% 90% 70%) 99%) 80%) 90%)

performance speed 7 20 10 18 (7, (20, (10, (16,
(0.252) (0.6) 8 21 12 20 8.24, 20.98, 10.97, 17.93,

10 22 11 16 10) 22) 12) 20)
response time 400 20 80 300 (320, (20, (80, (280,

(0.1) 320 30 100 280 383.31, 31.07, 98.65, 299.55,
440 50 120 320 440) 50) 120) 320)

bandwidth bandwidth 32 200 80 180 (32, (200, (80, (160,
(0.528) (1) 40 256 90 160 38.90, 248.58, 95.24, 169.80,

46 300 120 170 46) 300) 120) 180)

For the subjective criteria and sub-criteria, such as the sub-criteria of security: data integrity, data

privacy and data loss, the triangular fuzzy numbers to evaluate the superiority of alternatives can be

S = {VL,L,ML,F ,MH ,H ,VH }, where VL = Very Low, L = Low, ML = Medium Low, F =

Fair, MH =Medium High, L = High, and VH = Very High. The fuzzy values are as shown in

detail in Table 4.3.

Overall, both methods can be used to evaluate the importance weights of all criteria and sub-

criteria as well as the fuzzy ratings of alternative cloud service, when it is still a challenge to measure

or acquire the parameters of criteria timely in practical systems.

4.2 Energy-Efficient Offloading Decisions

To prolong battery life, mobile devices can offload part of their computational workload via a nearby

cloudlet to a remote cloud under varying wireless environment conditions. The design objective

of our algorithm is to identify under which circumstances would offloading be beneficial and to

minimize the energy consumed by the mobile device, while meeting a deadline. Accordingly, there

are three constraints of the proposed approach [48]:

1) Minimizing the average energy consumption of the mobile device.

2) Satisfying the given deadline on runtime of the data processing for each application.

61

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

3) Opportunistic partitioning of the application tasks into different categories (e.g. run on mobile

device, cloudlet or cloud).

4.2.1 Mobile Cloud Offloading Services

As discussed in Section 2.1.1, offloading infrastructures can be organized as a two- or three-level

hierarchy [32].

Mobile device Cloud

Request transmission

Response transmission

C
loud process

ts
ttr {

{

{
(a) Two-level offloading service

Mobile device Cloudlet

Request transmission

Response transmission

Cloud

Request transmission

Response transmission

C
loud process

{
{
{

{
{

{
{

tsttr tte
tc

(b) Three-level offloading service

Figure 4.4: Different mobile cloud offloading services

Two-Level Offloading Systems

Rather than running applications locally and directly requesting data from content providers, a mo-

bile device can offload parts of its workload to the cloud, taking advantage of the abundant cloud

resources to help gather, store and process data [71]. As shown in Fig. 4.4(a), there are three steps

for computation offloading: sending the required data to the cloud, waiting for the cloud to com-

plete execution of the offloaded computation and receiving execution results from the cloud. The

total response time includes the transmission delay ttr = D/B and the time to process the requested

task on the cloud ts. Therefore, the response time taken and the energy consumed to handle a cloud

62

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

service request can be calculated as follows:

T2-level = ttr + ts, (4.10)

E2-level = ptr · ttr + pi · ts, (4.11)

where the parameters are defined in Table 4.9.

Table 4.9: Parameters for Offloading Decisions
Symbol Meaning
tm Execution time on the mobile device
ts Time taken to process the actual service on the cloud server
tc Time taken to process the request on the cloudlet
tte Transmission time between the cloudlet and cloud
ttr Transmission time between the mobile device and cloud/cloudlet
D Transmitted data between the mobile device and cloud
B Bandwidth between the mobile device and cloud
B1 Bandwidth between the mobile device and cloudlet
B2 Bandwidth between the cloudlet and cloud
pm Power for computing
pi Power while being idle
ptr Power for sending and receiving data

Three-Level Offloading Systems

The cloudlet becomes a better choice for mobile offloading when direct offloading to the cloud is

unstable. As shown in Fig. 2.1, cloudlets are dispersed and located close to the mobile device while

clouds are far away. The mobile device does not need to communicate with the distant cloud during

an entire offload process, but only with the cloudlet. It acts a middleware, does some preprocessing

and reduces the latency to the cloud. Mobile users seamlessly utilize nearby computers to obtain

the resource benefits of cloud computing without incurring delays and jitter. The need for real-time

interactive response can be met by low latency, one-hop, high-bandwidth wireless access to the

cloudlet.

The three-level offloading service in Fig. 4.4(b) consists of a local tier of mobile devices, a middle

tier of nearby cloudlets, typically located at the mobile devices’ access point but characterized by

limited resources and a remote tier of distant cloud servers, which have practically infinite resources

[33]. It needs five steps to perform computation offloading: the mobile device sends the required data

to the cloudlet, the cloudlet sends the required data to the cloud, waiting for the cloud to complete

63

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

execution, the cloudlet receives the execution results from the cloud, and the mobile device receives

execution results from the cloudlet [16]. Similarly, the total response time and energy consumption

are calculated as:

T3-level = ttr + tte + tc + ts, (4.12)

E3-level = ptr · ttr + pi · (tte + tc + ts), (4.13)

where tte is the transmission time between the cloudlet and cloud, and tc is the time taken to process

the request at the cloudlet.

Offloading Decision Criteria

Communication cost between the mobile device and the cloud depends on the network bandwidth.

Since the bandwidth of WLAN is considerably higher than the bandwidth provided by radio access

to a mobile device, different wireless technologies offer a competitive choice to connect to a nearby

cloudlet and then to the cloud [105]. As depicted in Fig. 4.5, the bandwidth between the mobile

device and the cloudlet is B1, which generally uses Bluetooth or a high-bandwidth WLAN. The

connection between the cloudlet and the cloud is usually wired with bandwidth B2, which uses

broadband technology like internet. The connection between the mobile device and the cloud is

wireless with bandwidth B, which uses cellular or WiFi interface. Mostly, we have B ≤ B1 and

B ≤ B2.
Cloudlet

Cloud

WiredWiFi

Cellular network

B1 B2Bluetooth

Mobile device

B

Figure 4.5: Model of mobile offloading systems

From Fig. 4.5, the two-level offloading scheme saves time only if [118]:

tm > ts +
D

B
. (4.14)

64

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

It is more profitable to offload the program directly to the cloud (two-level offloading) instead of

executing locally, when the following condition is satisfied:

pm · tm > ptr ·
D

B
+ pi · ts, (4.15)

we compare the energy consumed by local execution with the energy consumption due to offloading

to the cloud, and if the former is greater than the latter, then we decide to run the application at the

remote cloud server.

Similarly, the three-level offloading scheme saves time only if:

tm > ts +
D

B1
+
D

B2
+ tc, (4.16)

it saves energy only when the following condition is met:

pm · tm > ptr ·
D

B1
+ pi ·

(
D

B2
+ tc + ts

)
, (4.17)

which is obtained by substituting ttr = D/B1 and tte = D/B2 into (4.13). We compare the local

energy consumption with the energy cost due to offloading via a cloudlet to the cloud, and if the

former is greater than the latter, then we decide to migrate the application to the cloud server.

Therefore, comparing (4.14) with (4.16), we find that the three-level offloading scheme works

better than the two-level offloading scheme only if it meets:

D

B
>

D

B1
+
D

B2
+ tc. (4.18)

According to (4.15) and (4.17), it is easy to see that the three-level offloading scheme performs

better than the two-level offloading only if it satisfies:

ptr ·
D

B
> ptr ·

D

B1
+ pi ·

(
D

B2
+ tc

)
. (4.19)

An offloading decision making process based on the predicted energy consumption is explained

in Fig. 4.6. Given an application, we first estimate the average bandwidth of the current network,

trigger the energy consumption predictor to get an expected energy consumption of the mobile

device, and then use the offloading-decision criteria to take an offloading decision [136]. On one

hand, if the predicted energy consumption satisfies both (4.17) and (4.19), we will apply the three-

level offloading model; on the other hand, if the predicted energy consumption does not satisfy (4.19)

65

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

but (4.15), we choose the two-level offloading scheme. Apart from these cases, the application is

preferably executed locally on the mobile device.

(4.19)

(4.17)

(4.15) Local
Execution

Two-Level
Offloading

Three-Level
Offloading

Finished

Start

Yes

Yes

No

Yes

No

No

•

Figure 4.6: Offloading decision making based on the predicted energy consumption

4.2.2 Mathematical Model

A graphical model of where to perform the computation (locally, delegate it directly or via a cloudlet

to cloud resources) is depicted in Fig. 4.7. The mobile device, the cloud and the cloudlet are rep-

resented as queueing nodes to capture the resource contention on these systems [16]. The wireless

access network and the internet are denoted as simple delay centers representing average network

delay when a task is remotely executed. Different tasks of applications emerge in a mobile device

according to some process, each consisting of one or more tasks. We assume a simple model where

functions in an application are not hierarchically called and all tasks run sequentially without par-

allelism. Suppose there are N + 1 application tasks, with N unoffloadable tasks and N + 1 −m
offloadable tasks.

We further investigate the mathematical model by including offloading decision criteria. For the

nth application task, if minimum response time is selected as the offloading decision criterion at the

tth execution, it can be expressed mathematically as:

Tn(t) = min
{
T local
n (t), T cloud

n (t), T cloudlet
n (t)

}
, ∀n ∈ {0, 1, · · · , N}, ∀t ∈ {0, 1, · · · ,∞}, (4.20)

66

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

locally

unoffloadable

offloadable

completed
New tasks

cloud

cloudcloudlet

mobile device

decision

0

1 2

m

Wireless

network

Internet
Wireless

network

cloud

cloudlet

m
N+1 components

N+1-m

cloud

Figure 4.7: A mathematical model of adaptive offloading decision making

where T local
n (t), T cloud

n (t) and T cloudlet
n (t) are the time taken locally without offloading, the time taken

due to direct offloading to the cloud and the time taken due to offloading via a cloudlet to the cloud,

respectively. Further, T cloud
n (t) and T cloudlet

n (t) can be calculated as:

T cloud
n (t) = T s

n(t) +
Dn

B(t)
,

T cloudlet
n (t) =

Dn

B1(t)
+

Dn

B2(t)
+ T c

n(t) + T s
n(t),

where T sn and T cn are the times taken to process the nth task on the cloud and cloudlet, respectively.

Similarly, if minimum energy consumption is chosen as the offloading decision criterion, then it

can be expressed as:

En(t) = min
{
Elocal
n (t), Ecloud

n (t), Ecloudlet
n (t)

}
, (4.21)

where Elocal
n (t), Ecloud

n (t) and Ecloudlet
n (t) are the energy consumed locally, the energy consumed

due to direct offloading to the cloud, and the energy consumed due to offloading via a cloudlet to

the cloud, respectively. They can be calculated as:

Elocal
n (t) = pm · T local

n (t),

Ecloud
n (t) = ptr ·

Dn

B(t)
+ pi · T s

n(t),

Ecloudlet
n (t) = ptr ·

Dn

B1(t)
+ pi ·

[
Dn

B2(t)
+ T c

n(t) + T s
n(t)

]
.

67

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

Taking average in (4.20) and (4.21), we have the minimum average response time and average

energy consumption as follows:

T̄ = lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=0

E{Tn(τ)}, (4.22)

Ē = lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=0

E{En(τ)}. (4.23)

Therefore, the motivation of offloading could be to save energy, reduce execution time, or both. To

save energy while satisfying a given response time requirement, we propose a dynamic offloading

decision algorithm of where to offload based on Lyapunov optimization.

We assume that an application is composed of N + 1 tasks and we independently make an off-

loading decision for each one. We use a graph G = (R,S) with |R| = N + 1 to represent the

relationship among tasks. Each vertex v ∈ R denotes a task and Duv along the undirected edge

(u, v) represents the size of data migrating from vertex u to v. When there is a request for application

execution, a controller in the mobile device determines which tasks to be executed locally and which

to be executed remotely [48].

At the tth execution, let the offloading decision vector ω(t) be defined as:

ω(t) =
{
ωn(t)|ωn(t) ∈ {0, 1, 2}

}
1×(N+1)

, ∀n ∈ {0, 1, · · · , N}, t ∈ {0, 1, · · · ,∞}, (4.24)

where ωn(t) = 1 denotes that the nth task should run on the mobile device, ωn(t) = 0 represents

that it is directly offloaded to the remote cloud, and ωn(t) = 2 denotes that it is first migrated to a

nearby cloudlet and then to the cloud. We assume that the task with index 0 is an unoffloadable task

that should always be executed locally, and therefore we always have ω0(t) = 1. The other N tasks

can be offloadable such that ωn(t) should be selected among {0, 1, 2}.

Total Response Time

The total response time is equal to the time taken by the components running locally and those

running remotely, and plus the additional communication cost when they are in different places.

T (ω(t)) =
∑
v∈R

ωv(t) · Tm
v (t)︸ ︷︷ ︸

local

+
∑
v∈R
|1− ωv(t)| · T r

v(t)︸ ︷︷ ︸
remote

+
∑

(u,v)∈S

[
2− |ωu(t)− ωv(t)|

]
· Tuv(t)︸ ︷︷ ︸

communication

,

(4.25)

68

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

where ωv(t) and ωu(t) are elements from (4.24), the local and remote execution times are separately

denoted as:

Tm
v (t) =

{
Tm
v (t) if ωv(t) = 1

0 otherwise
and T r

v(t) =

{
T s
v(t) if ωv = 0 or 2

0 otherwise
,

and the transfer time from task u to task v can be calculated as:

Tuv(t) =


Duv
B(t) if ωu(t)⊕ ωv(t) = 1

Duv
B1(t)

+ Duv
B2(t)

+ T c
v (t) if ωu(t)� ωv(t) = 0

0 otherwise

,

where Duv is the communication data from task u to v, ⊕ and � represent XOR computation and

NOR computation for binary variables, respectively.

The total response time when all the tasks are executed locally is denoted as:

Tlocal(t) =
∑
v∈R

Tm
v (t). (4.26)

Total Energy Consumption

The total energy consumption is equal to the one consumed by local components plus the one con-

sumed in idle state for remote components and plus the extra energy consumed for transmission.

E(ω(t)) =
∑
v∈R

ωv(t) · Em
v (t)︸ ︷︷ ︸

local

+
∑
v∈R
|1− ωv(t)| · Ei

v(t)︸ ︷︷ ︸
idle

+
∑

(u,v)∈S

(
2− |ωu(t)− ωv(t)|

)
· Euv(t)︸ ︷︷ ︸

communication

,

(4.27)

where Em
v (t) = pm · Tm

v (t) is the local energy cost, Ei
v(t) = pi · T r

v(t) is the energy consumed in

idle state due to offloading and the energy consumed for data transfer is

Euv(t) =


ptr

Duv
B(t) if ωu(t)⊕ ωv(t) = 1

ptr
Duv
B1(t)

+ pi

[
Duv
B2(t)

+ T c
v (t)

]
if ωu(t)� ωv(t) = 0

0 otherwise

.

Similarly, the total local energy consumption when all the tasks are executed on the mobile device

69

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

is denoted as:

Elocal(t) =
∑
v∈R

Em
v (t). (4.28)

As a partitioning example, three cases after making offloading decisions are listed in Fig. 4.8.

Suppose task 1 is unoffloadable that can only be executed locally, while the others are offloadable

tasks that can either be processed locally or offloaded to the cloud, directly or via a cloudlet. We use

dotted arrows to represent offloading via the cloudlet to the cloud. In case 1, task 3 is executed on

the mobile device, task 4 is offloaded directly to the cloud while task 2 is offloaded via the cloudlet

to the cloud, thus the decision combination vector is ω1(t) = {1, 2, 1, 0}. In case 2, task 2 and 4

are offloaded via the cloudlet to the cloud while task 3 is offloaded directly to the cloud, thus we

have ω2(t) = {1, 2, 0, 2}. In case 3, all three tasks are offloaded directly to the remote cloud and

the decision combination vector is ω3(t) = {1, 0, 0, 0}.

1 2

4

Mobile device Cloudlet Cloud

3

1

2

1

2

3

Case 1

Case 2

Case 3

2

3

2

4

4 4

Figure 4.8: A partitioning example of where to offload

Challenges: Let Φ be the set of all possible decision combinations. When the application has N

offloadable tasks, we can obtain |Φ| = 3N . For each execution, the steps to search for the optimal

solution (i.e. to determine whether ωn(t) should be 0, 1 or 2) grow exponentially with the number

of vertices [21]. Therefore, it is difficult to obtain the optimal solution directly.

70

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

4.2.3 Lyapunov-based Algorithm

For a given decision combination vector ω(t), the corresponding energy consumption for different

executions may change due to variation in the available wireless network. In this case, it will be

difficult to obtain the optimal solution. Therefore, we suppose that the available wireless network

stays constant at the tth execution.

The constraint is that the total response time of that partition should be less than or equal to a

deadline named Td. Let the execution indicator variable be defined as:

σ (ω(t)) =

{
0 if T (ω(t)) ≤ Td
1 otherwise

. (4.29)

A decision combination vector ω(t) is feasible if the total response time satisfies the delay con-

straint, which is denoted as σ (ω(t)) = 0, otherwise, we have σ (ω(t)) = 1. A feasible decision

combination vector ω∗(t) with minimum energy consumption is the optimal solution among all the

feasible decision vectors. Formally, we have:

min
ω(t)

lim sup
t→∞

1

t

t−1∑
τ=0

E {E (ω(τ))} , (4.30)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

E {σ (ω(τ))} ≤ ρ, (4.31)

where ρ is the violation ratio of the number of executions which do not meet the deadline to the total

number of executions. (4.31) ensures that the system is stable.

We define the dynamic offloading system as:

Q(t+ 1) = max[Q(t)− ρ, 0] + σ (ω(t)) , ∀t ∈ {0, 1, · · · ,∞}, (4.32)

where Q(t) is defined as the system state at the tth execution, which depends on the violation ratio.

Therefore, the larger Q(t) is, the longer the system’s response time is.

Before further discussing the decision function, we first present a Lemma from [39], which is

related to the derivation of the decision function.

Theorem 2. Let W, U, µ, and A be nonnegative real numbers and W = max[U − µ, 0] + A, then

W 2 ≤ U2 + µ2 +A2 − 2U(µ−A).

For each execution, we define Lyapunov function as L(Q(t)) = Q2(t)/2 and Lyapunov drift as

the change in the Lyapunov function from one execution to the next [83]. According to Theorem 2,

71

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

we have:

L(Q(t+ 1))− L(Q(t)) =
1

2

[
Q2(t+ 1)−Q2(t)

]
=

1

2

{[
max[Q(t)− ρ, 0] + σ (ω(t))

]2
−Q2(t)

}
≤ ρ2 + σ2(ω(t))

2
+Q(t) ·

[
σ (ω(t))− ρ

]
. (4.33)

The conditional Lyapunov drift ∆(Q(t)) is the expected change in the continuous execution of

the Lyapunov function, i.e. ∆(Q(t)) , E
{
L(Q(t+ 1))−L(Q(t))|Q(t)

}
. According to (4.33), we

have that ∆(Q(t)) for a general control policy satisfies:

∆(Q(t)) ≤ C − ρQ(t) + E
{
Q(t)σ (ω(t)) |Q(t)

}
, (4.34)

where C , E
{
ρ2+σ2(ω(t))

2 |Q(t)
}

=ρ
2

2 + E
{
σ2(ω(t))

2 |Q(t)
}

.

To stabilize the queue state while minimizing the average energy consumption, we incorporate

the expected energy consumption over one execution. It can be designed to make control actions

that greedily minimize a bound on the following drift-plus-penalty term at each execution [83]:

∆(Q(t)) + V · E
{
E (ω(t)) |Q(t)

}
, (4.35)

where V ≥ 0 is a control parameter that represents an “importance weight" on how much we

emphasize the energy minimization compared to the violation ratio of the deadline. In other words,

V can be thought of as a threshold on the system queue state on which the control algorithm takes

offloading decision. So V controls the tradeoff between the energy consumption and response time.

Then substituting (4.34) into (4.35), yields:

∆(Q(t)) + V E
{
E (ω(t)) |Q(t)

}
≤ C − ρQ(t) + V E

{
E (ω(t)) |Q(t)

}
+ E

{
Q(t)σ (ω(t)) |Q(t)

}
= C − ρQ(t) + E

{[
V E (ω(t)) +Q(t)σ (ω(t))

]
|Q(t)

}
.

Note that our target is to minimize the average energy consumption. If we minimize the right-

hand-side of the above inequality, we can save energy while keeping (4.32) stable. This is accom-

plished by searching for a feasible ω(t) that greedily minimizes the decision criterion:

arg min
ω(t)

[
V E (ω(t)) +Q(t)σ (ω(t))

]
. (4.36)

72

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

Since the average violation rate is E {σ (ω(t))} ≤ ρ, the system is stable. We define the decision

function as:

d (Q(t),ω(t)) = V E (ω(t)) +Q(t)σ (ω(t)) . (4.37)

For the tth execution, we choose a decision combination vector ω∗(t) such that d (Q(t),ω∗(t)) is

minimized. We apply 1-opt local search algorithm that seeks for an optimal solution around the

initial estimate, whose vectors of candidates are composed by all possible solutions with unitary

Hamming distance. The 1-opt algorithm has low computational complexity that in terms of runtime

is O(|d|3) [1].

Performance Bounds

For any control parameter V > 0, we achieve average energy consumption and queue backlog

satisfying the following constraints [83]:

Ē = lim sup
t→∞

1

t

t−1∑
τ=0

E
{
E (ω(τ))

}
≤ C

V
+ E∗, (4.38)

Q̄ = lim sup
t→∞

1

t

t−1∑
τ=0

E
{
Q(τ)

}
≤ C + V (E∗ − Ē)

ε
. (4.39)

Discussion: It can be seen from (4.38) and (4.39) that performance of the dynamic offloading

decision algorithm depends on V , which controls the energy-delay tradeoff. Since the system state

is closely related with response time, it follows a [O(1/V), O(V)] tradeoff between the energy

consumption and response time. We can achieve an average energy consumption Ē arbitrarily close

to the optimum E∗ with a diminishing gap (1/V) while maintaining queue stability. However, this

reduction is achieved at the expense of a larger delay because the average system state Q̄ increases

linearly with V . Therefore, we can tune V to flexibly trade off between energy consumption and

response time. When the power constraint is stringent (e.g. the mobile device is running out of

battery and no charger is available), choosing a larger V can save more energy at the expense of

higher average response time and instead, when the battery supply is not so limited (e.g. a charger

is available), we can reduce V to shorten the response time and enjoy better quality of service.

Proof. Because our decision combination vector ω(τ) minimizes the right-hand-side of the drift-

73

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

plus-penalty inequality at every τ th execution, given the observed Q(τ), we have:

∆ (Q(τ)) + V E
{
E (ω(τ)) |Q(τ)

}
≤ C − ρQ(τ) + V E

{
E (ω∗(τ)) |Q(τ)

}
+E
{
Q(τ)σ (ω∗(τ)) |Q(τ)

}
≤ C − ρQ(τ) + V E∗ +Q(τ)(ρ− ε)

= C + V E∗ − εQ(τ),

where ω∗(τ) is any other (possibly randomized) transmission decision that can be made at the τ th

execution andE∗ is the minimum energy consumption. Since E {σ (ω∗(τ))} ≤ ρ, there exists some

ω∗(τ) and an arbitrarily small ε > 0 that meet the requirement that E {σ (ω∗(τ))} ≤ ρ− ε. Taking

expectations of the above inequality and using the law of iterated expectations, yields:

E
{
L (Q(τ + 1))

}
− E

{
L (Q(τ))

}
+ V E

{
E (ω(τ))

}
≤ C + V E∗ − εE{Q(τ)}.

Summing the above over τ ∈ {0, 1, · · · , t− 1} for some positive integer t, yields:

E
{
L (Q(t))

}
− E

{
L (Q(0))

}
+ V

t−1∑
τ=0

E
{
E (ω(τ))

}
≤ Ct+ V E∗t− ε

t−1∑
τ=0

E{Q(τ)}.

Rearranging terms in the above inequality and neglecting non-negative quantities where appropriate

yields the following two inequalities:

1

t

t−1∑
τ=0

E {E (ω(τ))} ≤ E∗ +
C

V
+

E {L (Q(0))}
V t

,

1

t

t−1∑
τ=0

E{Q(τ)} ≤
C + V

[
E∗ − 1

t

∑t−1
τ=0 E {E (ω(τ))}

]
ε

+
E {L (Q(0))}

V t
.

Taking limits as t→∞, we derive (4.38) and (4.39).

4.2.4 LARAC-based Algorithm

For comparison, we propose a dynamic offloading decision algorithm according to Lagrangian re-

laxation based aggregated cost (LARAC), which uses the concept of aggregated cost and provides

an efficient method to find the optimal multiplier based on Lagrange relaxation [53].

Our objective is still the same, i.e. to find the minimum in terms of energy consumption subject to

74

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

the constraint that the total response time should not exceed the deadline Td. A decision combination

vector ω(t) is feasible if the total response time meets the deadline. The decision combination vector

ω∗(t) with the minimum energy consumption is the optimal solution among all the feasible decision

combination vectors. Mathematically, we have:

min
ω(t)

lim sup
t→∞

1

t

t−1∑
τ=0

E
{
E (ω(τ))

}
, (4.40)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

E
{
T (ω(τ))

}
≤ Td. (4.41)

Specifically, we can define a Lagrangian function as:

f(λ) = E
{
E (ω(t)) + λT (ω(t))

}
− λTd, (4.42)

where λ is a Lagrange multiplier [143].

Using Lagrange duality principle, we obtain:

f(λ) ≤ E
{
E (ω∗(t))

}
, (4.43)

which gives a lower bound for the optimal solution of the offloading policy.

Then we formulate the LARAC-based dynamic offloading decisions as shown in Algorithm 4,

in order to find an optimal ω∗(t) among all the possible offloading decision combinations. If we

can find a minimum-energy combination vector that satisfies the deadline, this combination is the

solution. However, if the minimum-time combination vector violates the deadline, there is no so-

lution; otherwise we repeatedly update ωE(t) and ωT (t) to search for the optimal ω∗(t) [143].

Although we cannot guarantee to find the optimal decision combination, a lower bound on the theo-

retical optimal solution along with the result can be achieved. The computational complexity of the

LARAC-based algorithm in terms of runtime is O(|f |2log4|f |) [53], which has a higher complexity

than the Lyapunov-based algorithm.

4.2.5 Simulation and Results

Since our algorithms utilize the knowledge of current states (i.e. the current network bandwidth

is supposed to be known), they closely depend on the bandwidth estimation. We could use the

predictors proposed in [118], which consider the classical bandwidth predictors synthetically. The

framework unifies such decision models by formulating the problem as a statistical decision problem

75

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

Algorithm 4 A LARAC-based Offloading Decision Algorithm
//Find the optimal solution with offloading decision combination vector ω∗(t)
Function

[
ω∗(t)

]
= LARAC

(
E
{
E (ω(t))

}
,E
{
T (ω(t))

}
, Td
)

Input: E
{
E (ω(t))

}
: the mean energy consumption

E
{
T (ω(t))

}
: the mean response time

Td: the deadline
Output: ω∗(t): the optimal offloading decision combination vector

1: ωE(t) = arg minω(t) E
{
E (ω(t))

}
2: ωT (t) = arg minω(t) E

{
T (ω(t))

}
3: if E

{
T
(
ωE(t)

) }
≤ Td then

4: return ωE(t)
5: end if
6: if E

{
T
(
ωT (t)

) }
> Td then

7: return “There is no feasible solution"
8: end if
9: while true do

10: λ =
E
{
E(ωE(t))

}
−E
{
E(ωT (t))

}
E
{
T (ωT (t))

}
−E
{
T (ωE(t))

}
11: ω∗(t) = arg minω(t) E

{
E (ω(t)) + λT (ω(t))

}
12: if E

{
E (ω∗(t)) + λT (ω∗(t))

}
== E

{
E
(
ωE(t)

)
+ λT

(
ωE(t)

) }
then return ωT (t)

13: else
14: if E

{
T (ω∗(t))

}
≤ Td then

15: ωT (t) = ω∗(t)
16: else
17: ωE(t) = ω∗(t)
18: end if
19: end if
20: end while
21: return ω∗(t)

76

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

that can either be treated “classically" or using a Bayesian approach. However, we will not focus on

bandwidth estimation here, and instead we assume the current network bandwidth is well predicted

and could be directly in use.

We need to estimate the achievable bandwidths: B(t), B1(t) and B2(t) at the beginning of the tth

execution, and they stay the same during each execution. We suppose that B(t), B1(t) and B2(t)

follow uniform distributions on [1, 200], [1, 400] and [1, 500] Kbps, respectively.

Static Offloading Decisions

We first consider static offloading decisions based on criteria in (4.20) or (4.21). For convenience,

suppose D stays the same in each execution, T local
n = 100 s, T s

n = 10 s and T c
n = 10 s, where

n ∈ {0, · · · , N}. According to the power models developed in [10], we set the system parameters

to: N = 4, pm = 0.3 W, pi = 0.03 W and ptr = 0.2 W.

Communication data D (bit) #104
0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)
/ E

ne
rg

y
(J

)

0

100

200

300

400

500

600

700

800

Min energy criterion
Min time criterion

Energy Consumption

Response Time

Figure 4.9: The impact of communication data under different offloading decision criteria

It can be observed from Fig. 4.9 that when we choose the minimum response time criterion, at first

the energy consumption and response time rise with increasing of the communication data D. Then

both do not change any more with the increase of D, since there is no benefit from offloading in this

case. Therefore, all the application tasks are executed locally. However, when the minimum energy

criterion is selected, the total response time first increases, then arrives at a peak, and subsequently

decreases to a stable value which is the same as for the time executed locally. According to Fig. 4.9,

we can not achieve optimal energy consumption and response time together. Actually, there is a

tradeoff between the mean energy consumption and mean response time that can be further explored

77

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

in dynamic offloading decision algorithms.

Dynamic Offloading Decisions

We assume that the communication data between different tasks is Duv = 10 Kbits, the violation

ratio ρ = 0.2, the deadline Td = 600 s and the other parameters are the same as in the previous

section. We simulate our algorithm in 104 times for each value of V ranging from 1 to 400.

Control Parameter V
0 50 100 150 200 250 300 350 400

E
ne

rg
y/

J

84

86

88

90

92

94

0 50 100 150 200 250 300 350 400

T
im

e/
s

460

480

500

520

540

560
Energy Consumption
Response Time

(a) Energy consumption and response time
Control Parameter V

0 50 100 150 200 250 300

A
ve

ra
ge

 v
io

la
tio

n
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

;=0.2

(b) Violation rate

Figure 4.10: The impact of V on average energy consumption, response time and violation rate

Communication data D/bit #10 4

0 2 4 6 8 10

E
ne

rg
y

/J

0

100

200

#10 4

0 2 4 6 8 10

T
im

e
/s

0

500

1000

Energy Consumption
Response Time

(a) Energy consumption and response time
Communication data D/bit #10 4

0 2 4 6 8 10

S
ys

te
m

 s
ta

te

Q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) System state

Figure 4.11: The impact of communication data on average energy consumption, response time and
system state, when V = 100

78

4.2. ENERGY-EFFICIENT OFFLOADING DECISIONS

Control Parameter V
0 50 100 150 200

E
ne

rg
y

/J

80

90

100

110

120

130

140

150

T
d
=400

T
d
=600

T
d
=700

T
d
=800

(a) Energy consumption

Control Parameter V
0 50 100 150 200

T
im

e
/s

450

500

550

600

650

700

750

800

T
d
=400

T
d
=600

T
d
=700

T
d
=800

(b) Response time

Control Parameter V
0 50 100 150 200

A
ve

ra
ge

 v
io

la
tio

n
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
d
=400

T
d
=600

T
d
=700

T
d
=800

;=0.2

(c) Violation rate

Figure 4.12: The impact of parameter V under different deadlines

As depicted in Fig. 4.10(a), the energy consumption falls quickly at the beginning and then tends

to descend slowly while the response time grows linearly with V at first and then increases slowly.

This finding confirms that there is a [O(1/V), O(V)] tradeoff between average energy consumption

and average response time. A good operating point would be to pick a V value where a unit increase

in V yields a very small reduction in Q̄. At such point, the energy gains may not be worth the

response time rising from the increase of V [103]. There exists a sweet spot of value V (e.g.

V = 100) beyond which increasing V leads to a marginal energy conservation yet consistently

growing delays. In Fig. 4.10(b) the average violation ratio E {σ (ω(t))} first grows linearly with V

79

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

and then increases slowly, finally it approaches to a fixed ratio ρ = 0.2, denoted by the dotted red

line. The queuing system state is stable, since E {σ (ω(t))} ≤ ρ that satisfies (4.31).

In Fig. 4.11(a) the average energy consumption increases with the increase ofD, while the average

response time has a peak and then it decreases again. However, there is no benefit from offloading

when D is very large, and thus all the application tasks are executed locally in this case. From

Fig. 4.11(b), when D is large enough (e.g. D ≥ 45 Kbit), the system queue state is always 0, which

means T (ω(t)) ≤ Td, and all the tasks are executed locally. This is because the transmission time

is so large that it dominates the response time. Then we would rather perform the computation on

the mobile device than to offload it to the remote cloud.

As the average violation rate is much higher than the constant ρ = 0.2 denoted by the red dotted

line in Fig. 4.12(c), the system is unstable when Td = 400. Therefore, we do not consider this

situation, since the result under such deadline is unreasonable. From Fig. 4.12(a), it can be seen that

the average energy consumption decreases with increasing Td when V is small, while the average

response time increases as Td rises from 600 to 800 in Fig. 4.12(b). Therefore, setting the deadline a

little larger can reduce the average energy consumption but leads to the increase of average response

time.

Comparison of Different Decision Schemes

To gain insight on the performance of the proposed energy-efficient dynamic offloading decision

algorithm, we compare the results using the following methods:

• Local scheme: all application tasks are executed locally on the mobile device.

• Cloud scheme: all offloadable application tasks are directly offloaded to the cloud for further

processing.

• Cloudlet scheme: all offloadable application tasks are offloaded via the cloudlet to the cloud

for further processing.

• Lyapunov scheme: using the Lyapunov-based dynamic offloading decision algorithm (e.g.

V = 100).

• LARAC scheme: using the LARAC-based dynamic offloading decision algorithm.

Figure 4.13 shows the average response time and energy consumption, normalized to the local

scheme. The red dotted line denotes the deadline. It can be seen that our proposed Lyapunov scheme

can help to save around 50% of the energy consumption compared to the local scheme while only

sacrificing a small portion of response time. This is because the Lyapunov scheme offloads tasks

dynamically according to network bandwidth and transmit power, while both the cloud scheme and

the cloudlet scheme do not take the network bandwidth into consideration. Especially, when the

80

4.3. PERFORMANCE ANALYSIS OF OFFLOADING SYSTEMS

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

E
ne

rg
y/

T
im

e(
%

)

Response Time Energy Consumption

Cloud
Cloudlet

Local Lyapunov

LARAC
Local

Cloud

Cloudlet

Lyapunov
LARAC

Figure 4.13: Comparison of mean response time and energy consumption under different schemes

network bandwidth is so low that offloading tasks to the cloud or via the cloudlet to the cloud may

not be beneficial. Besides, when compared with the LARAC-based algorithm, the Lyapunov scheme

also saves more energy while only sacrificing a small portion of response time.

4.3 Performance Analysis of Offloading Systems

Offloading critically depends on a reliable end-to-end communication and on the availability of the

cloud. In addition, it suffers from high network access latencies and low network bandwidth. We

want to investigate how effective and efficient they are and what factors influence their performance.

With this purpose, we introduce a mathematical model and analyze offloading systems with failures,

considering application execution time and failure recovery time.

4.3.1 Offloading Systems with Failures

The state transitions of offloading systems in the presence of failures are given as Fig. 4.14. There are

four states as depicted in Fig. 4.14(b), named non-offloading execution (SNE), offloading execution 1

on cloudlet (SOE1), offloading execution 2 on cloud (SOE2), and failure and repair (SFR), respectively.

After triggering the begin of offloading event, the execution state changes from SNE to SOE1. If the

cloud is available, without hesitation, the execution state continues to SOE2. Once the executions

of all the offloaded tasks are finished successfully, the state changes back from SOE2 to SNE [90].

81

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

However, failures may occur in all the four states:

• SNE: failures can occur in state SNE due to the mobile device’s failures (e.g. running out of

battery, abnormal shutdown).

• SOE1: failures may occur in state SOE1 due to the cloudlet’s failures (e.g. cloudlet’s shutdown,

wireless link failures) or the cloudlet is becoming unreachable owing to the mobile device’s

movement.

• SOE2: failures can occur in state SOE2 due to the cloud’s failures (e.g. unavailable or outage

of the cloud) or the cloud is becoming unreachable due to cloudlet failures.

• SFR: nested failures may also happen in state SFR.

Non-Offloading

Execution

Failure

&Repair





SNE

SFR

Offloading

Execution

SOE

2 

(a) Two-level offloading systems [90]

SOE1

Non-Offloading

Execution

Offloading

Execution 1

Failure

&Repair





1 2 
SNE

SFR

Offloading

Execution 2

SOE21 

(b) Three-level offloading systems

Figure 4.14: State transitions of offloading systems with failures

82

4.3. PERFORMANCE ANALYSIS OF OFFLOADING SYSTEMS

Once a failure event is triggered, the application’s execution state transits to the failure and repair

state SFR. The offloading execution is completed when an execution period elapses without failure.

When a failure occurs, a period of time R for repairing will be taken. Independent failures caused

by the mobile device, cloudlet and cloud are modelled as non-homogenous Poisson processes with

different rates β, γ1 and γ2, respectively. In state SNE, only the failures caused by the mobile device

lead to a state change to SFR; in state SOE1, any failure caused by the mobile device or the cloudlet

can induce a state transition to SFR; in the state SOE2, any failure caused by the cloudlet or cloud

can induce a state turn to SFR, and in state SFR, the rate of nested failures is β. Therefore, the failure

rate function λ(t) is a discrete function of time and defined as:

λ(t) =


β, in stateSNE andSFR,

β + γ1, in stateSOE1,

γ1 + γ2, in stateSOE2.

(4.44)

Failure Repair Time

In the offloading systems without fault-tolerance, a failure repair time is a period spent to re-execute

the application from the beginning to the point of the failure. Once an application enters state SFR,

the time period R is required to complete a repair time in the presence of nested failures. The

expectation of the failure repair time is given by:

E(R∗) =
1

β

[
1

E(e−βR)
− 1

]
. (4.45)

Proof. Let X be the random variable denoting the time to the first failure after starting repair, let R∗

be the failure repair time in the presence of failures within the repair period R, then we get:

R∗ =

{
R, if R < X,

X + R̃∗, if R ≥ X.

If R < X , then a repair will be successful completed without nested failures; otherwise, if R ≥ X ,

a failure occurs after which another repair is simply repeated, denoted as R̃∗. Thus, the repair time

is X + R̃∗ in this case [18]. Taking conditional expectation of R∗, we have:

E(e−sR
∗ |R,X) =

{
e−sR, if R < X,

e−sXE(e−sR̃
∗
), if R ≥ X.

83

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

Since X is independent of R̃∗, un-conditioning on X , we get:

E(e−sR
∗ |R) =

∫ ∞
x=0

E(e−sR
∗ |R,X = x)βe−βxdx

=

∫ R

x=0
e−sxE(e−sR

∗
)βe−βxdx+

∫ ∞
x=R

e−sRβe−βxdx

=
βE(e−sR

∗
)(1− e−(s+β)R)

s+ β
+ e−(s+β)R.

Further, removing the condition on R, it yields:∫ ∞
R=0

E(e−sR
∗ |R)f(R)dR =

∫ ∞
R=0

[
βE(e−sR

∗
)(1− e−(s+β)R)

s+ β
+ e−(s+β)R

]
f(R)dR,

E(e−sR
∗
) =

∫ ∞
R=0

βE(e−sR
∗
)(1− e−(s+β)R)

s+ β
f(R)dR+

∫ ∞
R=0

e−(s+β)Rf(R)dR,

and by using the Laplace transform:

LR(s) =

∫ ∞
R=0

e−sRf(R)dR = E(e−sR)

on both sides, respectively, we get:

LR∗(s) =
βLR∗(s)(1− LR(s+ β))

s+ β
+ LR(s+ β).

Rearranging the above equation, we have:

LR∗(s) =
(s+ β)LR(s+ β)

βLR(s+ β) + s
.

According to the property of Laplace transform [29], the expected repair time in the presence of

failures can be calculated as:

E(R∗) = −dLR∗(s)

ds
|s=0,

and then we derive (4.45).

Application Response Time

With the presence of failures, the application response time can be approximated by:

84

4.3. PERFORMANCE ANALYSIS OF OFFLOADING SYSTEMS

• For two-level offloading systems:

TFT(n) = (1− α2) · E[TOE(n)] + α2E[TNE/FR(n)],

where α2 is the unreachable probability of cloud, the time spent in state SOE and in state

SNE/SFR can be calculated as:

E[TOE(n)] =

[
1

β + γ2
+ E(R∗)

]
·
[
e(β+γ2)E[TOPT(n)] − 1

]
,

E[TNE/FR(n)] =

[
1

β
+ E(R∗)

]
·
(

eβE[TOPT(n)] − 1
)
.

• For three-level offloading systems:

TFT(n) =
1

2

{
(1− α1)E[TOE1(n)] + α1E[TNE/FR(n)] + (1− α2)E[TOE2(n)] + α2E[TNE/FR(n)]

}
=

1

2

{
(1− α1)E[TOE1(n)] + (1− α2)E[TOE2(n)] + (α1 + α2)E[TNE/FR(n)]

}
,

where α1 is the unreachable probability of cloudlet, the time spent in state SOE1 and SOE2 can

be calculated as:

E[TOE1(n)] =

[
1

β + γ1
+ E(R∗)

]
·
[
e(β+γ1)E[TOPT(n)] − 1

]
E[TOE2(n)] =

[
1

γ1 + γ2
+ E(R∗)

]
·
[
e(γ1+γ2)E[TOPT(n)] − 1

]

4.3.2 Analytical Evaluation

In order to analyze the offloading system with failures, we can list different types of response time

as follows:

• Tm(n): the response time when the whole application is executed on the mobile device without

the presence of offloading and failure repair.

• TOPT(n): the response time when the application runs in an ideal offloading system without

failures [92], it can be calculated as:

TOPT(n) = (1−π) ·Tm(n)+
π · Tm(n)

F
+Tc(n) =

[
1− (F − 1)π

F

]
·Tm(n)+Tc(n), (4.46)

85

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

where Tc(n) = D
B1

+ D
B2

is the total communication time, 0 ≤ π ≤ 1 is the proportion of

sub-tasks performed by the cloud compared to the mobile device, (1− π) ·Tm(n) denotes the

time spent on the cloud server for performing (1 − π)n sub-tasks and π · Tm(n)/F denotes

the time spent on the mobile device for executing πn sub-tasks. TOPT(n) is monotonically

decreasing with F and π since:

∂TOPT(n)

∂F
= − 1

F 2
· π · Tm(n) < 0 and

∂TOPT(n)

∂π
= −F − 1

F
· Tm(n) < 0.

• TFT(n): the response time when the application is totally offloaded to the cloud and executed

with failure repair. Once a failure occurs, it needs to restart from scratch. TFT(n) is also

monotonically decreasing with F and π since:

∂TFT(n)

∂F
= − 1

F 2
· C1 < 0 and

∂TFT(n)

∂π
= −F − 1

F
· C2 < 0,

where C1 and C2 are positive constants independent of F and π, respectively.

• T (n): partial sub-tasks are offloaded to the cloud through cloudlet and the others are executed

by the mobile device. Only part of sub-tasks that are executed by the cloud need to be re-

executed when a failure occurs. Thus, we have:

T (n) = Tm[(1− π)n] + TFT(πn), (4.47)

where Tm[(1− π)n] and TFT(πn) are the time spent on the mobile device and cloud, respec-

tively. If π is close to 1, T (n) reduces to TFT(n), and otherwise if π approaches to 0, T (n) is

close to Tm(n).

Parameters are set as follows: the number of sub-tasks n = 100, the average period of repair

time E(R) = 10, the proportion of sub-tasks performed by the cloud compared to the mobile device

π = 0.9, the failure rate of the mobile device, the cloudlet and the cloud are β = 10−3, γ1 = 10−4

and γ2 = 10−5, respectively. The probability of unreachability of cloudlet and cloud are α1 = 0.1

and α2 = 0.2, respectively, the average execution time for each sub-task on the mobile device is 5

seconds and the communication time Tc = 0.3n is proportional to n.

In Fig. 4.15(a) the curve Tm(n) is a horizontal line at 500 s, and in addition to Tm(n), the response

time decreases along with the increase of speedup factor F . TFT(n) and T (n) produce a much longer

time than Tm(n) when F < 2, due to offloading and failure repairs. With larger F , the cloud can

save response time on the mobile device. However, the time spent on offloading operation and failure

handling will increase the total response time, especially in environments with less higher cloudlet

86

4.3. PERFORMANCE ANALYSIS OF OFFLOADING SYSTEMS

Speedup Factor F
0 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
T

im
e

100

200

300

400

500

600

700 T
m

(n)
T

OPT
(n)

T
FT

(n) (3-level)
T

FT
(n) (2-level)

T(n) (3-level)
T(n) (2-level)

(a) Speedup F
Proportion Ratio :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
T

im
e

100

200

300

400

500

600

700
T

m
(n)

T
OPT

(n)

T
FT

(n) [3-level]
T

FT
(n) [2-level]

T(n) [3-level]
T(n) [2-level]

(b) Proportion π

Number of Sub-Tasks n
50 100 150 200 250 300 350 400 450 500

R
es

po
ns

e
T

im
e

102

103

T
m

(n)
T

OPT
(n)

T
FT

(n) (3-level)
T

FT
(n) (2-level)

T(n) (3-level)
T(n) (2-level)

(c) Sub-tasks n

Figure 4.15: Response time under different parameters

or cloud reachability. And also an offloading process may not be able to reduce the application

response time under small F . Further, the three-level offloading scheme costs less time than the

two-level approach since it is much more stable and reliable.

Figure 4.15(b) shows the response time under different π when F = 10. It can be seen that

T (n) reduces to Tm(n) when π = 0, where the tasks are totally executed by the mobile device, and

T (n) approaches TFT(n) when π = 1, where the tasks are totally migrated to the cloud. TFT(n)

and TOPT(n) decrease along with the increase of π, while T (n) increases slightly and decreases

afterwards. The response time of TFT(n) and T (n) are greater than Tm(n) when π < 0.66 due to

offloading and failure recoveries. The larger π is, the more time the three-level offloading system

87

CHAPTER 4. OFFLOADING DECISION MAKING: WHERE TO OFFLOAD

saves and it works better than the two-level offloading approach owing to its higher reliability.

Figure 4.15(c) considers the effect of the number of sub-tasks n on the application response time.

The larger n is, the more time the three-level offloading system costs. Besides, a failure handling

process adds extra time to the system. Further, the time saved by the three-level offloading system

from the two-level offloading scheme raises along with increasing of n.

4.4 Summary

To sum up, we have discussed the issue of where to offload in offloading decision making.

First we tried to find the optimal cloud service among several alternative clouds, which is suitable

for an offloading destination. A scheme that combines AHP and fuzzy TOPSIS methods is proposed,

which considers the subjective judgments of evaluators and makes a final decision based on the

results from multi-criteria decision analysis. It is proposed as an effective way to solve optimal

cloud service selection through numerical analysis.

Then we presented an approach for dynamic offloading decision making based on different criteria

and particularly considered the changing landscape of network connectivity (cellular network vs.

WiFi to cloud vs. cloudlet). We formulated an optimization problem whose solution can guide the

required decision making, which minimizes the total energy usage subject to keeping the average

queue length finite. It is able to partition individual portions of the offloading task pool into different

groups, each with very specific combinations of offloadable characteristics. Numerical results show

that the proposed algorithm can save around 50% of the energy consumed as compared with local

execution while only slightly sacrificing response time, and it has less computational complexity

than the LARAC-based algorithm.

Finally, we compared the performance of different offloading systems. In the environments with

less cloudlet or cloud reachability, longer disconnection time or even smaller speedup factor F ,

the three-level scheme will not benefit from offloading. However, under the same reachability and

failure rate of the cloud, the three-level offloading scheme is much more stable and reliable than the

two-level offloading approach and thus it reduces response time.

88

Chapter 5

Offloading Decision Making: How to
Offload

Offloading can be performed statically or dynamically via different wireless networks like WLAN

and cellular networks. Since the transmission techniques differ in energy requirements and speeds,

we should determine how to leverage the complementary strength of WiFi and cellular networks by

choosing heterogeneous wireless interfaces for offloading. This chapter addresses the issue of how

to offload by minimizing both the energy consumption and response time, with the contributions

being threefold:

• Using queueing models to carry out optimality analysis of the energy-performance tradeoff

for mobile offloading systems, which captures both energy and performance metrics and also

intermittently available access links.

• Applying different offloading policies (static and dynamic), where arriving jobs are processed

either locally or remotely. The dynamic offloading policy considers the increase in each queue

and the change in metric that newly arriving jobs bring in should they be assigned to that

queue, while the static policy does not capture the dynamic increase.

• Developing two different offloading strategies: the uninterrupted strategy, which uses WiFi

whenever possible, but switches to a cellular interface if no WiFi connection exists [77], and

data is continuously transmitted while switching between different channels; the interrupted

strategy, which assigns jobs upon arrival to one of two parallel queues which describe cellular

or WiFi transmission. Data transmission of the WiFi queue can be interrupted for short periods

when the connection is lost.

89

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

5.1 The Queueing Model

We consider a queueing model for mobile offloading systems as depicted in Fig. 5.1. The mobile

device, the cloud and the wireless networks are represented as queueing nodes to capture the re-

source contention and delay on these systems [16]. The mobile device executes an application with

different types of jobs that can be classified into: unoffloadable and offloadable. The problem of

taking offloading decisions does not exist for the unoffloadable jobs. However, for the offloadable

ones, the mobile device should judiciously make decisions that optimize the response time energy

tradeoff expressed in one of the metrics defined in Section 2.2.2.

Mobile device

Dispatcher

mP

(1)S O� �

cP

WLAN
Intermittent

available server

Cellular

1P

2D

2P

1O

2O

offload

1D

local

unoffloadable

offloadable
0O O�

Cloud

O

S O�

Dispatcher

0O

Figure 5.1: A queueing model for mobile cloud offloading systems

As indicated in Fig. 5.1, job arrivals at the mobile device are assumed to follow a Poisson process

with an average arrival rate of λ+λ0, where λ and λ0 are the rates of offloadable and unoffloadable

jobs, respectively. The arrival rate is based on the behavior of the application. The unoffloadable

jobs with an arrival rate λ0 are unconditionally executed locally. As for the offloadable ones with an

arrival rate λ, the mobile device chooses to offload each job with a probability 0 ≤ π ≤ 1. According

to the properties of the Poisson distribution [94], the jobs are offloaded to the cloud following a

Poisson process with an average arrival rate of λc = π · λ, the offloading rate. Similarly, jobs that

are proceed locally instead of being offloaded follow a Poisson process with rate λm = (1− π) · λ.

There are several ways to offload computation to the cloud, either via a cellular connection or an

available WLAN access point (AP). According to the mobile network traces collected in Section

90

5.2. OFFLOADING POLICIES

2.2.1, the cellular interface can provide near-ubiquitous coverage for mobile devices in a wide area,

but has lower data transmission rate and consumes more transmission energy than the WiFi interface,

while the WiFi network experiences frequently intermittent connectivity. The mobile device, the

cellular and WLAN connections are modelled as M/G/1 queues, and the remote cloud is modelled

as an M/G/∞ queue, i.e. as a delay center [16]. We denote 1/µm and 1/µc the expected execution

time of jobs on the mobile device and the cloud, respectively. The expected rates to transfer data to

the cloud over the cellular network and WLAN are µ1 and µ2, respectively.

Two dispatchers are needed: α1 is used to allocate the offloadable jobs either to the cloud or to the

mobile device, while α2 is to offload the jobs either via a cellular connection or a WLAN network to

the cloud. It should be noted that when π = 0, all the offloadable jobs are processed locally, when

π = 1, they are all offloaded to the cloud. The total cost, in terms of energy or response time for

processing all offloadable jobs, is composed of the remote cost (sending some jobs to the cloud and

waiting for the cloud to complete them), and the local cost (processing the remaining jobs locally

on the mobile device).

Since the delay caused by the transmission in the uplink usually dominates the total cost, our

analysis focuses on the dispatcher inside the red dotted block, which is responsible for selecting

the best transmission channel. The objective is to minimize a weighted sum of the mean energy

consumption and response time under the assumption that the dispatcher is aware of the remaining

service time of each job in the system, including that of the arriving job [95].

5.2 Offloading Policies

In this section, we derive three offloading policies under the ERWS metric, defining different strate-

gies to determine λ1 and λ2, i.e. to assign jobs upon arrival to one of two parallel queues which

describe cellular or WLAN transmission. We consider both static and dynamic offloading policies:

• For static offloading policy, the offloading decision is independent of the system’s state. It

only depends on the job itself (size, value, class), neither on past decisions nor current state

of the queues. Therefore, it only finds an overall optimal assignment scheme but could not

capture the dynamic situation when the mobile environment changes.

• For dynamic offloading policy, the offloading decision depends on the system’s state, it takes

the new job into account when considering the following questions:

– Whether to join the shortest queue or not?

– What if some server is slower than another?

– What if some server is not available?

91

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

Since the decision is made dynamically at runtime to adapt to different operating conditions,

the dynamic offloading policy can achieve much better performance than the static one, but it

requires a higher overhead during execution.

5.2.1 Model and Problem Formulation

The interface selection problem in offloading systems is modelled as the decision to which queue an

arriving job should be assigned. In this decision the offloading dispatcher takes both performance

and energy costs into account. This seems natural for heterogeneous servers where a job needs a

different amount of energy and time to be served by different servers [75]. For example, whereas as-

signing each job to a low power server would be beneficial from the energy consumption perspective

at low loads, such a policy may end up in difficulties at higher loads as the response time increases

rapidly [95]. Indeed, the energy-performance tradeoff takes on different explicit expressions and

under different offloading policies. Our objective is to minimize the ERWS metric under static and

dynamic offloading policies.

As shown in Fig. 5.2, we consider a queuing model that consists of two parallel queues of cellular

and WiFi with work conserving queuing disciplines. λ1 and λ2 are the mean rates of jobs into

Queue 1 and Queue 2. Since the original offloading jobs arrive at the system according to a Poisson

process with rate λc, one policy would be randomly assigned to Queue i (i ∈ {1, 2}), which results

in independent Poisson processes with rate λi, and we have λ1 + λ2 = λc.

µc

WiFi

Cellular

Cloud

ONOFF
η

ξ

λ1

λ2

s1, p1

s2, p2

TransmittingUnconnected

λc α 2

Figure 5.2: The interrupted offloading strategy

The two queues have the following characteristics:

• Queue 1: When a job is offloaded to the cloud via a cellular network (2G/3G), there is queue-

92

5.2. OFFLOADING POLICIES

ing due to the transmission speed of the cellular link. Costs arise in terms of transmission

delays (queueing and actual transmission time) and transmission energy consumption. We

assume that the service speed (or transmission rate) is s1, and the operating power for Server

1 is p1 when serving jobs and zero whenever idle. Further, Server 1 is always available since

the cellular connection is always on.

• Queue 2: When a job is offloaded to the cloud via a WLAN network, there is queueing

due to the transmission speed of the WLAN link. We assume that Server 2 runs at speed

s2, and its operating power is p2 when serving jobs and zero whenever idle. We model the

intermittent availability of hotspots as a first come first served (FCFS) queue with occasional

server break-down [50]. The availability of Server 2 is governed by an interrupted Poisson

process (IPP) with exponentially distributed ON-OFF periods. Specifically, the server is either

in ON-state processing the existing jobs, or in OFF-state during which no job receives service.

We assume that the sojourn time in a hotspot and the time to move from one hotspot to

another are exponentially distributed with parameters ξ (failure rate), and η (recovery rate),

respectively.

These imply that WiFi is much faster and more energy-efficient than the cellular interface for

transmitting the same quantity of data. Therefore, we consider here a simple scenario where the

transmission rate of the cellular network is smaller than that of WLAN, i.e. s1 < s2 and the power

consumption when transmitting jobs via the cellular link is larger than the WLAN link, i.e. p1 > p2.

In minimizing the ERWS metric, it seems favorable to assign jobs to Queue 2 rather than to Queue

1. However, when considering the WLAN link’s intermittent availability in Queue 2, the optimal

assignment has to be reconsidered.

Upon arrival of a job an assignment decision is made and the job is placed into the corresponding

queue according to the ERWS metric denoted as:

ERWS =
1

λc

2∑
i=1

λi

{
ωE[Ei] + (1− ω)E[Ti]

}
, (5.1)

where λc is the total job arrival rate for offloading, λi is the mean rate of jobs into Queue i, E[Ei]
and E[Ti] are the mean energy consumption and mean response time in Queue i, respectively.

We assume that each server operates at a constant power pi whenever the server is busy. Since

the average consumed power is E[Pi] = λiE[Ei] [7], further by Little’s Law, E[Ni] = λiE[Ti], the

ERWS metric in (5.1) can be more conveniently expressed by the Power-Queue length Weighted

93

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

Sum (PQWS) metric:

PQWS =
1

λc

2∑
i=1

{
ωE[Pi] + (1− ω)E[Ni]

}
=

1

λc

2∑
i=1

{
ωpi Pr{Ni > 0, ei = 1}+ (1− ω)E[Ni]

}
, (5.2)

where PQWS is a weighted sum of the mean power consumption and mean queue length (or average

number of jobs) in a queueing system, Pr is the probability operation, ei = 1 indicates that Server i

is available and Ni is the number of jobs in Queue i.

Since the number of jobs in Queue i can be dependent on the state of Server i, we have:

Pr{Ni > 0, ei = 1} = Pr{Ni > 0|ei = 1} · Pr{ei = 1}. (5.3)

Further, since Server 1 is always available, we have Pr{e1 = 1} = 1 and Pr{N1 > 0|e1 = 1} =

Pr{N1 > 0}. The fraction of time that Server 2 is available to process jobs is:

Pr{e2 = 1} =
η

ξ + η
, γ, (5.4)

where as the recovery rate η →∞, the availability of Server 2 tends to be 1.

Since the probability that the corresponding server is busy is equal to the utilization [7], we have

Pr{Ni > 0} = ρi, where ρi is the utilization of Queue i. We can further formulate the optimization

of the PQWS metric for the offloading assignment as:

λ∗i = arg min
λi

PQWS , (5.5)

where we find the arrival rate λ∗i to Queue i such that PQWS is minimized when both queues are

in operation.

5.2.2 Static Offloading Policy

The static offloading policy is to assign arriving jobs using the optimal assignment scheme which

corresponds to the smallest possible cost in the PQWS metric. We always assign the offloading jobs

according to that scheme.

Queue 1 refers to offloading jobs from the mobile device to the cloud via a cellular network,

which is modelled as an M/G/1-FCFS queue. The expected number of jobs in Queue 1 is given by

94

5.2. OFFLOADING POLICIES

the Pollaczek-Khinchine formula:

E[N1] = λ1E[S1] +
λ21E[S2

1]

2(1− ρ1)
. (5.6)

Note, that a job of sizeX served at speed swill be completed in timeX/s. Since E[Si] = E[X/si] =

E[X]/si, the utilization in Queue 1 during the busy period is ρ1 = λ1E[S1] = λ1E[X]/s1. Espe-

cially, if the job size X is exponentially distributed, according to E[X2] = 2E2[X] and E[S2
i] =

E[(X/si)
2] = E[X2]/s2i , we further have:

E[N1] = λ1E[X]/s1 +
2λ21E2[X]/s21

2(1− ρ1)

= ρ1 +
2ρ21

2(1− ρ1)
=

ρ1
1− ρ1

. (5.7)

Similarly, if the server in Queue 2 is always available like Queue 1, we can have Pr{N2 > 0|e2 =

1} = λ2E[S2] = λ2E[X]/s2. However, Queue 2 refers to offloading jobs from the mobile device to

the cloud via a WLAN network, which is modelled as an M/G/1-FCFS queue with intermittently

available service. When a server recovers, it continues to serve the customer whose service has been

interrupted, i.e. the work already completed is not lost (cf. data transfers with resume). The mean

response time for Queue 2 is then given by [50]:

E[T2] = E[Y] +
λ2E[Y 2]

2(1− ρ2)
+
κ(1 + λ2/η)

1 + λ2κ
, (5.8)

where κ = ξ/η
λ2+ξ+η

, E[Y] = E[S2]/γ and E[Y 2] = E[S2
2]/γ2 + 2ξ/η2E[S2]. The utilization for

Queue 2 during the busy period is ρ2 , λ2E[Y] = λ2E[S2]/γ. Since we require ρ2 < 1 for the

queue to be stable, it yields: λ2E[S2] < γ.

According to Little’s Law, the expected number of jobs in Queue 2 is E[N2] = λ2E[T2]. Espe-

95

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

cially, if X is exponentially distributed, E[X2] = 2E2[X], we further have:

E[N2] = λ2E[Y] +
λ22E[Y 2]

2(1− ρ2)
+
κ(λ2 + λ22/η)

1 + λ2κ

= ρ2 +
λ22E[S2

2]

2γ2(1− ρ2)
+

2ξ
η2
λ22E[S2]

2(1− ρ2)
+
κ(λ2 + λ22/η)

1 + λ2κ

= ρ2 +
2λ22E2[X]/s22
2γ2(1− ρ2)

+

ξ
η2
λ22E[X]/s2

1− ρ2
+
κ(λ2 + λ22/η)

1 + λ2κ

= ρ2 +
ρ22

1− ρ2
+

ξλ22E[X]

η2s2(1− ρ2)
+
κ(λ2 + λ22/η)

1 + λ2κ

=
ρ2

1− ρ2
+

ξλ22E[X]

η2s2(1− ρ2)
+
κ(λ2 + λ22/η)

1 + λ2κ
. (5.9)

After substituting (5.3), (5.7) and (5.9) into (5.5), we obtain a new offloading policy called tradeoff

offloading policy (TOP), and we bring in two previous policies named random offloading policy

(ROP) and load-balanced offloading policy (LOP) as a comparison. All the three offloading policies

used in our analysis are as follows:

• ROP: arriving jobs are randomly assigned to the two queues (Bernoulli split), assuming that

each queue has the same probability of being chosen. Therefore, for the queueing model in

Fig. 5.2, we have job arrival rate λ1 = λ2 = λc/2. This is a static policy that randomly

chooses the transmission channel.

• LOP: since the service rate in Queue 2 is much higher than that in Queue 1, more jobs can

be served in Queue 2 in the same time. However, since Server 2 is sometimes unavailable,

the actual service rate could in fact be lower. When considering the service rate and the

availability of servers in different queues, jobs are allocated to Queue i in a Poisson process

with parameters λ1 = s1
s1+s2γ

λc and λ2 = s2γ
s1+s2γ

λc. Thus, under this policy all the queue

loads are equal and given by ρ1 = ρ2 = λcE[X]
s1+s2γ

. This is a static policy that balances the load

across the queues.

• TOP: arriving jobs are assigned to Queue 1 and Queue 2 according to the optimized objective

of the PQWS metric defined in (5.5), minimizing the weighted sum of mean energy consump-

tion and mean response time. This is the proposed static policy that considers the tradeoff

between energy consumption and performance according to the ERWS metric.

96

5.2. OFFLOADING POLICIES

5.2.3 Dynamic Offloading Policy

The dynamic offloading policy inserts a newly arriving job tentatively into each of the queues and

chooses the one corresponding to the smallest increase in the Power-Queue length Weighted Sum

(PQWS) metric when also counting the jobs that have been already accepted to the system. We

adopt a value function defined in [49] to assign jobs dynamically.

We assume a size-aware system, where the service time of jobs becomes known upon arrival. Let

∆
(i)
j denote the remaining service time of job j (j = 1, 2, · · · , n) in Queue i (i ∈ {1, 2}), where

jobs are ordered such that job 1 receives service first, then job 2, and so forth. The state of the server

is known. Since Server 1 is always available (i.e. e1 = 1), the state of Queue 1 can be denoted by

vector ~z(1):

~z(1) =
(

∆
(1)
1 ,∆

(1)
2 , · · · ,∆(1)

n | e1 = 1
)
. (5.10)

Similarly, the state of Queue 2 is denoted by vector ~z(2):

~z(2) =
(

∆
(2)
1 ,∆

(2)
2 , · · · ,∆(2)

n | e2 ∈ {0, 1}
)
, (5.11)

where e2 ∈ {0, 1} indicates if the server 2 is available or not.

The backlog, i.e. the amount of service time for unfinished jobs in Queue i, is denoted by U~z(i) =∑n
j=1 ∆

(i)
j , and the cumulative response time during time interval (0, t) is expressed as:

V~z(i)(t) ,
∫ t

0
N~z(i)(τ)dτ, (5.12)

where N~z(i)(t) is the number of jobs in Queue i at time t. The relative value is the expected differ-

ence in the cumulative costs between a system initially in state ~z and a system initially in equilib-

rium [51]:

v~z(i) , lim
t→∞

E
[
V~z(i)(t)− E[N~z(i)] · t

]
. (5.13)

According to (5.2), the cumulative cost of the PQWS metric in Queue i is:

ωpi Pr {N~z(i) > 0, ei = 1}+ (1− ω)E[N~z(i)], (5.14)

where the first term corresponds to the mean energy consumption and the second corresponds to the

mean response time.

The difference ~z∗− ~z that characterizes the expected difference in the future costs between states

~z∗ and ~z is the quantity on which job assignment is based. When a new job is admitted to one of

97

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

the two queues, it increases the total cost of the PQWS metric. The complete understanding of the

future costs is summarized in the relative value v~z . For a fixed policy resulting in a stable system,

the relative value v~z − v~0 gives the expected difference in the infinite horizon of cumulative costs

between an arbitrary state ~z, and an empty system initially in state ~0 with no jobs.

Theorem 3. For Queue i, the difference of relative values with respect to the weighted sum of the

energy consumption and response time in (5.14) can be calculated by:

v~z(i) − v~0(i) = ω
(
vE
~z(i)
− vE~0(i)

)
+ (1− ω) ·

(
vT
~z(i)
− vT~0(i)

)
. (5.15)

Proof. The difference of relative values with respect to the weighted sum of the energy consumption

and response time can be decomposed into:

v~z(i) − v~0(i) =
[
ωvE

~z(i)
+ (1− ω)vT

~z(i)

]
−
[
ωvE~0(i) + (1− ω)vT~0(i)

]
= ω

(
vE
~z(i)
− vE~0(i)

)
+ (1− ω) ·

(
vT
~z(i)
− vT~0(i)

)
,

from which the result follows directly.

It can be seen from (5.15) that the difference of relative values with respect to the PQWS metric in

state ~z can be decomposed into the difference of relative values with respect to energy consumption

and the difference of relative values with respect to response time, which can be treated separately

as follows.

Theorem 4. For Queue iwith a work conserving queuing discipline, the difference of relative energy

costs can be calculated as [95]:

vE
~z(i)
− vE~0(i) = Pr{ei = 1} · piU~z(i) . (5.16)

Proof. We assume identical arrivals to a single-server system initially in state ~z and to an empty

single-server reference system. When all the initial work U~z(i) in the queue i is served, both systems

are empty. Thus, the difference of energy consumption between the two systems is piU~z(i) , which

is simply the difference in the energy needed to serve the initial work. Further, since energy is

consumed only when the server is available, we derive (5.16).

According to Proposition 2, since Server 1 is always available, the difference of relative energy

consumption is given by:

vE
~z(1)
− vE~0(1) = Pr{e1 = 1} · p1U~z(1) = p1U~z(1) . (5.17)

98

5.2. OFFLOADING POLICIES

Similarly, since Server 2 is intermittently available, the difference of relative energy consumption is

given by:

vE
~z(2)
− vE~0(2) = Pr{e2 = 1} · p2U~z(2) = γ · p2U~z(2) . (5.18)

Theorem 5. For the stableM/G/1-FCFS Queue 1, the difference of relative response times is given

by [49]:

vT
~z(1)
− vT~0(1) =

λ1U
2
~z(1)

2(1− ρ1)
+

n∑
j=1

(n+ 1− j)∆(1)
j . (5.19)

And for the stable M/G/1-FCFS Queue 2 with intermittently available service, the difference of

relative response times is given by [50]:

vT
~z(2)
− vT~0(2) =

λ2U
2
~z(2)

2γ2(1− ρ2)
+

1

γ

n∑
j=1

(n+ 1− j)∆(2)
j +

1− e2
η

[
n+

λ2U~z(2)

γ(1− ρ2)

]
. (5.20)

From (5.20), we note that the terms with (1−e2) as factor correspond to an additional penalty due

to the currently unavailable Server 2. According to Proposition 1, after substituting (5.17)-(5.20)

into (5.15), we can get the differences of relative values with respect to the PQWS metric for Queue

1 and Queue 2 as follows, respectively:

v~z(1) − v~0(1) = ωp1U~z(1) + (1− ω)

[
λ1U

2
~z(1)

2(1− ρ1)
+

n∑
j=1

(n+ 1− j)∆(1)
j

]
, (5.21)

v~z(2) − v~0(2) = ωγp2U~z(2) + (1− ω)

{
λ2U~z(2)

2γ2(1− ρ2)
+

1

γ

n∑
j=1

(n+ 1− j)∆(2)
j

+
1− e2
η

[
n+

λ2U~z(2)

γ(1− ρ2)

]}
. (5.22)

We assume that n jobs have already arrived to the queuing system, for a newly arriving job of

size x∗ with index (n + 1)th, the service time of the new job ∆
(i)
n+1 = x∗/si is inserted according

to the queuing discipline used in Queue i. Therefore, the mean additional increase in future costs to

assign the new job is v
~z
(i)
new
− v~z(i) , where ~z(i)new = ~z(i)⊕∆

(i)
n+1 is the new state if the arriving job with

service time ∆
(i)
n+1 is added to Queue i.

Theorem 6. The relative increment of the PQWS metric with the admission cost of a job with service

99

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

time ∆
(i)
n+1 in Queue i is as follows:

v
~z
(1)
new
− v~z(1) = ωp1∆

(1)
n+1 + (1− ω)

[
λ1∆

(1)
n+1

(
2U~z(1) + ∆

(1)
n+1

)
2(1− ρ1)

+ U~z(1) + ∆
(1)
n+1

]
, (5.23)

v
~z
(2)
new
− v~z(2) = ωγp2∆

(2)
n+1 + (1− ω)

{
λ2∆

(2)
n+1

(
2U~z(2) + ∆

(2)
n+1

)
2γ2(1− ρ2)

+
1

γ

(
U~z(2) + ∆

(2)
n+1

)
+

1− e2
η

[
1 +

λ2∆
(2)
n+1

γ(1− ρ2)

]}
. (5.24)

Proof. According to (5.21) and (5.22), we have the relative values of the PQWS metric in the new

state ~z(i)new:

v
~z
(1)
new
− v~0(1) = ωp1

(
U~z(1) + ∆

(1)
n+1

)
+ (1− ω)

[λ1(U~z(1) + ∆
(1)
n+1

)2
2(1− ρ1)

+
n+1∑
j=1

(n+ 2− j)∆(1)
j

]
, (5.25)

v
~z
(2)
new
− v~0(2) = ωγp2

(
U~z(2) + ∆

(2)
n+1

)
+ (1− ω)

{
λ2

(
U~z(2) + ∆

(2)
n+1

)2
2γ2(1− ρ2)

+
1

γ

n+1∑
j=1

(n+ 2− j)∆(2)
j

+
1− e2
η

[
n+ 1 +

λ2

(
U~z(2) + ∆

(2)
n+1

)
γ(1− ρ2)

]}
. (5.26)

The relative increment of the PQWS metric can be decomposed into the difference of relative values:

v
~z
(i)
new
− v~z(i) =

(
v
~z
(i)
new
− v~0(i)

)
−
(
v~z(i) − v~0(i)

)
. (5.27)

After substituting (5.21) and (5.26) into (5.27), we can derive (5.23), and then after substituting

(5.22) and (5.26) into (5.27), we further derive (5.24).

According to (5.23) and (5.24), we obtain the dynamic offloading assignment policy that assigns

the newly arriving job to Queue i∗ according to:

i∗ = arg min
i

{
v
~z
(i)
new
− v~z(i)

}
. (5.28)

100

5.2. OFFLOADING POLICIES

5.2.4 Numerical Examples

Figure 5.3 describes an M/M/1 queuing system with an intermittently available server by using

MATLAB Simulink tool. A server is either down (failed) or up (repaired). A Stateflow chart is used

to implement the WiFi network’s ON and OFF states. The state of the server is an output signal

from the Stateflow block and is used to invoke the Enabled Gate block that precedes a server in a

queuing system.

Figure 5.3: M/M/1 queuing system with an intermittently available server

We set the failure rate ξ = 1/8 and recovery rate η = 1, λ2 = 0.5 and µ2 = 1. The simulation

result is as shown in Fig. 5.4. It can be seen that the average queue length in simulation is the same

as the one in (5.9). The server utilization equals ρ2 = λ2/µ2 = 0.5. Therefore, we can observe a

good match between theory and simulation.

(a) Theory (b) Simulation (c) Utilization

Figure 5.4: Simulation of M/M/1 queuing system with an intermittently available server

101

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

We evaluate the assignment policies defined in the previous sections using the model with two

queues to represent the offloading scheme. We set the parameters for Server 1 to s1 = 400 Kbps,

p1 = 4 W and for Server 2 to s2 = 600 Kbps, p2 = 2 W. Besides, we suppose that the total job

arrival rate for offloading is λc = 1 packet/s, both the failure rate ξ and recovery rate η of Server 2

are equal to 1, and the packet sizes are exponentially distributed with X ∼ Exp(1/100).

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

 v
al

ue
 o

f t
he

 P
Q

W
S

 m
et

ric

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ROP

LOP

TOP

(a) Minimum value of the PQWS metric

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 m
ea

n
ra

te
 o

f j
ob

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
1
=6

2
 (ROP)

6
1
 (TOP)

6
2
 (TOP)

6
1
 (TOP)

6
2
 (TOP)

(b) Corresponding assignment results

Figure 5.5: Comparison of different static offloading policies

One can see in Fig. 5.5(a) that the proposed tradeoff offloading policy (TOP) performs signifi-

cantly better than the random offloading policy (ROP) and load-balanced offloading policy (LOP).

Interestingly, all three policies achieve the same minimum value of the PQWS metric when the

weighting parameter ω = 0.5, where the mean energy consumption and mean response time are

equally important. At low values of ω, the response time is always more important than the energy

consumption and it dominates the queue selection. At high values, the energy consumption compo-

nent becomes the decisive factor. The smallest PQWS metric is obtained when ω = 1 and the TOP

assignment is used. This shows that TOP outperforms other policies most in the case when only

the energy consumption is considered in the offloading system. The corresponding assignments are

in Fig. 5.5(b). For the ROP and LOP schemes, the assignment is insensitive to ω. As expected,

the random policy assigns half of the jobs to either queue. However, for the TOP scheme, at low

values of ω, all the jobs are directed to Queue 1, and as ω increases, slowly more and more jobs are

assigned to Queue 2 to balance the tradeoff between energy consumption and performance.

The impact of the total job arrival rate λc is shown in Fig. 5.6(a), where we only use the static

offloading policy TOP. The effect mentioned above, that optimizing one element of the combined

102

5.2. OFFLOADING POLICIES

metric holds for different values of the arrival rate, but is much more pronounced at high load. In

fact, for high load focussing on energy consumption (ω = 1) gives much lower PQWS than only

regarding the job response time (ω = 0). In Fig. 5.6(b) for higher load the point where jobs are

assigned to both queues in equal shares is when ω > 0.5, i.e. when energy cost weighs more than

response time in the metric.

In Fig. 5.7 we study the recovery rate of Server 2. The faster recovery is, the lower becomes the

PQWS metric under TOP policy. This is because as η → ∞, Server 2 is always available and then

the preferred scheduling target.

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

 v
al

ue
 o

f t
he

 P
Q

W
S

 m
et

ric

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
6

c
=1

6
c
=2

6
c
=3

(a) Minimum value of the PQWS metric

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 m
ea

n
ra

te
 o

f j
ob

s

0

0.5

1

1.5

2

2.5

3

6
1
 (6

c
=1)

6
2
 (6

c
=2)

6
1
 (6

c
=2)

6
2
 (6

c
=2)

6
1
 (6

c
=3)

6
2
 (6

c
=3)

(b) Corresponding assignment results

Figure 5.6: The proposed TOP under different total job arrival rates

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

 v
al

ue
 o

f t
he

 P
Q

W
S

 m
et

ric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2=0.2
2=2
2=5
2=100

Figure 5.7: The proposed TOP under different recovery rates

103

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

U
z

(1)

U
z(2

)

ROP (e
2
=1)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
z

(1)

U
z(2

)

ROP (e
2
=0)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ω=0
ω=0.4

ω=0.6
ω=0.8

ω=0

ω=0.4
ω=0.6

ω=0.8

ω=1 ω=1

(a) ROP-based
U

z
(1)

U
z(2

)

LOP (e
2
=1)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
z

(1)

U
z(2

)

LOP (e
2
=0)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ω=0

ω=0.4
ω=0.6

ω=0.8

ω=0
ω=0.4

ω=0.6
ω=0.8

ω=1 ω=1

(b) LOP-based

U
z

(1)

U
z(2

)

TOP (e
2
=1)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
z

(1)

U
z(2

)

TOP (e
2
=0)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ω=0
ω=0.4

ω=0.6
ω=0.8

ω=0
ω=0.4

ω=0.6
ω=0.8

ω=1 ω=1

(c) TOP-based

Figure 5.8: Dynamic decisions to choose Queue i under different static offloading policies

To illustrate the dynamic offloading policy, we assume that the length of a newly arriving job

is x∗ = 100 Kb. In Fig. 5.8 the axes represent the existing work U~z(i) in Queue i, the colored

lines denote the threshold under different ω where the arriving job has equal probability to join

both queues. The areas above the thresholds refer to choosing Queue 1, while the areas below the

threshold refer to choosing Queue 2 for the new job. We dynamically assign the job into one of the

two queues based on the three static policies. The area that assigns new jobs to Queue 2 when Server

2 is available (e2 = 1) is much larger compared to the area when it is unavailable (e2 = 0). For

the ROP and LOP policies, the thresholds are always parallel under different values of ω ∈ [0, 1].

Whereas assigning the job to a low power server (Queue 1) would be beneficial from the energy

consumption perspective at low loads, such a policy may end up in difficulties at higher loads as the

response time grows quickly. However, for the TOP scheme, the assignment thresholds cross under

different ω. That is because the TOP scheme tries to dynamically balance the allocated jobs in order

104

5.3. OFFLOADING ASSIGNMENT MODELS

to minimize the objective value of the PQWS metric.

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in

 v
al

ue
 o

f t
he

 P
Q

W
S

 m
et

ric

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ROP (static)
ROP (dynamic)
LOP (static)
LOP (dynamic)
TOP (static)
TOP (dynamic)

(a) Minimum value of the PQWS metric

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 m
ea

n
ra

te
 o

f j
ob

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
1
 (ROP)

6
2
 (ROP)

6
1
 (LOP)

6
2
 (LOP)

6
1
 (TOP)

6
2
 (TOP)

(b) Corresponding dynamic assignment results

Figure 5.9: Comparison of different static and dynamic offloading policies

Figure 5.9(a) compares the dynamic offloading schemes and the different static policies. The

dynamic offloading scheme under the TOP policy achieves the best performance, while the ROP-

and LOP-based schemes have almost the same PQWS value when jobs are dynamically assigned to

the two queues. Further, the TOP-based dynamic offloading scheme yields a gain over the schemes

where only the static policies are adopted, e.g. they are up to 70% better than the static policy of

ROP. This is because the dynamic offloading policy considers effectively the dynamic increase in

each queue that newly arriving jobs bring in. For the TOP-based dynamic offloading scheme in

Fig. 5.9(b), there exists a turning point in the middle where allocating the jobs to Queue 2 begins to

outweigh Queue 1. There is a leap when ω = 1, since U~z(2) < U~z(1) at that point, the new arrival

jobs are always assigned to Queue 2.

5.3 Offloading Assignment Models

Our objective is to minimize the mean energy consumption and the mean response time. Since only

one option exists for the jobs that cannot be offloaded (as they will always be processed locally) our

attention solely falls on the offloadable jobs, where the right decision must be taken whether or not

to offload or how to offload.

105

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

5.3.1 Problem Formulation

As indicated in Fig. 5.1, the key elements for the considered offloading system are as shown inside

the blue block (local execution) and the red block (remote execution), which are analyzed separately

as follows.

Local Execution

As shown inside the blue dotted block in Fig. 5.1, there are two kinds of jobs (offloadable and

unoffloadable) arriving at the processor of the mobile device. We adopt the preemptive scheduling

policy here. That is, from the perspective of an offloadable job, the unoffloadable jobs do not exist,

since service to the unoffloadable jobs is immediately interrupted upon the arrival of an offloadable

job. To the offloadable jobs, the system behaves exactly like an M/G/1 queue with arrival rate λm
and service rate µm = E[Sm]−1.

The utilization, i.e. the fraction of time when the server is busy, is denoted as: ρm = λm/µm.

The expected number of jobs in an ordinary M/G/1-FCFS queue is given by:

E[Nm] = ρm +
1 + C2

Sm

2
· ρ2m

1− ρm
, (5.29)

where C2
Sm

= µmσ
2
Sm

denotes the squared coefficient of variation for the service time distribution.

Especially if the service is exponentially distributed we have C2
Sm

= 1. Further, by Little’s Law we

obtain:

E[Tm] =
1

λm
E[Nm] =

1

λm
· ρm

1− ρm
. (5.30)

We assume that the mobile device consumes energy only when there are jobs in the system and

that the mobile device operates at a constant power pm whenever it is busy [116]. Since Pm = λmEm
is the consumed power, the mean energy consumption E[Em] can be more conveniently expressed

as:

E[Em] =
1

λm
· E[Pm] =

1

λm
· pm Pr{Nm > 0} =

1

λm
· pmρm. (5.31)

Remote Execution

As shown inside the red dotted block in Fig. 5.1, the offloading process includes the transmission

model and the cloud model. Transmission rates in real wireless networks are not stable and are

106

5.3. OFFLOADING ASSIGNMENT MODELS

affected by signal quality and the presence of other users. According to network profiling in Section

2.2.1, we assume that a cellular network is available to mobile users all the time while the availability

of a WiFi network depends on the location. That is, mobile users move in and out of a WiFi coverage

area. To facilitate the analysis of the mobile cloud offloading system, we model this time variation

of the WiFi connection state by the ON-OFF alternating renewal process
(
T
(j)
ON , T

(j)
OFF

)
, j ≥ 1, as

shown in Fig. 5.10.

ON

OFF
WiFi

Idle/
Cellular

TON TOFF
Figure 5.10: The WiFi network availability model [79]

The ON periods represent the presence of the WiFi connectivity, while the OFF periods represent

the interruption of the WiFi connectivity. During the latter periods data is either not transmitted (the

interface is idle) or it is transmitted only through the cellular network. The duration of each ON

period T (j)
ON or OFF period T (j)

OFF, is assumed to be an exponentially distributed random variable and

independent of the duration of other ON or OFF periods [77]. The WiFi availability ratio (AR) can

be defined as:

AR =
E[TON]

E[TON] + E[TOFF]
. (5.32)

Accordingly, we build two different offloading strategies:

• Uninterrupted Offloading Strategy: we employ a single queue with two states to offload

jobs to the cloud server. When there is a WiFi connection available, all jobs are sent over the

WiFi network; otherwise, they are sent over the cellular interface [64]. Therefore, the process

of offloading jobs to the cloud is not to be interrupted.

• Interrupted Offloading Strategy: we assign jobs upon arrival to one of two parallel queues

which describe cellular or WiFi transmission [131]. Offloading is interrupted during the peri-

ods when WiFi is disconnected. It is a channel assignment problem where incoming jobs are

splitted on arrival for service by two servers and join before departure. Only when all the jobs

are transmitted and have rejoined can the cloud processing start.

We have two states (for the uninterrupted offloading strategy) or two parallel queues (for the

interrupted offloading strategy). However, for a generalized offloading model, there may be N

queues (states). Upon arrival of a job an assignment decision is made and the job is placed into

107

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

the corresponding queue (state). We assume each server (state) operates at a constant power pi
whenever it is busy. We use ei ∈ {0, 1} to indicate whether Server (State) i is available or not. If

ei = 1, Server (State) i is available, otherwise it is unavailable. Since Pi = λiEi is the consumed

power, further by Little’s Law, E[Ni] = λiE[Ti], the mean energy consumption and mean response

time due to offloading can be calculated as follows, respectively.

E[Eo] =
1

λc

N∑
i=1

λiE[Ei] =
1

λc

N∑
i=1

E[Pi]

=
1

λc

{
N∑
i=1

pi Pr{Ni > 0, ei = 1}

}
, (5.33)

E[To] =
1

λc

N∑
i=1

λiE[Ti] + E[Tc]

=
1

λc

{
N∑
i=1

E[Ni] + E[Nc]

}
, (5.34)

where λi is the mean rate of jobs arriving to Queue (State) i, E[Ei] and E[Ti] are the mean energy

consumption and mean response time in Queue (State) i, respectively, and E[Tc] is the expected

execution time on the cloud server.

Since the utilization equals the probability that the corresponding server (state) is busy, we have

Pr{Ni > 0|ei = 1} = ρi. The number of jobs in Queue (State) i can be calculated as:

Pr{Ni > 0, ei = 1} = Pr{Ni > 0|ei = 1} · Pr{ei = 1} = ρi · Pr{ei = 1}. (5.35)

The ERWP Metric

From the above analysis in the local and remote executions, we can derive the ERWP metric from

(2.4) after combining the results in (5.30)-(5.34), which is expressed by:

ERWP =
{
πE[Eo] + (1− π)E[Em]

}ω
·
{
πE[To] + (1− π)E[Tm]

}1−ω

=
1

λ

{
N∑
i=1

E[Pi] + E[Pm]

}ω
·

{
N∑
i=1

E[Ni] + E[Nc] + E[Nm]

}1−ω

. (5.36)

Similarly, we can also derive the ERWS metric from (2.1) and the ERP metric from (2.3) for the

offloadable jobs.

108

5.3. OFFLOADING ASSIGNMENT MODELS

5.3.2 Uninterrupted Offloading Strategy

Figure 5.11 depicts an uninterrupted offloading strategy based on the WiFi network’s availability

model. The total cost for offloading a job is composed of the cost for sending the job to the cloud

and idly waiting for the cloud to complete the job. We propose a Markov modulated queue for uplink

transmission. A single-server queuing system that oscillates between two feasible states is denoted

by fON and fOFF. The persistence of the system at any state is governed by a random mechanism: if

the system functions at state fON it transits to the other state at rate ξ and if the system functions at

state fOFF it transits to the other state at rate η [11].

µ(f)

WiFiCellular

Cloud

µc

η

ξ

λ(f)

Transmission

fOFF fON

Figure 5.11: The uninterrupted offloading strategy

From Fig. 5.11, the jobs are offloaded either via a cellular connection or a WiFi network to the

cloud. We assume that the mean job size is E[X], the transmission speed of the cellular network

is s1 with service rate µ1 = s1/E[X], and its operating power is p1 when serving jobs and zero

whenever idle. Similarly, WiFi runs at speed s2, with service rate µ2 = s2/E[X], and its operating

power is p2. We assume that jobs arrive in a Poisson process with rate λ(f), and the modulating

process f ∈ {fON, fOFF} determines the arrival rates:

λ(f) =

{
λ1, if f = fOFF

λ2, if f = fON
and µ(f) =

{
µ1, if f = fOFF

µ2, if f = fON
. (5.37)

The original offloading jobs arrive at the system according to a Poisson process with rate λc, since

the modulating process has two states, which results in independent Poisson processes with rate λi
(i ∈ {1, 2}), we have λ1 + λ2 = λc. It is known from the literature [34] that a product-form for the

tandem queues between the modulated (the exponential queue) and the modulating processes exists

109

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

if and only if the following condition holds:

∃ρ ∈ R+, s.t. ∀f ∈ {fON, fOFF},
λ(f)

µ(f)
= ρ. (5.38)

Then by substituting (5.37) into (5.38), we have: λ1/µ1 = λ2/µ2, which is the case where the traffic

intensities ρ1 and ρ2 are equal, though arrival intensities and service capacities need not be equal.

Now this transition from one state to the second state will carry no influence on the random variable

‘number of jobs present in the queue’, since the traffic intensity λi/µi(= ρ) has not changed [142].

Figure 5.11 demonstrates that the uninterrupted offloading strategy is a conditional product-form

model consisting of a tandem between a transmission queue (with two alternating states of cellular

and WiFi) and an exponential queue representing the cloud. The former queue alternates its service

by means of mutual resets according to the availability of WiFi, which is governed by an IPP with

exponentially distributed ON-OFF periods. We model the intermittent availability of WiFi hotspots

as a FCFS queue with occasional server break-down [50]. The queue works in mutual exclusive

states and the reset occurs when the WiFi period alternates, either from ON-state to OFF-state or

from OFF-state to ON-state. When WiFi becomes unavailable, the cellular network starts trans-

mitting, otherwise when the WiFi connection becomes available, jobs are served only by the WiFi

network. Specifically, offloading is not interrupted in this strategy, either in ON-state where the

WiFi network is processing the existing jobs, or in the OFF-state during which the job is serving by

the cellular network

Since there is no waiting time before entering service, the M/G/∞ queue of the cloud is oc-

casionally referred to as a delay (sometimes pure delay) station, the probability distribution of the

delay being that of the service time. Thus, the expected execution time taken on the cloud server

can be calculated as E[Tc] = 1/µc. Since the application jobs are remotely executed on the cloud

server rather than on the mobile device and we are only concerned with the energy consumption of

the mobile device, we do not need to calculate the energy consumption of the cloud server.

Metric-Based Analysis

We use queueing analysis to derive formulas for the average number of jobs for the M/M/1 queue.

Given the previously stated assumptions, the uninterrupted offloading strategy can be modelled with

a 2D Markov chain, as shown in Fig. 5.12. The states with cellular network are denoted {1, n}, and

the states with WiFi connectivity are denoted {2, n}. The parameter n corresponds to the number of

110

5.3. OFFLOADING ASSIGNMENT MODELS

2, 0 2, 1 2, n-1 2, n 2, n+1

1, 0 1, 1 1, n-1 1, n 1, n+1

η η η η ηξ ξ ξ ξ ξ

λ1 λ1 λ1 λ1

λ2

µ1 µ1 µ1 µ1

µ2 µ2 µ2 µ2

λ2 λ2λ2

Cellular

WiFi

Figure 5.12: The Markov chain for the uninterrupted offloading strategy

jobs in the system (queuing and in service). Writing the balance equations for this chain gives:

π1,0(λ1 + η) = π1,1µ1 + π2,0ξ, (5.39a)

π2,0(λ2 + ξ) = π2,1µ2 + π1,0η, (5.39b)

π1,n(λ1 + η + µ1) = π1,n−1λ1 + π1,n+1µ1 + π2,nξ (n > 0), (5.39c)

π2,n(λ2 + ξ + µ2) = π2,n−1λ2 + π2,n+1µ2 + π1,nη (n > 0). (5.39d)

The steady-state probabilities for the periods with only cellular access and with WiFi availability

are separately calculated as:

π1 =
E[TOFF]

E[TON] + E[TOFF]
=

ξ

η + ξ

π2 =
E[TON]

E[TON] + E[TOFF]
=

η

η + ξ
.

Let two quantities λ∗ and µ∗ be defined as:

λ∗ = π1 · λ1 + π2 · λ2, (5.40)

µ∗ = π1 · µ1 + π2 · µ2 . (5.41)

The probability generating functions for both cellular and WiFi states are defined as:

Gi(z) =

∞∑
n=0

πi,nz
n, |z| ≤ 1, ∀i = 1, 2. (5.42)

111

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

After some calculations, we obtain:

(λ1 + η + µ1)G1(z) = λ1zG1(z) + ξG2(z) +
µ1
z

[G1(z)− π1,0] + π1,0µ1, (5.43)

(λ2 + ξ + µ2)G2(z) = λ2zG2(z) + ηG1(z) +
µ2
z

[G2(z)− π2,0] + π2,0µ2. (5.44)

After solving the equations of (5.43) and (5.44), we have [142]:

g(z)G1(z) = π2,0ξµ2z + π1,0µ1

[
ξz + λ2z(1− z)− µ2(1− z)

]
,

where g(z) = λ1λ2z
3 − (ηλ2 + ξλ1 + λ1λ2 + λ1µ2 + λ2µ1)z

2 + (ηµ2 + ξµ1 + µ1µ2 + λ1µ2 +

λ2µ1)z − µ1µ2, and it is proven that g(z) has only one root z0 in the interval (0, 1).

After some algebraic manipulations, we obtain:

π1,0 =
ξ(µ∗ − λ∗)z0

µ1(1− z0)(µ2 − λ2z0)
, (5.45)

π2,0 =
η(µ∗ − λ∗)z0

µ2(1− z0)(µ1 − λ1z0)
. (5.46)

Once the values of π1,0 and π2,0 have been established, the probability generating functions can be

calculated as:

G1(z) =
ξ(µ∗ − λ∗)z + π1,0µ1(1− z)(λ2z − µ2)

g(z)
, (5.47)

G2(z) =
η(µ∗ − λ∗)z + π2,0µ2(1− z)(λ1z − µ1)

g(z)
. (5.48)

By using the following equation:

E[Ni] =

∞∑
n=0

nπi,n =
dGi(z)

dz
|z=1, ∀i = 1, 2, (5.49)

we get the average number of jobs in the system [142]:

E[N] = E[N1] + E[N2]

=
λ∗

(µ∗ − λ∗)
+
µ1(µ2 − λ2)π1,0 + µ2(µ1 − λ1)π2,0

(ξ + η)(µ∗ − λ∗)
− (µ1 − λ1)(µ2 − λ2)

(ξ + η)(µ∗ − λ∗)
, (5.50)

which contains a root of third order equation, and thus is difficult to calculate. However, when taking

the balance traffic condition: λ1/µ1 = λ2/µ2 into account, it can be further simplified. In such a

112

5.3. OFFLOADING ASSIGNMENT MODELS

situation, let µ1/λ1 = µ2/λ2 = θ, and then we substitute them into π1,0, π2,0 and g(z), it is easy to

prove that π1,0/π2,0 = π1/π2 and g(θ) = 0. Therefore, we have the decomposition:

g(z) = λ1λ2(z − θ)(z2 − kz + θ),

where k = η/λ1 + ξ/λ2 + 1 + θ. The root of interest z0 that resides in the interval (0, 1), equals

z0 = (k −
√
k2 − 4θ)/2. Finally, we can get:

πi,0 = πi · (1− 1/θ), ∀i = 1, 2,

and then we have ρ = 1− (π1,0 + π2,0) = λ∗/µ∗. By using induction [142], it is easy to prove that:

πi,n = πi · (1− ρ)ρn, ∀i = 1, 2.

Therefore, the partial generating functions are derived as:

Gi(z) = πi(1− ρ)
∞∑
n=0

(zρ)n = πi ·
µ∗ − λ∗

µ∗ − λ∗z
, ∀i = 1, 2,

and then by using (5.49), we obtain:

E[N1] = π1 ·
λ∗

µ∗ − λ∗
, (5.51)

E[N2] = π2 ·
λ∗

µ∗ − λ∗
. (5.52)

The mean number of jobs in cloud queue is calculated as:

E[Nc] =
λc
µc
. (5.53)

Since Pr{ei = 1} = πi, according to (5.35), we have:

Pr{Ni > 0, ei = 1} = ρi · πi, ∀i = 1, 2. (5.54)

Further, by substituting (5.51)-(5.54) into (5.36), we can formulate the explicit expressions of the

ERWP metric for the uninterrupted offloading strategy.

113

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

Generic Job Size Distribution Approximation

So far our analysis considers exponentially distributed job sizes. Unfortunately, generalizing the

above 2D chain analysis for generic distribution is rather hard. Nevertheless, we can use theM/G/1

Pollaczek-Khintchine mean value formula as a guideline to introduce a similar “correction factor"

related to variation in job sizes.

Let C2
S denote the squared coefficient of variation for the job size distribution, E[N] denote the

mean number of jobs for exponentially distributed packet sizes (as derived before). The average

number of jobs for the generic packet size distributions in the ordinary M/G/1 queue can be ap-

proximated by [79]:

E[Ng] ≈ ρ+
1 + C2

S

2
· E[Nq] =

1− C2
S

2
· ρ+

1 + C2
S

2
· E[N], (5.55)

where E[Nq] = E[N] − ρ is the average queueing length for the exponentially distributed packet

sizes.

5.3.3 Interrupted Offloading Strategy

The interrupted offloading strategy is as shown in Fig. 5.2. The Markov chain of Queue 2 is depicted

in Fig. 5.13, which is equivalent to assuming that λ1 = λ2 and µ1 = 0 in Fig. 5.12. We assume that

the service station fails from time to time and resumes its operation after a random time. Writing

the balance equations for this chain gives:

πOFF,0(λ2 + η) = πON,0ξ, (5.56a)

πON,0(λ2 + ξ) = πOFF,0η + πON,1µ2, (5.56b)

πOFF,n(λ2 + η) = πOFF,n−1λ2 + πON,nξ (n ≥ 0), (5.56c)

πON,n(λ2 + ξ + µ2) = πON,n−1λ2 + πON,n+1µ2 + πOFF,nη (n ≥ 0). (5.56d)

After simple algebraic operations of equations in (5.56) and summation over all n, we obtain:

πON,0 = πON −
λ2
µ2
, (5.57)

where πON,0 = π2,0, πON = π2 and πOFF = π1.

According to (5.40) and (5.41), we have λ∗ = λ2 and µ∗ = π2µ2. After substituting the above

114

5.3. OFFLOADING ASSIGNMENT MODELS

ON, 0 ON, 1 ON, n-1 ON, n ON, n+1

OFF, 0 OFF, 1 OFF, n-1 OFF, n OFF, n+1

η η η η ηξ ξ ξ ξ ξ
λ2 λ2 λ2 λ2

µ2 µ2 µ2 µ2

λ2 λ2 λ2 λ2

Figure 5.13: The Markov chain of Queue 2 for the interrupted offloading strategy

values into (5.50), we derive the mean number of jobs in Queue 2 as:

E[N2] = E[NOFF] + E[NON]

=
λ∗

(µ∗ − λ∗)
+
µ2λ2π2,0 − (−λ2)(µ2 − λ2)

(ξ + η)(µ∗ − λ∗)

=
λ2

π2µ2 − λ2
+

π1λ2µ2
(π2µ2 − λ2)(ξ + η)

, (5.58)

which is equivalent to the queuing formula obtained in (5.9).

Similarly, the cloud queue is a pure delay station at which jobs spend an exponentially distributed

amount of time with mean equal to 1/µc time units.

Since Server 1 is always available, we have Pr{e1 = 1} = 1 and the fraction of time that Server

2 is available to process jobs is: Pr{e2 = 1} = η
ξ+η = π2, where as the recovery rate η → ∞, the

availability of Server 2 tends to be 1. Then we have:

Pr{N1 > 0, e1 = 1} = ρ1, (5.59)

Pr{N2 > 0, e2 = 1} = ρ2 · π2. (5.60)

Further, by substituting (5.7), (5.58)–(5.60) into (5.36), we can formulate the optimization of the

ERWP metric for the offloading assignment as:

λmin
i = arg min

λi

ERWP , (5.61)

we seek to find the arrival rate λmin
i to Queue i such that ERWP is minimized when both queues are

in operation. We can apply Newton’s method to find λmin
i iteratively [111].

In other words, arriving jobs are assigned to Queue 1 and Queue 2 according to the optimized

objective defined in (5.61), minimizing the ERWP metric.

115

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

5.3.4 Generalised Offloading Strategies

In the previous analysis, we considered a simple scenario with only two networks (Cellular and

WiFi). However, currently different areas might be covered by different cellular network tech-

nologies, such as 2G (GSM), 2.5G (GPRS), 2.75G (EDGE), 3G, 3.5G (HSDPA), 4G (LTE), and

multiple “short-range" options might exist in addition to WiFi (e.g. femto- or other small-cell tech-

nologies) [79]. The transmission rates and power consumption may vary across different network

interfaces, and even within the same network technology like WiFi, the rate might be different across

different access points. A mobile user might be switching between a number of different technolo-

gies and/or rates during a large time window.

We briefly discuss how the generic uninterrupted and interrupted offloading strategies could be

extended to more complex scenarios, where N > 2 possible options a mobile device can encounter

when moving between locations with different network characteristics, rather than just two. We also

consider the possibility of some intermittently available networks, with switching between different

interfaces.

Uninterrupted Offloading Strategy

As shown in Fig. 5.14, a single-server queuing system that oscillates between N feasible states is

denoted by f ∈ {f1, f2, · · · , fN}. The persistence of the system at any state is governed by a

random mechanism: if the system functions at state fi, its transition to the alternative state fj at rate

ηi,j .

µ(f)

Cloud

µc
λ(f)

Transmission

f1 f2 fN!
η2,N

η2,1

η1,2

η1,N

ηN ,2

ηN ,1

network 1 network 2 network N

Figure 5.14: Uninterrupted offloading strategy with N heterogeneous networks

We assume that the jobs arrive as a Poisson process with rate λ(f), job sizes are exponentially

distributed and each state operates at a constant power pi. The modulating process f determines

the transition rates. If f = fi, we have λ(f) = λi and µ(f) = µi, where i ∈ {1, 2, · · · , N}.

116

5.3. OFFLOADING ASSIGNMENT MODELS

Since the modulating process has N states, which results in independent Poisson processes with

rate λi, we have
∑N

i=1 λi = λc. The product-form for the tandem queues between the modulated

(the exponential queue) and the modulating processes exists if and only if the following generalised

condition holds:

∃ρ ∈ R+, s.t. ∀fi ∈ {f1, f2, · · · , fN},
λ(fi)

µ(fi)
= ρ. (5.62)

The Markov chain for multi-state uninterrupted offloading strategy is shown in Fig. 5.15. The

possible state transitions are partially omitted for clarity of presentation. The chain moves (verti-

cally) from state i to another state j with rate ηi,j . Each state corresponds to the time duration during

which the mobile user is communicating through the same access network technology without in-

terruption. The duration of each state is exponentially distributed with rate ηi =
∑N

j=1,j 6=i ηi,j .

2, 0 2, 1 2, n-1 2, n 2, n+1

1, 0 1, 1 1, n-1 1, n 1, n+1

λ1 λ1 λ1 λ1

λ2 λ2 λ2

µ1 µ1 µ1 µ1

µ2 µ2 µ2 µ2

N, 0 N, 1 N, n-1 N, n N, n+1

i, 0 i, 1 i, n-1 i, n i, n+1

λi λi λi λi

λN

µN

µi µi
µi µi

! ! ! ! !

! ! ! ! !

η1,2
η1,2 η1,2 η1,2 η1,2η2,1 η2,1 η2,1 η2,1 η2,1

ηi,1ηN ,1 η1,i η1,N ηN ,2 η2,N

λN λN λN

λ2

µN µN µN

Figure 5.15: The Markov chain for multi-state uninterrupted offloading strategy

Similarly, we define:

λ∗ =

N∑
i=1

πi · λi and µ∗ =

N∑
i=1

πi · µi, (5.63)

where πi = ηi/
∑N

i=1 ηi is the steady-state probability of finding the offloading system in some

region with ith interface availability. The partial generating functions are now derived explicitly

as [140]:

Gi(z) = πi(1− ρ)

∞∑
n=0

(zρ)n = πi ·
µ∗ − λ∗

µ∗ − λ∗z
, ∀i = 1, 2, · · · , N, (5.64)

117

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

and then by using E[Ni] =
∑∞

n=0 nπi,n = dGi(z)/dz|z=1, we obtain:

E[Ni] = πi ·
λ∗

µ∗ − λ∗
, ∀i = 1, 2, · · · , N. (5.65)

Since Pr{ei = 1} = πi, according to (5.35), we have:

Pr{Ni > 0, ei = 1} = ρi · πi, ∀i = 1, 2, · · · , N. (5.66)

Further, substituting (5.65) and (5.66) into (5.36), we can formulate the explicit expressions of

the ERWP metric for the uninterrupted offloading strategy with N heterogeneous networks.

Interrupted Offloading Strategy

Similarly, we can extend the interrupted offloading strategy in Fig. 5.2 to the environment with N

heterogeneous networks as shown in Fig. 5.16. We assume some networks are always available

such as Queue 1 and 2, while others are intermittently unavailable, e.g. Queue i and N . We model

the former as M/G/1-FCFS queues with servers that are always on, and the latter are modelled

as M/G/1-FCFS queues with occasional server break-down. The availability of these servers is

governed by an IPP with exponentially distributed ON-OFF periods.

µc

Cloud

OFF

λ2

TransmittingUnconnected

λc α 2

Network 1

λ1 s1, p1

Network 2

Network i

Network N

!

ON

OFF

TransmittingUnconnected

ON

!

s2, p2

si , pi

sN , pN

ηN

ξN

λi

λN ηi

ξi

Figure 5.16: Interrupted offloading strategy with N heterogeneous networks

We can directly use the results from (5.7) for the queues with always available servers, and (5.58)

for the queues with intermittently available servers. Further, by employing the ERWP metric in

(5.36), the tradeoff between the mean energy consumption and mean response time can be analyzed.

118

5.3. OFFLOADING ASSIGNMENT MODELS

5.3.5 Numerical Examples

Using measurements from real traces in [64], the average data rates for the cellular network and

WiFi are set as s1 = 800 Kbps and s2 = 2 Mbps, respectively. The mean job size is assumed to be

125 KB, therefore the packet sizes are exponentially distributed with X ∼ Exp(1/125). According

to the power models developed in [10], we set the power coefficients p1 = 2.5 W, p2 = 0.7 W and

pm = 2 W, respectively. Besides, suppose that the total job arrival rate for offloading is λ = 0.6

packet/s, the mobile service rate µm = 2, the cloud service rate µc = 5 and both the failure rate ξ

and recovery rate η of Server 2 are equal to 1.

We first analyze the case when the offloading probability π = 0.5, indicating that half of the

offloadable jobs are offloaded to the cloud, while the remaining jobs are executed locally on the

mobile device.

From Fig. 5.17(a), we can observe that the uninterrupted offloading strategy performs significantly

better than the interrupted one when ω is small, but as ω approaches to 1, the interrupted strategy

performs much better. This means that when considering energy consumption more important than

response time (for delay-tolerant applications), it is better to use the interrupted strategy; otherwise

when considering response time more important (for delay-sensitive applications), the uninterrupted

strategy is preferred, which fully uses the unavailable periods of WiFi by transmitting with a cellular

network. Since energy is measured per job, when the weight is on energy consumption only the

metric is for both strategies insensitive to the job arrival rate. As the arrival rate of the offloadable

jobs λ increases, none of the offloading strategies can achieve a low ERWP value. However, the

uninterrupted strategy varies less. The interrupted strategy is more sensitive to the job arrival rates.

Similar observations can be made from Fig. 5.17(b) for sensitivity to the recovery rate η. The

interrupted strategy suffers more from long repair times than the uninterrupted strategy. This is

reasonable, due to the lower WiFi availability, resulting in most of the jobs being offloaded through

the slower and more energy consuming cellular network interface. When ω < 0.85, (i.e. response

time is more important) the interrupted strategy also performs much better as η increases. The

reason is that arriving jobs to the WiFi queue have a higher probability to be offloaded to the cloud.

However, with more importance being given to the energy consumption, this strategy performs much

worse as η increases and the down-times become less.

In Fig. 5.17(c) it is observed that the faster the cloud serves, the lower the ERWP value is. The

cloud service rate µc has a great influence on the mean response time since we have to wait for the

cloud service to be finished. But the cloud service rate has little influence on the energy consumption

since the jobs are processed remotely rather than locally on the mobile device.

Changing the offloading probability π we find the optimal offloading decision. As shown in

119

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
6=0.2 (uninterrupted)
6=0.2 (interrupted)
6=0.6 (uninterrupted)
6=0.6 (interrupted)
6=1.0 (uninterrupted)
6=1.0 (interrupted)

(a) Arrival rate λ

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
2=1 (uninterrupted)
2=1 (interrupted)
2=5 (uninterrupted)
2=5 (interrupted)
2=10 (uninterrupted)
2=10 (interrupted)

(b) Recovery rate η

The weighting parameter !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
7

c
=2 (uninterrupted)

7
c
=2 (interrupted)

7
c
=6 (uninterrupted)

7
c
=6 (interrupted)

7
c
=10 (uninterrupted)

7
c
=10 (interrupted)

(c) Cloud service rate µc

Figure 5.17: Comparison of two offloading strategies under different weighting parameters

Fig. 5.18(a), when ω is small (ω = 0.2), it is not worth offloading any job in the interrupted strategy,

while it is better to offload half of the offloadable jobs to the cloud in the uninterrupted strategy.

However, with more focus on the energy consumption (ω approaches 1), it is better to offload all

jobs for both strategies; meanwhile the interrupted offloading strategy obtains lower values for the

metrics than the uninterrupted one. The ERWP metric can be treated as ERP metric when we set the

weighting parameter ω = 0.5, i.e. when both the energy consumption and response time have the

equal importance. From Fig. 5.18(b), it is observed that the uninterrupted strategy should always be

preferred. When the mobile service rate µm is very small, it is worthwhile to offload all the jobs

120

5.3. OFFLOADING ASSIGNMENT MODELS

The offloading probability :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
!=0.2 (uninterrupted)
!=0.2 (interrupted)
!=0.5 (uninterrupted)
!=0.5 (interrupted)
!=0.8 (uninterrupted)
!=0.8 (interrupted)

(a) Weighting parameter ω
The offloading probability :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
7

m
=1 (uninterrupted)

7
m

=1 (interrupted)

7
m

=2 (uninterrupted)

7
m

=2 (interrupted)

7
m

=3 (uninterrupted)

7
m

=3 (uninterrupted)

(b) Mobile service rate µm

Figure 5.18: Comparison of two offloading strategies under different offloading probabilities

The recovery rate 2
0 2 4 6 8 10 12 14 16 18 20

E
R

W
S

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 p
2
=0.7W (uninterrupted)

p
2
=0.7W (interrupted)

p
2
=0.75W (uninterrupted)

p
2
=0.75W (interrupted)

p
2
=0.8W (uninterrupted)

p
2
=0.8W (interrupted)

(a) ERWS
The recovery rate 2

0 2 4 6 8 10 12 14 16 18 20

E
R

W
P

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75 p
2
=0.7W (uninterrupted)

p
2
=0.7W (interrupted)

p
2
=0.75W (uninterrupted)

p
2
=0.75W (interrupted)

p
2
=0.8W (uninterrupted)

p
2
=0.8W (interrupted)

(b) ERWP

Figure 5.19: Comparison of two offloading strategies based on different metrics

to the cloud with both offloading strategies. Since the local execution is very slow it is beneficial

to offload all jobs. However, when µm reaches some value, it is better not to offload since the cost

saved from remote execution is not enough to cover the extra cost for offloading.

In Fig. 5.19 we compare the ERWP metric with the ERWS metric. When the power p2 changes

slightly, e.g. from 0.7 W to 0.8 W, it is difficult to tell the difference between the two offloading

strategies according to the ERWS metric depicted in Fig. 5.19(a), while it is very clear to tell the

difference according to the ERWP metric in Fig. 5.19(b). It seems that the ERWP metric is much

121

CHAPTER 5. OFFLOADING DECISION MAKING: HOW TO OFFLOAD

more sensitive to the large scale and can capture small changes when the ERWS metric has the

disadvantage of a linear combination of two criteria on different scales.

5.4 Summary

The proposed queueing models address the issue of how to offload based on different wireless net-

works, which is used to describe complex real offloading systems.

The optimal policy can find an appropriate tradeoff between minimizing the energy costs and de-

lay. The dynamic offloading policy derived from the tradeoff offloading policy (TOP) shows very

good results and outperforms other policies like the random selection of transmission channel by a

significant margin. The ERWS metric can be reduced more by considering either energy consump-

tion or response time and it is minimal when optimizing only energy consumption.

The interrupted offloading strategy can save energy especially if the focus lies on the energy as-

pect. In general one can say that the uninterrupted strategy is faster, while the interrupted strategy

uses less energy. For all configurations there is a break-even point at equal importance of both parts

of the combined metrics for low load and recovery rate, which increases towards energy preference

when the recovery rate increases (and down-time decreases) and moves towards response time pref-

erence when the load increases. While most findings correspond with intuition we see that in the

interrupted strategy a slow transmission server can not benefit from fast recovery. A fast connection

improves the response time much more than fast repair of a failed connection. In conclusion, short

down-time of the transmission channel can mostly be tolerated.

For delay-tolerant applications, it is better to use the interrupted offloading strategy instead of the

uninterrupted one, while for the delay-sensitive applications, the uninterrupted strategy shows very

good results and outperforms the interrupted one by a significant margin. The offloading probability

closely depends on the mobile service rate, the cloud service rate and the weighting parameter. Slow

mobile service rate and fast cloud service rate will result in more jobs to be offloaded to the cloud.

We can thus judiciously make the offloading decisions of whether to offload or not and how much

to offload that optimize the ERWP metric.

122

Chapter 6

Offloading Decision Making: When to
Offload

Remote execution is an opportunistic alternative, but not a must, since additional data communica-

tion is required, which may increase the response time and/or energy consumption when transferring

the task related data [84]. Therefore, as sometimes it may be not worth offloading at all, decisions

have to be made when encountering large communication data or low bandwidth. In this chapter, we

address the issue of when to offload when considering both the energy consumption and response

time. The contributions are threefold:

• Exploring the tradeoff between shortening response time and prolonging battery life of mo-

bile devices by dividing three intervals, namely, never offload, tradeoff and always offload.

Offloading decisions depend on whether the mobile device benefits from offloading or not.

• Proposing an energy-efficient offloading algorithm based on Lyapunov optimization which

determines when and on which network to offload data so that energy-cost is minimized by

leveraging delay tolerance.

• Optimality analysis of the energy-performance tradeoff for delayed offloading systems based

on the Energy-Response time Weighted Product (ERWP) metric, which captures both energy

and performance metrics and also intermittently available access links. We try to answer the

following questions: (i) Given a deadline, how to choose the optimal offloading model and

what parameters do the response time and energy depend on? (ii) How to choose the deadlines

in order to optimize the ERWP by trading off the response time and energy consumption?

123

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

6.1 Tradeoff Analysis

In this section, we analyze the tradeoff between time and energy saving, and also the tradeoff be-

tween computation and communication in offloading decision making. Offloading is worthwhile

when the estimated local execution cost is greater than the sum of its estimated remote execution

cost on the cloud sever plus the predicted cost of transferring the related data. And offloading deci-

sion is made when encountering with large amounts of computation and relatively small amounts of

communication based on time and/or energy saving criteria.

6.1.1 Time and Energy Tradeoffs

Offloading has the potential to save time and energy, but the savings from offloading need to exceed

the additional communication cost between the mobile device and the cloud [82].

• Time Saving: the time incurred by offloading is the sum of communication time and compu-

tation time on the cloud server and it should be smaller than the execution time on the mobile

device in order to save time. Therefore, it is worthwhile to offload the computation rather than

execute it locally, when tm > ts + D
B as in (4.14).

• Energy Saving: a performance seeking offload is not guaranteed to save energy, as the energy

overhead of data transfer may exceed the energy savings from reduced CPU usage [38]. To

make offloading worthwhile, it has to satisfy: pmtm > pits + ptr
D
B as in (4.15), i.e. the energy

spent due to offloading must be smaller than the energy consumed by the mobile device.

To ensure that offloading will be beneficial (saving time and energy simultaneously), it has to

satisfy the following two conditions:

tm >
tm
F

+
D

B
, (6.1)

pmtm > pi
tm
F

+ ptr
D

B
, (6.2)

where tm = Fts and again the speedup factor F indicates how powerful a cloud server is in terms of

execution speed when compared with that of the mobile device. The inequalities in (6.1) and (6.2)

hold under several conditions: large F that the server is much faster than the mobile device, small

D that only a small amount of data is exchanged, and large B that the network bandwidth between

the mobile device and the server is high [60].

In order to analyze the relation between remote execution on the cloud server and local execution

using the mobile device intuitively, we apply the Energy-Response time Weighted Product (ERWP)

124

6.1. TRADEOFF ANALYSIS

metric in (2.4):

ERWP = rωE · r1−ωT (6.3)

=

[
pmtm

pi
tm
F + ptr

D
B

]ω
·

[
tm

tm
F + D

B

]1−ω
, (6.4)

where rT is the ratio of local and remote execution time, rE is the ratio of local and remote energy

cost and ERWP is a performance indicator which considers both energy and time saving simulta-

neously. The larger ERWP is, the better the offloading system works.

1

The weighting parameter !

0.8
0.6

0.4
0.2

00

5

The speedup factor F

10

15

20

0

0.5

1

1.5

2

2.5

3

3.5

E
R

W
P

B=128Kbps

B=16Kbps

B=64Kbps

Figure 6.1: The ERWP value under different parameters

We first consider two extreme situations here. If rE = 1, we have ERWP = r1−ω
T that is

independent of rE , where rT = Fpm
(F−1)ptr+pi

. If rT = 1, we have ERWP = rωE is not related with

rE , where rE = Fptr
Fpm+ptr−pi

. For general circumstances. We set the execution time on the mobile

device tm = 2 s and the exchanged data D = 64 KB. It can be seen from Fig. 6.1 that the network

bandwidth has a huge impact on ERWP , for example, when B = 16 Kbps, it is always below 1

no matter how F and ω change, which means offloading the program from mobile device to remote

cloud can neither save energy nor reduce time when B is small. However, as B increases, ERWP

is also getting larger, indicating that offloading works better. And also F has the similar effect once

ω is fixed, that is the larger F is, the more energy and time saving can be achieved. Besides, ERWP

increases slowly with the increase of F when ω is small, however, it rises faster with the increase of

F when ω is large. Therefore, the weighting coefficient ω should be chosen carefully and it should

be adjusted to the actual offloading systems.

125

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

For offloading break-even, i.e. when tm arrives at an equilibrium point in inequality (6.1) or (6.2),

if we assume tbe1 and tbe2 to be the critical time values, respectively, we could further derive the

following two equalities:

tbe1 =
tbe1

F
+
D

B
=⇒ tbe1 =

D/B

1− 1/F
, (6.5)

pmtbe2 = pi
tbe2

F
+ ptr

D

B
=⇒ tbe2 =

ptrD/B

pm − pi/F
. (6.6)

Since the value of tbe1 should be positive, from (6.5) it requires that F > 1. Similarly, (6.6)

requires F > pi/pm, since pi < pm (i.e. the power while being idle must be less than the active

power of computing). Therefore, these constraints can always be met due to F > 1. Especially,

when pi = ptr, inequality (6.2) reduces to tm > pi
pm

(
tm
F + D

B

)
, thus there is no need to discuss

energy saving in inequality (6.2), as long as it meets the performance improvement in inequality

(6.1). Thus, using computation offloading to shorten execution time and the prolong the battery life

of the mobile device, tm has to meet the following requirement:

tm > max(tbe1, tbe2). (6.7)

Moreover, in order to compare tbe1 with tbe2, let

tbe1

tbe2
=

C

1− 1/F
· pm − pi/F

ptrD/B
< 1,

it can be seen that when F < pi−ptr
pm−ptr

, we have tbe1 < tbe2, and otherwise when F > pi−ptr
pm−ptr

or

pm = ptr, we have tbe1 > tbe2.

We consider two situations as shown in Fig. 6.2, where the area is divided in three intervals:

never offload, tradeoff and always offload. As illustrated in Fig. 6.5(a) (assume tbe1 < tbe2), it

can be seen that when tm < tbe1, offloading is neither beneficial for improving performance nor

saving energy, and thus a program should never be offloaded to the server if its values fall into this

area. When tbe1 < tm < tbe2, offloading saves time while it costs much more energy to execute the

program. However, when tm > tbe2, shifting the complex parts of the program to a cloud server is

always beneficial, therefore we should always offload if its values fall into this interval. Similarly,

as depicted in Fig. 6.5(b) (assume tbe1 > tbe2), we should never offload the program to the server

when tm < tbe2, but should always offload when tm > tbe1. When tbe2 < tm < tbe1, offloading

saves energy while it takes much more time to execute the program.

Therefore, there exists a tradeoff between improving performance and saving energy in the inter-

126

6.1. TRADEOFF ANALYSIS

Never
Offload

Tradeoff
Always Offload

tm

D/B

ptrD / B

tm

pmtm pi
tm
F
+ ptr

D
B

tm
F
+ D
B

tbe1 tbe2
(a) tbe1 < tbe2

Never
Offload

Tradeoff

Always Offload

tm

D/B

ptrD / B

tm

pmtm pi
tm
F
+ ptr

D
B

tm
F
+ D
B

tbe2 tbe1
(b) tbe1 > tbe2

Figure 6.2: Diagram of when to offload

val between tbe1 and tbe2. The values of pm, pi and ptr are parameters specific to the mobile system.

Besides, the speedup factor F is determined by the given mobile device and server. The value of

F is elastic since different numbers of processors can be obtained from the cloud on demand. The

larger F is, the more resources are needed to ensure a certain speedup and this costs more. When

a certain value of F meets the requirement of the system, it is worth offloading a program to such

a server on cloud. Furthermore, we can compare F with pi−ptr
pm−ptr

, and thus the relationship between

tbe1 and tbe2 is known.

6.1.2 Computation and Communication Tradeoffs

According to previous research work [43, 76] in our group, an offloading decision engine based on

different decision criteria is developed to capture the tradeoff between computation and communi-

cation.

At the cloud side, a server of Freie Universität Berlin is used, which has 4 cores of type Intel Xeon

CPU E5649 2.53 GHz, with main memory of 7786 MB. The server runs Apache Tomcat 6 and uses

Java 1.6. At the mobile side, actual mobile devices (see Table 2.1) are applied in mobile cloud

environments with various mobile communication networks. The server is about 17 times faster

than the slow device (Xiaomi Redmi 2) and 1.1 times faster than the fast device (Samsung Galaxy

S6). The communication with the server is based on the basic query/response structure. PowerTutor

is used for battery usage calculations.

Figure 6.3 shows an overview of the offloading decision engine. The left part shows all relevant

127

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

parameters, such as speedup factor, wireless bandwidth, network and server availability information.

On the middle part, we can choose different amounts of computation (expressed by floating-point

operations per second (FLOPS)) and communication data (MB). Offloading decisions can be made

based on one of the three criteria, i.e. time saving, energy saving, and time & energy saving. The

right part shows the estimated and real cost for both the local execution and the remote execution.

The engine decides whether the task should be offloaded or not, depending on which estimated

option (local or remote) has relatively lower cost.

Figure 6.3: The offloading decision engine based on different criteria

From Figs. 6.4-6.5 it can be observed that the real costs have a good match with the estimates

produced by the offloading decision engine, when taking into account both the bandwidth and RTT.

It is also of interest to observe the point where offloading starts being superior. For a small amount

of data (100 KB), only about 17 MFLOPS are needed to reach this point, while the point arrives

around 100 MFLOPS for a large volume of data (1 MB). As the data size grows, the RTT loses

relevancy and the bandwidth plays the main role. When choosing the energy saving criterion, it

needs even more amount of computation to reach the critical point. From Fig. 6.5, the fast device

can not benefit so much from offloading as the slow device does. Offloading makes sense only if the

amount of computation is also very large (GFLOPS).

6.2 Dynamic Transmission Scheduling

Using WiFi to offload large volumes of data from a mobile device to the cloud can be more energy-

efficient than cellular radio. Since WiFi connections are not always available, we should decide

128

6.2. DYNAMIC TRANSMISSION SCHEDULING

Computation (MFLOPS)
0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

0

0.5

1

1.5

Local estimated
Remote estimated
Real execution

(a) Communication data 100 KB
Computation (MFLOPS)

0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

(J
)

0

0.2

0.4

0.6

0.8

1

1.2

Local estimated
Remote estimated
Real execution

(b) Communication data 100 KB

Computation (MFLOPS)
0 50 100 150 200 250 300

T
im

e
(s

)

0

0.5

1

1.5

2

2.5

3

3.5

4

Local estimated
Remote estimated
Real execution

(c) Communication data 1 MB
Computation (MFLOPS)

0 50 100 150 200 250 300

E
ne

rg
y

(J
)

0

0.5

1

1.5

2

2.5

3

3.5

Local estimated
Remote estimated
Real execution

(d) Communication data 1 MB

Figure 6.4: Behavior of the slow device with different amounts of computation

Computation (GFLOPS)
0 5 10 15 20 25 30

T
im

e
(s

)

0

5

10

15

20

25

30

Local estimated
Remote estimated
Real execution

(a) Communication data 100 KB
Computation (GFLOPS)

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

)

0

5

10

15

20

25

30

35

40

Local estimated
Remote estimated
Real execution

(b) Communication data 1 MB

Figure 6.5: Behavior of the fast device with different amounts of computation

129

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

when to transmit data and across which network interface.

Dynamic Transmission

Scheduling Algorithm

Mobile device
Cloud server

New Arrivals Queue

offload

Figure 6.6: Framework of delayed offloading

As shown in Fig. 6.6, there is a queue of data to be offloaded from a mobile device to the remote

cloud server. We propose a dynamic transmission scheduling algorithm based on the Lyapunov

optimization. It uses the transmission energy cost as a penalty function and dynamically determines

when offloading decisions are made in order to minimize the energy cost by accepting a small delay

(queue length).

6.2.1 Adaptive Link Selection

As depicted in Fig. 6.7, the problem of when to offload and which interface to use can be formulated

as an adaptive link selection problem. Given a set of available links with energy information, AP

availability information as obtained from traces and data system queues, determine whether to use

any of the available links (the appropriate network interface) to transfer data, while keeping the

transmission delay bounded [103].

The mobile device selects the link with the best connection quality by running a series of probe-

based tests to the cloud. Even after a particular link is selected, the connectivity can still be unstable

as it is affected by user mobility, limited coverage of the WiFi APs and other factors. Because it

sacrifices delay for energy, the problem of link selection and transmission scheduling for delay-

tolerant applications can be naturally formulated using an optimization framework.

Suppose there are M channels available, let Bj(t) denote the bandwidth between the mobile

device and the cloud in time slot t when using channel j, where j ∈ {1, · · · ,M}. Let bj(t) or

b̂j(α(t)) denote the amount of data transmitted over channel j between the mobile device and the

cloud in slot t. It is determined by a transmission decision α(t), which is the choice made in slot t,

130

6.2. DYNAMIC TRANSMISSION SCHEDULING

Adaptive Link Selection Algorithms

EDGE 3G WLAN 1 WLAN n

System Queue Energy Info

New Arrivals

LTE

APs Availability

from Traces

Figure 6.7: A mathematical model of adaptive link selection

either to transmit data over channel j or not to transfer, and can be expressed as:

bj(t) = b̂j(α(t)) =

{
Bj(t) · τ, if α(t)=“Transmit over channel j”,

0, if α(t)=“Idle”,
(6.8)

where α(t)=“Idle" means that no transmission takes place in slot t and τ is the time duration that

the interface is on. For convenience, τ is assumed to be a constant, which is based on the bandwidth

estimation and should be neither too large to too small [107].

We denote the energy consumption caused by data transmission on the mobile device in time slot

t as E(t) = Ê(α(t)), which depends on the current link bandwidth and the transmission decision

α(t). Over a long time period T , the total amount of transmitted data is
∑T−1

t=0

∑M
j=1 bj(t), corre-

spondingly, the total energy consumption of the mobile device for transmitting such an amount of

data can be denoted as
∑T−1

t=0 E(t).

Suppose there are N queues of data to be sent from the mobile device to the cloud, and we define

the vector of current queue backlogs by:

Q(t) =
(
Q1(t), Q2(t), · · · , QN (t)

)
, ∀t ∈ {0, 1, · · · , T − 1}, (6.9)

where the queues are maintained in the mobile device’s memory and for each queue i, Qi(t) repre-

sents its queue backlog of data to be transmitted from the mobile device to the cloud at the beginning

of slot t.

131

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

Further, let Ai(t) denote the amount of newly arriving data added to each queue i in time slot t.

We assume that each random variableAi(t) is i.i.d. over time slots with expectation E{Ai(t)} = λi.

We call λi the arrival rate to queue i. Therefore, the queue length of queue i in time interval t + 1,

i.e. Qi(t+ 1) has the following dynamics:

Qi(t+ 1) = max
[
Qi(t)− bi(t), 0

]
+Ai(t),∀i ∈ {1, 2, · · · , N}, ∀t ∈ {0, 1, · · · , T − 1}. (6.10)

Given this notation, we can formally state the queueing constraint that is imposed on our adaptive

link selection algorithm. We require all the queues to be stable in the time average sense, i.e.

Q̄ , lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} <∞,

the stability constraint ensures that the average queue length is finite and we should not always defer

the transmission.

While maintaining a stable queue we seek to design an adaptive link selection algorithm and

dynamic transmission scheduling such that the average transmission energy is minimized [103]:

min

[
Ē , lim sup

T→∞

1

T

T−1∑
t=0

E{E(t)}

]
, (6.11)

where the required transmission energy E(t) depends on the selected link during slot t.

6.2.2 Lyapunov-based Link Selection

To solve the adaptive link selection problem we employ a Lyapunov optimization framework, which

enables us to derive a control algorithm that determines when and on which network to transmit our

data such that the total energy-cost is minimized.

For each slot t, we define a Lyapunov function [83] as:

L(Q(t)) =
1

2

N∑
i=1

Q2
i (t), (6.12)

which represents a scalar measure of queue length in the network. We then define the Lyapunov

132

6.2. DYNAMIC TRANSMISSION SCHEDULING

drift as the change in the Lyapunov function from one time slot to the next:

L(Q(t+ 1))− L(Q(t)) =
1

2

N∑
i=1

[
Q2
i (t+ 1)−Q2

i (t)
]

=
1

2

N∑
i=1

[(
max[Qi(t)− bi(t), 0] +Ai(t)

)2
−Q2

i (t)

]

≤
N∑
i=1

A2
i (t) + b2i (t)

2
+

N∑
i=1

Qi(t)[Ai(t)− bi(t)]. (6.13)

The conditional Lyapunov drift ∆(Q(t)) is the expected change in the Lyapunov function over

one time slot, given that the current state in time slot t is Q(t). That is:

∆(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
. (6.14)

From (6.13), we have that for a general control policy ∆(Q(t)) satisfies:

∆(Q(t)) ≤ E

{
N∑
i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
+

N∑
i=1

Qi(t)λi − E

{
N∑
i=1

Qi(t)bi(t)|Q(t)

}
, (6.15)

where we have used the assumption that arrivals are i.i.d. over slots and hence independent of current

queue backlogs, so that E{Ai(t)|Q(t)} = E{Ai(t)} = λi.

Let C be a finite constant that bounds the first term on the right-hand-side of (6.15), so that for all

t, all possible Q(t) and all possible transmission decisions we have:

E

{
N∑
i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
=

1

2
E

{
N∑
i=1

A2
i (t)

}
+

1

2
E

{
N∑
i=1

b2i (t)|Q(t)

}
≤ C. (6.16)

There exist constants A2
max and b2max that satisfy the following conditions:

E

{
N∑
i=1

A2
i (t)

}
≤ A2

max and E

{
N∑
i=1

b2i (t)|Q(t)

}
≤ b2max, (6.17)

where Amax ≥ Ai(t) represents the maximum amount of data that can arrive per time slot, and

bmax ≥ bi(t) denotes the maximum amount of data that can be transmitted via the wireless network

in a time slot. Hence, we have C = (A2
max + b2max)/2.

To stabilize the data queue by making sure that there is a balance of arriving data and transmitted

133

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

data, while minimizing the mean energy E(t), we incorporate the expected energy consumption

over one slot t. It can be designed to make transmission decisions that greedily minimize a bound

on the following drift-plus-penalty term in each slot t [83]:

∆(Q(t)) + V E{E(t)|Q(t)}, (6.18)

where V ≥ 0 is a control parameter that represents an “importance weight" in deciding relative

importance among queue backlog, transmission rate rate, and energy cost. In other words, V can

be thought of as a threshold on the queue backlog beyond which the control algorithm decides to

transmit, so V controls the energy-delay tradeoff [103]. From (6.15) and (6.16) we have:

∆(Q(t)) + V E{E(t)|Q(t)} ≤ C +

N∑
i=1

Qi(t)λi + V E{E(t)|Q(t)}

−E

{
N∑
i=1

Qi(t)b̂i(α(t))|Q(t)

}

= C +
N∑
i=1

Qi(t)λi + E

{[
V E(t)−

N∑
i=1

Qi(t)b̂i(α(t))

]
| Q(t)

}
.

Using the concept of opportunistically minimizing an expectation, the optimization of the right-

hand-side of the above inequality is accomplished by greedily minimizing the following term:

arg min
α(t)

[
V E(t)−

N∑
i=1

Qi(t)b̂i(α(t))

]
, (6.19)

where we choose the transmission decision α(t) that will minimize (6.19).

We denote a decision function as:

d(t) = V E(t)−
N∑
i=1

Qi(t)b̂i(α(t)), (6.20)

which depends on the current link bandwidth and the transmission decision α(t). In order to under-

stand the intuition behind this decision, we would like to see when d(t) can have a low value.

1) Link with good quality: d(t) can be small when the link has a higher estimated transmission

rate. It makes sense that we would like to use any high-quality link to transfer data over a

low-quality link.

2) Queue backlog is high: d(t) can achieve a low-value if the queue backlog Q(t) is high. This

134

6.2. DYNAMIC TRANSMISSION SCHEDULING

is also intuitive: when data has been in the queue for a long time, there should be a higher

incentive to transmit.

3) Link with a low energy cost: d(t) is small when the energy cost E(t) of a link is low (e.g. a

WiFi link). Such a link should be preferred over a high-energy cellular link [103].

4) Control parameter V : if V is too large, first term of d(t) becomes high, then a large queue

backlog or a very high quality link may be required to trigger a transmission; if V is small,

the first term becomes low, then delay can be reduced at the expense of increased energy

cost [103]. In general, setting V large is more likely to defer the data offloading.

Therefore, over all available links, offloading is deferred until good-quality and low-energy links

become available, or unless the queue backlog is too high. Further, when considering the decision

α(t), the decision function d(t) can be denoted as:

d(t) =

{
V Ei(t)−Qi(t)bi(t), if α(t)=“Transmit over channel i”,

0, if α(t)=“Idle”.
(6.21)

Performance Bounds

For any V > 0, we assume that the data arrival rate λi is strictly within the network capacity

region, which is defined as the region that can be achieved by the mobile device in communication

networks [103]. We can achieve a mean energy consumption and queue backlog satisfying the

following constraints [39]:

Ē = lim sup
T→∞

1

T

T−1∑
t=0

E{E(t)} ≤ E∗ +
C

V
, (6.22)

Q̄ = lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤
C + V (E∗ − Ē)

ε
, (6.23)

where ε > 0 is a constant denoting the distance between arrival pattern and the capacity region

boundary [103], E∗ is a theoretical lower bound on the mean energy consumption using any control

policy that achieves queue stability.

Discussion: (6.22) and (6.23) demonstrate the tradeoff between energy consumption and queue

length (or delay). The upper bound of the average energy consumption is O(1/V) and the upper

bound of the average queue length is O(V p). We can achieve an average energy consumption Ē

arbitrarily close to E∗ while maintaining queue stability. However, this is achieved at the expense

of a larger delay because the average queue backlog Q̄ increases linearly with V . Choosing a large

135

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

value of V can thus push the average energy arbitrarily close to its optimal value. However, this

comes at an expense in average queue backlog and delay that is O(V) [83]. A good V value is

one that achieves a good energy and delay tradeoff, where a unit increase in V yields a very small

reduction in Ē with consistently growing delays [103]. In mathematical terms we can choose a

k < 0 that satisfies:
d(E∗ + C/V)

dV
≥ k =⇒ V ≥

√
C

−k
, (6.24)

where k is the slope of the curve (6.22).

Proof. Because the transmission decisionα(t) minimizes the right-hand-side of the drift-plus-penalty

in inequality (6.19), in every slot t (given the observed Q(t)), we have:

∆(Q(t)) + V E{E(t)|Q(t)} ≤ C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑
i=1

Qi(t)λi

−E

{
N∑
i=1

Qi(t)b̂i(α
∗(t))|Q(t)

}
,

where α∗(t) is any other (possibly randomized) transmission decision that can be made in slot t.

Fixing any value ε > 0 in the capacity region boundary further yields:

∆(Q(t)) + V E{E(t)|Q(t)} ≤ C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑
i=1

Qi(t)λi −
N∑
i=1

Qi(t)(λi + ε)

= C + V E
{
Ê(α∗(t))|Q(t)

}
− ε

N∑
i=1

Qi(t).

Taking expectations with respect to Q(t) and using the law of iterated expectations, yields:

E{L(Q(t+ 1))} − E{L(Q(t))}+ V E{E(t)} ≤ C + V E∗ − ε
N∑
i=1

E{Qi(t)},

where E∗ , E
{
Ê(α∗(t))

}
, and summing the above inequality over t ∈ {0, 1, · · · , T −1} for some

positive integer T , yields:

E{L(Q(T))} − E{L(Q(0))}+ V

T−1∑
t=0

E{E(t)} ≤ CT + V TE∗ − ε
T−1∑
t=0

N∑
i=1

E{Qi(t)}. (6.25)

136

6.2. DYNAMIC TRANSMISSION SCHEDULING

Then, dividing (6.25) by V T and after a simple manipulation we obtain:

1

T

T−1∑
t=0

E{E(t)} ≤ C

V
+E∗ −

ε
∑T−1

t=0

∑N
i=1 E{Qi(t)}
V T

− E{L(Q(T))}
V T

+
E{L(Q(0))}

V T
. (6.26)

Since the Lyapunov function is non-negative by definition and so is E∗, neglecting that we subtract

non-negative quantities in (6.26) yields:

1

T

T−1∑
t=0

E{E(t)} ≤ P ∗ +
C

V
+

E{L(Q(0))}
V T

. (6.27)

Similarly, dividing (6.25) by εT , and after rearranging terms we obtain:

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤
C + V (E∗ − 1

T

∑T−1
t=0 E{E(t)})

ε
+

E{L(Q(0))}
εT

. (6.28)

Finally, taking a lim sup as T → ∞ in inequalities (6.27) and (6.28), we can derive (6.22) and

(6.23), respectively.

6.2.3 Transmission Schedulers

To understand this link selection algorithm, we consider the two most prominent networks: WiFi

and 3G. Typically, the WiFi interface is much more energy-efficient, but its availability is limited

while the 3G network is available almost everywhere. Besides, channel quality can be affected by

environmental factors and interference. The channel bandwidth can be reduced due to competing

users in the same cell. Therefore, for data-intensive but delay-tolerant applications, we can save en-

ergy by delaying transmissions until a good-quality or a low-energy interface such as WiFi becomes

available, unless the queue backlog is too high.

Table 6.1: Energy Cost Models for 3G and WiFi Networks
Items 3G WiFi

Ramp and transfer energy R(x) 0.025x+ 3.5 0.007x+ 5.9

Tail power P 0.62 W N/A

Tail time T 12.5 s N/A

Table 6.1 lists the measured energy consumption models [10]. The energy needed to transmit x

bytes of data over the cellular network can be split into three components: ramp energy, transmission

137

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

energy and tail energy. The energy consumption depends on the type of selected interface. Instead of

transitioning from high to low power state, the 3G interface spends substantial time in the high state,

which incurs considerable energy, referred to as the tail energy, while for the WiFi interface, the tail

energy is zero. Using WiFi, the data transfer itself is significantly more efficient than using the 3G

connection for all transfer sizes. In addition to the transfer cost, the total energy also depends on the

time that the interface is on. Therefore, the energy consumption for the 3G and WiFi interfaces in

time slot t can be expressed as follows:

E3G(t) = 0.025 · b3G(t) + 3.5 + 0.62 · 12.5, (6.29)

EWiFi(t) = 0.007 · bWiFi(t) + 5.9. (6.30)

Transmission Scheduler I (N 6= M)

The model of the transmission scheduler I for only one queue of arriving jobs is depicted in Fig. 6.8.

The arrival vector A(t) is assumed to be i.i.d over the time slot and E{A(t)} = λ.

Idle

()A t b(t)


Q(t)

 
()

ˆarg min () () ()
t

VE t Q t b t


 
 

 3G WiFimax (), ()B t B t


WiFi ()B t

3G ()B t

Figure 6.8: Model of transmission scheduler I

We take transmission decisions according to the estimate of the current network bandwidth. In

Fig. 6.8 “B3G(t)" represents the estimated 3G bandwidth in slot t, “BWiFi(t)" represents the esti-

mated WiFi bandwidth and “Idle" denotes that no transmission takes place in time slot t. If B3G(t)

is larger than BWiFi(t), the mobile device will be linked to the 3G interface in time slot t to transmit

data, otherwise it will be linked to the WiFi interface. The decision criterion can be denoted as

B(t) = max{B3G(t), BWiFi(t)}. According to the Lyapunov optimization, the minimization of the

138

6.2. DYNAMIC TRANSMISSION SCHEDULING

average energy consumption is accomplished by greedily minimizing the following criterion:

arg min
α(t)

[
V E(t)−Q(t)b̂(α(t))

]
. (6.31)

Denoting the decision function as d(t) = V E(t)−Q(t)b̂(α(t)), when considering the transmis-

sion decision α(t) we have:

d(t) =

{
V E(t)−Q(t)B(t) · τ, if α(t) = “transmit”,

0, if α(t) = “idle”,
(6.32)

where α(t) ∈ {“transmit” and “idle”}, taking on two possible values and

E(t) =


E3G(t), if α(t) = “transmit” and B3G(t) > BWiFi(t),

EWiFi(t), if α(t) = “transmit” and B3G(t) ≤ BWiFi(t),

0, if α(t) = “idle”.

If the transmission decision is α(t) = “transmit”, we choose to transfer data according to the

current channel bandwidth. If α(t) = “idle”, no data is transmitted in slot t, so E(t) = 0 and

b(t) = 0, and then we have d(t) = 0. Therefore, transmission takes place only if V satisfies:

V E(t) − Q(t)b̂(α(t)) < 0. This happens when the bandwidth is high, making a large b̂(α(t)), or

the queue Q(t) is already congested in time slot t.

Over time, the queuing dynamic is given by:

Q(t+ 1) = max[Q(t)− b(t), 0] +A(t), ∀t ∈ {0, 1, · · · , T − 1}. (6.33)

By Little’s Theorem [13], the average delay can be calculated as:

D̄ = Q̄/λ. (6.34)

The disadvantage of transmission scheduler I is that only the estimated bandwidth of 3G and

WiFi in time slot t is considered and the energy usage of 3G and WiFi is not taken into account. For

example, if B3G(t) = 50 Kbps and BWiFi(t) = 49.99 Kbps, since B3G(t) is larger than BWiFi(t) we

choose the 3G interface to transmit data, even though it consumes much more energy than WiFi. In

this situation we should also consider the energy demand of 3G and WiFi.

139

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

Transmission Scheduler II (N 6= M)

x

3G ()B t

1 3G

2

() ()
() 0

b t B t
b t

W �­
® ¯

Idle

WiFi ()B t

� �
2

() 1

ˆargmin () () ()j
t j

VE t Q t b t
D

D

ª º
�« »

¬ ¼
¦

()A t
()Q t

()b t1

2

() 0
() 0

b t
b t

 ­
® ¯

1

2 WiFi

() 0
() ()

b t
b t B t W

 ­
® �¯

Figure 6.9: Model of optimal transmission scheduler II

The model of transmission scheduler II is as shown in Fig. 6.9. There are two links (M = 2)

available for selection. We also use one queue (N = 1) to represent data transmission during each

slot. Using the concept of opportunistically minimizing the expectation, the minimization of average

energy consumption is accomplished by greedily minimizing:

arg min
α(t)

V E(t)−Q(t)
M∑
j=1

b̂j(α(t))

 . (6.35)

Similarly, let d(t) = V E(t)−Q(t)
∑M

j=1 b̂j(α(t)). Since M = 2, there are three possible results

according to the transmission decision of α(t)

d(t) =


V E3G(t)−Q(t)B3G(t) · τ, if α(t)=“transmit via 3G",

V EWiFi(t)−Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi",

0, if α(t)=“idle",

(6.36)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the transmission decision in

slot t, taking on three possible values. We not only consider the estimated bandwidth but also take

into account the energy usage of 3G and WiFi in time slot t. We thus compare the above values and

choose the transmission decision corresponding to the smallest outcome.

If the 3G and WiFi interfaces can be used simultaneously, the transmission scheduler model in

Fig. 6.9 can be further extended as in Fig. 6.10. Since the combined transmission works just like

an extra channel, we have M = 3. Thus, there are four possible results in (6.35) according to the

140

6.2. DYNAMIC TRANSMISSION SCHEDULING



3G ()B t
3G ()B t 

WiFi ()B t
WiFi ()B t   

3

() 1

ˆarg min () () ()j
t j

VE t Q t b t





 
 

 


 3G WiFi() ()B t B t  

()A t

()Q t

Idle
0

3G WiFi() ()B t B t

()b t

Figure 6.10: Model of transmission scheduler II for the combined scheme

transmission decision of α(t):

d(t) =



V E3G(t)−Q(t)B3G(t) · τ, if α(t)=“transmit via 3G",

V EWiFi(t)−Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi",

V
[
E3G(t) + EWiFi(t)

]
−Q(t)

[
B3G(t) +BWiFi(t)

]
· τ, if α(t)=“transmit via 3G and WiFi",

0, if α(t)=“idle",

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi”, “transmit via 3G and WiFi”, and “idle”}
is the transmission decision in slot t, taking on four possible values.

Transmission Scheduler III (N = M)

The model of transmission scheduler III is depicted in Fig. 6.11. The number of channels is equal to

the number of queues, that is N = M = 2. A1(t) is only transmitted through the 3G interface while

A2(t) is only transmitted through the WiFi interface. We assume that A1(t) and A2(t) take integer

units of packets, the arrival vector A(t) is i.i.d over slot and E{A(t)} = λ. The question whether or

not to allocate A(t) to A1(t) and A2(t) in equal shares still remains. To analyze this problem, we

simplify the model as shown in Fig. 6.12, such that it involves routing decisions besides scheduling

decisions.

There are two separate queues depicted in Fig. 6.12, the arrival vectors A1(t) and A2(t) are i.i.d

over all slots, E{A1(t)} = λ1 and E{A2(t)} = λ2. Since A1(t) + A2(t) = A(t), according to the

property of the Poisson distribution, we have: λ1 + λ2 = λ, where λ1 = ρλ, λ2 = (1 − ρ)λ, and

0 ≤ ρ ≤ 1 is defined as the dispatching ratio of arrival rate to queue 1. There are two extreme cases:

when ρ = 0, the mobile device only uses the WiFi interface to transmit data and when ρ = 1, the

mobile device only uses the 3G interface. Similarly, using the concept of opportunistic minimization

141

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

1()A t

2 ()Q t



3G ()B t

1 3G

2

() ()

() 0

b t B t

b t

 




Idle

WiFi ()B t
1

2 WiFi

() 0

() ()

b t

b t B t 




 

 
2

() 1

ˆarg min () () ()i i
t i

VE t Q t b t





 
 

 


1

2

() 0

() 0

b t

b t






1()Q t

2 ()A t

()A t

Figure 6.11: Model of transmission scheduler III

1()A t

2 ()A t

2 ()Q t

1()Q t



3G ()B t

1 3G

2

() ()

() 0

b t B t

b t

 




Idle

WiFi ()B t
1

2 WiFi

() 0

() ()

b t

b t B t 




 

 
2

() 1

ˆarg min () () ()i i
t i

VE t Q t b t





 
 

 


1

2

() 0

() 0

b t

b t






Figure 6.12: Equivalent model of transmission scheduler III

of the expectation, the minimization of the average energy consumption is accomplished by greedily

minimizing:

arg min
α(t)

[
V E(t)−

2∑
i=1

Qi(t)b̂i(α(t))

]
. (6.37)

Let d(t) = V E(t) −
∑2

i=1Qi(t)b̂i(α(t)). Then there are three possible results according to the

transmission decision of α(t) as given by:

d(t) =


V E3G(t)−Q1(t)b1(t), if α(t)=“transmit via 3G",

V EWiFi(t)−Q2(t)b2(t), if α(t)=“transmit via WiFi",

0, if α(t)=“idle",

(6.38)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the transmission decision in

142

6.2. DYNAMIC TRANSMISSION SCHEDULING

slot t, taking on the three possible values. The amount of data transmitted between the cloud and

the mobile device in slot t is as follows:

{b1(t), b2(t)} =


{B3G(t) · τ, 0}, if α(t)=“transmit via 3G",

{0, BWiFi(t) · τ}, if α(t)=“transmit via WiFi",

{0, 0}, if α(t)=“idle",

and the queuing dynamics are given by:

Qi(t+ 1) = max
[
Qi(t)− bi(t), 0

]
+Ai(t), ∀i ∈ {1, 2}, ∀t ∈ {0, 1, · · · , T − 1}. (6.39)

Similarly, the average delay for this system is calculated as:

D̄ =
Q1 +Q2

λ1 + λ2
. (6.40)

Furthermore, the transmission scheduler III can be extended in the same way to more general sce-

narios as depicted in Fig. 6.7, where traffic queues can be concurrently distributed over several

communication channels.

6.2.4 Simulation Results

We assume data arrivals follow a Poisson process with λ packets/minute and the size of each packet

is 100 KB. The energy consumption models refer to (6.29) and (6.30) for the 3G and WiFi interfaces,

respectively. Since data communication time between the mobile device and the cloud depends on

the network bandwidth and the bandwidth of WLAN is remarkably higher than the bandwidth pro-

vided by radio access on a mobile device, the bandwidths for the 3G and WiFi interfaces follow

uniform distributions on [1, 100] and [1, 300] KB/s, respectively. Suppose that the network band-

widths stay the same during each time slot, which is set as τ = 60 s. Our algorithms are simulated

in 1000 time slots for each of the V value ranging from 1 to 300.

From Fig. 6.13 (transmission scheduler I, refer to Fig. 6.8), the average energy consumption and

transmit data fall quickly at the beginning and then tend to descend slowly while the average queue

backlog grows linearly with V . This finding confirms the [O(1/V), O(V)] tradeoff as captured

in (6.22) and (6.23). According to different scenarios, we can adjust the value of V to control the

energy-delay tradeoff. When the power constraint is stringent (e.g. the mobile device is running out

of battery and no charger is available), choosing a larger V can save energy at the expense of longer

average queue length and larger delay and instead, when the battery supply is not so limited (e.g. a

143

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

Control Parameter V
0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

100
Transmission scheduler I (6=4)

Energy consumption [J/slot]

Queue backlog [Packets]

Transmit data [Packets]

Figure 6.13: The impact of V on mean energy consumption, queue backlog and transmit data for
transmission scheduler I

Control Parameter V
0 50 100 150

0

20

40

60

80

100

120
Transmission scheduler II (6=4)

Energy (combined)
Delay (combined)
Transmit data (combined)
Energy
Transmit data
Delay

Figure 6.14: Comparison of different schemes for transmission scheduler II

charger is available), we can increase V to reduce the delay. Especially, there exists a sweet spot of

V , and at this point, the marginal energy conservation is not worth the consistently growing delay

with increasing of V . For example, when V increases from 100 to 200, the energy consumption has

only a small decline while the delay increases significantly, thus we should trade energy with delay.

Further, according to (6.24), the slope of the curve is k ≈ 0 at this point.

The results of using transmission scheduler II are depicted in Fig. 6.14. We compare the scheme

that combines 3G and WiFi (refer to Fig. 6.10) with the one that transmits separately (refer to

Fig. 6.9). It can be seen that the average number of transmitted packets and average delay in both

144

6.2. DYNAMIC TRANSMISSION SCHEDULING

Control Parameter V
0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 E
ne

rg
y

(J
/s

lo
t)

0

10

20

30

40

50

60

70

80

90
Transmission scheduler III (6=4)

;=0
;=0.25
;=0.5
;=0.75
;=1

(a) Energy

Control Parameter V
0 50 100 150 200 250 300

A
ve

ra
ge

 D
el

ay
 (

M
in

ut
e)

0

50

100

150

200

250
Transmission scheduler III (6=4)

;=0
;=0.25
;=0.5
;=0.75
;=1

(b) Delay

Control Parameter V
0 50 100 150 200 250 300

A
ve

ra
ge

 T
ra

ns
m

it
D

at
a

(P
ac

ka
ge

s)

0

10

20

30

40

50

60

70

80

90

100
Transmission scheduler III (6=4)

;=0
;=0.25
;=0.5
;=0.75
;=1

(c) Data

Figure 6.15: The impact of V on mean energy consumption, delay and transmit data

schemes almost coincide with each other while the combined scheme achieves a lower average

energy consumption than both individual schemes when the control factor V is small (e.g. V ≤ 75).

The results of using transmission scheduler III for the scenario (refer to Fig. 6.11) are depicted

in Fig. 6.15. In Fig. 6.15(a) when V is small, it has the minimum energy consumption when only

using 3G (ρ = 1) for data transfer, while it has the maximum energy consumption when only using

WiFi (ρ = 0). The mean energy increases with the increase of ρ when V ≤ 37. However, when V

arrives at a certain value (V ≈ 37), the scheme that only uses 3G for data transfer has the minimum

energy consumption while the one that only uses WiFi has the maximum value. The mean energy

consumption increases with the increase of ρ when V > 37. Therefore, the energy consumption for

145

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

such a transmission scheduler closely depends on the value of ρ. The average delay in Fig. 6.15(b) is

minimal when only using WiFi to transmit data. As ρ increases, the average delay first increases, but

it then decreases after ρ arrives at some value, for example, the average delay is smaller for ρ = 1

than for ρ = 0.75. When V is small, the average transmit data depicted in Fig. 6.15(c) decreases

with the increment of ρ, thus the mobile device can transfer the largest amount of data when only

using the WiFi interface to transmit data due to its high bandwidth. However, when V is large, the

average transmit data is almost the same and does not change when increasing V .

6.3 Delayed Offloading Model

In a heterogeneous wireless environment, the cellular interface can provide ubiquitous coverage for

mobile devices in a wide area, but has lower data transmission rate and consumes more transmission

energy than the WiFi interface. Therefore, by delaying transmission until WiFi is available, there are

opportunities to reduce the transmission time (while bringing in extra waiting time). The reduced

transmission times are directly translated into battery power saving for the mobile devices [64].

In delayed offloading, each data transfer is associated with a deadline, and the data transfer is

resumed whenever getting in the coverage of WiFi until the transfer is completed [64, 123]. If

the transfer does not finish within its deadline, the task will either be executed locally or cellular

networks will finally complete the transfer. The delayed offloading model involves queueing with

reneging and service interruptions. In queueing, reneging means that a job will leave the queue

and join another queue after the deadline expires. Service interruption literally means unwilling

discontinuity of service in the queue, and this models connection and disconnection periods of a

mobile device to WiFi networks in the system [55].

According to the WiFi availability model in Fig. 5.10, we build two types of delayed offloading

models as follows:

• Partial Offloading Model: we employ a single queue with two phases (the fast phase with

WiFi network and the slow phase with cellular network) to offload jobs to the cloud server.

When there is a WiFi connection available, all the offloadable jobs are sent over the WiFi

network; otherwise, they are sent over the cellular interface as the cellular network is always

available. We set a reneging deadline in the cellular network. If the deadline expires before

the job switches over to some WiFi AP, then it is executed locally on the mobile device rather

than remotely in the cloud [64]. By doing this, we have partial jobs offloaded to the cloud and

the remaining ones processed locally.

• Full Offloading Model: when there is a WiFi connection available, all the offloadable jobs

146

6.3. DELAYED OFFLOADING MODEL

are sent over the WiFi network; otherwise, they can be delayed up to a given deadline, or until

WiFi becomes available. If the deadline expires before the job can be transmitted over some

WiFi AP, then it is offloaded through cellular network. Therefore, we have all the offloadable

jobs offloaded to the cloud via the cellular or WiFi network.

6.3.1 Partial Offloading Model

Figure 6.16 depicts a delayed offloading model based on the WiFi network’s availability model.

We consider an M/M/1 modulated queue in a two-phase (fast and slow) Markovian random en-

vironment, with impatient jobs. The jobs are offloaded either via a cellular connection or a WiFi

network to the cloud. The single-server queuing system that oscillates between two feasible phases

is denoted by fON and fOFF. The persistence of the system at any phase is governed by a random

mechanism [11]: if the system functions at phase fON, it switches to phase fOFF after random time

of mean duration 1/ξ; if the system functions at phase fOFF, it switches to the other phase after

random time of mean duration 1/η.

µ(f)

WiFiCellular

Remote

η

ξ

Offload

fOFF fON

Local

µr

λm µm , pm

λ

Figure 6.16: The partial offloading model

We assume that offloading jobs arrive at the system according to a Poisson process with rate λ

arrive in a Poisson process with rate λ, and the modulating process f ∈ {fON, fOFF} determines the

transition rates:

µ(f) =

{
µc, if f = fOFF,

µw, if f = fON.
(6.41)

We assume that the mean job size is E[X], the transmission speed of the fast phase (WiFi network)

is sw with service rate µw = sw/E[X], and its operating power is pw when serving jobs and zero

147

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

whenever idle. Similarly, the corresponding speed for the slow phase (cellular network) is sc with

service rate µc = sc/E[X] (µc ≤ µw), and its operating power is pc. When in the slow phase, jobs

become impatient. A reneging deadline, is associated with each job in this phase. That is, each job,

upon arrival, activates an individual timer, exponentially distributed with an reneging rate r. If the

system does not change its environment from the slow phase to the fast phase before the deadline

expires, the job will be removed from the queue and is assumed to be executed locally on the mobile

device rather than being offloaded to the cloud [96].

Therefore, Figure 6.16 demonstrates that the delayed offloading model consists of a transmission

queue (with two alternating states of cellular and WiFi), a local processing queue and an exponential

queue representing the cloud. However, when the job waits in the cellular network for too long time,

we choose to process it locally on the mobile device. If the job in the offload queue is completely

transmitted before the assigned deadline has expired, we say that the job is successfully offloaded.

If offloading fails, the job leaves the offload queue and joins the local queue for immediate local

processing. We call such an event a reneging event.

Queueing Analysis

w, 0 w, 1 w, i-1 w, i w, i+1

c, 0 c, 1 c, 2 c, i c, i+1

ξ ξ ξ ξ ξη ηηηη

µw

λ λ λλλ

λ λ λ λ λ

µw µwµwµw

µc + r µc + 2r µc + 3r µc + ir µc + (i +1)r

Figure 6.17: The Markov chain for the partial offloading model

Given the previously stated assumptions, the delayed offloading model can be modelled with a 2D

Markov chain, as shown in Fig. 6.17. The states with cellular network are denoted {c, i}, and the

states with WiFi connectivity are denoted {w, i}. The parameter i corresponds to the number of

jobs in the system (queuing and in service). Writing the balance equations for the cellular and WiFi

148

6.3. DELAYED OFFLOADING MODEL

states gives:

(λ+ η)πc,0 = (µc + r)πc,1 + ξπw,0 (6.42a)

(λ+ η + µc + ir)πc,i = λπc,i−1 + (µc + (i+ 1)r)πc,i+1 + ξπw,i (i > 0) (6.42b)

(λ+ ξ)πw,0 = µwπw,1 + ηπc,0 (6.42c)

(λ+ ξ + µw)πw,i = λπw,i−1 + µwπw,i+1 + ηπc,i (i > 0) (6.42d)

Let µ be defined as: µ = πc · µc + πw · µw.

πc =
E[TOFF]

E[TON] + E[TOFF]
=

ξ

η + ξ
, (6.43)

πw =
E[TON]

E[TON] + E[TOFF]
=

η

η + ξ
= AR, (6.44)

where πc and πw are the steady-state probabilities of finding the offloading system in some region

with only cellular access and with WiFi availability, respectively. We define the probability gener-

ating functions for both cellular and WiFi states as:

Gc(z) =
∞∑
i=0

πc,iz
i and Gw(z) =

∞∑
i=0

πw,iz
i, |z| ≤ 1. (6.45)

Using (6.42) we obtain:

Gw(z)β(z) = ηzGc(z)− µw(1− z)πw,0,

where β(z) = (λz − µw)(1 − z) + ξz = −λ(z − z1)(z − z2). The roots z1, z2 of the quadratic

polynomial β(z) are obtained as:

z1,2 =
λ+ µw + ξ ∓

√
(λ+ µw + ξ)2 − 4λµw

2λ
.

General Case

Assume r 6= 0, we have the partial offloading model. Let us define:

κ1(z) = e−
λz
r z

µc
r (z1 − z)

η
r
z1(z2−1)
z2−z1 (z2 − z)

− η
r
z2(z1−1)
z2−z1 , z ≤ z1,

κ2(z) = e−
λz
r z

µc
r (z − z1)

η
r
z1(z2−1)
z2−z1 (z2 − z)

− η
r
z2(z1−1)
z2−z1 , z ≥ z1.

149

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

According to [96], we obtain:

πc,0 =
rξκ2(1)S

µc(ξ + η)(SV − TU)
, (6.46)

πw,0 = − rκ2(1)T

µw(ξ + η)(SV − TU)
, (6.47)

where S, T, U, V are defined as follows:

S =

∫ z1

0

κ1(x)

β(x)
dx, T =

∫ z1

0

κ1(x)

x
dx, U =

∫ 1

z1

κ2(x)

β(x)
dx and V =

∫ 1

z1

κ2(x)

x
d,

by the definitions of κ1(z), κ2(z) and β(z), we have T,U, V > 0 and S < 0. Therefore, πc,0 and

πw,0 are positive. One can show formally that the system is ergodic. Intuitively, we indicate that the

system is always stable since, with any set of parameters λ ≥ 0, µc ≥ 0, µw > 0, ξ > 0, η > 0

and r > 0, the abandonment process, whose overall rate increases with the number of jobs, prevents

explosion [96]. Alternatively, the system is stable if and only if πc,0 and πw,0 are positive, which

always holds for the above set of parameters. According to [96], we obtain:

E[Nc] =
λ− µ+ µcπc,0 + µwπw,0

r
, (6.48)

E[Nw] =
η(λ− µ) + r(λ− µw)πw + ηµcπc,0 + µw(η + r)πw,0

ξr
. (6.49)

As shown in Fig. 6.17, the expected number of jobs served per unit of time in the slow phase

and fast phase are µc(πc − πc,0) and µw(πw − πw,0), respectively [141]. Therefore, the rate of

abandonment due to impatience in the slow phase, λa, is given by

λa = λ− µc(πc − πc,0)− µw(πw − πw,0)

= λ− µ+ µcπc,0 + µwπw,0

= r · E[Nc]. (6.50)

The rate of jobs executed locally on the mobile device λm must be equal to λa, i.e. λm = λa. The

probability that an arbitrary job arriving to the offload queue will renege and join to the local queue,

i.e. it will be executed locally and will never offload, is defined as:

pr =
λa
λ

=
λ− µ+ µcπc,0 + µwπw,0

λ
. (6.51)

150

6.3. DELAYED OFFLOADING MODEL

We recollect that the busy fraction of the service station is ρ = 1− (πc,0 + πw,0).

Extreme Case

Assume r → 0, the partial offloading model in Fig. 6.16 reduces to the non-delayed offloading

model, which is depicted in Fig. 6.18, since the reneging rate is zero, there will be no local queue in

this model, and it is analyzed in comparison with the delayed offloading models.

µ(f)

WiFiCellular

Remote

η

ξ

Offload

fOFF fON

µr
λ

Figure 6.18: The non-delayed offloading model

After solving the equations of (6.42) when setting r = 0, we have [142]:

g(z)Gc(z) = πw,0ξµwz + πc,0µc

[
ξz + λz(1− z)− µw(1− z)

]
,

where g(z) = λ2z3 − λ(η + ξ + λ+ µc + µw)z2 + (ηµw + ξµc + µcµw + λ(µc + µw))z − µcµw,

and it is proven that g(z) has only one root z0 in the interval (0, 1).

After some algebraic manipulations, we obtain:

πc,0 =
ξ(µ− λ)z0

µc(1− z0)(µw − λz0)
, (6.52)

πw,0 =
η(µ− λ)z0

µw(1− z0)(µc − λz0)
. (6.53)

Once the values of πc,0 and πw,0 have been established, the probability generating functions can

be calculated as:

Gc(z) =
ξ(µ− λ)z + πc,0µc(1− z)(λz − µw)

g(z)
, (6.54)

Gw(z) =
η(µ− λ)z + πw,0µw(1− z)(λz − µw)

g(z)
. (6.55)

151

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

By using E[Ni] =
∑∞

n=0 nπi,n = dGi(z)/dz|z=1, we get the average number of jobs in the

system [142]:

E[N] = E[Nc] + E[Nw]

=
λ

µ− λ
+
µc(µw − λ)πc,0 + µw(µc − λ)πw,0 − (µc − λ)(µw − λ)

(ξ + η)(µ− λ)
. (6.56)

Mean Response Time

The total cost for offloading a job is composed of the cost for sending the job to the cloud and idly

waiting for the cloud to complete the job. By Little’s Law, E[N] = λE[T], the mean response time

of the partial offloading model can be calculated as:

E[T] = E
[
E[Ti]

]
=

∑
i∈{c,w,m,r}

λi
λ
E[Ti] =

1

λ

∑
i∈{c,w,m,r}

E[Ni], (6.57)

where E[Nc] and E[Nw] are the average number of jobs in the cellular network and WiFi network

as obtained in (6.48) and (6.49), respectively.

For the local processing, since the arrival rate equals to the reneging rate, we have λm = r ·E[Nc].

For an ordinaryM/M/1-FCFS queue, the average number of jobs on the mobile device is E[Nm] =

ρm/(1− ρm), where ρm = λm/µm is the utilization.

Since there is no waiting time before entering into remote service in the cloud, for an M/M/∞
queue, the average number of jobs on the cloud server can be calculated as: E[Nr] = λr/µr, where

λr = λ− λm.

Mean Energy Consumption

A key assumption in our work is that each service operates at a constant power pi, (i ∈ {c, w,m})
whenever it is busy, i.e. the mobile device consumes energy only when there are jobs in the system.

Since E[P] = λE[E] is the mean power consumption, we can calculate the mean energy consump-

tion for the partial offloading model as:

E[E] = E
[
E[Ei]

]
=

∑
i∈{c,w,m}

λi
λ
E[Ei] =

1

λ

∑
i∈{c,w,m}

E[Pi]. (6.58)

Since the application jobs are remotely executed on the cloud server rather than on the mobile

device, we do not need to calculate this energy consumption. Since the utilization of the queue is

152

6.3. DELAYED OFFLOADING MODEL

the probability that the server is busy, we have Pr{Ni > 0} = ρi [116], i.e. the energy cost is

only incurred during the fraction of the time the server is busy. The corresponding average power

consumption can be calculated as: E[Pi] = pi · Pr{Ni > 0} = pi · ρi.
The energy consumed due to local execution depends on the processing speed of the mobile device

and its specific characteristics. Since the service on the mobile device is always available, we have:

E[Pm] = pm · Pr{Nm > 0} = pm · ρm. (6.59)

Since the energy consumed due to offloading depends on the transmission rate, we have:

E[Pc] = pc · Pr{Nc > 0} = pc · ρc, (6.60)

E[Pw] = pw · Pr{Nw > 0} = pw · ρw. (6.61)

According to Fig. 6.17, the utilization of the cellular and WiFi network are the probability that the

corresponding network is busy, we have: ρc = πc − πc,0 and ρw = πw − πw,0.

Further, by substituting (6.57) and (6.58), into (2.4), we can formulate the explicit expressions of

the ERWP metric for the delayed offloading model.

6.3.2 Full Offloading Model

For the full offloading model, in which all jobs are offloaded, there are two coupled queues used for

offloading at the side of a mobile device, called WiFi queue and cellular queue, and both queues are

served by a FCFS discipline.

WiFi

Cellular

Remote

ONOFF
η

ξ TransmittingUnconnected

µc , pc

µw , pw

µr

λ

λc

Figure 6.19: The full offloading model

Figure 6.19 depicts a delayed offloading model based on the WiFi network’s availability model.

153

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

All jobs arriving to the system are by default sent to the WiFi interface for offloading. When a job is

offloaded to the cloud via a WLAN network, there is queueing due to the transmission speed of the

WLAN link. We model the intermittent availability of hotspots as a queue with occasional server

break-down. The server availability is governed by an IPP with exponentially distributed ON-OFF

periods. Specifically, the server is either in ON-state processing the existing jobs, or in OFF-state

during which no job receives service. We assume the jobs will abandon the queue during periods

without WiFi connectivity.

We assign a reneging deadline for each job (drawn from an exponential distribution). Jobs are

served in the FCFS order depending on their remaining deadlines (either while queued or while at

the head of the queue, but waiting for WiFi). A job can be served only via WiFi before its deadline.

As the queueing system is continuous, it handles transmission at the bit level so that assigning a

deadline to a job is equivalent to assigning the same deadline to each bit of the job. When the

channel is in the OFF-state, jobs become impatient. That is, each job, upon arrival, activates an

individual timer, exponentially distributed with an reneging rate r. If the network does not recover

from the OFF-state to the ON-state before the deadline expires, the job abandons the WiFi queue,

instead, to be offloaded via cellular network.

If the job in the WiFi queue is completely transmitted through WiFi networks before the assigned

deadline has expired, we say that the job is successfully offloaded. If offloading fails, the job leaves

the WiFi queue and joins the cellular queue for immediate transmission through a 3G connection.

We call such an event a reneging event. When the job is offloaded to the cloud via a cellular net-

work, there is queueing due to the transmission speed of the cellular link. Costs arise in terms of

transmission delays (queueing and actual transmission time) and transmission energy consumption.

The service is always available since the cellular connection is always on.

Similarly, the cloud queue is a pure delay station at which jobs spend an exponentially distributed

amount of time with mean equal to 1/µr time units.

Queueing Analysis

The WiFi Queue refers to offloading jobs from the mobile device to the cloud via a WLAN network,

which is modelled as an M/M/1-FCFS queue with intermittently available service. When a server

recovers, it continues to serve the customer whose service has been interrupted, i.e. the work already

completed is not lost (cf. data transfers with resume).

We assume that the service station fails from time to time and resumes its operation after a ran-

dom time. The Markov chain for the delayed offloading model is depicted in Fig. 6.20, which is

equivalent to assuming that µc = 0, πON = πw and πOFF = πc in Fig. 6.17.

154

6.3. DELAYED OFFLOADING MODEL

ON, 0 ON, 1 ON, 2 ON, i ON, i+1

OFF, 0 OFF, 1 OFF, 2 OFF, i OFF, i+1

ξ ξ ξ ξ ξη ηηηη
2r 3rr

λ λ

λ λ λ λ

λ λ λ

λ

µw µw µw µw µw

(i+1)rir

Figure 6.20: The 2D Markov chain for the WiFi queue

Writing the balance equations for this chain gives:

(λ+ η)πOFF,0 = ξπON,0 + rπOFF,1, (6.62a)

(λ+ η + ir)πOFF,i = λπOFF,i−1 + (i+ 1)rπOFF,i+1 + ξπON,i (i > 0), (6.62b)

(λ+ ξ)πON,0 = ηπOFF,0 + µwπON,1, (6.62c)

(λ+ ξ + µw)πON,i = λπON,i−1 + µwπON,i+1 + ηπOFF,i (i > 0). (6.62d)

According to [77], we obtain:

πOFF,0 = − ξκ2(1)S

(ξ + η)κ1(0)U
, (6.63)

πON,0 =
rκ2(1)

µw(ξ + η)U
. (6.64)

We have µ = πc · µc + πw · µw = πON · µw. After substituting the above values into (6.48) and

(6.49), we derive the mean number of jobs in the WiFi Queue as:

E[NOFF] =
λ− µw(πON − πON,0)

r
, (6.65)

E[NON] =
ηλ− µw(η + r)(πON − πON,0) + λrπON

ξr
. (6.66)

Therefore, the average number of jobs in the WiFi queue is formulated as:

E[Nw] = E[NOFF] + E[NON]. (6.67)

In Fig. 6.20 the expected number of jobs served per unit of time in the WiFi queue is µON(πON −

155

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

πON,0). Therefore, the rate of abandonment due to impatience in the OFF periods, λa, is given by:

λa = λ− µON(πON − πON,0) = r · E[NOFF]. (6.68)

The rate of jobs sent back to the cellular network λc must be equal to the abandonment rate, i.e.

λc = λa. The probability that an arbitrary job arriving to the WiFi queue will renege, i.e. it will be

offloaded over a cellular queue, is defined as:

pr =
λa
λ

=
λ− µw(πON − πON,0)

λ
. (6.69)

Mean Response Time

By Little’s Law, E[N] = λE[T], the mean response time can be calculated as:

E[T] = E
[
E[Ti]

]
=

∑
i∈{c,w,r}

λi
λ
E[Ti] =

1

λ

∑
i∈{c,w,r}

E[Ni], (6.70)

where E[Nw] is the average number of jobs in the WiFi queue as obtained in (6.67).

The cellular queue refers to offloading jobs from the mobile device to the cloud via a cellular

network, which is modelled as an M/M/1-FCFS queue. The average number of jobs is E[Nc] =

ρc/(1− ρc), where ρc = λc/µc is the probability that the cellular queue is busy.

Since all the jobs are offloaded to the remote cloud server, for an M/M/∞ queue, the average

number of jobs in the cloud server is E[Nr] = λ/µr.

Mean Energy Consumption

The mean energy consumption can be calculated as:

E[E] = E
[
E[Ei|i]

]
=

∑
i∈{w,c}

1

λ
E[Pi] =

1

λ

∑
i∈{w,c}

pi · Pr{Ni > 0} =
1

λ

∑
i∈{w,c}

pi · ρi, (6.71)

where ρw = πON − πON,0 is the fraction of time that WiFi is available to process jobs, and as the

recovery rate η →∞, the availability ratio of WiFi πON = η
ξ+η tends to be 1.

Further, by substituting (6.70) and (6.71) into (2.4), we can formulate the optimization of the

ERWP metric for the offloading assignment as:

r∗ = arg min
r

ERWP , (6.72)

156

6.3. DELAYED OFFLOADING MODEL

we seek to find the reneging rate r∗ such that ERWP is minimized.

6.3.3 Analytical Evaluation

Using measurements from real traces in [64], the average data rates of the cellular and WiFi networks

are set as sc = 200 Kbps and sw = 2 Mbps, respectively. The average duration of WiFi availability

period is 52 min (ξ = 1/52 min−1), while the average duration with only cellular network coverage

is 25.4 min (η = 1/25.4 min−1). The availability ratio is thus 67%. The mean job size is assumed

to be 10 MB. According to the power models developed in [10], we set the power coefficients

pc = 2.5 W, pw = 0.7 W and pm = 2 W, respectively. Besides, suppose that the total job arrival

rate is λ = 0.5 packet/min, the mobile service rate µm = 0.2 and the cloud service rate µr = 1.

We first analyze the respective probabilities of reneging for the two delayed offloading models.

An availability ratio AR = 11% has been reported in [9]. As shown in Fig. 6.21, as AR of the

WiFi network increases, the percentage of jobs abandon the offload queue (for the partial offloading

model, seen as in Fig. 6.21(a)) or the WiFi queue (for the full offloading model, refer to Fig. 6.21(b))

drops. However, the full offloading model has the higher reneging probability than the partial off-

loading model under the same deadline. That is because the partial offloading model can use the

cellular network to transmit data, and thus the number of jobs waiting in the offload queue is reduced.

On the other hand, as the reneging deadline increases from 60 min to 120 min, the jobs have a higher

chance to be offloaded via the WiFi network, and therefore the reneging probability decreases at the

lower level of arrival rates. However, for high arrival rates, the reneging probability stays the same

under different deadlines.

The mean response time includes the queueing and service time. From Fig. 6.22(a), it can be

seen that the partial offloading model has the lowest average response time, since it takes full use

of the slow phase of the cellular network when the WiFi is in the unavailable period. For the lower

deadlines (Td < 40 min), the mean response time decreases as the deadline rises, since jobs with

higher deadlines a higher chance to transmit with the fast WiFi network, leading to smaller response

time. However, the mean response time increases for longer deadlines, since jobs with lower dead-

lines leave the queue earlier, leading to lower queueing delays. In Fig. 6.22(b) when the reneging

deadline is small, the non-delayed offloading model achieves the lowest mean energy consumption,

but as the deadline increases, the full offloading model is much better. This is due to the fact that the

WiFi network is much more energy efficient than a cellular network like 3G.

We then fix the reneging deadline to 120 min under different arrival rates. In Fig. 6.23(a) the

mean response time increases when increasing the arrival rate due to queueing effects. The partial

offloading model performs much better than the other two models since it fully uses the unavailable

157

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

The arrival rate 6 [jobs/min]
0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y

of
 R

en
eg

in
g

P
r %

0

10

20

30

40

50

60

70

80

90 AR=11%, Td=1h
AR=11%, Td=2h
AR=30%, Td=1h
AR=30%, Td=2h
AR=50%, Td=1h
AR=50%, Td=2h
AR=67%, Td=1h
AR=67%, Td=2h
AR=89%, Td=1h
AR=89%, Td=2h

(a) Partial offloading model

The arrival rate 6 [jobs/min]
0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y

of
 R

en
eg

in
g

P
r %

0

10

20

30

40

50

60

70

80

90

100 AR=11%, Td=1h
AR=11%, Td=2h
AR=30%, Td=1h
AR=30%, Td=2h
AR=50%, Td=1h
AR=50%, Td=2h
AR=67%, Td=1h
AR=67%, Td=2h
AR=89%, Td=1h
AR=89%, Td=2h

(b) Full offloading model

Figure 6.21: The reneging probabilities for the delayed offloading models

The deadline [min]
0 50 100 150 200 250 300

M
ea

n
R

es
po

ns
e

T
im

e
[m

in
]

5

10

15

20

25

30

35

40
Partial Offloading
Full Offloading
Non-Delayed Offloading

(a) Mean Response Time

The deadline [min]
0 50 100 150 200 250 300

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n

[J
]

1

1.5

2

2.5

3

3.5

4

4.5

5
Partial Offloading
Full Offloading
Non-Delayed Offloading

(b) Mean Energy Consumption

Figure 6.22: Comparison for the offloading models under different deadlines

periods of WiFi by offloading jobs with a cellular network, which in turn brings tremendous energy

consumption as shown in Fig. 6.23(b).

We then use the ERWP metric to compare three offloading models. In Fig. 6.24(a) when ω is

small, the partial offloading model can achieve the smallest ERWP value by optimizing the reneging

rate r, which indicates that when considering response time more important (for delay-sensitive

applications), it is better to use the partial offloading model. Otherwise, when considering energy

consumption more important than response time (for delay-tolerant applications), the full offloading

158

6.3. DELAYED OFFLOADING MODEL

The arrival rate 6 [jobs/min]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
R

es
po

ns
e

T
im

e
[m

in
]

0

10

20

30

40

50

60

70

80

Partial Offloading

Full Offloading

Non-Delayed Offloading

(a) Mean Response Time

The arrival rate 6 [jobs/min]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
E

ne
rg

y
C

on
su

m
pt

io
n

[J
]

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Partial Offloading
Full Offloading
Non-Delayed Offloading

(b) Mean Energy Consumption

Figure 6.23: Comparison for the offloading models under different arrival rates

The reneging rate r
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

E
R

W
P

2

4

6

8

10

12

14

16

18

20
!=0.1 (Partial)
!=0.1 (Full)
!=0.1 (Non-Delayed)
!=0.5 (Partial)
!=0.5 (Full)
!=0.5 (Non-Delayed)
!=0.9 (Partial)
!=0.9 (Full)
!=0.9 (Non-Delayed)

(a) Reneging rate

The arrival rate 6 [jobs/min]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
R

W
P

2

4

6

8

10

12

14

16

18

20
!=0.1 (Partial)
!=0.1 (Full)
!=0.1 (Non-Delayed)
!=0.5 (Partial)
!=0.5 (Full)
!=0.5 (Non-Delayed)
!=0.9 (Partial)
!=0.9 (Full)
!=0.9 (Non-Delayed)

(b) Arrival rate

Figure 6.24: Comparison of ERWP for the offloading models under different reneging and arrival
rates

model is much better, which translates the reduced transmission time from the fast WiFi network

into battery power saving for the mobile device. In Fig. 6.24(b) when ω is small, as the arrival

rate of the offloadable jobs λ increases, all the three offloading models perform worse. However,

the non-delayed offloading model is more sensitive to the job arrival rates. The partial offloading

model can always achieve the smallest ERWP value, which means that when considering response

time more important, it is better to use the partial offloading model. Otherwise, when considering

159

CHAPTER 6. OFFLOADING DECISION MAKING: WHEN TO OFFLOAD

energy consumption more important than response time, the full offloading model is much better for

smaller λ. While at higher job arrival rate, the non-delayed offloading model is preferred.

6.4 Summary

We have presented a fundamental approach for designing an online algorithm for the energy-delay

tradeoff in “delayed" offloading through the Lyapunov optimization framework. Three types of

transmission schedulers were proposed and compared for making offloading decisions, which con-

sider several factors: data backlog, channel quality and energy consumption of the wireless interface.

They will decide to transmit data when the connectivity is good enough or when the queues in the

mobile device are congested. A significant amount of energy can be saved without sacrificing on the

transmission delay too much.

The jobs will abandon the queue very often especially when the availability ratio of the WiFi

network is very small. We can optimally choose the reneging deadline to achieve a different energy-

performance tradeoff by optimizing the ERWP metric. In general one can say that for delay-sensitive

applications, the partial offloading model is preferred when setting an intermediate deadline; while

for delay-tolerant applications, the full model shows very good results and outperforms the other

offloading models when setting a large deadline.

160

Chapter 7

Concluding Remarks

7.1 Conclusions

In this thesis, the main goal has been to make offloading decisions based on time and energy saving,

which can be divided into four sub-targets, namely, what, where, how and when to offload. We

discuss contributions in those four aspects as follows:

• What to Offload: through a proposed partitioning algorithm designed for arbitrary topology

of applications, we are able to determine which portions of the application to run on a mobile

device and what to execute on a cloud server according to different cost models. The algorithm

provides a stable low time complexity method and can significantly reduce execution time and

energy consumption by optimally distributing tasks between the mobile device and the cloud.

At the same time, it can well adapted to dynamic changes of context.

• Where to Offload: through static (combing AHP and fuzzy TOPSIS methods) and dynamic

(Lyapunov- and LARAC-based methods) offloading decisions, we are able to choose the most

appropriate offloading target (e.g. local, cloudlet and cloud) to which the code has to be

off-loaded. The former takes multiple criteria into consideration, while the latter has low

complexity and can significantly reduce the energy consumed while satisfying the response

time constraint imposed by the mobile application.

• How to Offload: through queueing analysis for offloading operations with multiple network

interfaces in heterogeneous wireless environments, we are able to capture the tradeoff be-

tween the energy consumption and the response time and to determine how to leverage the

complementary strength of WiFi and cellular networks by choosing heterogeneous wireless

interfaces for offloading.

• When to Offload: through dynamic transmission scheduling and link selection based on Lya-

161

CHAPTER 7. CONCLUDING REMARKS

punov optimization for data offloading between the mobile device and the cloud, we are able

to extend the device’s battery life for transferring large volumes of data. If a delay-tolerant

job is deferred up to a given deadline, or until a fast and energy-efficient network becomes

available, the transmission time will be reduced, which could lead to saving energy. However,

if the reduced service time can not cover the extra waiting time, this policy may not be suitable

for delay-sensitive applications.

We try to figure out how effective and efficient mobile offloading systems are and what factors

influence their performance, by determining the optimal partitioning scheme for splitting a specific

application into local and remote parts (what to offload), the type of surrogate in which to be off-

loaded (where to offload), offloading plans that enable the device to schedule mobile offloading

operations (how to offload) and the right time to offload (when to offload) under different conditions

of the device, such as available bandwidth, data to transmit, and tasks to execute.

7.2 Suggestions

Several directions have been suggested for future work in the previous chapters. The main ideas of

them are summarized as follows:

• Parameters for decision making such as bandwidth, security, response time and failure rate

are sometimes hard to measure or acquire in a timely manner in practical systems. Therefore,

the way how to estimate and measure these parameters need to be further investigated.

• Assumptions that the data rate and power consumption keep constant in all the regions within

network coverage is somehow unrealistic. Therefore, it is worth considering scenarios where

they might be different at each connected access point.

• Derivation based on Poisson processes and exponentially distributed of the job sizes should

be extended to other arrival processes with arbitrary distributions of the job sizes.

• Validation based on real workloads and more realistic application examples will be provided in

the future to gain insights about efficiency of the proposed algorithms for offloading decision

making.

• Integrating the proposed offloading decision algorithms in an actual software deployment

framework to automatically distribute software components on a cloud infrastructure.

162

Bibliography

[1] E. H. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Princeton Univer-

sity Press, 2003.

[2] E. Abebe and C. Ryan. Adaptive application offloading using distributed abstract class graphs

in mobile environments. Journal of Systems and Software, 85(12):2755–2769, 2012.

[3] O. Alexandru-Corneliu. Extending the capabilities of mobile devices through cloud offload-

ing. PhD thesis, University Politehnica of Bucharest, Romania, 2013.

[4] K. Ali and O. Lhoták. Application-only call graph construction. In ECOOP 2012–Object-

Oriented Programming, pages 688–712. Springer, 2012.

[5] Amazon. EC2. http://aws.amazon.com/ec2/.

[6] M. Amoretti, A. Grazioli, F. Zanichelli, V. Senni, and F. Tiezzi. Towards a formal approach

to mobile cloud computing. In Parallel, Distributed and Network-Based Processing (PDP),

2014 22nd Euromicro International Conference on, pages 743–750. IEEE, 2014.

[7] L. L. Andrew, M. Lin, and A. Wierman. Optimality, fairness, and robustness in speed scaling

designs. ACM SIGMETRICS Performance Evaluation Review, 38(1):37–48, 2010.

[8] Apple. iCloud. http://www.apple.com/icloud/.

[9] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting mobile 3G using

WiFi. In Proceedings of the 8th international conference on Mobile systems, applications,

and services, pages 209–222. ACM, 2010.

[10] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption in

mobile phones: a measurement study and implications for network applications. In Pro-

ceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, pages

280–293. ACM, 2009.

[11] S. Balsamo, G.-L. dei Rossi, and A. Marin. Queueing networks and conditional product-

forms. In Proceedings of the 7th International Conference on Performance Evaluation

Methodologies and Tools, pages 204–213. ICST, 2013.

163

http://aws.amazon.com/ec2/
http://www.apple.com/icloud/

BIBLIOGRAPHY

[12] R. Beraldi, K. Massri, M. Abderrahmen, and H. Alnuweiri. Towards automating mobile

cloud computing offloading decisions: An experimental approach. In ICSNC 2013: The

Eighth International Conference on Systems and Networks Communications, 2013.

[13] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data networks, volume 2. Prentice-hall

Englewood Cliffs, NJ, 1987.

[14] W. Binder and J. Hulaas. Using bytecode instruction counting as portable CPU consumption

metric. Electronic Notes in Theoretical Computer Science, 153(2):57–77, 2006.

[15] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222–1239, 2001.

[16] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi, F. L. Presti, and V. Pic-

cialli. A game-theoretic approach to computation offloading in mobile cloud computing.

Mathematical Programming, pages 1–29, 2013.

[17] X. Chen. Decentralized computation offloading game for mobile cloud computing. Parallel

and Distributed Systems, IEEE Transactions on, 26(4):974–983, 2015.

[18] X. Chen and M. R. Lyu. Performance and effectiveness analysis of checkpointing in mo-

bile environments. In Reliable Distributed Systems, 2003. Proceedings. 22nd International

Symposium on, pages 131–140. IEEE, 2003.

[19] M. H. Cheung and J. Huang. Dawn: Delay-aware Wi-Fi offloading and network selection.

IEEE Journal on Selected Areas in Communications, 33(6):1214–1223, 2015.

[20] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution between

mobile device and cloud. In Proceedings of the sixth conference on Computer systems, pages

301–314. ACM, 2011.

[21] B.-G. Chun and P. Maniatis. Dynamically partitioning applications between weak devices and

clouds. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services:

Social Networks and Beyond. ACM, 2010.

[22] C. S. M. I. Consortium. Service measurement index version 1.0, 2011.

[23] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.

Maui: making smartphones last longer with code offload. In Proceedings of the 8th interna-

tional conference on Mobile systems, applications, and services, pages 49–62. ACM, 2010.

[24] M. Dağdeviren, S. Yavuz, and N. Kılınç. Weapon selection using the AHP and TOPSIS meth-

ods under fuzzy environment. Expert Systems with Applications, 36(4):8143–8151, 2009.

[25] S. Deng, L. Huang, J. Taheri, and A. Zomaya. Computation offloading for service workflow in

mobile cloud computing. Parallel and Distributed Systems, IEEE Transactions on, PP(99):1–

1, 2014.

164

BIBLIOGRAPHY

[26] P. Di Lorenzo, S. Barbarossa, and S. Sardellitti. Joint optimization of radio resources and

code partitioning in mobile cloud computing. arXiv preprint arXiv:1307.3835, 2013.

[27] J.-F. Ding and G.-S. Liang. Using fuzzy MCDM to select partners of strategic alliances for

liner shipping. Information Sciences, 173(1):197–225, 2005.

[28] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing: ar-

chitecture, applications, and approaches. Wireless communications and mobile computing,

13(18):1587–1611, 2013.

[29] Y. Fang. Modeling and performance analysis for wireless mobile networks: a new analytical

approach. Networking, IEEE/ACM Transactions on, 13(5):989–1002, 2005.

[30] K. Fekete, K. Csorba, B. Forstner, T. Vajk, M. Feher, and I. Albert. Analyzing computa-

tion offloading energy-efficiency measurements. In Communications Workshops (ICC), 2013

IEEE International Conference on, pages 301–305. IEEE, 2013.

[31] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya. Mobile code offloading: from

concept to practice and beyond. Communications Magazine, IEEE, 53(3):80–88, 2015.

[32] H. Flores and S. N. Srirama. Mobile cloud middleware. Journal of Systems and Software,

92:82–94, 2014.

[33] H. Flores, S. N. Srirama, and C. Paniagua. Towards mobile cloud applications: Offloading

resource-intensive tasks to hybrid clouds. International Journal of Pervasive Computing and

Communications, 8(4):344–367, 2012.

[34] J.-M. Fourneau, B. Plateau, and W. Stewart. Product form for stochastic automata networks.

In Proceedings of the 2nd international conference on Performance evaluation methodologies

and tools. ICST, 2007.

[35] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and

I. Stoica. Above the clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and

Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, 28:13–, 2009.

[36] O. Galinina, A. Trushanin, V. Shumilov, R. Maslennikov, Z. Saffer, S. Andreev, and Y. Kouch-

eryavy. Energy-efficient operation of a mobile user in a multi-tier cellular network. In Analyt-

ical and Stochastic Modeling Techniques and Applications, pages 198–213. Springer, 2013.

[37] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality analysis of energy-

performance trade-off for server farm management. Performance Evaluation, 67(11):1155–

1171, 2010.

[38] A. Gember, C. Dragga, and A. Akella. Ecos: leveraging software-defined networks to sup-

port mobile application offloading. In Proceedings of the eighth ACM/IEEE symposium on

Architectures for networking and communications systems, pages 199–210. ACM, 2012.

165

BIBLIOGRAPHY

[39] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and cross-layer control in

wireless networks. Now Publishers Inc, 2006.

[40] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling the cloud: enabling mobile

phones as interfaces to cloud applications. In Middleware 2009, pages 83–102. Springer,

2009.

[41] Google. Google app engine. https://appengine.google.com/.

[42] M. Gribaudo, D. Manini, and C. Chiasserini. Studying mobile internet technologies with

agent based mean-field models. In Analytical and Stochastic Modeling Techniques and Ap-

plications, pages 112–126. Springer, 2013.

[43] M. Griera Jorba. Improving the reliability of an offloading engine for android mobile devices

and testing its performance with interactive applications. Master’s thesis, Freie Universität

Berlin, 2013.

[44] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive offloading for

pervasive computing. Pervasive Computing, IEEE, 3(3):66–73, 2004.

[45] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel

computing, 26(12):1519–1534, 2000.

[46] K. Henricksen, J. Indulska, and A. Rakotonirainy. Infrastructure for pervasive computing:

Challenges. In GI Jahrestagung (1), pages 214–222, 2001.

[47] J.-A. Hong, S. Seo, N. Kim, and B.-D. Lee. A study of secure data transmissions in mobile

cloud computing from the energy consumption side. In Information Networking (ICOIN),

2013 International Conference on, pages 250–255. IEEE, 2013.

[48] D. Huang, P. Wang, and D. Niyato. A dynamic offloading algorithm for mobile computing.

Wireless Communications, IEEE Transactions on, 11(6):1991–1995, 2012.

[49] E. Hyytiä, S. Aalto, A. Penttinen, and J. Virtamo. On the value function of the M/G/1 FCFS

and LCFS queues. Journal of Applied Probability Evaluation, 49(4):1052–1071, 2012.

[50] E. Hyytiä, T. Spyropoulos, and J. Ott. Offload (only) the right jobs: Robust offloading us-

ing the Markov decision processes. In World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2015 IEEE 16th International Symposium on a, pages 1–9. IEEE, 2015.

[51] E. Hyytiä, J. Virtamo, S. Aalto, and A. Penttinen. M/M/1-PS queue and size-aware task

assignment. Performance Evaluation, 68(11):1136–1148, 2011.

[52] M. Jia, J. Cao, and L. Yang. Heuristic offloading of concurrent tasks for computation-

intensive applications in mobile cloud computing. In Computer Communications Workshops

(INFOCOM WKSHPS), 2014 IEEE Conference on, pages 352–357. IEEE, 2014.

[53] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó. Lagrange relaxation based method for the

166

https://appengine.google.com/

BIBLIOGRAPHY

QoS routing problem. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, volume 2, pages 859–868.

IEEE, 2001.

[54] B. Y.-H. Kao and B. Krishnamachari. Optimizing mobile computational offloading with delay

constraints. In Proc. of Global Communication Conference (Globecom 14), pages 8–12, 2014.

[55] Y. Kim, K. Lee, and N. B. Shroff. An analytical framework to characterize the efficiency

and delay in a mobile data offloading system. In Proceedings of the 15th ACM international

symposium on Mobile ad hoc networking and computing, pages 267–276. ACM, 2014.

[56] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten. Access schemes for mobile cloud

computing. In Mobile Data Management (MDM), 2010 Eleventh International Conference

on, pages 387–392. IEEE, 2010.

[57] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Unleashing the power of mobile

cloud computing using thinkair. arXiv preprint arXiv:1105.3232, 2011.

[58] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic resource allo-

cation and parallel execution in the cloud for mobile code offloading. In INFOCOM, 2012

Proceedings IEEE, pages 945–953. IEEE, 2012.

[59] D. Kovachev and R. Klamma. Framework for computation offloading in mobile cloud com-

puting. International Journal of Interactive Multimedia & Artificial Intelligence, 1(7):6–15,

2012.

[60] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava. A survey of computation offloading for mobile

systems. Mobile Networks and Applications, 18(1):129–140, 2013.

[61] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can offloading computation save

energy? Computer, 43(4):51–56, 2010.

[62] K. Kumar, Y. Nimmagadda, and Y.-H. Lu. Ranking servers based on energy savings for

computation offloading. In Proceedings of the 14th ACM/IEEE international symposium on

Low power electronics and design, pages 267–272. ACM, 2009.

[63] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant distributed mobile execution.

In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International Conference on,

pages 586–595. IEEE, 2012.

[64] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data offloading: How much can WiFi

deliver? Networking, IEEE/ACM Transactions on, 21(2):536–550, 2013.

[65] K. Lee and I. Shin. User mobility-aware decision making for mobile computation offloading.

In Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013 IEEE 1st Interna-

tional Conference on, pages 116–119. IEEE, 2013.

167

BIBLIOGRAPHY

[66] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng. Challenges on wireless heterogeneous

networks for mobile cloud computing. Wireless Communications, IEEE, 20(3):34–44, 2013.

[67] O. Lhoták and L. Hendren. Scaling java points-to analysis using spark. In Compiler Con-

struction, pages 153–169. Springer, 2003.

[68] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices: a

partition scheme. In Proceedings of the 2001 international conference on Compilers, archi-

tecture, and synthesis for embedded systems, pages 238–246. ACM, 2001.

[69] X. Lin, Y. Wang, Q. Xie, and M. Pedram. Energy and performance-aware task scheduling

in a mobile cloud computing environment. In Cloud Computing (CLOUD), 2014 IEEE 7th

International Conference on, pages 192–199. IEEE, 2014.

[70] Y.-D. Lin, E.-H. Chu, Y.-C. Lai, and T.-J. Huang. Time-and-energy-aware computation off-

loading in handheld devices to coprocessors and clouds. Systems Journal, IEEE, 9(2):393–

405, 2013.

[71] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li. Gearing resource-poor mobile devices

with powerful clouds: Architectures, challenges, and applications. Wireless Communications,

IEEE, 20(3):14–22, 2013.

[72] F. Liu, P. Shu, and J. C. Lui. Appatp: An energy conserving adaptive mobile-cloud transmis-

sion protocol. IEEE Transactions on Computers, 64(11):3051–3063, 2015.

[73] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi. Application partitioning

algorithms in mobile cloud computing: Taxonomy, review and future directions. Journal of

Network and Computer Applications, 48:99–117, 2015.

[74] Y. Liu and M. J. Lee. An effective dynamic programming offloading algorithm in mobile

cloud computing system. In Wireless Communications and Networking Conference (WCNC),

2014 IEEE, pages 1868–1873. IEEE, 2014.

[75] X. Lu. Energy-aware performance analysis of queueing systems. Master’s thesis, Aalto

university, 2013.

[76] J. Martínez Ripoll. Improving the performance and usability of an offloading engine for

android mobile devices with application to a chess game. Master’s thesis, Technische Uni-

versität Berlin, 2013.

[77] F. Mehmeti and T. Spyropoulos. Performance analysis of “on-the-spot” mobile data offload-

ing. In Global Communications Conference (GLOBECOM), 2013 IEEE, pages 1577–1583.

IEEE, 2013.

[78] F. Mehmeti and T. Spyropoulos. Is it worth to be patient? Analysis and optimization of

delayed mobile data offloading. In INFOCOM, 2014 Proceedings IEEE, pages 2364–2372.

168

BIBLIOGRAPHY

IEEE, 2014.

[79] F. Mehmeti and T. Spyropoulos. Performance analysis of mobile data offloading in heteroge-

neous networks. 2014.

[80] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. J. Giuli, and X. Gu. Towards

a distributed platform for resource-constrained devices. In Proceedings of the 22 nd Inter-

national Conference on Distributed Computing Systems (ICDCS’02), pages 43–51. IEEE,

2002.

[81] Microsoft. Microsoft windows azure. https://windows.azure.com/.

[82] A. P. Miettinen and J. K. Nurminen. Energy efficiency of mobile clients in cloud computing.

In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, pages 4–4.

USENIX Association, 2010.

[83] M. J. Neely. Stochastic network optimization with application to communication and queue-

ing systems. Synthesis Lectures on Communication Networks, 3(1):1–211, 2010.

[84] M. P. S. Nir. Scalable resource augmentation for mobile devices. PhD thesis, Carleton

University Ottawa, 2014.

[85] J. Niu, W. Song, and M. Atiquzzaman. Bandwidth-adaptive partitioning for distributed exe-

cution optimization of mobile applications. Journal of Network and Computer Applications,

37:334–347, 2014.

[86] R. Niu, W. Song, and Y. Liu. An energy-efficient multisite offloading algorithm for mobile

devices. International Journal of Distributed Sensor Networks, 2013.

[87] M. Nkosi and F. Mekuria. Cloud computing for enhanced mobile health applications. In

Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International

Conference on, pages 629–633. IEEE, 2010.

[88] D. L. Olson. Comparison of weights in topsis models. Mathematical and Computer Mod-

elling, 40(7):721–727, 2004.

[89] A.-C. Olteanu and N. Tapus. Tools for empirical and operational analysis of mobile offloading

in loop-based applications. Informatica Economica, 17(4):5–17, 2013.

[90] S. Ou, Y. Wu, K. Yang, and B. Zhou. Performance analysis of fault-tolerant offloading sys-

tems for pervasive services in mobile wireless environments. In Communications, 2008.

ICC’08. IEEE International Conference on, pages 1856–1860. IEEE, 2008.

[91] S. Ou, K. Yang, and A. Liotta. An adaptive multi-constraint partitioning algorithm for offload-

ing in pervasive systems. In Proceedings of the Fourth Annual IEEE International Confer-

ence on Pervasive Computing and Communications, pages 116–125. IEEE Computer Society,

2006.

169

https://windows.azure.com/

BIBLIOGRAPHY

[92] S. Ou, K. Yang, A. Liotta, and L. Hu. Performance analysis of offloading systems in mobile

wireless environments. In Communications, 2007. ICC’07. IEEE International Conference

on, pages 1821–1826. IEEE, 2007.

[93] V. Pandey, S. Singh, and S. Tapaswi. Energy and time efficient algorithm for cloud offloading

using dynamic profiling. Wireless Personal Communications, pages 1–15, 2014.

[94] A. Papoulis and S. U. Pillai. Probability, random variables, and stochastic processes. Tata

McGraw-Hill Education, 2002.

[95] A. Penttinen, E. Hyytiä, and S. Aalto. Energy-aware dispatching in parallel queues with

on-off energy consumption. In Performance Computing and Communications Conference

(IPCCC), 2011 IEEE 30th International, pages 1–8. IEEE, 2011.

[96] N. Perel and U. Yechiali. Queues with slow servers and impatient customers. European

Journal of Operational Research, 201(1):247–258, 2010.

[97] H. Qian and D. Andresen. Jade: An efficient energy-aware computation offloading system

with heterogeneous network interface bonding for ad-hoc networked mobile devices. In Soft-

ware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD), 2014 15th IEEE/ACIS International Conference on, pages 1–8. IEEE, 2014.

[98] H. Qian and D. Andresen. Emerald: Enhance scientific workflow performance with compu-

tation offloading to the cloud. In Computer and Information Science (ICIS), 2015 IEEE/ACIS

14th International Conference on, pages 443–448. IEEE, 2015.

[99] H. Qian and D. Andresen. An energy-saving task scheduler for mobile devices. In Computer

and Information Science (ICIS), 2015 IEEE/ACIS 14th International Conference on, pages

423–430. IEEE, 2015.

[100] H. Qian and D. Andresen. Extending mobile device’s battery life by offloading computation

to cloud. In Proceedings of the Second ACM International Conference on Mobile Software

Engineering and Systems, pages 150–151. IEEE Press, 2015.

[101] H. Qian and D. Andresen. Jade: Reducing energy consumption of android app. the Interna-

tional Journal of Networked and Distributed Computing (IJNDC), Atlantis press, 3(3):150–

158, 2015.

[102] H. Qian and D. Andresen. Reducing mobile device energy consumption with computation

offloading. In Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-

tributed Computing (SNPD), 2015 16th IEEE/ACIS International Conference on, pages 1–8.

IEEE, 2015.

[103] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J. Neely. Energy-delay

tradeoffs in smartphone applications. In Proceedings of the 8th international conference on

170

BIBLIOGRAPHY

Mobile systems, applications, and services, pages 255–270. ACM, 2010.

[104] A. Rahmati and L. Zhong. Context-for-wireless: context-sensitive energy-efficient wireless

data transfer. In Proceedings of the 5th international conference on Mobile systems, applica-

tions and services, pages 165–178. ACM, 2007.

[105] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in

mobile computing. Pervasive Computing, IEEE, 8(4):14–23, 2009.

[106] T. Shi. An energy-efficient, time-constrained scheduling scheme in local mobile cloud. Mas-

ter’s thesis, University of Nevada, Las Vegas, 2014.

[107] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li. eTime: energy-efficient transmission

between cloud and mobile devices. In INFOCOM, 2013 Proceedings IEEE, pages 195–199.

IEEE, 2013.

[108] K. Sinha and M. Kulkarni. Techniques for fine-grained, multi-site computation offloading.

In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, pages 184–194. IEEE Computer Society, 2011.

[109] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM (JACM),

44(4):585–591, 1997.

[110] V. X. Tran, H. Tsuji, and R. Masuda. A new QoS ontology and its QoS-based ranking algo-

rithm for web services. Simulation Modelling Practice and Theory, 17(8):1378–1398, 2009.

[111] I. Tsimashenka and W. J. Knottenbelt. Trading off subtask dispersion and response time in

split-merge systems. In Analytical and Stochastic Modeling Techniques and Applications,

pages 431–442. Springer, 2013.

[112] T. Verbelen, T. Stevens, F. De Turck, and B. Dhoedt. Graph partitioning algorithms for

optimizing software deployment in mobile cloud computing. Future Generation Computer

Systems, 29(2):451–459, 2013.

[113] C. Wang and Z. Li. Parametric analysis for adaptive computation offloading. ACM SIGPLAN

Notices, 39(6):119–130, 2004.

[114] X. Wang, J. Wang, X. Wang, and X. Chen. Energy and delay tradeoff for application offload-

ing in mobile cloud computing. IEEE Systems Journal, PP:1–10, 2015.

[115] M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz, M. N. Haque, and I. T. Haque. Cloud

service selection using multicriteria decision analysis. The Scientific World Journal, 2014.

[116] A. Wierman, L. L. Andrew, and A. Tang. Power-aware speed scaling in processor sharing

systems. In INFOCOM 2009, IEEE, pages 2007–2015. IEEE, 2009.

[117] Wikipedia. Branch and bound. http://en.wikipedia.org/wiki/Branch_and_

bound.

171

http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/Branch_and_bound

BIBLIOGRAPHY

[118] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi. Using bandwidth data to make computation of-

floading decisions. In Parallel and Distributed Processing (IPDPS), 2008 IEEE International

Symposium on, pages 1–8. IEEE, 2008.

[119] H. Wu. Analysis of mhealth systems with multi-cloud computing offloading. In Mobile

Health, pages 589–608. Springer, 2015.

[120] H. Wu and D. Huang. Modeling multi-factor multi-site risk-based offloading for mobile

cloud computing. In Network and Service Management (CNSM), 2014 10th International

Conference on, pages 230–235. IEEE, 2014.

[121] H. Wu, W. Knottenbelt, and K. Wolter. Analysis of the energy-response time tradeoff for

mobile cloud offloading using combined metrics. In Teletraffic Congress (ITC 27), 2015 27th

International, pages 134–142. IEEE, 2015.

[122] H. Wu, X. Lin, X. Liu, and Y. Zhang. Application-level scheduling with deadline constraints.

In INFOCOM, 2014 Proceedings IEEE, pages 2436–2444. IEEE, 2014.

[123] H. Wu, X. Lin, X. Liu, and Y. Zhang. Application-level scheduling with probabilistic deadline

constraints. Networking, IEEE/ACM Transactions on, 24(6), 2015.

[124] H. Wu, D. Seidenstücker, Y. Sun, C. M. Nieto, W. Knottenbelt, and K. Wolter. A novel

offloading partitioning algorithm in mobile cloud computing. 2015.

[125] H. Wu, Y. Sun, and K. Wolter. Analysis of the energy-response time tradeoff for delayed

mobile cloud offloading. ACM SIGMETRICS Performance Evaluation Review, 43(2):33–35,

Sept. 2015.

[126] H. Wu, Y. Sun, and K. Wolter. Energy-efficient decision making for mobile cloud offloading.

2015.

[127] H. Wu, Q. Wang, and K. Wolter. Methods of cloud-path selection for offloading in mobile

cloud computing systems. In Cloud Computing Technology and Science (CloudCom), 2012

IEEE 4th International Conference on, pages 443–448, 2012.

[128] H. Wu, Q. Wang, and K. Wolter. Mobile healthcare systems with multi-cloud offloading. In

Mobile Data Management (MDM), 2013 IEEE 14th International Conference on, volume 2,

pages 188–193. IEEE, 2013.

[129] H. Wu, Q. Wang, and K. Wolter. Optimal cloud-path selection in mobile cloud offloading sys-

tems based on QoS criteria. International Journal of Grid and High Performance Computing

(IJGHPC), 5(4):30–47, 2013.

[130] H. Wu, Q. Wang, and K. Wolter. Tradeoff between performance improvement and energy

saving in mobile cloud offloading systems. In Communications Workshops (ICC), 2013 IEEE

International Conference on, pages 728–732. IEEE, 2013.

172

BIBLIOGRAPHY

[131] H. Wu and K. Wolter. Dynamic transmission scheduling and link selection in mobile cloud

computing. In Analytical and Stochastic Modeling Techniques and Applications, pages 61–

79. Springer, 2014.

[132] H. Wu and K. Wolter. Tradeoff analysis for mobile cloud offloading based on an additive

energy-performance metric. In Performance Evaluation Methodologies and Tools (VALUE-

TOOLS), 2014 8th International Conference on, pages 90–97. ICST, 2014.

[133] H. Wu and K. Wolter. Analysis of the energy-performance tradeoff for delayed mobile off-

loading. In Performance Evaluation Methodologies and Tools (VALUETOOLS), 2015 9th

International Conference on. ICST, 2015.

[134] H. Wu and K. Wolter. Software aging in mobile devices: Partial computation offloading as a

solution. In Software Reliability Engineering Workshops (ISSREW), 2015 IEEE International

Symposium on. IEEE, 2015.

[135] H. Wu, K. Wolter, and A. Grazioli. Cloudlet-based mobile offloading systems: a performance

analysis. In IFIP WG 7.3 Performance 2013 31 st International Symposium on Computer Per-

formance, Modeling, Measurements and Evaluation 2013 Student Poster Abstracts September

24-26, Vienna, Austria, 2013.

[136] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J. Ma. Phone2Cloud: Exploiting computation

offloading for energy saving on smartphones in mobile cloud computing. Information Systems

Frontiers, 16(1):95–111, 2014.

[137] K. Yang, S. Ou, and H.-H. Chen. On effective offloading services for resource-constrained

mobile devices running heavier mobile internet applications. Communications Magazine,

IEEE, 46(1):56–63, 2008.

[138] L. Yang and J. Cao. Computation partitioning in mobile cloud computing: A survey. ZTE

Communications, 4:08–17, 2013.

[139] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan. A framework for partitioning and

execution of data stream applications in mobile cloud computing. ACM SIGMETRICS Per-

formance Evaluation Review, 40(4):23–32, 2013.

[140] U. Yechiali. A queuing-type birth-and-death process defined on a continuous-time Markov

chain. Operations Research, 21(2):604–609, 1973.

[141] U. Yechiali. Queues with system disasters and impatient customers when system is down.

Queueing Systems, 56(3-4):195–202, 2007.

[142] U. Yechiali and P. Naor. Queuing problems with heterogeneous arrivals and service. Opera-

tions Research, 19(3):722–734, 1971.

[143] W. Zhang, Y. Wen, and D. O. Wu. Energy-efficient scheduling policy for collaborative exe-

173

BIBLIOGRAPHY

cution in mobile cloud computing. In INFOCOM, 2013 Proceedings IEEE, pages 190–194.

IEEE, 2013.

[144] Y. Zhang, H. Liu, L. Jiao, and X. Fu. To offload or not to offload: an efficient code partition

algorithm for mobile cloud computing. In Cloud Networking (CLOUDNET), 2012 IEEE 1st

International Conference on, pages 80–86. IEEE, 2012.

174

List of Figures

1.1 Structure of this dissertation . 3

2.1 A generic mobile cloud offloading system . 8

2.2 Comparison of WiFi and cellular networks . 10

2.3 System architecture of the offloading service . 11

2.4 The downlink and uplink bandwidths of WiFi in indoor environments 14

2.5 The downlink and uplink bandwidths of WiFi in mobile environments 14

2.6 The downlink and uplink bandwidths of cellular networks in mobile environments . 15

2.7 The energy consumption and transmission time when using the Xiaomi Redmi 2 . . 16

3.1 Flowchart of an application partitioning process 27

3.2 Task-flow graphs in different topologies . 29

3.3 Construction of consumption graph and weighted consumption graph. 31

3.4 An example of merging two nodes . 36

3.5 Illustration for the proof of Lemma 1 . 38

3.6 The 1st phase of MinCutPhase function. The induced ordering a, c, b, e, s, t of the

vertices, where s = d and t = f. The 1st cut-of-the-phase corresponds to the partitions

{a, c, b, e, d} and {f} with the cut value: Ccut(A−f,f) = 45− (15− 5) + 5 = 40. . . 40

3.7 The 2nd phase of MinCutPhase function. The induced ordering of the vertices is a,

c, b, s, t, where s = e and t = {df}. The 2nd cut-of-the-phase corresponds to the

partitions {a, c, b, e} and {d, f} with the cut value: Ccut(A−{d, f}, {d, f}) = 45− (27−
9) + (1 + 3 + 4) = 35. 41

175

LIST OF FIGURES

3.8 The 3rd phase of MinCutPhase function. The induced ordering of the vertices is

a, c, s, t, where s = b and t = {def}. The 3rd cut-of-the-phase corresponds to the

partitions {a, b, c} and {d, e, f} with the cut value: Ccut({a, b, c}, {d, e, f}) = 45− (33−
11) + (1 + 5) = 29. 41

3.9 The 4th phase of MinCutPhase function. The induced ordering of the vertices is a, s,

t, where s = c and t = {bdef}. The 4th cut-of-the-phase corresponds to the partition

{a, c} and {b, d, e, f} with the cut value: Ccut({a, c}, {b, d, e, f}) = 45 − (42 − 14) +

(1 + 4) = 22. 42

3.10 The 5th phase of MinCutPhase function. The induced ordering of the vertices is s,

t, where s = a and t = {bcdef}. The 5th cut-of-the-phase corresponds to the partition

{a} and {b, c, d, e, f} with cut value Ccut({a}, {b, c, d, e, f}) = 45− (45− 15) + 12 = 27. 42

3.11 The optimal cut in phase 4 . 42

3.12 Call graph of a face recognition application . 45

3.13 Optimal partitioning result of the face recognition application 46

3.14 Running time of the MCOP algorithm under different number of tasks 46

3.15 The GUI for demonstration . 47

3.16 An optimal partitioning result of using the MCOP algorithm 47

3.17 Comparisons of different schemes under different wireless bandwidths when the

speedup factor F = 3 . 48

3.18 Comparisons of different schemes under different speedup factors when the band-

width B = 3 MB/s . 48

3.19 Offloading gains under different environment conditions when ω = 0.5 49

4.1 The decision hierarchy of cloud service selection 54

4.2 Steps of cloud service selection for offloading . 55

4.3 Membership functions of linguistic values . 58

4.4 Different mobile cloud offloading services . 62

4.5 Model of mobile offloading systems . 64

4.6 Offloading decision making based on the predicted energy consumption 66

4.7 A mathematical model of adaptive offloading decision making 67

4.8 A partitioning example of where to offload . 70

4.9 The impact of communication data under different offloading decision criteria . . . 77

4.10 The impact of V on average energy consumption, response time and violation rate . 78

176

LIST OF FIGURES

4.11 The impact of communication data on average energy consumption, response time

and system state, when V = 100 . 78

4.12 The impact of parameter V under different deadlines 79

4.13 Comparison of mean response time and energy consumption under different schemes 81

4.14 State transitions of offloading systems with failures 82

4.15 Response time under different parameters . 87

5.1 A queueing model for mobile cloud offloading systems 90

5.2 The interrupted offloading strategy . 92

5.3 M/M/1 queuing system with an intermittently available server 101

5.4 Simulation of M/M/1 queuing system with an intermittently available server . . . 101

5.5 Comparison of different static offloading policies 102

5.6 The proposed TOP under different total job arrival rates 103

5.7 The proposed TOP under different recovery rates 103

5.8 Dynamic decisions to choose Queue i under different static offloading policies . . . 104

5.9 Comparison of different static and dynamic offloading policies 105

5.10 The WiFi network availability model [79] . 107

5.11 The uninterrupted offloading strategy . 109

5.12 The Markov chain for the uninterrupted offloading strategy 111

5.13 The Markov chain of Queue 2 for the interrupted offloading strategy 115

5.14 Uninterrupted offloading strategy with N heterogeneous networks 116

5.15 The Markov chain for multi-state uninterrupted offloading strategy 117

5.16 Interrupted offloading strategy with N heterogeneous networks 118

5.17 Comparison of two offloading strategies under different weighting parameters . . . 120

5.18 Comparison of two offloading strategies under different offloading probabilities . . 121

5.19 Comparison of two offloading strategies based on different metrics 121

6.1 The ERWP value under different parameters . 125

6.2 Diagram of when to offload . 127

6.3 The offloading decision engine based on different criteria 128

6.4 Behavior of the slow device with different amounts of computation 129

6.5 Behavior of the fast device with different amounts of computation 129

6.6 Framework of delayed offloading . 130

6.7 A mathematical model of adaptive link selection 131

6.8 Model of transmission scheduler I . 138

177

LIST OF FIGURES

6.9 Model of optimal transmission scheduler II . 140

6.10 Model of transmission scheduler II for the combined scheme 141

6.11 Model of transmission scheduler III . 142

6.12 Equivalent model of transmission scheduler III 142

6.13 The impact of V on mean energy consumption, queue backlog and transmit data for

transmission scheduler I . 144

6.14 Comparison of different schemes for transmission scheduler II 144

6.15 The impact of V on mean energy consumption, delay and transmit data 145

6.16 The partial offloading model . 147

6.17 The Markov chain for the partial offloading model 148

6.18 The non-delayed offloading model . 151

6.19 The full offloading model . 153

6.20 The 2D Markov chain for the WiFi queue . 155

6.21 The reneging probabilities for the delayed offloading models 158

6.22 Comparison for the offloading models under different deadlines 158

6.23 Comparison for the offloading models under different arrival rates 159

6.24 Comparison of ERWP for the offloading models under different reneging and arrival

rates . 159

178

List of Tables

2.1 Mobile Device Specifications . 13

2.2 Network Trace Data Acquisition . 13

2.3 Comparison of Current Offloading Works . 21

4.1 Price for Public Cloud Service . 53

4.2 Importance Scale and Its Definition . 56

4.3 Fuzzy Membership Functions . 58

4.4 Pairwise Comparison Matrix for Criteria . 59

4.5 Results Obtained from AHP . 59

4.6 Weighted Evaluation Matrix for the Alternative Clouds 60

4.7 Results of Fuzzy TOPSIS . 60

4.8 Results of Triangular Fuzzy Numbers . 61

4.9 Parameters for Offloading Decisions . 63

6.1 Energy Cost Models for 3G and WiFi Networks 137

179

LIST OF TABLES

180

Glossary

AHP analytic hierarchy process

AP access point

AR availability ratio

CI consistency index

CR consistency ratio

ERP Energy-Response time Product

ERWP Energy-Response time Weighted Product

ERWS Energy-Response time Weighted Sum

FCFS first come first served

FLOPS floating-point operations per second

GFLOPS 109 FLOPS

GUI graphical user interface

IPP interrupted Poisson process

LARAC Lagrangian relaxation based aggregated cost

LOP load-balanced offloading policy

LP linear-programming

MCC mobile cloud computing

MCO mobile cloud offloading

MCOP min-cost offloading partitioning

MDP Markov decision process

MFLOPS 106 FLOPS

181

Glossary

PQWS Power-Queue length Weighted Sum

QoS quality of service

RI random index

ROP random offloading policy

RTT round-trip time

SLA service level agreement

TOP tradeoff offloading policy

TOPSIS technique for order preference by similarity to ideal solution

VM virtual machine

WLAN wireless local area network

182

List of Publications

Wu, H., & Wolter, K. Analysis of the Energy-Performance Tradeoff for Delayed Mobile Offloading.

In Proceedings of the 9th International Conference on Performance Evaluation Methodologies and

Tools (VALUETOOLS ’15). ACM, 2015.

Wu, H. & Wolter, K. Software Aging in Mobile Devices: Partial Computation Offloading as a

Solution. In Software Reliability Engineering Workshops (ISSREW), 2015 IEEE International Sym-

posium on. IEEE, 2015.

Wu, H., Knottenbelt, W. J. & Wolter, K. Analysis of the Energy-Response Time Tradeoff for Mobile

Cloud Offloading using Combined Metrics, In Teletraffic Congress (ITC), 2015 27th International.

IEEE, 2015.

Wu, H., Sun, Y., & Wolter, K. Analysis of the Energy-Response Time Tradeoff for Delayed Mobile

Cloud Offloading. ACM SIGMETRICS Performance Evaluation Review. 43(2),33-35. ACM, 2015.

Sun, Y., Wu, H., & Schiller, J. A Step Length Estimation Model for Position Tracking. In Localiza-

tion and GNSS (ICL-GNSS), 2015 International Conference on. IEEE, 2015.

Sun, Y., Wu, H., & Schiller, J. A Running Step Length Estimation Model for Position Tracking. In

Positioning, Navigation and Communication (WPNC), 2015 12th Workshop on. IEEE, 2015.

Wu, H. & Wolter, K. Tradeoff Analysis for Mobile Cloud Offloading Based on an Additive Energy-

Performance Metric. In Proceedings of the 8th International Conference on Performance Evaluation

Methodologies and Tools (VALUETOOLS ’14). ACM, 2014.

Wu, H., & Wolter, K. Dynamic Transmission Scheduling and Link Selection in Mobile Cloud Com-

puting. In Analytical and Stochastic Modeling Techniques and Applications (pp. 61-79). Springer

International Publishing, 2014.

183

Wu, H., Wang, Q., & Wolter, K. Optimal Cloud-Path Selection in Mobile Cloud Offloading Systems

Based on QoS Criteria. International Journal of Grid and High Performance Computing (IJGHPC),

5(4), 30-47. 2013.

Wu, H., Wang, Q., & Wolter, K. Tradeoff Between Performance Improvement and Energy Saving in

Mobile Cloud Offloading Systems. In Communications Workshops (ICC), 2013 IEEE International

Conference on (pp. 728-732). IEEE, 2013.

Wu, H., Wolter, K., & Grazioli, A. Cloudlet-based Mobile Offloading Systems: a Performance

Analysis. In IFIP WG 7.3 Performance 2013 31st International Symposium on Computer Perfor-

mance, Modeling, Measurements and Evaluation 2013 Student Poster Abstracts September 24-26,

Vienna, Austria. 2013.

Wu, H., Wang, Q., & Wolter, K. Mobile Healthcare Systems with Multi-cloud Offloading. In Mobile

Data Management (MDM), 2013 IEEE 14th International Conference on (pp. 188-193). IEEE,

2013.

Wang, Q., Wu, H., & Wolter, K. Model-based Performance Analysis of Local Re-execution Scheme

in Offloading System. In Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP

International Conference on (pp. 1-6). IEEE, 2013.

Wu, H., Wang, Q., & Wolter, K. Methods of Cloud-Path Selection for Offloading in Mobile Cloud

Computing Systems. In Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on (pp. 443-448). IEEE, 2012.

Wu, H., Seidenstücker, D., Sun, Y., Nieto, C.M., Knottenbelt, W. J., & Wolter, K. A Novel Offload-

ing Partitioning Algorithm in Mobile Cloud Computing. Unpublished, 2015.

Wu, H., Sun, Y., & Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading.

Unpublished, 2015.

About the Author

For reasons of data protection, the curriculum vitae is not included in the online version.

185

	Abstract
	Acknowledgement
	Introduction
	Problem Statement
	Main Challenges and Research Questions
	Contribution of this Dissertation
	Thesis Structure

	Aspects of Mobile Cloud Offloading
	The Context of Mobile Cloud Offloading
	Generic Offloading System
	Classification of Applications
	Heterogeneous Wireless Environments

	Offloading Process
	Profiling
	Metrics
	Partitioning
	Offloading Decision Making

	Related Work
	Time Saving
	Energy Saving
	Time and Energy Combined Saving

	Offloading Decision Making: What to Offload
	Partitioning Problems
	Partitioning Process
	Classification of Application Tasks

	Partitioning Models
	Classification of Topologies
	Construction of Weighted Consumption Graph
	Cost Models

	Partitioning Algorithm for Offloading
	Steps
	Algorithmic Process
	Computational Complexity
	Case Study

	Evaluation of the Partitioning Algorithm
	Setup
	Evaluation in Computational Complexity
	Evaluation in Dynamic Conditions

	Summary

	Offloading Decision Making: Where to Offload
	Multi-Criteria Decision Making in Cloud Selection
	Problem Formulation
	Steps of Cloud Service Selection
	Methods of AHP and Fuzzy TOPSIS

	Energy-Efficient Offloading Decisions
	Mobile Cloud Offloading Services
	Mathematical Model
	Lyapunov-based Algorithm
	LARAC-based Algorithm
	Simulation and Results

	Performance Analysis of Offloading Systems
	Offloading Systems with Failures
	Analytical Evaluation

	Summary

	Offloading Decision Making: How to Offload
	The Queueing Model
	Offloading Policies
	Model and Problem Formulation
	Static Offloading Policy
	Dynamic Offloading Policy
	Numerical Examples

	Offloading Assignment Models
	Problem Formulation
	Uninterrupted Offloading Strategy
	Interrupted Offloading Strategy
	Generalised Offloading Strategies
	Numerical Examples

	Summary

	Offloading Decision Making: When to Offload
	Tradeoff Analysis
	Time and Energy Tradeoffs
	Computation and Communication Tradeoffs

	Dynamic Transmission Scheduling
	Adaptive Link Selection
	Lyapunov-based Link Selection
	Transmission Schedulers
	Simulation Results

	Delayed Offloading Model
	Partial Offloading Model
	Full Offloading Model
	Analytical Evaluation

	Summary

	Concluding Remarks
	Conclusions
	Suggestions

	Bibliography
	List of Figures
	List of Tables
	Glossary
	List of Publications
	About the Author

