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... ma qualche cosa imparo. Imparo a capir meglio la mia
parte negativa, sopratutto, la mia debolezza, il mio amorpro-
prismo, la mia ignoranza. Questo con calma, senza il gusto
di cenere-in-bocca del disinganno. Bisogna viaggiare per
conoscerci. Bisogna allontanarsi dallo specchio indulgente
degli amici che ti amano e credono in te, — e trovarsi fra
gente ignota.

Scipio Slataper

A Mario, Nini, Wassily e Marisa





Abstract. Physical processes in the atmosphere develop on a wide range of spatial and temporal scales. Meteorologi-

cally relevant phenomena move at speeds much lower than that of sound waves. The latter, despite their unimportance in

weather and climate studies, enforce the use of very small time steps in explicit discretizations of the fully compressible

equations.

Traditionally, the problem has been analytically tackled using reduced formulations – anelastic and pseudo-

incompressible models on the small scales, hydrostatic models on large scales – that lack the terms that generate

acoustics. Alternatively, fully compressible equations have been solved with split-explicit or semi-implicit numerical

methods free of acoustic-dependent stability constraints. However, most existing approaches in this context resort to

various forms of numerical filtering to achieve stability at the expense of accuracy.

The present study discusses a semi-implicit fully compressible numerical model for the simulation of low-speed

flows in the atmosphere. The second-order accurate finite volume scheme extends a projection method for the pseudo-

incompressible model and agrees with it by construction in the small-scale limit. Unlike most numerical approaches

in meteorology, equations are solved in non-perturbational form and in terms of the thermodynamic pressure variable.

Quantities are advanced in time in an explicit advection step limited by a stability threshold independent of sound speed.

Compressibility is handled implicitly in a correction step that solves two elliptic problems for the pressure increments.

Well-balancing techniques are used to discretize buoyancy without reference to a hydrostatically balanced background

state.

Convergence properties are evaluated on the advection of a smooth vortex and compressibility effects are assessed

on the case of a simple acoustic wave. Then, we test the ability of the scheme to accurately simulate gravity-driven

flows with large time steps on thermal benchmarks in neutrally and stably stratified atmospheres. Obtained numerical

solutions are found to be in line with published work.

Equations are then cast in a blended soundproof-compressible multimodel formulation allowing for controlled

introduction of compressibility in the scheme. In a unified and uniformly accurate numerical framework, the blending

feature is employed to filter acoustic perturbations in the initial stages of thermal simulations. The technique can find

application in a data assimilation context, enabling on-the-fly incorporation of unbalanced data in the numerical model.

The proposed extension to an implicit treatment of buoyancy envisages the use of the scheme as a flexible tool for the

simulation of multiscale atmospheric flows.



Zusammenfassung. Atmosphärische Strömungen entfalten sich über ein breites Spektrum von Zeit- und Raumskalen.

Prozesse von meteorologischer Bedeutung haben geringe Geschwindigkeiten im Vergleich zu Schallwellen, welche

trotz ihres in Wetter- und Klimastudien unerheblichen Beitrags die Effizienz expliziter vollkompressibler Modelle auf

sehr kleine Zeitschritte beschränken.

Im Allgemeinen wird das Problem durch approximierte Formulierungen wie anelastische und pseudo-inkompressible

Modelle auf kleinen Skalen und hydrostatische Modelle auf großen Skalen analytisch angegangen, wobei die für die aku-

stischen Störungen verantwortlichen Terme fehlen. Ansonsten können numerische split-explizite oder semi-implizite

Verfahren auf die vollkompressiblen Gleichungen angewandt werden, um die Schallgeschwindigkeitsbedingte Stabi-

litätseinschränkung zu umgehen. Dennoch greifen in diesem Kontext etablierte Ansätze auf verschiedene Arten von

numerischer Dämpfung zurück, welche sich zwangsläufig auf die Genauigkeit auswirken.

Diese Studie betrachtet ein semi-implizites vollkompressibles numerisches Verfahren zweiter Genauigkeitsord-

nung für die Simulation atmosphärischer Strömungen mit geringer Geschwindigkeit. Die Diskretisierung erweitert ein

Projektionsverfahren für das pseudo-inkompressible Modell, mit dem sie im kleinskaligen Limes übereinstimmt. Im

Gegensatz zu den meisten existierenden Formulierungen wird das Gleichungssystem mithilfe des thermodynamischen

Drucks formuliert und wird nicht in Störungsform verfasst. Ein expliziter Schritt mit schallgeschwindigkeitsunabhän-

giger Stabilitätsbedingung bringt die Variablen über einen Zeitschritt voran, woraufhin zwei elliptische Probleme für

die Druckinkremente in einem impliziten Schritt gelöst werden. Der Auftriebsterm wird mit well-balancing Methoden

ohne Bezug auf ein hydrostatisches Profil behandelt.

Die Konvergenzeigenschaften werden an der Advektion eines glatten Wirbels geprüft und Kompressibilitätseffekte

anhand einer akustischen Welle bewertet. Die Leistung des Verfahrens wird im Bereich von Simulationen schwerkraft-

getriebener thermischer Luftblasen mit langen Zeitschritten in neutral- und stabilgeschichteten Atmosphären gemessen.

In Bezug auf veröffentlichte Arbeiten schneiden die vorhandenen Ergebnisse vergleichsweise gut ab.

Anschließend wird das System in gemischter schalldichter/kompressibler Form dargestellt, was ein kontrolliertes

Einführen von Kompressibilität ermöglicht und in einem einheitlichen und uniform genauen Rahmen für die Dämpfung

akustischer Wellen beim Ansetzen der thermischen Störungen am Anfang einer Simulation gebraucht wird. Außerdem

kann die Methode in Daten-Assimilierung dadurch Anwendung finden, dass unbalancierte Messdaten in das numeri-

sche Modell ohne Neustart des Codes einbezogen werden können. Die vorgeschlagene Erweiterung für die implizite

Behandlung des Auftriebsterms sieht den Gebrauch des Verfahrens als anpassungsfähiges Mittel für die Simulation

mehrskaliger atmosphärischer Strömungen vor.
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1

Introduction

This dissertation concerns the construction and validation of a conservative numerical method of second-

order accuracy for the fully compressible simulation of terrestrial atmospheric flows at low Mach number,

with seamless access to pseudo-incompressible dynamics. This introductory chapter aims to describe the

scientific background and scope of the work as well as to make a case for pursuing the present development.

1.1 Atmospheric flows, the stiffness problem and soundproof models

The terrestrial atmosphere provides the arena for a vast range of physical processes and their interactions on

a variety of spatial and temporal scales. The spatial scale extends from thousandths of millimetres for cloud

processes to tens of thousands of kilometres for planetary waves, the temporal scale from microseconds to

weeks [62]. Restricting to time intervals up to ten days, Numerical Weather Prediction (NWP) focuses on

integrating a mathematical model of atmospheric dynamics with the assimilated observations as initial data,

thereby providing a forecast for the future state of the atmosphere.

As a point of reference, the numerical model in operation at the European Centre for Medium-Range

Weather Forecasts (ECMWF, [52]) currently employs a global resolution of 16 km and issues 10-day

forecasts produced in one hour. The vast dimensions in play and the operational constraints have sparked a

long-standing quest for efficiency in the research on atmospheric numerical models.

As far as fluid dynamics is concerned, the most comprehensive mathematical model for the simulation

of atmospheric motion is given by the three-dimensional nonhydrostatic fully compressible equations under

the effect of gravity. They model conservation of mass, momentum and energy and admit solutions in the

form of acoustic waves, gravity waves, and inertial motions [36,50]. The latter are the chief interest of NWP

in the troposphere, where reference advective velocities u are usually taken in the range of 10–30 m s−1.

Considering a reference value of c ≈ 330 m s−1 for the speed of sound waves, one sees that u� c, so that

the motions of interest in weather and climate studies are weakly compressible low Mach number flows,

where the Mach number is defined as the ratio M = u/c. More formally, in the low Mach number regime

and with M → 0 the compressible equations undergo a signal speed problem as a scale separation arises

between flow velocities and the speed of sound.
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Explicit numerical discretizations of fully elastic models are subject to the stability condition [28]

(|u|+ c)∆t

∆x
≤ 1. (1.1)

At a given spatial resolution ∆x, condition (1.1) enforces the use of a time step size ∆t severely constrained

by the speed of acoustic waves, which thus cause numerical stiffness. However, in most meteorological

situations, sound waves have small amplitudes and are rapidly balanced. For this reason, their effects are

generally deemed to be of negligible physical significance in NWP and climate studies.

A first solution adopted to solve the stiffness problem has consisted in using analytical approximations

to the fully compressible model that do not feature the terms responsible for acoustics. To this category

belong the soundproof models traditionally employed for small-scale phenomena such as convection. The

Boussinesq model [20] neglects density perturbations in the mass and momentum equation, yet retains them

in the buoyancy term. Anelastic models [10, 75, 84] assume low Mach number, small density variations

on a time-independent background state, and linearize the pressure gradient term in the momentum equa-

tion. Time evolution is removed from the mass continuity equation, which takes the form of a divergence

constraint.

Durran’s pseudo-incompressible model [34] assumes low Mach number and small pressure perturbations

on a time-independent hydrostatic background state, thereby only suppressing density perturbations due to

pressure variations. The pressure equation becomes a divergence constraint and a pseudo-incompressible

energy is conserved that features the internal energy of the background state. Unlike other soundproof

formulations, the pseudo-incompressible model does not require any a priori assumption on the size of

density perturbations and features the unapproximated momentum equation.

In soundproof models, the pressure is not coupled to the density via an equation of state as in the fully

compressible model. Rather, it is responsible for fulfilling the divergence constraint that replaces the continu-

ity equation for anelastic models and the energy equation for the pseudo-incompressible model. Numerical

formulations of soundproof models forgo acoustics-related limitations by construction and require at each

time step the discrete solution of the elliptic problem associated with the divergence constraint. The reader

is referred to [30, 36, 62] for recent reviews and further discussion.

Because of their underlying assumptions on pressure and density variations, soundproof models have

traditionally been considered unapplicable to modelling at synoptic and larger scales. However, their theoret-

ical regime of validity was recently extended [63] to realistic thermal stratifications across the troposphere

for horizontal scales less than 100 km, while the use of pseudo-incompressible equations for the study of

stratospheric gravity-wave breaking was justified in [1]. EULAG model users [88, 89, 97, 109, 114] have

been working successfully with soundproof models to simulate baroclinic waves on synoptic scales.

At synoptic and larger scales, where motions can be described as small perturbations over a hydro-

statically balanced state, hydrostatic models have generally been employed that assume a small ratio of
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horizontal to vertical length scales. Vertically propagating sound waves are filtered by construction and

hydrostatic balance replaces the vertical momentum equation. Hydrostatic models are still largely used in

operations: the mentioned ECMWF forecasts are the results of runs in hydrostatic mode and several research

codes (cfr. the ICON model [125]) are commonly tested in their hydrostatic versions before undertaking

non-hydrostatic validation tests.

In view of the good performance of reduced soundproof models on small scales and hydrostatic models

on large scales, efforts have focused on providing hydrostatic codes with nonhydrostatic modules [53]

or anelastic models with hydrostatic extensions. For the pseudo-incompressible model, constraints on the

variation of density and hydrostatic reference state have been relaxed in [35]. Anelastic and hydrostatic

dynamics have been joined in [7] through the definition of a quasi-hydrostatic density and employed in

cloud-scale simulations in [69].

The whole range of reduced formulations suitable for modelling at particular scales, together with

geostrophic and hydrostatic balances, can be asymptotically obtained as singular limit regimes of the fully

compressible system [60, 62].

1.2 Numerical strategies for compressible atmospheric flows

The other way to overcome the efficiency problem given by sound waves in the low Mach number regime

is to discretize the fully elastic model with numerical methods free of acoustics-driven constraints. In fact,

nonhydrostatic fully compressible approaches hold sway in atmospheric research codes and operational or

semi-operational dynamical cores, as, for example, NUMA [58], DUNE [21], the models in use at NCAR

[105,132], ECMWF [52] and the UK Met Office [31,111,133], and others. We refer to [112] for an extensive

review of numerical methods for nonhydrostatic models.

In this context, split-explicit methods [67, 102, 131] employ subcycling to integrate acoustic waves and

advection with different time steps. Runge-Kutta methods are traditionally used for the integration of slow

processes and forward-backward integration for the fast ones. In operations, such a strategy is employed

in the WRF [104] and NICAM [99] models and in the COSMO model in use at the German weather

service [8, 9]. Generalizations have aimed at improving accuracy and efficiency of both the “fast” and the

“slow” integration parts [68,129] and at avoiding the divergence damping needed to stabilise the scheme [54].

Horizontally explicit, vertically implicit discretizations are presented in [41, 119]. Yet another approach is

to consider fully implicit discretizations as done in [92].

In semi-implicit (IMEX) models, firstly introduced in the nonhydrostatic equations in [116], fast modes

are handled implicitly by solving three-dimensional elliptic problems at each time step, thus allowing for

a treatment of slow advective modes subject to stability constraints independent of the speed of sound

and gravity waves [18, 29, 37, 45, 93, 96, 115]. In order to improve efficiency in semi-implicit models,

some of the mentioned studies employ semi-Lagrangian techniques that sidestep condition (1.1) altogether
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by discretizing the material derivative in the momentum equation. Regarding spatial discretizations, in

the recent years continuous and discontinuous Galerkin approaches have been gaining popularity that

enable high-order conservative integration and appear to be well-suited for mesh refinement techniques

[58, 78, 101, 118]. As noted in [112], the procedure leading to the formulation of the elliptic problem in

semi-implicit approaches is akin to the path followed to obtain the pressure elliptic problems associated

with the divergence constraint in anelastic and pseudo-incompressible models.

1.3 The case for a blended soundproof-compatible solver

Because of the potential efficiency gains coming along with reduced analytical formulations, the community

of atmospheric modellers has tested soundproof and hydrostatic models in relation to the fully compressible

model in order to ascertain the respective behaviour. In an investigation based on normal mode analyses,

the authors of [32] championed the fully compressible system for general use in atmospheric modelling

at all scales. This has called for models of the fully compressible dynamics in which waves at different

speeds are numerically handled. In the analysis of [32], the pseudo-incompressible model emerged as the

best soundproof candidate for NWP at small horizontal scales on the order of tens of kilometres. A more

recent study including the mentioned unified models [7] is presented in [33].

However, computational studies with different numerical models at small [80] and large [108] scales

have failed to draw clear-cut conclusions, as “the differences due to the higher-order truncation error [. . .]

overwhelm the differences due to the analytic formulation of the governing equations” [110].

With increasing computing capabilities currently in the region of petaflops and the advancement brought

about by massively parallel architectures, flow patterns at increasingly smaller scales are becoming acces-

sible to direct numerical simulation [85]. Recently, the authors of [126, 127] reported significant forecast

improvements with convection-permitting nonhydrostatic runs up to global resolutions of 2.5 km, fore-

shadowing major changes in the understanding of subgrid-scale parametrizations. Such a context makes of

arguable interest the ability to operate multiple analytical formulations within a single numerical framework.

Despite their indisputable merits, there is still a need for discussion on various aspects of the modelling

approaches available at the present time. First, virtually all of the existing semi-implicit or split-explicit

approaches resort to some form of numerical damping for stability reasons. Examples include off-centring

the discretization towards an implicit treatment in semi-implicit models and divergence damping in split-

explicit models. Such choices benefit the operational schemes especially in long-time simulations but

inevitably affect their overall formal accuracy. In particular, this leaves the challenge open of running stable,

second-order accurate numerical discretizations free of artificial forms of damping.

Moreover, most of the mentioned formulations feature model equations written in terms of small per-

turbations over a hydrostatically-balanced background state. In the model currently in use at the UK Met

Office, the background state used is the state of the atmosphere at the previous time step [133]. Working
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with perturbations offers the arguable advantage of not having to worry about violations of hydrostatic

balance at the discrete level in the implementation. The downside is that such a choice introduces a degree

of arbitrariness in the implementation.

A related aspect in the framework of a model for multiple characteristic scales concerns balanced data

assimilation. Computational simulations never exactly track the evolution of the considered system. Hence,

data assimilation is used for exploiting observational data at regular time intervals to set up initial data for

the next simulation period. Directly importing data from a local weather station to adjacent grid points

disregards the aforementioned balances of the sound modes. Filtering the data with respect to sound modes

while minimally distorting the dynamics remains an open problem.

Considering this background and the mentioned issues, the present study aims at answering the following

research questions:

1. Is it possible to construct a semi-implicit fully compressible numerical scheme of second-order accuracy

compatible with the soundproof dynamics in the relevant regimes?

2. Is the obtained scheme applicable to gravity-driven flows without reference to a prescribed background

state?

3. What is the performance of the model in terms of accuracy and stability? When applied to neutrally

and thermally stratified benchmarks, does it stand comparison with established approaches?

4. Can we exploit the soundproof compatibility to build a blended soundproof-compressible model oper-

ating across the range of zero to low Mach numbers via easy switching? What benefit does the obtained

discretization bring in the filtering of acoustic waves in the first stages of thermal simulations?

5. Which further avenues of research does the proposed scheme open up?

To this end, a dry semi-implicit flow solver will be constructed that extends the pseudo-incompressible

framework of [61] to weakly compressible dynamics. Written in non-perturbational form and in terms of

density, momentum density, and a modified pressure variable, the compressible model is obtained with the

simple addition of the time derivative term to the pseudo-incompressible divergence constraint.

The conservative two-time-level finite-volume method [59, 100, 122] uses a two-step solution strategy.

A first explicit step considers an auxiliary hyperbolic system and yields second-order accurate scalars.

The stability condition for the first step solely hinges on the advection flow speed in the regime of scales

considered. The use of fluxes not compliant with the modified divergence constraint is corrected in an

implicit step with the solution of a Helmholtz elliptic problem for the cell-centred pressure increments.

A final Helmholtz problem for node-centred pressure increments yields stable and second-order accurate

momenta, thus correcting the use of the old-time-level pressure in the momentum equation of the predictor

step.

Compressibility is handled in the implicit step via the inclusion of a zero-order term in the elliptic

equations that corresponds to the time derivative term in the modified pressure equation. Hence, the proposed
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extension implies virtually no efficiency overhead with respect to the pseudo-incompressible version. In

addition, at the end of each time step, the compressible solver features a pressure synchronization enforcing

the ideal gas equation of state at the discrete level. A well-balancing framework [19] is adopted for the

discretization of the buoyancy term that avoids the subtraction of a hydrostatically balanced background

state.

The performance of the compressible scheme is evaluated in a number of cases. First, the scheme

is validated on the advection of a smooth rotating vortex, where accuracy properties are studied and the

quadratic convergence rate is verified. The case of a simple acoustic wave is then considered that high-

lights the compressibility features of the scheme. Next, the behaviour of the scheme is assessed in the

simulation of atmospheres at rest and gravity-driven thermal bubbles in neutrally and stably-stratified at-

mospheres. Obtained results are stable and accurate as compared with published studies on nonhydrostatic

fully compressible numerical models.

After that, by exploiting the modular character of the proposed implementation, model equations are

cast in a blended compressible/pseudo-incompressible fashion that allows for a controlled handling of

compressibility via easy switching. The resulting formulation is shown to be of advantage in damping

acoustic imbalances generated in the initial stages of fully compressible thermal simulations. The filtering

of acoustics is realized by running the model in pseudo-incompressible mode for some time steps, then

gradually transitioning to fully compressible dynamics with some hybrid time steps.

The fully compressible extension developed in the present work follows the mindset of the aforemen-

tioned theoretical studies [32,33]. The test cases considered in the present work only cover the range of small

to meso-scale flows, where the fully compressible and pseudo-incompressible models yield very similar

results [16]. However, the compressible module is a necessary advancement over the pseudo-incompressible

model with a view to comparing the present numerical scheme with published work on numerical methods

for the fully compressible equations.

In addition, because of the modular character of the compressible extension, the scheme automatically

accesses the reduced dynamics in the small-scale setting. Reduced soundproof models remain at present a

very active field of study [107] and have also been employed to simulate stellar dynamics [6, 22, 82, 120].

The approach taken in the present work has the advantage of keeping the valuable information from the

soundproof dynamics while discretizing the fully compressible system.

The adoption of a projection-like approach for the compressible system not only comes by extension of

the ideas presented in [61] and [43,100,122], but is also justified by the great deal of studies in the literature

employing projection methods for the simulation of low-speed flows [5, 13, 14, 26, 27]. In particular, the

work [3] introduced a second elliptic solver in the correction step.

Thanks to their conservation properties, finite volume methods are also well-established in atmospheric

modelling in general and for the simulation of nonhydrostatic fully compressible equations in particular,

see, e.g., [2, 71, 73, 83, 128]. In the present work, second-order accuracy is achieved working with nonper-
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turbational quantities via linear reconstructions at the interfaces for the computation of numerical fluxes.

The scheme we present is certainly not the first attempt to all-speed modelling in computational fluid

dynamics. Previous investigations in this respect are presented in [17, 24, 48, 74, 79, 81, 87]. In [42] asymp-

totic limits were recovered by a careful identification of advective, buoyancy, and acoustic terms in fully

compressible equations. The authors of [70] took an approach similar in spirit to the one presented here,

though they chiefly dealt with simulation of shocks in a different framework. In [64] a unified mathematical

framework was presented for the investigation of multi-scale problems with asymptotically adaptive meth-

ods. The study also featured a compressible extension of an incompressible model via parallel solution of a

convection-diffusion and a sonic system, see also the discussion in [55].

Finally, we note that a similar extension to a semi-implicit compressible model was recently presented

in [109] with technical differences on the discretization. For instance, the authors of [109] worked with

perturbation variables and with the Exner pressure in the momentum equation. More importantly, the option

of a seamless blending of the soundproof and compressible models was not explored in [109], nor was it

elsewhere in the literature, to the best of our knowledge.

The blending feature we propose is particularly attractive as a balancing tool for sound waves in a

data assimilation context. By adjusting the value of the model switch from zero to unity, the technique

can be employed to run a simulation in pseudo-incompressible mode for some time steps, then smoothly

transitioning to fully compressible dynamics. Since in the pseudo-incompressible case pressure imbalances

are absent by construction, the procedure results in fully compressible runs with nearly balanced data and

an effective filtering of acoustic imbalances.

1.4 Structure of the work

Chapter 2 features an overview of the governing equations and discusses the low Mach number regime and

the pseudo-incompressible model. In Chapter 3 the fully compressible numerical scheme is described and

validated. Chapter 4 describes the application to gravity-driven flows. The techniques used to achieve a well-

balanced treatment of the buoyancy terms are detailed and the performance of the obtained discretization

tested on the simulation of rising and falling thermals in a neutrally stratified environment and inertia-gravity

waves in a stably stratified channel. In Chapter 5, the blended compressible-soundproof model is introduced

that uses a parameter to switch between pseudo-incompressible and compressible dynamics within the same

numerical framework. In Chapter 6 we give a theoretical account of an extension of the present scheme to

treat buoyancy in an implicit fashion with a view to large scale tests. Chapter 7 summarizes and discusses

the results in comparison with other approaches in the field and gives an overview of future avenues of

research opened up by this dissertation.





2

Weakly compressible flow in the atmosphere

In this chapter we outline the equations that govern the motions of interest in the present work. First,

we state the fully compressible equations for dry air under ideal gas assumptions. Second, we nondimen-

sionalize the equations and discuss the low Mach number regime. Third, we focus on the soundproof

pseudo-incompressible system. The material in this chapter is standard, therefore we refrain from report-

ing the derivations in full. For more details we refer the reader to standard textbooks in atmospheric fluid

mechanics, e.g. [36, 50, 130].

2.1 Fully compressible equations

The fully compressible evolution of smooth adiabatic motions in the terrestrial atmosphere is modelled, in

the dry inviscid case, by the following set of equations on the spatio-temporal domain Ω× [0, T ] ⊂ R3×R:

∂ρ

∂t
+∇ · (ρv) = 0, (2.1a)

∂ρv

∂t
+∇ · (ρv ◦ v + pI) + f × ρv = −ρ∇Φ, (2.1b)

∂E

∂t
+∇ · [(E + p)v] = 0. (2.1c)

Here Cartesian coordinates (x, y, z) are used, with t denoting the time coordinate. Vectors are denoted in

boldface. In system (2.1), ρ ∈ R is the air mass density, v ∈ R3 is the flow velocity, E ∈ R is the total

energy density, p ∈ R is the pressure, and Φ ∈ R is the gravitational potential. Furthermore, the symbols

·, ×, and ◦ denote the scalar, vector, and tensor product, respectively. The operator
∂

∂t
(·) denotes the time

derivative,∇ · a = ∂a1
∂x + ∂a2

∂y + ∂a3
∂z is the divergence of a = (a1, a2, a3)T , ∇h = (∂h∂x ,

∂h
∂y ,

∂h
∂z )T is the

gradient of h. f = 2Ω is the Coriolis parameter, with Ω = (Ωx,Ωy,Ωz) the Earth rotation vector. I is the

identity tensor.

The system (2.1) expresses the physical principles of mass conservation in (2.1a), momentum conservation,

that is, Netwon’s second law of motion in (2.1b), and energy conservation in (2.1c). They were formulated
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by the Swiss mathematician and physicist Leonhard Euler (1707-1783).

The thermodynamics is governed by the energy equation (2.1c) and closed by an equation of state linking

ρ, p and the temperature T ∈ R. We consider the equation of state for a dry, calorically perfect gas:

T =
p

ρR
(2.2)

where R = 287 J Kg−1 K−1 denotes the specific gas constant for dry air. We also have R = cp − cv, with

cp and cv the specific heat capacities at constant pressure and volume, respectively. The ratio γ = cp/cv

is called the dry isentropic exponent. Unless otherwise stated, in this work the value γ = 1.4 will be

considered.

For the sake of validation of the proposed numerical techniques, in this thesis the following further assump-

tions will be made:

1. First, we will only consider the two-dimensional case. If we define x as the zonal coordinate (positive

towards the east), y the meridional coordinate (positive towards the poles), and z the height coordinate

over the sea level, this assumption is equivalent to considering vertical sections of the atmosphere for

fixed y. In atmospheric modelling such representations are also referred to as vertical-slice models.

2. Second, we will focus on mesoscale motions on scales up to a few hundreds of kilometres for which

the Coriolis term f × ρv can be neglected. We also remark that in (2.1) the centrifugal acceleration is

already neglected, since it is negligible with respect to the acceleration of gravity for the time scale of

our simulations, namely up to a few tens of minutes.

3. Third, we will make the tangent-plane approximation, whereby the vertical unit vector (denoted with

k) is constant in module and direction, the gravitational acceleration has the constant value of g =

9.8 m s−1 and the gravitational potential takes the form Φ(z) = gz.

Under these assumptions, the total energy density in (2.1c) is written as the sum of its kinetic, potential and

internal parts as:

E = EK + EP + EI (2.3)

=
1

2
ρv · v + ρgz + ρcvT =

1

2
ρv · v + ρgz +

p

γ − 1
(2.4)

where we used the equation of state (2.2) and cv/R = 1/(γ − 1).

The system (2.1) is closed by initial conditions on Ω× {t = 0} and boundary conditions on ∂Ω× [0, T ],

which will be specified in the test cases considered.

2.1.1 Potential temperature and P

Using the momentum equation (2.1b) and the mass equation (2.1a), the energy equation (2.1c) with the

definition (2.3) is transformed, under assumptions of smooth flow, into the following pressure equation:
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∂p

∂t
+ v · ∇p+ γp∇ · v = 0. (2.5)

Consider now an arbitrary reference value pref for the pressure. Multiplying (2.5) by (γRρ)−1(pref/p)
γ−1
γ

and using the continuity equation (2.1a) to eliminate the divergence we get:

p
γ−1
γ

ref

R

[
p

1−γ
γ

γρ

(
∂

∂t
+ v · ∇

)
p− p

1
γ

ρ2

(
∂

∂t
+ v · ∇

)
ρ

]
= 0. (2.6)

If we define a function

Θ =
pref

ρR

(
p

pref

) 1
γ

(2.7)

then expression (2.6) implies:
DΘ

Dt
= 0 (2.8)

where D
Dt (·) = ∂

∂t (·)+v ·∇(·) is the material derivative, that is the time derivative measured along the fluid

trajectories. The variable Θ is the potential temperature and it is the temperature that an air parcel initially

at pressure p and density ρ attains after an adiabatic compression or expansion to the reference pressure pref.

Equation (2.8) is commonly used as the energy equation in atmospheric modelling studies and expresses

the fact that Θ is a conserved quantity of adiabatic motions.

The potential temperature offers insight into the stratification properties of the underlying atmosphere. A

neutrally stratified atmosphere is obtained for ∂Θ/∂z = 0, a stably (resp. unstably) stratified atmosphere

for ∂Θ/∂z > 0 (resp. ∂Θ/∂z < 0). For a stably stratified atmosphere, the Brunt-Väisälä, or buoyancy,

frequency

N2 =
g

Θ

∂Θ

∂z
(2.9)

is a measure of the strength of the stratification.

Using the definition of potential temperature (2.7) in the pressure equation (2.5), we see that the quantity:

P = ρΘ =
pref

R

(
p

pref

) 1
γ

(2.10)

satisfies the following conservation law:

∂P

∂t
+∇ · (Pv) = 0. (2.11)

In agreement with [61], Equation (2.11) will be used as the energy equation throughout the present work.

In view of the mentioned assumptions and transformations, the system of fully compressible equations takes

the following form:
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∂ρ

∂t
+∇ · (ρv) = 0, (2.12a)

∂ρv

∂t
+∇ · (ρv ◦ v + pI) = −ρgk, (2.12b)

∂P

∂t
+∇ · (Pv) = 0. (2.12c)

The system is closed by the equation of state (2.2) or, equivalently, (2.10). Equations (2.12) in two dimen-

sions are the subject of the numerical method proposed in the present work. We remark that the system

(2.12) is only valid in differential form under the assumptions of sufficient regularity, that is, at least conti-

nuity of the variables and of the first derivatives. The integral form of the conservation laws (not reported

here) is valid in the presence of singularities. We refer to [39, 72] for related discussion. The motions of

our concern do not involve shocks or singularities so that, assuming sufficient regularity, we can use the

differential formulation and perform the mentioned operations.

System (2.12) admits solutions in the form of waves. To assess the properties of these waves, the system is

linearized decomposing the variables in a basic state plus a perturbation. For an isothermal basic state, wave

solutions exist whose frequency ω and horizontal wavenumber k satisfy a dispersion relation. The analysis

is standard and we refer to textbooks for the derivation [36,38]. A schematic view of the dispersion diagram

is given in Figure 2.1 for the nonhydrostatic stratified case and ω, k > 0. The regions where wave solutions

exist are the diagonal line and the grey-shaded regions.

Dispersion curves of sound waves and gravity waves lie in the upper and lower region, respectively. The

boundaries of the regions are the dispersion curves corresponding to zero vertical wavenumber. For dry

air, sound waves have a lower frequency threshold of 1.11N , while gravity waves have an upper frequency

threshold of N . In the rotating frame of reference of the Earth, gravity waves have an additional lower

frequency threshold at ω = f . Finally, the diagonal line has slope c and represents Lamb waves, which are

horizontally propagating sound waves.

2.2 Dimensionless equations and the low Mach number regime

To gain insight into the weakly compressible dynamics, we nondimensionalize the equations. For the rest of

the chapter we refer to [59, 60, 100]. Let us define reference time, length, velocity, density and pressure as

tref, lref, vref, ρref, and pref, respectively. These quantities can be combined to form dimensionless numbers.

An example is the Mach number:

M =
vref√
pref/ρref

=
vref

cref
, (2.13)

which measures the importance of compressibility in the fluid. cref is the reference speed of sound. Fur-

thermore, we denote with hsc the pressure scale height, that is the height over which the pressure varies

significantly with respect to its value at sea level. The Froude number is defined as
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Figure 2.1: Dispersion diagram for a nonhydrostatic stratified atmosphere. The region marked with “S” contains the
dispersion curves of sound waves, the region marked with “G” contains the dispersion curves of gravity waves.

Fr =
vref√
ghsc

. (2.14)

Using hydrostatic balance and the reference quantities, we observe that:

∂p

∂z
= −ρg ⇒ pref ≈ hscρrefg. (2.15)

If we further assume the vertical and horizontal scales of the motions to be comparable, hsc = lref, we have

M = Fr. To nondimensionalize (2.12) we write the dimensionless variables with primes, so that t = treft
′,

x = lrefx
′, and so on.

Factoring out the reference values and dropping the primes, we obtain the System (2.12) in dimensionless

form:

∂ρ

∂t
+∇ · (ρv) = 0, (2.16a)

∂ρv

∂t
+∇ ·

(
ρv ◦ v +

1

M2
pI

)
= − 1

M2
ρk, (2.16b)

∂P

∂t
+∇ · (Pv) = 0. (2.16c)

Systems (2.12) and (2.16) for M 6= 0 are hyperbolic. In the case of (2.16), this means that the Jacobian

matrix of the flux function f for the homogeneous part:

f =


ρv · n

(ρv ◦ v +
1

M2
pI)n

Pv · n

 (2.17)

is diagonalizable and has real eigenvalues [72]. Here n is an arbitrary unit vector. The eigenvalues are:
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λ1 = λ2 = v · n, λ3,4 = v · n± c

M
. (2.18)

λ3,4 are the finite speeds of propagation of acoustic waves. In an acoustic wave, density and pressure rise

following flow convergence via Equations (2.16a), (2.16c) and the equation of state. The resulting pressure

gradient sets the fluid in motion, whereupon the cycle starts again.

As noted in the introduction, flows of interest in the atmosphere develop at a speed much lower than the speed

of sound. Therefore, we now study the system (2.16) in the limit M → 0. A rigorous asymptotic derivation

can be found, e.g. in [77]. Here we follow [60] and expand the pressure variable in a thermodynamic and

perturbational part as p = p + M2p′ + o
(
M2
)
. The zero Mach number, variable density flow equations

read, neglecting gravity for the moment:

∂ρ

∂t
+∇ · (ρv) = 0, (2.19a)

∂ρv

∂t
+∇ · (ρv ◦ v + p′I) = 0, (2.19b)

∇ · v = 0. (2.19c)

In the limit M → 0 pressure perturbations of order O
(
M2
)

affect the velocity at leading order, the pressure

equation becomes the elliptic constraint (2.19c), and the speed of acoustics diverges. Mathematically, the last

fact marks the transition from the hyperbolic compressible system, with finite speed of signal propagation,

to the elliptic incompressible system, where adjustments are instantaneous. In the incompressible system,

pressure and density are not linked by the equation of state (2.2). Instead, pressure perturbations p′ are

responsible for the enforcement of the divergence constraint (2.19c).

2.3 The pseudo-incompressible approximation

The pseudo-incompressible model was first proposed by Durran [34] and is obtained in the low Mach

number regime, decomposing the pressure into:

p = p(z) + p′, with
p′

p(z)
� 1 and

∂p

∂z
= −ρg (2.20)

and assuming that the density’s dependence on pressure is limited to p. The pseudo-incompressible equations

read:

∂ρ

∂t
+∇ · (ρv) = 0, (2.21a)

∂ρv

∂t
+∇ · (ρv ◦ v + pI) = −ρgk, (2.21b)

∇ · (Pv) = 0 (2.21c)
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where P = pref/R(p/pref)
1/γ . To express the fact that in the system (2.21) the density only depends on p,

a “pseudo-density” ρ∗ is used instead of ρ in [34]. In our case, with an abuse of notation we keep using

ρ without the asterisk to denote the “pseudo-density”. For more details on the derivation of the pseudo-

incompressible model see [16, 34, 61]. We remark that Durran’s formulation was based on Exner pressure

π = (p/pref)
R/cp and potential temperature Θ. In fact, in [66] a thermodynamically consistent formulation

of system (2.21) was proposed that retains the effect first-order density perturbations in the gravity term. For

the purposes of comparison of our proposed fully compressible discretization, system (2.21) will be meant

whenever reference is made in the present work to pseudo-incompressible runs. A thorough analysis and

comparison of fully compressible results with system (2.21) and its thermodynamically consistent extension

is presented in [16].

The pseudo-incompressible model converges to the zero-Mach number model (2.19) in the small-scale

limit as shown in [61]. Both models (2.19) and (2.21) feature a divergence constraint with unmodified

mass balance equation. In addition, the pseudo-incompressible model does not require modification of the

momentum equation and conserves a pseudo-energy, defined as in (2.3) but with ρ∗ instead of ρ in the

mechanical energy part and the background hydrostatic pressure values in the internal energy part.

The compressible system (2.12), whose numerical solution is the subject of the present work, and the pseudo-

incompressible system (2.21) only differ by the time derivative term in the energy equation. A numerical

scheme extending the pseudo-incompressible framework of [61] to fully compressible dynamics is the

object of the next chapter.





3

A semi-implicit, soundproof-compatible weakly compressible
numerical method

In this chapter we describe the semi-implicit finite volume method employed for the discretization of

the compressible equations. The scheme is an extension of the soundproof pseudo-incompressible solver

presented in [61]. Unlike [61] and most approaches in the literature, the pressure gradient term in the

momentum equation is written in terms of the pressure and density, instead of Exner function and potential

temperature. The predictor-corrector method features a stability constraint which solely hinges on the

advecting speed, thus forgoing the acoustics-induced inherent stiffness of the fully compressible model.

Compressibility is implemented in the form of an added zero-order term in the elliptic correction equations

and binding the energy and pressure by imposing the equation of state at the discrete level. In order to

assess its stability and accuracy, the method is tested on the advection of a small-scale smooth axisymmetric

vortex without gravity. Furthermore, acoustic wave simulations validate the use of the numerical strategy to

simulate weakly compressible dynamics.

3.1 Numerical framework

We consider Equations (2.12) from Chapter 2 in a spatio-temporal domain Ω × [0, T ] ∈ R2 × R. The

discrete solution of (2.12) is obtained through the iteration of the following steps at each time loop:

• An explicit step advects density, momentum, and P from tn to tn+1. In this step, the pressure gradient in

the momentum equation is taken at the old time level and the fluxes are not consistent with the pressure

equation (2.12c). Variables are already second-order-accurate after this step except for the momentum

and the pressure.

• In a first implicit correction step, an elliptic Helmholtz problem is solved for cell-centred pressure

increments. The solution accounts for consistency with the pressure equation and corrects the advecting

and energy fluxes.

• In a second correction step, another elliptic Helmholtz problem is solved for node-centred pressure

increments. The solution is used to correct the cell-centred momenta — that were only first-order-

accurate after the predictor step — and yields a full second-order-accurate discretization.
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The discrete model is implemented in the following spatio-temporal framework: the simulation interval

[0, T ] is divided into N subintervals, with t0 = 0, tn+1 = tn + ∆tn+1 for n = 0, 1 . . . , N − 1, with ∆tn

denoting the time step employed at the n + 1-th loop subject to the condition
∑N−1
n=0 ∆tn+1 = T . See

below for the time step choice.

The spatial domain Ω is divided into computational cells Ci,j (finite volumes), with i = 1, . . . ,Nx; j =

1, . . . ,Nz in the Cartesian grid arrangement shown in Figure 3.1, where the interfaces are marked with I .

The setting is readily extended to three dimensions. The conserved variables ρ, ρv, P are set at cell centres.

Pressure is located at the grid nodes, i.e. the centres of the dual cells Ci+1/2,j+1/2 (shaded in gray in Figure

3.1) over which the second elliptic problem is solved.

C

C
I

I

Figure 3.1: Computational grid. Solid lines define cells; dashed lines define dual cells, used for the second correction.
Dots, squares and crosses denote cell centres, nodes, and interface centres, respectively.

3.1.1 Predictor

As in [61], the first explicit sub-step solves the following auxiliary hyperbolic system:

∂ρ

∂t
+∇ · (ρv) = 0, (3.1a)

∂ρv

∂t
+∇ · (ρv ◦ v + pnI) = −ρgk, (3.1b)

∂P

∂t
+∇ · (Pv) = 0. (3.1c)

With respect to (2.12), the pressure gradient in the momentum equation (3.1b) is kept at the old-time level,

thereby neglecting dynamical effects of the pressure at this stage.

Space discretization

We write equations 3.1 in the following form, which highlights the conserved variables, the flux function

and the source term:
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ut +∇ · [f(u)] = s(u) (3.2a)

u(x, t) :=


ρ

ρv

P

 f(u) :=


ρv

ρv ◦ v + pnI

Pv

 s(u) :=


0

−ρgk

0

 . (3.2b)

Numerical integration of the system (3.2a) is carried out with a finite volume method, see [72] for an

introduction.

Discrete variables are defined as approximations of cell averages set at the centres of the cells Ci,j . In vector

form:

Un
C =


ρC

(ρv)C

PC

 ≈ 1

|C|

∫
C

u(x, tn) dx. (3.3)

Above, the indices i, j were dropped for simplicity, |C| denotes the cell volume and variables have been

considered at the time level tn. We then define numerical fluxes and discrete source terms that approxi-

mate the spatial and temporal integral of the functions f(u) and s(u) on the cell interfaces and volumes,

respectively:

F
n+ 1

2

I (u) ≈ 1

∆t|I|

∫ tn+1

tn

∮
I

f(u) · n d` dt S
n+ 1

2

C (u) ≈ 1

∆t

∫ tn+1

tn

∫
C

s(u) dx dt (3.4)

where I denotes a cell interface and |I| its measure. Different options are available for the computation of

numerical fluxes. We use an upwind method with piecewise linear reconstruction at the interfaces for second-

order accuracy [72]. In particular, as in [61] but with technical differences on the upwinding, numerical

fluxes are computed with reference to the flux of the energy variable P = ρΘ. To illustrate, we consider the

fluxes in the horizontal direction.

1. Interface velocity is determined by averaging the neighbouring cell values:

u =
1

2
(uL + uR) (3.5)

where uL and uR are linearly reconstructed to obtain a second-order accurate discretization. At the

interface (xi+1/2, yj), the reconstructed values read:

uL = ui +
1

2
ψ(ui − ui−1, ui+1 − ui) (3.6a)

uR = ui+1 −
1

2
ψ(ui+1 − ui, ui+2 − ui+1) (3.6b)

where ψ is a slope function. In particular, we have:

ψ(a, b) =
a+ b

2
(3.7)
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for centred slopes, whereas

ψ(a, b) =


2ab

a+ b
χ(min(a/b, b/a)) (sgn(ab) > 0)

0 otherwise
χ(r) = 1 + r(1− r)(1− r2) (3.8)

for van Leer-like limited slopes (see [61]). The results presented in this work have all been obtained

without using limiters.

2. The obtained velocities are used to compute the upwind fluxes for the P variable as:

F (P ) = F+(P ) + F−(P ) (3.9)

where:

F+(P ) = PL max(u, 0), F−(P ) = PR min(u, 0) (3.10)

and PL and PR denote linearly reconstructed energy values at the interface obtained with the formulas

(3.6).

3. Fluxes for the remaining advected quantities φ ∈
{

Θ−1,vΘ−1
}

are referred to the carrier flux Pv and

derived using (3.9) to get:

F (φ) = F+(P )φL + F−(P )φR (3.11)

where the subscripts denote reconstructed values.

4. For the momentum equation, i.e. φ = v/Θ in (3.11), the pressure contribution is obtained by interpo-

lating the adjacent nodal values to the cell interface centres. In the no-gravity case the interpolation

amounts to a simple average, while in a stratified setting a modification will be required, which is

described below, see Section 4.4.2. Similarly, the gravity source term in (3.2b) will be handled within

the well balanced framework analyzed in Chapter 4.

Time discretization

As for the time discretization, different two-time-level explicit schemes are available and have been imple-

mented. The common idea is that discrete variables at the new time level are obtained subtracting the net

outflow fluxes at the interface from the old-time-level ones and adding the contributions from the source

terms. With the definitions of (3.3) and (3.4), we obtain:

Un+1,∗
C = Un

C −
∆t

|C|
∑
I∈∂C

F
n+ 1

2 ,∗
I (U) +

∆t

|C|
S
n+ 1

2 ,∗
C (U), (3.12)

where the sum runs over the interfaces I that make up the boundary ∂C of cell C. Furthermore, we have

denoted with a superscripted asterisk quantities computed in the predictor step.
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Runge-Kutta time integration

Let us define:

L(U) = − 1

|C|
∑
I∈∂C

F
n+ 1

2

I (U) +
∆t

|C|
S
n+ 1

2 ,∗
C (U). (3.13)

For simplicity, in all our tests we employed a two-stage second-order strong stability preserving Runge-Kutta

method [46], which reads:

U
(1)
C = Un

C + ∆tL(Un
C) (3.14a)

Un+1,∗
C =

1

2
Un
C +

1

2
U

(1)
C +

1

2
∆tL

(
U

(1)
C

)
. (3.14b)

This corresponds to the classical Heun’s method (see [36]), which amounts to computing the new time-level

variables using an average of the initial and first-stage slopes. Above, U (1)
C denotes the first-stage solution.

Therefore, the discrete version of the auxiliary system solved in the predictor step reads:

ρn+1,∗
C = ρnC −∆t

(
∇̃ ·
(
Pv Θ−1

))n+ 1
2 ,∗

C
, (3.15a)

(ρv)
n+1,∗
C = (ρv)

n
C −∆t

(
∇̃ ·
(
Pv ◦ vΘ−1 + pnI

))n+ 1
2 ,∗

C
−∆t gk (ρ)

n+ 1
2 ,∗

C , (3.15b)

Pn+1,∗
C = PnC −∆t

(
∇̃ · (Pv)

)n+ 1
2 ,∗

C
. (3.15c)

Above, the n+1/2, ∗ superscript denotes time averaging in agreement with the chosen time integrator. Once

again, we stressed the use of the old-time-level pressure value in the momentum equation. Furthermore, the

following symbolic notation was used to denote the balance of a numerical flux f across cell boundaries

∂C,

∇̃ · fC =
1

|C|
∑
I∈∂C

f I · n =
1

|C|

∮
∂C

f · n d`+O
(
∆x2

)
. (3.16)

The validation tests in this chapter will be carried out with the homogeneous scheme. We refer to Section

4.3 below for details on the discretization of the gravity source term in the predictor. We finally remark that

further experiments have been tried with the Strang splitting strategy used in [61]. Results in that direction

are still object of research and are not further discussed in the present work.

Time step choice

The time discretization used in (3.15) is explicit. As such, the employed time step ∆t must be chosen in

abidance by the so-called CFL stability condition [28]. As we neglect the effect of dynamic pressure — and

thus, explicit compressibility — in the momentum equation, the condition reads for one dimensional flow:

‖u‖∞∆t

∆x
≤ 1 (3.17)
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where ∆x is the grid size and ‖u‖∞ the maximum of the advecting flow velocity. A choice of the pair

(∆x,∆t) corresponds to a numerical speed unum = ∆x/∆t. Condition (3.17) states that, for an explicit

scheme to be stable, only those pairs (∆x,∆t) are admissible that correspond to a unum greater or equal

to the advecting velocity u of the flow under consideration. The ratio CFL = u/unum is called the Courant

number and condition (3.17) states that explicit schemes are stable for CFL ≤ 1 (see [90] for a thorough

explanation).

The extension of condition (3.17) to vectorial velocities in a multidimensional setting reads, for an upwind

method [72]:
‖v‖1∆t

∆x
≤ 1 (3.18)

where ‖ · ‖1 is the discrete L1 norm (see below, Section 3.2) and v the vector of the maximum velocity

values in the coordinate directions.

Our scheme features an adaptive choice of the time step. In particular, we dynamically compute the time

step size at each time loop according to:

∆t = min (∆tI,∆tA,∆tB) (3.19)

where ∆tI is an externally imposed value of the time step. ∆tA is the advective time step:

∆tA =
CFL ∆x

maxΩ (‖v‖2)
, (3.20)

where CFL ≤ 1 and ‖ · ‖2 is the discrete L2 norm. ∆tB is a buoyancy-dependent time step which will be

discussed below, see Section 4.3. Dynamically adaptive time stepping is standard in computational fluid

dynamics and its implementation is straightforward [72].

At the end of the predictor step:

• the scalar variables ρ, Θ and P are second-order-accurate (see [61]);

• the advecting fluxes (Pv)
n+1/2 do not provide a stable update for P , i.e., they are not compliant with

the energy equation (2.12c) in the fully compressible model. This corresponds to the violation of the

divergence constraint (2.21c) in the pseudo-incompressible context;

• the use of the old-time level pressure prevents the scheme from being fully second-order accurate.

3.1.2 Corrector

In the second, implicit part of our scheme, we build two Helmholtz elliptic problems for the pressure

increments. The solution of the first elliptic problem corrects the advecting fluxes, which were computed

neglecting a semi-implicit discretization of the energy equation at the half time level. The solution of the

second elliptic problem, located at the grid nodes, corrects the use of the old time-level pressure in the

predictor and adjusts the momenta to second-order-accurate values. In both problems, the difference with
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the Poisson equation obtained in the incompressible formulation [61, 100, 122] lies in an additional zero-

order term which accounts for the energy time derivative in Equation (2.12c). The added term is obtained

using a discrete version of the equation of state (2.10) that links P with p and builds compressibility into

the scheme, i.e., the dynamical effect of pressure upon density.

First step

The first correction step corresponds to the MAC-projection in projection methods for incompressible

flows [12, 49]. Consider the energy equation at the half time level:

[
∂P

∂t
+∇ · (Pv)

]n+ 1
2

= 0. (3.21)

Since the predictor has second-order temporal accuracy, the advecting fluxes (Pv)
n+ 1

2 ,∗ provide a first-

order accurate update at the half time level. This is sufficient to maintain second-order accurate advection.

However, for stability reasons it is necessary to add the effect of the new-time-level pressure gradient into

the advecting flux. Consider the momentum equation (2.12b). Multiplying it by Θ we obtain:

(Pv)t +∇ · (Pv ◦ v) + Θ∇p+ Pgk = ρv (Θt + v · ∇Θ) = 0 (3.22)

where we used mass (2.12a) and energy (2.12c) conservation equations to cancel the second expression.

Integrating then (3.22) in time over a half time step we find:

(Pv)
n+ 1

2 = (Pv)
n − ∆t

2
[∇ · (Pv ◦ v)]

n+ 1
4 − ∆t

2
(Pgk)

n+1/4 − ∆t

2
(Θ∇p)n+ 1

4 (3.23a)

= (Pv)
n − ∆t

2
[∇ · (Pv ◦ v)]

n+ 1
4 − ∆t

2
(Pgk)

n+1/4 − ∆t

2
Θn+ 1

4∇
[

1

2

(
pn + pn+ 1

2

)]
(3.23b)

= (Pv)
n − ∆t

2
[∇ · (Pv ◦ v)]

n+ 1
4 − ∆t

2
(Pgk)

n+1/4 − ∆t

2
Θn+ 1

4∇
{

1

2

[
2pn + (pn+ 1

2 − pn)
]}

(3.23c)

= (Pv)
n − ∆t

2
[∇ · (Pv ◦ v)]

n+ 1
4 − ∆t

2
(Pgk)

n+1/4 − ∆t

2
Θn+ 1

4

[
∇pn +

1

4
∇
(
pn+1 − pn

)]
(3.23d)

= (Pv)
n+ 1

2 ,∗ − ∆t

2
Θn+ 1

2 ,∗∇δp
4
. (3.23e)

In the derivation above, we used the following relations

pn+ 1
2 − pn =

1

2

(
pn+1 − pn

)
+O

(
(∆t)

2
)
, Θn+ 1

2 ,∗ = Θn+ 1
4 +O

(
(∆t)

2
)

(3.24)

for ∆t→ 0 and we defined as δp = pn+1 − pn the unknown cell-centred pressure increment. The asterisk

denotes predicted values. Next, consider the energy equation (3.21). We observe that:
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∂P

∂t

)n+ 1
2

=

(
∂P

∂p

∂p

∂t

)n+ 1
2

=

(
∂P

∂p

)n+ 1
2 ,∗ δp

∆t
+O

(
(∆t)

2
)

(3.25)

where we used Pn+ 1
2 = Pn+ 1

2 ,∗ +O
(

(∆t)
2
)

for ∆t→ 0. To compute the derivative of the energy with

respect to pressure, we use the equation of state in the form (2.10). Inserting then (3.23e) and (3.25) into

(3.21) we obtain the discrete elliptic problem:

1

Rγ∆t

(
Pn+ 1

2 ,∗R

pref

)1−γ

C

δp+ ∇̃ · [(Pv)
n+ 1

2 ,∗]C − ∇̃ ·
[

∆t

2
Θn+ 1

2 ,∗∇δp
4

]
C

= 0 (3.26)

that is:

− 1

Rγ∆t

(
Pn+ 1

2 ,∗R

pref

)1−γ

C

δp+ ∇̃ ·
[

∆t

8
Θn+ 1

2 ,∗∇δp
]
C︸ ︷︷ ︸

Pn+1
C − Pn+1,∗

C

∆t

= ∇̃ · [(Pv)n+ 1
2 .∗]C︸ ︷︷ ︸

−
Pn+1,∗
C − PnC

∆t

. (3.27)

Expression (3.27) is a Helmholtz problem. Implicit compressibility is included in the zero-order term —

the first on the left hand side. The term is not present in the pseudo-incompressible formulation (2.21), for

which the energy equation (2.21c) is a divergence constraint that gives rise to a Poisson problem.

Note that in the expression (3.23e), since

(∇δp)n+ 1
2 ,∗ = (∇δp)n+ξ,∗

+O
(

(∆t)
2
)

(3.28)

for ξ ∈ [0, 1] and ∆t→ 0, any ξ ∈ [0, 1] would maintain the desired accuracy. The choice ξ = 1/4 corre-

sponds to a midpoint, symplectic discretization. However, in a context of small-scale acoustics superposed

on a larger-scale flow, the choice ξ = 1/4 prevents the solution from adjusting to the expected advective

behaviour, a feature we noticed while benchmarking the code on the smooth vortex, see Section 3.2.2 below.

To sidestep the issue and in view of (3.28), similarly to [121] we choose ξ = 1 and use, instead of (3.23e),

the following expression:

(Pv)
n+ 1

2 = (Pv)
n+ 1

2 ,∗ − ∆t

2
Θn+ 1

2 ,∗∇δp. (3.29)

Thus, we obtain the modified Helmholtz problem:

−

(
Cn+ 1

2 ,∗
H

∆t
δp

)
C

+ ∇̃ ·
[

∆t

2
Θn+ 1

2 ,∗∇δp
]
C

= ∇̃ · [(Pv)n+ 1
2 .∗]C (3.30)

where we defined:

Cn+ 1
2 ,∗

H =

(
∂P

∂p

)n+ 1
2 ,∗

=
1

Rγ

(
Pn+ 1

2 ,∗R

pref

)1−γ

. (3.31)

In (3.27) we highlighted that the second-order differential operator accounts for the energy correction with

respect to the value Pn+1,∗
C computed by the predictor, while the right hand side represents the energy

increment itself, i.e., the negative of the last term in the predictor energy equation (3.15c). The sum of these
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two terms in the form of the new zero-order term explains how the Helmholtz problem accounts for stable

time increments of P in the compressible framework. The effect is not present in the pseudo-incompressible

model where P = P (z) and the solution of the Poisson equation projects away any pressure imbalance to

yield Pn+1 ≡ P at the discrete level up to the tolerance of the elliptic solver.

The elliptic problem (3.30) is solved on the cellsC with a standard flux-based approach using the divergence

theorem to write the discrete second-order operator as sum of the integrals of divergence argument across

the cell interfaces. Piecewise constant data are assumed on the interfaces I ∈ ∂C of the primary cells

and the discrete divergence is computed via integration on ∂C. We refer the reader to [61] for details. A

five-point stencil is used in the first projection.

With the solution of (3.30) at hand, the corrections to the advecting fluxes as of equation (3.23e) are built

as:

δPv · n = −∆t

2
Θ∇δp · n (3.32)

and the predicted values are corrected by:

ρn+1
C = ρn+1,∗

C −∆t∇̃ ·
(
δPvΘ−1

)
C

(3.33a)

(ρv)n+1,∗∗
C = (ρv)n+1,∗

C −∆t∇̃ ·
(
δPv ◦ vΘ−1

)
C

(3.33b)

Pn+1
C = Pn+1,∗

C −∆t∇̃ · (δPv)C . (3.33c)

Here, the advected variables Θ−1 and vΘ−1 are evaluated at n + 1/2, ∗. Further, the new momentum

variable collects a second asterisk to indicate a preliminary value that needs to be updated after the second

correction step. By contrast, the value of ρ and P will remain unmodified from this point on.

After stabilizing the advecting fluxes with an implicit cell-centred pressure increment, we are ready to tackle

the issue of the old-time-level pressure in the momentum equation.

Second step

The use of the old-time-level pressure in the momentum equation (3.1b) makes the predictor only first-order-

accurate with respect to momentum. In a second correction step, the momentum flux and the pressure are

corrected to achieve stable, second-order-accurate values.

A first, straightforward route is to interpolate the solution δp of the first correction equation (3.30) from the

cell centres to the interfaces. The values are then used to correct the momentum computed in (3.33b) via

the following expression:

(ρv)n+1
C = (ρv)n+1,∗∗

C − ∆t

2
∇̃ · (δpI)C . (3.34)

This strategy, however, generates an unstable update. Therefore, for stability reasons we solve a second

elliptic problem for a node-centred pressure variable (see also [3, 100, 122] for similar procedures).
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We proceed as in the previous section and integrate the momentum equation, this time over the entire time

interval
[
tn, tn+1

]
. After multiplication by Θn+1 and taking into account that the scalars ρ, P , Θ have

already attained their final values after the first correction, we have:

(Pv)
n+1

= (Pv)n −∆t∇ · (Pv ◦ v)
n+ 1

2 −∆t (Pgk)
n+ 1

2 −∆tΘn+1 (∇p)n+ 1
2 (3.35a)

= (Pv)n −∆t∇ · (Pv ◦ v)
n+ 1

2 −∆t (Pgk)
n+ 1

2 −∆tΘn+1∇
[

1

2
(pn + pn+1)

]
(3.35b)

= (Pv)n −∆t∇ · (Pv ◦ v)
n+ 1

2 −∆t (Pgk)
n+ 1

2 −∆tΘn+1∇
[

1

2

(
2pn + (pn+1 − pn)

)]
(3.35c)

= (Pv)n+1,∗∗ − ∆t

2
Θn+1∇δpν . (3.35d)

In (3.35d), the two asterisks in the superscript indicate values after the first correction step. As in the first

step, we replace (3.35d) in:

(
∂P

∂t

)n+ 1
2

+∇ ·
[
θ (Pv)

n+1
+ (1− θ) (Pv)

n
]

= 0, (3.36)

where θ ∈ [1/2, 1] is an off-centring parameter. In particular, a second-order-accurate trapezoidal discretiza-

tion is obtained for θ = 1/2, whereas for 1/2 < θ ≤ 1 the discretization is first-order accurate. Unless

otherwise stated, we will use θ = 1/2 throughout. The result is the Helmholtz problem:

(
−
Cn+1
H

∆t
δpν

)
C

+ ∇̃ ·
(
θ

∆t

2
Θn+1∇δpν

)
C

= ∇̃ ·
[
θ(Pv)n+1,∗∗ + (1− θ)(Pv)n

]
C

(3.37)

where Cn+1
H is defined as in (3.31) using the corrected value of P and we marked with δpν the unknown

nodal pressure increment. As in the first correction step, the zero-order term on the left hand side of (3.37)

accounts for compressibility, while the old/new-time-level weighting in the square bracket on the right hand

side ensures consistency with a second-order-accurate discretization for θ = 1/2.

The second Helmholtz problem is solved by integration over the dual cells — whose centres are the grid

nodes, see Figure 3.1. A nine-point stencil is used for the discretization of the Laplacian in (3.37). The

nodal values of the pressure increments define continuous piecewise bilinear pressure distributions on the

primary control volumes. We integrate their gradients analytically over the boundaries I ∈ ∂C of the dual

cells that are centred on the grid nodes. The solution δpν is accordingly defined in the centres of the dual

cells C. We refer to [61, 122] for details.

The solution δpν is transferred to the centres of the cell faces via simple averaging of the two adjacent

nodal values. The obtained values at the cell interfaces are then used to update the momentum to its final,

second-order-accurate value via formula (3.34). The time loop is completed by the computation of the final

velocity via vn+1 = (ρv)
n+1
C /ρn+1

C and the pressure update detailed below.
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We remark that the scheme constructed above conserves total mass, horizontal momentum and the total

mass-weighted potential temperature P . Other variables such as total energy are not conserved by design.

A related analysis is presented for the rising bubble case in Section 4.5.2. We refer to [41, 117] for related

discussion.

Pressure update

A first option for the pressure update is to take the solution δpν to the problem (3.37) and add it to the

old-time-level nodal value:

pn+1 = pn + δpν . (3.38)

This is the strategy employed in the pseudo-incompressible context. However, in the compressible case this

way of updating the pressure brings about instabilities in the benchmark vortex runs, see below Section

3.2.2. To solve the problem we introduce a binding option, whereby an auxiliary cell-centred pressure value

pC is computed from the final value PC of the energy variable using the inverse of the equation of state

(2.10) in discrete form:

pn+1
C =

(
Pn+1

ρrefTref

)γ
pref. (3.39)

The obtained value is then interpolated to the nodes and yields the new value of the nodal pressure pn+1.

BDF2 discretization

Similarly to what is done in [121] in a shallow water setting, we implement a multistep option for the second

correction step. For the ordinary differential equation:

du

dt
= L(u) (3.40)

where L is a differential operator, the backward difference discretization of order 2 (BDF2) reads as follows

[36]:
3
2u

n+1 − 2un + 1
2u

n−1

∆t
= L(un+1). (3.41)

The BDF2 method yields second-order accurate approximations and is widely employed in meteorological

applications [36]. In [123], dispersion studies are presented on the linear acoustic equations that highlight

the different numerical damping and phase speed associated with the BDF2 method in comparison with the

trapezoidal method.

The momentum equation reads, neglecting the gravity term to illustrate:

(ρv)
n+1

=
4

3
(ρv)

n − 1

3
(ρv)

n−1 − 2

3
∆t∇ · (ρv ◦ v)

n+1 − 2

3
∆t∇pn+1. (3.42)

Using then flux extrapolation:

(ρv ◦ v)
n+1

= (ρv ◦ v)
n+ 1

2 +
1

2

(
(ρv ◦ v)

n+ 1
2 − (ρv ◦ v)

n− 1
2

)
(3.43)
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and pn+1 = pn + δpν , where δpν = pn+1 − pn as above, and defining the intermediate momentum update

as:

(ρv)
n+1,∗∗

=
4

3
(ρv)

n − 1

3
(ρv)

n−1 − 2

3
∆t
[
∇ · (ρv ◦ v)

n+1
+∇pn

]
, (3.44)

we write the momentum update at the new time level:

(ρv)
n+1

= (ρv)
n+1,∗∗ − 2

3
∆t∇δpν (3.45)

whereupon

(Pv)
n+1

= (Pv)
n+1,∗∗ − 2

3
∆tΘn+1,∗∗∇δpν . (3.46)

At time n+ 1, the energy equation reads:(
∂P

∂t

)n+1

+∇ · (Pv)
n+1

= 0 (3.47)

from which
Cn+1
H

∆t

(
3

2
δpν −

1

2
δpoldν

)
= −∇ ·

[
(Pv)

n+1,∗∗ − 2

3
∆tΘn+1∇δpν

]
(3.48)

and δpoldν = pn − pn−1. Finally, the Helmholtz equation for the pressure increment reads:(
−

3Cn+1
H

2∆t
δpν

)
C

+
2

3
∆t∇̃ ·

(
Θn+1∇δpν

)
C

= ∇̃ · (Pv)
n+1,∗∗
C

−
(
Cn+1
H

2∆t
δpoldν

)
C

. (3.49)

The value of (Pv)n+1,∗∗ on the right hand side is computed expanding (3.44) using (3.43) as follows:

(ρv)
n+1,∗∗

= (ρv)
n

+
1

3
(ρv)

n − 1

3
(ρv)

n−1−∆t∇ · (ρv ◦ v)
n+ 1

2 +
1

3
∆t∇ · (ρv ◦ v)

n− 1
2

−∆t∇pn +
1

3
∆t∇pn. (3.50)

The underlined terms represent the momentum after the first projection in the current time step, which we

call (ρv)n+1,∗∗
1 , so that the above expression becomes:

(ρv)
n+1,∗∗

= (ρv)n+1,∗∗
1 +

1

3
(ρv)

n−1

3
(ρv)

n−1
+

1

3
∆t∇ · (ρv ◦ v)

n− 1
2

+
1

3
∆t∇

(
pn − pn−1

)
+

1

3
∆t∇pn−1 (3.51)

where now the underlined terms denote −1/3 times the momentum after the first projection in the previous

time step (ρv)n,∗∗1 . Finally, after multiplication by Θn+1
1 we obtain:

(Pv)
n+1,∗∗

= (Pv)n+1,∗∗
1 − 1

3
(Pv)n,∗∗1 +

1

3
(Pv)

n
+

1

3
Θn+1,∗∗

1 ∆t∇δpnold. (3.52)
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Summary of the numerical scheme

For the reader’s convenience, we summarize the operations performed by the numerical scheme in the

following:

Algorithm 1 (Compressible scheme).
Starting from compliant initial and boundary conditions:

Initialization
Grid setting and input preprocessing. Then, for each time loop, do:

Predictor
(i) Compute linearly reconstructed P and v values at the interfaces via (3.6) and compute advect-

ing upwind fluxes of P via (3.9);
(ii) Linearly reconstruct 1/Θ and v/Θ at the cell interfaces and compute the remaining advecting

fluxes via (3.11). For the momentum, interpolate the nodal pressure values to the cell interface
centres for the flux computation;

(iii) Compute new-time-level predicted quantities using (3.15)
First Correction

(i) Solve the Helmholtz equation (3.30) for cell-centred pressure increments;
(ii) Use the solution to correct advecting fluxes via (3.33);

Second Correction
(i) Solve the Helmholtz equation (3.37) for node-centred pressure increments;

(ii) Interpolate the solution on cell interface centres and correct momentum flux via (3.34).
Pressure update

Synchronise the energy and pressure via the equation of state using the binding formula (3.39);
Conclusion

Post-processing and output management.

3.2 Numerical results

This section contains the validation of the semi-implicit fully compressible method. After an outline of

the coding framework that we used to implement the scheme, we move on to describe the test case of

the smooth vortex upon which we validated the method’s properties. Comparisons between compressible

and pseudo-incompressible runs are presented and convergence tests are discussed for the proposed fully

compressible version. Finally, the compressible features of the scheme are tested on a simple acoustic wave.

Remark on norms

We give some definitions that will be used throughout the work. Given a function u defined on a domain

Ω ∈ Rm, m = 2, 3 we define its Lk norm as:
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‖u‖k :=

(∫
Ω

|u|k dx
)1/k

∀ 1 ≤ k <∞ (3.53a)

‖u‖∞ := sup
x∈Ω
|u(x)| . (3.53b)

For discrete functions, expressions (3.53) translate into the definition of k-norm for a vector u = {ui}ni=1:

‖u‖k :=

(∑
i

|ui|k
)1/k

∀ 1 ≤ k <∞ (3.54a)

‖u‖∞ := max
i

(|ui|) (3.54b)

and the induced definition of matrix k-norm for a matrix A = {aij}i=1,...,l; j=1...n:

‖A‖k = sup
Rn3x 6=0

‖Ax‖k
‖x‖k

. (3.55)

3.2.1 Coding framework

The numerical model is implemented in an object-oriented C++ environment based on the SAMRAI

framework [51] for mesh refinement. The compressible extension is built over an in-house flow solver

originally designed for the simulation of multiphase flows developed at the Geophysical Fluid Dynam-

ics working group in the Institute of Mathematics at Freie Universität Berlin. The solver is based on the

pseudo-incompressible numerical framework presented in [61].

Since the code is fully parallelized and has built-in grid adaptivity features, its use appears to be advanta-

geous in a number of envisaged atmospheric applications, see e.g. [11, 78]. Although for the purposes of

the present study we focused our attention to two dimensional serial runs, the code is 3d-ready.

In the implementation of the scheme we made extensive use of preprocessor instructions (see e.g.

[134] for details), which facilitated switching between different configurations, e.g. compressible/pseudo-

incompressible, trapezoidal/bdf2 etc.

The linear systems in the correction step are solved with the Krylov-type BiCGStab method [124] with

algebraic multi-grid preconditioners as included in the Hypre library [40]. The code has an option for solving

with GMRES [98] but BiCGStab has been observed to give better results and therefore was used throughout.

The solver tolerance was set at 10−12 for all of the test cases. We remark that the coding framework we use

is not fully optimized. For some tests the total wallclock time is reported for reference.

As for visualization, we employed the open-source VisIt package [25]. The data were then exported into

MATLAB R©1 for the production of plots. The simulations were performed on a personal computer Intel R©

CoreTM i7-2640M CPU @2.80GHz×4, 7.7 GB RAM in double machine precision. An execution of the

standard MATLAB command eps on this system yields the value eps = 2.22e-16. Source files and data

are available upon request at benacchio@math.fu-berlin.de.
1 Version 7.14.0.739 (2012a)

benacchio@math.fu-berlin.de
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3.2.2 Smooth vortex

The first benchmark [56] consists of a travelling, axisymmetric, anticlockwise rotating vortex in the doubly

periodic, unit-square-shaped domain [0, 1]
2 m2. The initial data for density and velocity are as follows:

ρ(x, y, t) =


ρc +

1

2
(1− r2)6 if r < 1,

ρc otherwise
(3.56)

u(x, y, t) =

−1024 sin(ϑ)(1− r)6r6 + uc if r < 1,

uc otherwise
(3.57)

v(x, y, t) =

1024 cos(ϑ)(1− r)6r6 + vc if r < 1,

vc otherwise.
(3.58)

(3.59)

where

ϑ = arctan
y − yc(t)
x− xc(t)

, r =

√
(x− xc(t))2 + (y − yc(t))2

R
(3.60)

are the angular and radial coordinate for the vortex, the latter rescaled by the value of its radius held fixed

at R = 0.4 m. The vortex is initially placed at the centre of the domain, the coordinates of the centre being

(xc(0), yc(0)) = (0.5, 0.5). The initial pressure field is computed by means of the centripetal force formula:

p = pcoeffρc
(
u2
c + v2

c

)
. (3.61)

In the general case of ρc 6= 1/2, the expression of the pressure coefficient in the travelling vortex as in [56]

has to be modified as follows:

pcoeff(r) = 10242r12

[
1

72
r24 − 6

35
r23 +

15

17
r22 − 74

33
r21 +

57

32
r20 +

174

31
r19

−269

15
r18 +

450

29
r17 +

153

8
r16 − 1564

27
r15 +

510

13
r14 +

204

5
r13

− 1

24
(2210− ρdl)r12 +

12

23
(85− ρdl)r11 +

(
510

11
+ 3ρdl

)
r10

− 4

21
(391 + 55ρdl)r

9 +
9

40
(119 + 110ρdl)r

8 +
18

19
(25− 44ρdl)r

7

−1

9
(269− 462ρdl)r

6 +
6

17
(29− 132ρdl)r

5 +
3

16
(19 + 165ρdl)r

4

− 2

15
(37 + 110ρdl)r

3 +
3

7
(5 + 11ρdl)r

2 − 6

13
(1 + 2ρdl)r +

1

24
(1 + 2ρdl)

]
(3.62)

where ρdl =
[
1 + 1

2 (1− r2)6
]
/ρc. The initial data are depicted in Figure 3.2.

The density has a bulge in the centre, the velocity has a maximum absolute value of 1+
√

2 in the lower right

part of the vortex, while pressure perturbation displays a corresponding negative bulge. Since the vortex is
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Figure 3.2: Initial data for the smooth vortex. Density (upper left), pressure perturbation (upper right), momentum mag-
nitude (2-norm, lower left), P (lower right). Colour shading every 0.025 kg m−3 in the interval [0.525, 0.975] kg m−3

for the density, every 0.025 Pa in [−0.3, 0.025] Pa for the pressure. For the momentum norm, 10 shades of colour are
shown in the interval [0.2427, 1.489] kg m−2 s−2. For P , the minimum value of 353.04797 kg K m−3 was subtracted
for plotting and 12 shades of colour are shown in the interval [0, 7.93e-04] kg K m−3.

advected at constant speed (uc, vc), the formulas:

xc(t) = 0.5 + uct, yc(t) = 0.5 + vct (3.63)

yield the position of the centre of the vortex at all times t. In agreement with [56] we consider unitary

velocity (uc, vc) = (1, 1) m s−1.

This test case case is an exact solution for both the zero Mach number incompressible equations, to which

Durran’s pseudo-incompressible model reduces in the absence of gravity (see [61]), and for the compressible

equations initialized with consistent pressure data. Moreover, in the compressible case we derive the initial

distribution for the energy P via the equation of state in (2.10).

Reference physical quantities are set as follows:

ρref = 0.5 kg m−3, pref = 101625 Pa, Tref = 706.098 K, γ = 1.4, (3.64)

corresponding to a maximum Mach number of Mmax = max
(
‖v‖2/

√
γp/ρ

)
≈ 4.52e-03. Thus in this
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case the flow is very weakly compressible. The high value of Tref is computed from pref and ρref considered

in [56] and enables an easier comparison with their results.

Because of the doubly periodic boundary conditions and of the unitary velocity, at t = 1 s and t =

2 s the initial configuration is to be reproduced unchanged up to second-order errors. To verify that, we

consider a discrete setting with 192 grid cells in both directions, corresponding to ∆x = 5.21e-03 m. The

time step is determined by formula (3.20). For the sake of validation and along the lines of published

literature [14], we take a safety value of CFL = 0.45 in (3.20). The corresponding constant time step is

∆t = ∆tA = 9.7e-04 s. We remark that these data correspond to a sound-speed-based Courant number

CFLS = CFL/Mmax ≈ 90.72.

The vortex is transported by the background unitary velocity. Compressible results at t = 1 s and t = 2 s

reproduce the initial configuration. Figure 3.3 displays results with the trapezoidal method in the second

projection, Figure 3.4 refers to results obtained with the BDF2 option in the second projection. Left panels

display results at t = 1 s, right panels results at t = 2 s. The simulation with trapezoidal method until the

time t = 2 s (2056 time steps) had a total wallclock time of 2382.57 s. 39% of the total wallclock time was

used by the predictor step and 56% by the corrector step. The simulation with BDF2 had a total wallclock

time of 2369.24 s, 38% of which for the predictor step and 57% for the corrector step.

The numerical scheme is shown to advect the vortex at the correct speed. Results obtained with the pseudo-

incompressible scheme (displayed for t = 1 s in Figure 3.5) show no noticeable difference with the

compressible ones, as intended in the low Mach number regime considered. In Figure 3.5, the energy plot is

not displayed since P ≡ P (z) for the pseudo-incompressible model. Note that the tripole-like shapes in the

external contours at t = 2 s also arise in the pseudo-incompressible runs at that time (not shown) and are

due to the onset of a physical instability which develops after the second round. For the sake of validation

of the compressible scheme in the framework of the convergence studies detailed below, we will use the

results at time t = 1 s.

As for the comparison of compressible and pseudo-incompressible results, a notable difference lies in

the transport of P in the compressible model. As noted, the pseudo-incompressible, Poisson-equation-

based correction step brings the energy distribution back to the imposed P = P (z) at each time loop by

construction. By contrast, the compressible scheme simulates the full dynamics of P as an advected and

conserved quantity, modelling its time derivative as in expressions (3.21) and (3.36). As shown in the graphs,

in the compressible scheme the energy is transported with its shape unchanged after one and two rounds.

Another related difference between the compressible and pseudo-incompressible configuration lies in the

pressure adjustments at the outset of the simulation. Since the compressible scheme models the full dynamics

through a midpoint, P -preserving discretization, in the first stages of runs with the compressible scheme we

observed considerable adjustments to a balanced pressure distribution. This is to be expected as the fully

compressible system admits acoustic solutions which our fully compressible numerical scheme simulates,

albeit implicitly.
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Figure 3.3: Computed results for the smooth vortex at t = 1 s (left panels) and t = 2 s (right panels), fully compressible
model. Density (top row), pressure perturbation (second row), momentum magnitude (2-norm, third row), P (bottom
row). Shades of colour as in Figure 3.2. Values of momentum norm are in the range [0.2426, 1.489] kg m−2 s−2 at
t = 1 s, in the range [0.233, 1.487] kg m−2 s−2 at t = 2 s. Values of the P in the same range as Figure 3.2.
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Figure 3.4: Computed results for the smooth vortex at t = 1 s (left panels) and t = 2 s (right panels), fully compressible
model with BDF2 discretization in the second projection. Density (top row), pressure perturbation (second row),
momentum magnitude (2-norm, third row), P (bottom row). Shades of colour as in Figure 3.2. Ranges of momentum
2-norm and P as in Figure 3.3.
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Figure 3.5: Computed results for the smooth vortex at t = 1 s, pseudo-incompressible model. Density (upper left),
pressure perturbation (upper right), momentum magnitude (2-norm, bottom). Shades of colour as in Figure 3.2. Values
of the momentum norm are in the range [0.2428, 1.489] kg m−2 s−2.

Even though these imbalances are of small amplitude, their effect can be observed in the graphs of the

nodal pressure increment, solution of the second elliptic problem. In the compressible case (Figure 3.6,

left panel) a sizeable asymmetry is present with respect to the pseudo-incompressible run (Figure 3.6 right

panel). The difference between the two graphs mirrors the mathematical character of the compressible

Helmholtz problem on the one hand and the pseudo-incompressible Poisson problem on the other. In the

former, implicit compressibility is modelled by the zero order term that the latter lacks.

Indeed, at a later stage, after the acoustic waves are rebalanced, the plots of the compressible and pseudo-

incompressible models look the same (not shown). We will delve into the adjustment problem in Chapter 5

while presenting blended compressible/pseudo-incompressible simulations.

Since the two elliptic Helmholtz problems (3.30) and (3.37) share the same derivation through the P

equation (3.21), we expect their solutions to match. This is confirmed by the graph in Figure 3.7 which

reports the nodal and cell-centred increments at t = 0.25 s in the compressible case. The maximum

computed error in the L∞ norm between the nodal and cell-centred pressure increment as of Figure 3.7 is

less than 0.5 per cent.

While implementing the compressible scheme, the correct advection of P was a measure of key importance
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Figure 3.6: Computed nodal pressure increment for the smooth vortex at t = 0.05 s by the fully compressible (left)
and pseudo-incompressible (right) models. 12 shades of colour are plotted in the interval [−3.66e-03, 3.81e-03] Pa in
the left panel and [−2.94e-03, 2.93e-03] Pa in the right panel.
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Figure 3.7: Computed nodal (left) and cell-centred (right) pressure increment for the smooth vortex at t = 0.25 s, fully
compressible model. 12 shades of colour are plotted in the interval [−3.45e-03, 3.45e-03] Pa for the nodal pressure and
[−3.45e-03, 3.46e-03] Pa for the cell-centred pressure increments

to assess the validity of the approach. In fact, simple pressure update via adding the solution of the second

correction equation triggered a slight asymmetry in the P distribution. This made us devise the energy-

pressure binding (3.39) which eventually enabled us to produce the results in Figure 3.3 discussed above.

Convergence tests

In this section, we present the results of convergence studies we performed to evaluate the accuracy proper-

ties of our numerical scheme. The soundproof model described in [61] is second-order-accurate. In order to

check that our compressible extension maintains the quadratic rate of error decay with grid refinement, we

will consider the vortex case. Notwithstanding the smoothness of the initial data, it is important to verify the

theoretical accuracy in this idealized situation, before we can proceed with the analysis of buoyancy-driven

flows in Chapter 4. First, we define the error measures we will be employing. Given the discrete value φN
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and a reference value φ with φ = ρ, ρ‖v‖2, p, the relative error Eφ of φN with respect to φ in the k-norm

is defined as:

Eφ(φN ) :=
‖φN − φ‖k
‖φN‖k

∀ 1 ≤ k ≤ ∞ (3.65)

see above for the definition of norms, expressions (3.53) and their calculation in a discrete setting, expres-

sions (3.54) and (3.55). In practice, the values on a discrete two-dimensional grid will be encoded in matrices

and the standard Matlab R© function norm will be used to compute the errors listed below. Moreover, we

define as rate of convergence σφ(φN ) of the discrete solution corresponding to the grid refinement from a

N/2×N/2 grid to a N ×N grid the following quantity:

σφ(φN ) := log2

Eφ(φN/2)

Eφ(φN )
(3.66)

where the errors on the numerator and denominator are computed in the same norm. Therefore, checking

the second-order accuracy of our method, we aim at σφ values of 2.

Convergence test with initial data as exact solution

As in [56], we develop our convergence analysis from the computed data at time t = 1 s, displayed above

in Figure 3.3 for the compressible model. The convergence tests refer to the version with trapezoidal

integration in the second projection. In [56], the errors are computed taking the initial data as exact solution.

We could have also used the computed data after a few time steps and then shift them to compare them with

the initial data. However, in this way we would not have been able to assess, for instance, the correctness of

the implementation of the periodic boundary conditions.

An investigation of the results using the grid sizes as of [56] reveals super-optimal rates for the pressure p and

sub-optimal rates for density ρ and momentum magnitude ρ‖v‖2 (Table 3.1 and Figure 3.8). Hereafter, for

simplicity Eφ and σφ defined in (3.65) and (3.66) will not feature the argument φN in the tables and figures.

Moreover, the value of the rate σφ is to be understood as the one computed between the (N × N)-sized

grid and the (N/2×N/2)-sized grids.

Table 3.1: Variation of relative L2 and L∞ errors and convergence rates for the smooth vortex case as of Fig. 3.8, fully
compressible runs. Errors computed as numerical solution at t = 1 s on grids with N2 cells with respect to initial data.

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L∞

64 1.20e-02 2.75e-02 1.02e-01
96 6.36e-03 1.36e-02 4.28e-02

128 3.85e-03 1.64 7.84e-03 1.81 2.40e-02 2.11
192 1.80e-03 1.83 3.53e-03 1.94 8.66e-03 2.32

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L2

64 9.41e-03 1.92e-02 8.06e-02
96 4.95e-03 9.94e-03 3.26e-02

128 2.97e-03 1.67 5.88e-03 1.71 1.76e-02 2.22
192 1.38e-03 1.84 2.71e-03 1.88 6.88e-03 2.26
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Figure 3.8: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the smooth vortex
case, fully compressible runs. Errors of computed solutions at t = 1 s on grids with N2 cells with respect to initial data.
The dashed-dotted line represents quadratic slope.

In order to check whether the sub-optimal rates are a product of our compressible extension, we ran the

tests on a pseudo-incompressible version of the code (Table (3.2) and Figure (3.9)). The results mirror the

previous ones, ruling out a difference due to the simulation of compressibility.

Table 3.2: Variation of relative L2 and L∞ errors and convergence rates for the smooth vortex case as of Fig. 3.9,
pseudo-incompressible runs. Errors computed as numerical solution at t = 1 s on grids with N2 cells with respect to
initial data.

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L∞

64 1.21e-02 2.74e-02 1.28e-01
96 6.34e-03 1.34e-02 5.94e-02

128 3.84e-03 1.65 7.72e-03 1.83 3.35e-02 1.96
192 1.79e-03 1.82 3.54e-03 1.92 1.47e-02 2.02

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L2

64 9.32e-03 1.91e-02 9.43e-02
96 4.90e-03 9.89e-03 4.26e-02

128 2.94e-03 1.67 5.85e-03 1.71 2.39e-02 2.00
192 1.37e-03 1.84 2.70e-03 1.88 1.07e-02 2.01
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Figure 3.9: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the smooth vortex
case, pseudo-incompressible runs. Errors of computed solutions at t = 1 s on grids with N2 cells with respect to initial
data. The dashed-dotted line represents quadratic slope.

Then, we consider again the compressible model and repeat the analysis for finer grids (Table 3.3 and Figure



40 3 A semi-implicit, soundproof-compatible weakly compressible numerical method

3.10). Convergence rates for density and momentum magnitude are seen to approach the desired value. This

is to be expected as the pressure adjustments in the initial stages of the simulations as seen in Figure 3.6

have smaller effects on the computed solution at final time on finer grids. In particular, this was observed in

the decaying amplitude of generated pressure waves in the compressible case at the outset for finer grids (not

shown). However small though this amplitude, it appears to contribute to worsening the rate of convergence

of the pressure error, notably in the 384-to-768 segment, where it nearly approaches a linear rate.

Table 3.3: Variation of relative L2 and L∞ errors and convergence rates for the smooth vortex case as of Fig. 3.10, fully
compressible runs. Errors computed as numerical solution at t = 1 s on grids with N2 cells with respect to initial data.

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L∞

64 1.20e-02 2.75e-02 1.02e-01
96 6.36e-03 1.36e-02 4.28e-02
128 3.85e-03 1.64 7.84e-03 1.81 2.40e-02 2.11
192 1.80e-03 1.83 3.53e-03 1.94 8.66e-03 2.32
256 1.02e-03 1.91 2.02e-03 1.96 5.50e-03 2.14
384 4.60e-04 1.97 9.12e-04 1.95 2.44e-03 1.84
512 2.59e-04 1.98 5.16e-04 1.97 1.51e-03 1.87
768 1.16e-04 1.99 2.31e-04 1.98 1.13e-03 1.11

1024 6.50e-05 2.00 1.30e-04 1.99 4.55e-04 1.74

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L2

64 9.41e-03 1.92e-02 8.06e-02
96 4.95e-03 9.94e-03 3.26e-02
128 2.97e-03 1.67 5.88e-03 1.71 1.76e-02 2.22
192 1.38e-03 1.84 2.71e-03 1.88 6.88e-03 2.26
256 7.91e-04 1.91 1.54e-03 1.88 3.87e-03 2.20
384 3.57e-04 1.95 6.94e-04 1.93 1.82e-03 1.92
512 2.02e-04 1.97 3.92e-04 1.93 1.21e-03 1.69
768 9.05e-05 1.98 1.75e-04 1.96 8.52e-04 1.10

1024 5.11e-05 1.99 9.87e-05 1.96 3.62e-04 1.74
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Figure 3.10: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the smooth
vortex case, fully compressible runs. Errors of computed solutions at t = 1 s on grids with N2 cells with respect to
initial data. The dashed-dotted line represents quadratic slope.
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Convergence test with respect to a fine-grid solution

In order to investigate further the convergence in the vortex case, we perform yet another convergence

study. Here the reference solution is taken to be the one at final time t = 1 s as computed on a fine grid

(768 × 768 or 1024 × 1024 points). The fine-grid values are then restricted to coarser grids via standard

interpolation to make them comparable with the results obtained with the coarser-grid simulations and to

compute the corresponding errors. With this procedure, we are implicitly relying on the assumption that our

scheme provides a physically meaningful solution. Therefore, as reference solution for this test we are not

using the solution at a different time level, thereby avoiding comparison between data before and after the

compressible adjustment occurring in the first stages of the simulation.

Considering Tables 3.4 and 3.5 and Figures 3.11 and 3.12, some coarse-grid effects as the one noticed in the

previous convergence study (see above, Table 3.1) are still present, notably in the 64-to-128 rate values in

Table 3.5. On the whole, however, the errors on the finer grids in this test appear to confirm the theoretical

analysis and the validity of the strategy adopted in devising the compressible extension, with a preservation

the second-order accuracy of the scheme.

Table 3.4: Variation of relative L2 and L∞ errors and convergence rates for the smooth vortex case as of Fig. 3.11.
Errors computed as numerical solution at t = 1 s on grids with N2 cells with respect to a fine-grid solution computed
on 7682 cells.

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L∞
96 6.24e-03 1.31e-02 4.23e-02

192 1.68e-03 1.89 3.28e-03 1.99 8.33e-03 2.34
384 3.44e-04 2.29 6.79e-04 2.27 2.12e-03 1.98

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L2
96 4.84e-03 9.66e-03 3.27e-02

192 1.29e-03 1.91 2.52e-03 1.94 7.00e-03 2.22
384 2.67e-04 2.27 5.18e-04 2.28 1.71e-03 2.03
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Figure 3.11: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the smooth
vortex case. Errors of computed solutions at t = 1 s on grids withN2 cells with respect to a fine-grid solution computed
on 7682 cells. The dashed-dotted line represents quadratic slope.
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Table 3.5: Variation of relative L2 and L∞ errors and convergence rates for the smooth vortex case as of Fig. 3.12.
Errors computed as numerical solution at t = 1 s on grids with N2 cells with respect to a fine-grid solution computed
on 10242 cells.

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L∞
64 1.19e-02 2.64e-02 1.03e-01

128 3.78e-03 1.65 7.61e-03 1.79 2.38e-02 2.11
256 9.59e-04 1.98 1.88e-03 2.02 5.11e-03 2.22
512 1.94e-04 2.30 3.85e-04 2.29 1.13e-03 2.18

N Eρ σρ Eρ‖v‖2 σρ‖v‖2 Ep σp

L2
64 9.26e-03 1.87e-02 8.22e-02

128 2.91e-03 1.67 5.73e-03 1.71 1.76e-02 2.23
256 7.40e-04 1.97 1.44e-03 1.99 3.57e-03 2.30
512 1.51e-04 2.29 2.93e-04 2.30 8.50e-04 2.07
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Figure 3.12: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the smooth
vortex case. Errors of computed solutions at t = 1 s on grids withN2 cells with respect to a fine-grid solution computed
on 10242 cells. The dashed-dotted line represents quadratic slope.

3.2.3 Weakly nonlinear acoustic wave

In this section, we present the results obtained in the simulation of a simple acoustic wave with the fully

compressible scheme. The aim of this test is to show that our semi-implicit method is able to handle

acoustic perturbations, which characterize the fully compressible system. In an acoustic wave, the restoring

mechanism is given by pressure adjustments following compressive or expansive density perturbations. As

noted, anelastic and pseudo–incompressible models suppress acoustic waves by explicitly neglecting this

mechanism and eliminating the pressure dependence on density to different extents, as discussed in sections

1.1 and 2.3 above.

Following [95] and [121], we derive the initial data for a simple one-dimensional acoustic wave via char-

acteristic theory. The eigenvalues of the Jacobian of the flux function relative to system (2.12a)-(2.12c)

in homogeneous form and one space dimension correspond to the speeds, i.e. slopes, of three families of

characteristics [39]. One finds the eigenvalues, for a flow velocity u:

λ1,3 = u∓ c, λ2 = u. (3.67)

The family of characteristics corresponding to λ1 (respectively λ3) represents leftward (resp. rightward)
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travelling acoustic waves with speed c relative to the flow. We focus on the rightward-travelling wave. The

function (Riemann invariant)

R− = u− 2c

γ − 1
= K ∈ R (3.68)

is constant along the 3-characteristics (corresponding to λ3 = u+ c). In the one-dimensional domain [0, L],

we impose the following L-periodic horizontal perturbation of the speed of sound:

c = cref + c̃ sin
2πx

L
(3.69)

where, for isentropic flows, cref =
√
γpref/ρref. The sound speed and the other derived quantities are taken

constant in the vertical and the flow is one-dimensional.

The constant K in (3.68) is chosen in order to have zero background velocity:

0 = K +
2cref

γ − 1
=⇒ K = − 2cref

γ − 1
. (3.70)

Using this expression and (3.68), we derive the initial velocity distribution:

u =
2

γ − 1
c̃ sin

2πx

L
. (3.71)

We also assume a smooth-flow regime, so that the entropy and the potential temperature Θ may be taken as

constant. Using the definition of potential temperature and the ideal gas equation of state we have:

p = ρRT = ρRΘ

(
p

pref

) γ−1
γ

(3.72)

where pref is a reference value for the pressure. Therefore we have, nondimensionalizing:

ρrefRΘrefρ
′Θ′ = pref

(
p

pref

) 1
γ

=⇒ P

Pref
= P ′ = ρ′Θ′ (3.73)

where the primes denote nondimensional quantities, and P has the definition (2.10). Note that in the last

expression we recover the nondimensional definition of the energy variable P = ρΘ. As for the pressure

and density, we derive their values from the speed of sound distribution as follows:

c =

√
γp

ρ
=⇒ c′��cref =

�
�

��
√
γpref

ρref

√
p′

ρ′
= (ρ′)

γ−1
2 (3.74)

where c′ is the nondimensional speed of sound computed with (3.69), that is:

c′ = 1 +
c̃

cref
sin

2πx

L
. (3.75)

With c′ at hand, ρ′ and p′ can be computed via:
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ρ′ = (c′)
2

γ−1 , (3.76)

p′ = (c′)
2γ
γ−1 . (3.77)

The last two relations, multiplied with the reference quantities ρref and pref, yield an expression of all the

quantities needed to initialize the rightward-travelling acoustic wave:

u =
2

γ − 1
c̃ sin

(
2π

L
x

)
(3.78)

ρ = ρref

[
1 +

c̃

cref
sin

(
2π

L
x

)] 2
γ−1

(3.79)

p = pref

[
1 +

c̃

cref
sin

(
2π

L
x

)] 2γ
γ−1

(3.80)

P = ρrefTref

(
p

pref

)1/γ

. (3.81)

We consider the reference values:

ρref = 1 kg dm−3, pref = 101325 Pa, Tref = 353.048780488 K. (3.82)

As for c̃, setting for instance c̃ = 0.01cref corresponds to having initially Ma ≈ 0.1. To facilitate the

assessment of our scheme’s performance, we will compare our results with the results obtained on the case

of a weakly nonlinear gravity wave with the low-Froude numerical scheme for the shallow water equations

described in [121]. In their dimensionless formulation, c =
√
h/Fr denotes the gravity wave speed, where

h denotes the fluid depth and Fr the Froude number. As a consequence and following [121] we have:

h = c2Fr2 =

(
1

Fr
+ cpert

)2

Fr2 = (1 + Frcpert)
2
. (3.83)

Introducing then the perturbation as of (3.75) we have:

Fr

2
sin

2π

L
x

!
=

c̃

cref
sin

2π

L
x. (3.84)

Therefore, choosing:

c̃ = cref
Fr

2
(3.85)

and γ = 2 in the fully compressible system we obtain initial conditions equivalent to the weakly nonlinear

gravity wave test in [121], see also [76].

As in [121], we will consider two perturbations:

c̃ =

0.05 cref Fr = 0.1

0.01 cref Fr = 0.02

. (3.86)
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For the density, this corresponds to a perturbation amplitude of 0.1 kg dm−3 in the first case (Figure 3.13

left), 0.02 kg dm−3 in the second case (Figure 3.14 left). Right panels in Figures 3.13 and 3.14 show initial

horizontal momentum. Moreover, boundary conditions are periodic in both cases.
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Figure 3.13: Initial density (left) and horizontal momentum (right) for the simple acoustic wave in the case c̃ = 0.05cref.
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Figure 3.14: Initial density (left) and horizontal momentum (right) for the simple acoustic wave in the case c̃ = 0.01cref.

The goal is to verify that our compressible scheme correctly reproduces the speed of the weakly nonlinear

acoustic wave. First we consider the case with Fr = 0.1. We compare our simulations to [121] nondimen-

sionalizing quantities as appropriate. It is worth remarking that, despite the equivalence of compressible

equations and shallow water equations for γ = 2 and although the present numerical method and the

method in [121] are built on the same premises (i.e. a projection-like numerical framework), some dif-

ferences between the two methods are indeed present. For instance, [121] is based an exact projection

technique whereby not only the variables but also their gradients are adjusted in the second correction step.

Yet another difference is given by the pressure-energy binding (3.39), a distinctive feature of our scheme.
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The final time t = 0.00267282 s is considered for a simulation with 256 horizontal cells and CFL = 0.77

as in [121]. At this time, the wave has already completed one round of the domain. Results are in the top

panels of Figure 3.15. Solid lines denote the results with the present scheme, dashed lines results with the

scheme of [121]. Compressible behaviour is visible as the wave steepens up as shown by the exact solution

depicted in black as in [121]. The computed solution of the present scheme exhibits numerical dispersion

leading to a phase error. The phase error is lower in the present scheme than it is with the scheme [121].

Furthermore, off-centring the second correction equation with θ = 0.7 in (3.36) entails a more diffused and

thus lower-amplitude result. The effect of off-centring appears smaller in the present scheme than in [121].

At the later time t = 0.00668205 s the nonlinear behaviour becomes even more visible, see bottom panels

in Figure 3.15. At this time, the wave has completed three rounds of the domain and a shock is visible

in the exact solution. The numerical scheme exhibits a dispersion error and smears out the discontinuity.

The off-centred version introduced further numerical diffusion. Unlike the scheme of [121] our trapezoidal

scheme is able to simulate the wave behaviour until this time. The off-centred version in our case displays

less numerical diffusion than the reference scheme. This test case shows that the present scheme is able to

give a fair picture of the wave dynamics including the wave steepening.
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Figure 3.15: Computed density (left) and horizontal momentum (right) for the simple acoustic wave in the case
c̃ = 0.05cref at time t = 0.00267282 (top row) and t = 0.00668205 (bottom row) with CFL=0.77. Blue: trapezoidal
scheme in the second projection; magenta: off-centred scheme in the second projection, θ = 0.7. The black solid line
denotes the exact solution as in [121].
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Next, we turn to the analysis of the lower-amplitude wave with Fr = 0.02. We consider again results at final

time t = 0.00267282 s. At this time, the wave has already travelled once across the domain. For this case

we consider a reduced CFL = 0.5 with a view to the convergence study. Figure 3.16 displays the results

with our scheme. Nonlinear effects are reduced with respect to the previous case. The wave dynamics is

reproduced fairly well. Dispersion and diffusion effects can be especially noticed in the trough on the right.

In general, both in the small and in the large amplitude case our scheme faithfully simulates the dynamics of

the simple acoustic wave. We remark that simulation of acoustics and shocks is not the domain of application

in which we will be chiefly interested; a number of numerical schemes better suited for the purposes of

acoustic simulation is already present in the literature, see, e.g., [72] for an overview. Indeed, our scheme

focuses on low-Mach number dynamics and is not meant to stand comparison with shock-capturing methods

for transonic and supersonic flows.
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Figure 3.16: Computed density (left) and horizontal momentum (right) for the simple acoustic wave in the case
c̃ = 0.01cref at time t = 0.00267282 at CFL=0.5.Colours as in Figure 3.15.

Finally, we analyze the convergence behaviour of our scheme for the low-amplitude case (Table 3.6 and

Figure 3.17). A fine-grid solution computed over 8192 cells is taken as the reference solution. Relative

errors are computed on grids with 256, 512, 1024, 2048 and 4096 points with respect to the fine grid one.

Here, for simplicity we considered a final time of t = 0.001 s, CFL = 0.5 and a trapezoidal approach. This

corresponds to 148 time steps for the fine grid solution. The errors display the expected second-order rate

of convergence.

Having validated our scheme in test cases without the influence of gravity, in the following chapter we turn

our attention to the discretization of the gravity source term.
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Table 3.6: Variation of relative L2 and L∞ errors and convergence rates for the acoustic wave case. Errors computed
as numerical solution at t = 0.001 s on grids with N cells with respect to a fine-grid solution computed on 8192 cells
in the horizontal direction.

N Eρ σρ Eρ|u| σρ|u| Ep σp

L∞

256 3.65e-03 2.27e-01 1.89e-01
512 1.16e-03 1.66 6.97e-02 1.70 5.85e-02 1.69

1024 3.53e-04 1.71 1.99e-02 1.81 1.78e-02 1.72
2048 1.01e-04 1.81 5.41e-03 1.88 5.07e-03 1.81
4096 2.34e-05 2.10 1.25e-03 2.11 1.18e-03 2.10

N Eρ σρ Eρ|u| σρ|u| Ep σp

L2

256 2.25e-03 2.07e-01 1.65e-01
512 6.93e-04 1.70 6.08e-02 1.77 4.94e-02 1.74

1024 2.10e-04 1.73 1.70e-02 1.84 1.49e-02 1.73
2048 6.00e-05 1.81 4.65e-03 1.87 4.25e-03 1.81
4096 1.42e-05 2.08 1.08e-03 2.10 1.00e-03 2.08
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Figure 3.17: Density (left), momentum magnitude (middle) and pressure (right) convergence story for the acoustic
wave case. Errors of computed solutions at T = 0.001 s on grids with N cells with N cells with respect to a fine-grid
solution computed on 8192 cells in the horizontal direction.
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Discretization of the buoyancy term

In this chapter we apply the fully compressible numerical framework described in Chapter 3 to gravity-driven

flows. To this end, we describe the way in which the gravity source term is handled by the semi-implicit

compressible scheme. First, we give a theoretical account of the well-balancing problem. Second, we list

the modifications that we introduced in the numerical scheme in order to preserve the hydrostatic balance

throughout. Third, we consider an atmosphere at rest and three test cases with thermal perturbations in order

to assess the performance of the scheme in a homentropic and thermally stratified setting.

4.1 The well balancing problem

In the envisaged atmospheric applications of our scheme, flow patterns arise as perturbations around bal-

anced states. If we focus our attention on the vertical direction, the dominant steady state is of hydrostatic

balance. In absence of motion, the vertical component of the momentum equation (2.12b) takes the form

∂p

∂z
= −ρg. (4.1)

In this configuration, the vertical pressure gradient offsets the gravitational force.

The finite volume method we use in our semi-implicit fully compressible scheme relies on a piecewise

constant approximation of the physical variables. As such, an application of the scheme to evolve an initially

motionless atmosphere in hydrostatic balance will preserve (4.1) at the discrete level up to the scheme’s

truncation error, in our case O
(
(∆x)2

)
. In particular, spurious vertical velocities will be introduced into the

simulation. While the effect of these errors is hardly noticed in short-time, fine-grid runs on relatively large

perturbations, these velocities are nonetheless unphysical and their accumulation unacceptably jeopardises

the applicability of the scheme over the time scales typical of numerical weather prediction and climate

simulations.

Numerical methods that preserve balanced states — and (4.1) in particular — up to machine precision ε, i.e.,

up to a O(ε) error, are known in the literature as well-balanced schemes [19, 47]. As noted, one solution to

sidestep the problem is to cast the physical model in terms of perturbations around a chosen hydrostatically
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balanced background state. The resulting numerical models are well-balanced by construction [19, eq.

(4)] and thus a widespread choice in the atmospheric modelling community, cfr., e.g. [93, 104, 119, 133].

While such an approach leads to considerable ease of implementation with respect to a full-variables-based

approach as the one employed in the present study, it also relies on the choice of a reference state.

Here, we choose to work with full variables and endow our scheme with the well-balancing framework

of [19], tackling the issue via local hydrostatic reconstructions, thereby dispensing with the degree of

freedom of a global reference state. In the following, we first discuss the discretization of the source term

in the predictor. Then, we present the parts of our implementation tuned to take into account the hydrostatic

balance at the discrete level. We also refer to the recent analysis in [57] which employs techniques similar

to the ones described below.

4.2 Neutrally and stably-stratified atmospheres

The well-balancing approach of [19] is implemented in the semi-implicit compressible discrete model. In

the framework of a model written in non-perturbational form with a node-centred pressure, adjustments are

required in the numerical scheme so as to maintain it hydrostatically balanced.

For later reference, we introduce the background atmospheric settings that we will consider in the remain-

der of the chapter. A homentropic atmosphere, i.e. with constant background potential temperature Θ, is

obtained with the following choice of the variables (see [19]):

p(z) = pref

(
1− Γ

gρref

pref
z

)1/Γ

, ρ(z) = ρref

(
p(z)

pref

) 1
γ

, ρref =
pref

RTref
, (4.2)

where Γ = (γ − 1)/γ.

A thermally stratified atmosphere with a height-varying potential temperature Θ such that ∂Θ/∂z > 0, is

obtained considering as in, e.g., [93, 103]:

Θ(z) = Tref exp

(
N2

g
z

)
, (4.3)

where N denotes the buoyancy frequency. For tropospheric simulations the reference value N = 0.01 s−1

is usually considered in the literature. The other variables are set as follows:

p(z) = pref

{
1− g

N2
Γ
gρref

pref

[
1− exp

(
−N

2z

g

)]}1/Γ

, (4.4)

ρ(z) = ρref

(
p(z)

pref

) 1
γ

exp

(
−N

2z

g

)
, ρref =

pref

RTref
. (4.5)

Both in the homentropic and in the thermally stratified case the background analytical distributions of

pressure and density are constructed in agreement with the hydrostatic balance Equation (4.1).
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4.3 The discrete implementation of the gravity term

Let us reappraise the momentum equation in the predictor step (3.15b):

(ρv)
n+1,∗
C = (ρv)

n
C −∆t

(
∇̃ ·
(
Pv ◦ vΘ−1 + pnI

))n+ 1
2 ,∗

C
−∆t gk (ρ)

n+ 1
2 ,∗

C . (4.6)

First, in the case of gravity-driven flows, the time step restriction described in Section 3.1.1 and in particular

expression (3.19) will feature the following buoyancy-dependent time step:

∆tB = CFL

√
∆x maxΩ Θ′

g minΩ Θ
, (4.7)

where maxΩ Θ′ = maxΩ Θ−minΩ Θ is the maximum potential temperature perturbation in Ω.

Next, we focus on the source term, i.e., the rightmost term in the vertical component of the Equation (4.6).

A first possibility is to take the cell-centred value of the density for each cell as in (4.6), thus considering

the discretization for the cell Ci,j ≡ C:

(ρg)C = ρi,jg (4.8)

where ρi,j is the value of the density at the centre of the cell Ci,j and at the correct Runge-Kutta stage.

The time superscripts and the horizontal index i will not be indicated in the rest of the section when not

essential to the comprehension of the vertical discretization. The discretization (4.8) is arguably simple

and attractive because of its low computational cost and ease of implementation. However, in numerical

simulations carried out on the case of the rising warm air bubble, the strategy (4.8) was shown to entail

instabilities already with values of CFL ≈ 0.05 in (4.7).

Therefore, other possibilities were explored. A three-cell approach can be considered

(ρg)C =
1

4
g (ρj−1 + 2ρj + ρj+1) (4.9)

this was beneficial in that it helped raising the threshold for stable runs up to CFL ≈ 0.1 in (4.7), but still

far from the desired behaviour.

Considerable improvement was brought by considering linear distributions for the variable 1/Θ in the verti-

cal intervals [zj−1, zj ] and [zj , zj+1] along the lines of what done in [61]. In particular, the Exner-pressure-

based hydrostatic balance equation cpΘ∂π/∂z = −g, where π = (p/pref)
Γ is employed to compute the

integral of 1/Θ over [zj , zj±1/2] as a function of 1/Θ at zj and zj±1, arriving to the following discretization:

(ρg)C =
1

∆z
pref


{
πj −

1

8

∆zg

cp

[(
1

Θ

)
j+1

+ 3

(
1

Θ

)
j

]}1/Γ

−

{
πj +

1

8

∆zg

cp

[(
1

Θ

)
j−1

+ 3

(
1

Θ

)
j

]}1/Γ
 , (4.10)
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where we have used the definition of the Exner pressure. In practice, the values of (1/Θ)j are computed as

(ρ/P )j .

In the rising bubble case, the choice (4.10) enabled stable simulations at CFL = 0.99 in (4.7). This has to

do with the fact that expression (4.10) explicitly uses the variable 1/Θ instead of ρ. In fact, 1/Θ represents

the advected density in the computation of fluxes in the predictor, see Section 3.1.1. Therefore, better results

are obtained using expression (4.10) in that (4.10) mirrors the flux computation more closely than it is the

case using expression (4.8). Moreover, this choice enables a better separation of the effects of the pressure

and the potential temperature on the buoyancy.

An even more convenient solution using 1/Θ is obtained without the three-cell stencil (W. O’Neill, personal

communication and [16]) as follows

(ρg)C = gkPn+ 1
2 ,∗
(

1

Θ

)
j

. (4.11)

In (4.11), (1/Θ)j is computed as (ρ/P )j . Furthermore, the value of P is computed as Pn+ 1
2 ,∗ = Pn +

1
2δp (∂P/∂p) to preserve second-order accuracy, where δp is the pressure increment computed in the

correction step of the previous time loop. The derivative of P with respect to p is computed using the

equation of state as done in (3.31).

By discretizing the gravity source term using (4.11) we obtained the same results as with (4.10). However,

(4.11) does not need a three-cell stencil so it is of arguable computational advantage, also with a view to the

well-balancing adjustments described below.

Expression (4.11) was used for the simulation of the gravity-driven flows in this chapter and in Chapter 5.

A comparison of the results obtained with the first strategy (4.8) is presented in the rising bubble case in

Section 4.5.2.

4.4 Well-balancing-driven modifications

4.4.1 Initialization

The first modification to the basic version of the code occurs at the initialization stage. In the gravity-free

case, initial values of discrete variables — including the pressure — are set up at cell centres and nodal

values of the pressure are obtained by linear interpolation from the adjacent cell values. In cases with

a stratified background pressure, as noted, such an approach produces values that violate the hydrostatic

balance.

Since the problem is inherently one-dimensional, we focus on the vertical coordinate for the moment. First,

let the initial data for pressure p(z) and density ρ(z) be given in the form of a homentropic or stably stratified

atmosphere as in expressions (4.2) or (4.4) above. Next:
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• p(z) is initialized at cell centres zj , j = 1, . . . ,Nz and nodes zj−1/2, j = 1, . . . ,Nz + 1 according to

its analytical expression (4.2) or (4.4);

• ρ(z) is initialized at zj using a discretized form of the hydrostatic balance (4.1), i.e.

ρ(zj) = − 1

g∆z
[p(zj+1/2)− p(zj−1/2)], j = 1, . . . ,Nz (4.12)

where ∆z denotes the vertical grid spacing.

z0

z1

zj

zj+1

zNz

zNz+1

Figure 4.1: Well balancing framework. Arrows indicate the stencil for the cell-node interpolation as of expressions
(4.19), (4.20), and (4.21). Also indicated are the first lower and upper ghost cells, see expressions (4.17) and (4.18).

4.4.2 Hydrostatic averaging of the pressure

The second modification to the scheme occurs in the computation of the predicted value of momentum,

expression (3.15b). The value of the pressure at the centre of the cell face needed for the momentum flux

computation in expression (3.15b) is computed as follows:

p(zj) =
1

2

{
p(zj+1/2) + p(zj−1/2)− g

[
2f(zj)− f(zj+1/2)− f(zj−1/2)

]}
(4.13)

for j = 1, . . . ,Nz , where:

f(z) =

∫ z

0

ρ(z′)dz′ (4.14)

and the square bracket in (4.13) represents a hydrostatic modification of the simple average. Note that the

integral in (4.14) is computed analytically for each cell. Specifically, we have:

f(z) =

(
1− Γ

gρref

pref
z

)1/Γ

(4.15)
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for the homentropic distribution (4.2) and

f(z) =

{
Γ
ρref

pref

g2

N2

[
exp

(
−N

2

g
z

)
− 1

]
+ 1

}1/Γ

(4.16)

for the stably stratified distribution (4.4).

4.4.3 Boundary conditions

The third well-balancing modification involves the so-called “solid wall” boundary conditions. As customary

in finite differences and finite volume codes [72], in our scheme we implement fully reflecting boundaries

using “ghost cells”. The strategy involves attaching two dummy cells to the boundary in which the value

of all the variables except for the normal velocity is mirrored from the two innermost cells, whereas the

normal velocity value is taken with opposite sign.

We modify the process for the mirrored variables in that we retrieve the hydrostatic values of the variables

in the ghost cells. For instance, for the pressure in the ghost cells adjacent to the lower boundary we have:

p(z0) = p(z1) + g

∫ z1

z0

ρ(z′)dz′. (4.17)

For the pressure in the ghost cells adjacent to the upper boundary, we have.

p(zNz+1) = p(zNz )− g
∫ zNz+1

zNz

ρ(z′)dz′. (4.18)

4.4.4 Hydrostatic interpolation and pressure-energy binding

The fourth modification involves the interpolation from nodes to cell centres or vice versa, which in the case

without gravity is a standard linear interpolation. In the cases with gravity, the cell-to-node interpolation

used in the pressure update (3.39) after the second correction step is implemented as follows (see also Figure

4.1 for corroboration):

• For the nodes on the lower boundary:

p(xi+1/2, z1/2) = 0.5(pNW + pNE), ∀ i = 1, . . . ,Nx (4.19)

where pNW and pNE denote the pressure values obtained with analytical integration — expr. (4.14) —

downwards from the hydrostatic pressure values in the adjacent upper left and upper right cell, respec-

tively.

• For the nodes on the upper boundary:

p(xi+1/2, zNz+1/2) = 0.5(pSW + pSE), ∀ i = 1, . . . ,Nx (4.20)
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where pSW and pSE denote the pressure values obtained with analytical integration upwards from the

hydrostatic pressure values in the adjacent lower left and lower right cell, respectively.

• For the internal nodes:

p(xi+1/2, zj+1/2) = 0.25(pSW + pSE + pNW + pNE), ∀ i = 1, . . . ,Nx, j = 1, . . . ,Nz. (4.21)

Finally, we remark that the fully compressible scheme appeared — at least operationally — more sensible

to violations of hydrostatic balance as opposed to the pseudo-incompressible model. For the latter, as noted

in Chapter 2, the pressure plays the role of a Lagrange multiplier that enforces the divergence constraint

(2.21c) at each time loop. Therefore, the pseudo-incompressible scheme is able to default to discretely

balanced values of the prognosed variables after the solution of the two Poisson equations in the correction

step. By contrast, the fully compressible model incorporates the complete thermodynamics through the

energy derivative term in (2.12c) and the energy-pressure binding driven by the equation of state in (3.39).

This latter feature in particular entails the automatic transfer of any perturbation in one variable upon the

others.

4.5 Numerical results

In this section we show the results obtained with our code in a number of gravity-driven flow simulations

and compare them with references in the literature. First, we consider an atmosphere at rest test case, with

the aim of verifying the well-balancing of the scheme, i.e. the absence of spurious vertical velocities by

running the code for a large number of time steps. Then, we run our scheme on two thermal bubbles on the

neutrally stratified setting (4.2) to examine the capabilities of the scheme in the simulation of buoyancy-

driven dynamics. Finally, we consider the propagation of inertia-gravity waves in a horizontal channel

initiated by a thermal perturbation on the stably stratified background (4.4).

4.5.1 Atmosphere at rest

As a test for the well-balancing properties of the numerical scheme, we consider a case of atmosphere at

rest, that is, a homentropic or thermally stratified motionless state with no bottom topography. Running our

scheme for a large number of time steps, we expect no spurious perturbations to be generated up to machine

precision.

Let Ω = [−10, 10] × [0, 10] km be a horizontally periodic domain with solid walls on top and bottom

boundaries gridded with 160×80 cells, and let pressure and density be given by the homentropic distribution

(4.2), with zero initial velocity and, in agreement with [19], g = 10 m s2. The scheme is run until the final

time T = 43200 s (12 hours or 23544 time steps with ∆tI = 1.9 s). Figure 4.2 on the left displays the

temporal evolution of the maximum norm of the vertical velocity in the domain. Generated perturbations

are of the order of the machine precision times the grid points (see Table 4.1) as the atmosphere remains
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virtually at rest up to errors consistent with double machine precision. Furthermore, no significant growth

pattern is displayed.
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Figure 4.2: Maximum vertical velocity norm, homentropic (left) and thermally stratified (right) atmosphere at rest, final
time T = 43200 s.

Next, we consider the stratified scenario (4.4) in the same geometric setting. As documented in the right

panel of Figure 4.2, the maximum error in the vertical velocity remains of the order of the machine precision

times the grid points (Table 4.1) throughout the whole simulation and shows no growth pattern. We remark

that in both cases longer-time runs (not shown) have been performed that confirm the findings. The results

corroborate the validity of our well-balancing strategy and are expecially promising with a view to future

developments for large-scale, long-time test cases and in presence of bottom topography.

Table 4.1: Maximum vertical velocity for the homentropic (wH ) and stably stratified (wS) atmosphere at rest simulations
of Figure 4.2. The value of roundoff error times the total cell number is reported for comparison.

max (wH) max (wS) εNxNz
3.52e-13 m s−1 3.24e-13 m s−1 2.84e-12

4.5.2 Rising thermal bubble

Next, we examine a convection test case in the domain Ω = (x, z) ∈ [−10, 10]× [0, 10] km2. Specifically,

we consider a warm thermal perturbation Θ′ upon the homentropic setting (4.2) as in [61]:

Θ′(x, z) =

δΘ cos2(π2 r) (r ≤ 1)

0 otherwise
,


δΘ = 2 K

r = 5
√

( xL )2 + ( zL −
1
5 )2

L = 10 km

. (4.22)
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In agreement with [61], ρref, pref, g, and Tref have the values 1 kg m−3 8.61e04 N m−2, 10 m s−2, and 300 K.

The initial velocity is zero. Lateral boundary conditions are periodic, with solid walls on top and bottom

boundaries. Figure 4.3 displays Θ′ .
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Figure 4.3: Rising thermal bubble initial potential temperature. Colour shading every 0.125 K starting at Θ = 300.25 K.

We run the semi-implicit compressible scheme on a grid with ∆x = ∆z = 125 m, i.e. 160× 80 cells, and

CFL = 0.5. The trapezoidal approach is used in the second projection. In the first five steps a buoyancy-

driven time step ∆t = ∆tB ≈ 21.69 s is used. Due to growing velocities, the advection-driven time step is

then selected for the remainder of the simulation. Towards the end of the simulation, values of ∆t ≈ 4.6 s

are attained (Figure 4.5).

Driven by buoyancy, the warm bubble rises and rolls up on the sides (Figure 4.4). The dynamics of the

bubble is reproduced by the numerical scheme without oscillations. At the final time T = 1000 s, the

value of the thermal perturbation amplitude (Table 4.2) and the attained height are in agreement with the

soundproof results in the reference [61, fig. 3 and 4], see also [65]. This is expected at the scales considered

in this test case.

These results were corroborated by comparisons with the results produced by a pseudo-incompressible

version of the code and a thermodynamically consistent modification [16], see also [66]. For further analysis

on this test case using the blended code we refer to Section 5.3 below.

For reference, the total wallclock time for the simulation of Figure 4.5 was 71.113 s including preprocessing

input, actual computation and output. 40% of the total wallclock time was taken up by the predictor step

and 56% by the corrector step.

Table 4.2: Maximum and minimum potential temperature Θmax and Θmin, and corresponding maximum perturbation
δΘ at final time T = 1000 s for the fully compressible model as of Figure 4.4 for the dry rising bubble test case.

Θmax Θmin δΘ

301.54 K 299.9 K 1.64 K

Furthermore, for the simulation of Figure 4.4, we report in Figure 4.6 an assessment of the energy balances,
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Figure 4.4: Rising thermal bubble results with the fully compressible scheme, large time steps. Top to bottom: com-
puted potential temperature (left panels) and vertical velocity (right panels) at t = 250, 500, 750, 1000 s. Colour
shading every 0.125 K starting at 300.25 K for the potential temperature. For the vertical velocity, 16 colour shades
are represented in the intervals (top to bottom) [−2.99, 7.41] m s−1, [−6.40, 11.89] m s−1, [−8.46, 14.66] m s−1,
[−8.45, 13.69] m s−1.
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Figure 4.5: Time step size as a function of the time loop in the rising bubble run at CFL = 0.5 as of Figure 4.4.

see definitions (2.3). The volumetric integrals of the kinetic, potential, internal and total energy are computed

to obtain the global value of the quantities over the domain. The top left panel reports the time series of the

normalized change of global potential, internal and total energy values with respect to the global values at

time t = 0. The top right panel reports the time series of the global kinetic energy value.

The potential energy decays as the bubble rises while the kinetic energy grows as velocities build up. The

value of the total energy is analyzed in the lower panels, where a normalized value with respect to the

maximum value of the kinetic energy during the run is also presented. Despite a growth pattern in the total

energy plots, these scores appear satisfactory at this stage, also in view of the fact that, as noted, by design

we do not expect our scheme to conserve more than total mass, horizontal momentum and P .

Convergence study, constant vs. variable time step

In order to assess the accuracy of our scheme, we perform a convergence study based on the computed

potential temperature Θ at time t = 250 s. Errors are evaluated between computed solutions with ∆z =

∆x = 500, 250, 125, 62.5 m with respect to the computed solution with ∆z = ∆x = 31.25 m. The

analysis is carried out both for the case of a variable time step run as in Figure 4.5 and for a run at constant

time step ∆t = 2 s. As documented in Figure 4.7 and Table 4.3, second-order convergence rate is observed

with comparable values of the relative errors. The choice of an adaptive time step does not affect the

accuracy.

Runs with simple discretization of gravity

For reference, we report the result with the simple discretization of the gravity source term considered in

(4.8) (Figure 4.8 and Table 4.4. In terms of attained height and final amplitude of the thermal perturbation,

results mathc the ones reported in Figure 4.4 and Table 4.4. However, note that the time step employed

in the case with simple discretization of gravity is ∆t ≈ 1.91 s, or CFL = 0.044 in expression (3.19).

Considering higher values of the time step with this discretization of the source term led to instabilities.
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Figure 4.6: Energy time series for the rising bubble run of Figure 4.4. Top left: normalized relative change with respect
to values at initial time of global potential energy (dashed red), internal energy (dashed-dotted blue), total energy (solid
black). Top right: global kinetic energy value. Bottom left: magnified total energy plot as of top left panel. Bottom right:
Same as bottom left, but normalized by the maximum global kinetic energy value in the run.
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Figure 4.7: Convergence story for the computed potential temperature at time t = 250 s in the rising bubble test case.
Relative errors and convergence rates on grids with ∆z = ∆x = 500, 250, 125, 62.5 m with respect to a fine-grid
solution on a grid with ∆z = ∆x = 31.25 m. Left panel: constant ∆t. Right panel: variable ∆t at CFL=0.5 as in
Figure 4.5.
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Table 4.3: Relative errors E and convergence rates σ of computed solutions on grids with ∆z = ∆x =
500, 250, 125, 62.5 m with respect to the computed solution on a grid with ∆z = ∆x = 31.25 m, see Figure
4.7. Left table: constant ∆t. Right table: variable ∆t at CFL = 0.5.

L2 L∞

∆z [m] EΘ σΘ EΘ σΘ

500 6.65e-05 9.35e-05
250 1.65e-05 2.01 2.34e-05 2.00
125 3.93e-06 2.07 5.97e-06 1.97
62.5 7.87e-07 2.32 1.13e-06 2.40

L2 L∞

∆z [m] EΘ σΘ EΘ σΘ

500 6.65e-05 9.35e-05
250 1.64e-05 2.01 2.34e-05 2.00
125 3.96e-06 2.05 6.74e-06 1.79
62.5 8.22e-07 2.27 1.49e-06 2.18
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Figure 4.8: Rising thermal bubble results in a run with the gravity discretization (4.8). Computed potential temperature
at t = 250 s (upper left), t = 500 s (upper right), t = 750 s (lower left), t = 1000 s (lower right). Colour shading every
0.125 K starting at Θ = 300.25 K. The time step is ∆t = 1.91 s.

Table 4.4: Maximum and minimum potential temperature Θmax and Θmin, and corresponding maximum perturbation
δΘ at final time T = 1000 s as of Figure 4.8 for the dry rising bubble test case.

Θmax Θmin δΘ

301.57 K 299.9 K 1.67 K

Moreover, in the context of small time step runs we observed a checkerboarding effect in the velocity both

with discretization (4.11) and with discretization (4.8) for the source term. The effect is visible in the vertical

velocity plot at t = 500 s in a simulation with ∆t = 1.9 s (Figure 4.9). We remark that the effect is not

present in runs at large time step as the ones seen in Figure 4.4.

Many options have been considered to sidestep the problem. Among them are considering the BDF2

discretization in the second correction, adopting the five-point stencil as in [100] for the nodal elliptic

problem and modifying the computation of the fluxes of P in the predictor by taking values of P at the

interface in agreement with the hydrostatic balance. None of these modifications altered the checkerboard

pattern. The problem remains object of research, see the discussion in Chapter 7.
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Figure 4.9: Rising thermal bubble results, computed vertical velocity at t = 500 s. 10 contours in the interval
[−6.38, 11.92] m s−1. Thin lines denote negative contours. The time step used is ∆t = 1.9 s

4.5.3 Density current

The next test [113] consists in a negative potential temperature perturbation in a [−25.6, 25.6]× [0, 6.4] km2

neutrally stratified atmosphere (4.2),

T ′ =

0.0 K if r > 1

−15.0 [1.0 + cos(πr)] /2 K if r < 1

, (4.23)

where r =
{

[(x− xc)/xr]2 + [(z − zc)/zr]2
}0.5

, xc = 0.0 km, xr = 4.0 km, zc = 3.0 km, zr = 2.0 km.

From Θ = T (p/pref)
−Γ we derive Θref = Tref and the potential temperature perturbation and density

distribution,

Θ′(x, z) =
T ′

1− Γ gρref
pref

z
, ρ(z) = ρref

(
p(z)

pref

) 1
γ Θref

Θref + Θ′
. (4.24)

In particular, we have max |Θ′| = 16.63 K. The boundary conditions are periodic on the left and right

boundary, solid walls on the top and bottom boundary. Furthermore, we add an artificial diffusion term

ρµ∇2v to the right hand side of the momentum equation (ρµ∇2Θ in the P equation), with µ = 75 m2 s−1

as in [113]. The initial velocity is set to zero, and the reference quantities are Tref = 300 K, pref = 105 Pa,

ρref = pref/(RTref).

The semi-implicit fully compressible model is run with ∆x = 50 m and CFL = 0.5. Thus, the time step is

∆t = ∆tB ≈ 4.65 s for the first three steps and then the advective time step is used. A BDF2 approach in

the second projection is used, see Equation (3.49).

The negative buoyancy of the bubble drives it down, until it hits the bottom boundary and starts travelling in

the horizontal direction with small-scale Kelvin-Helmholtz instabilities (Figure 4.10). Due to the symmetri-

cal nature of the test-case, only the plots for the subdomain [0, 19.2]× [0, 4.8] km2 are shown. The scheme

resolves fairly well the flow patterns at the different scales and gives a good representation of the vortices.

The computed final values of thermal perturbation and the front position (Table 4.5) are in line with results

in the literature [2, 93, 113].

The total wallclock time for the simulation as in Figure 4.10 was 4896.72 s. 40% of the total wallclock time
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was taken up by the predictor step, 57% by the corrector step.

As in the previous test, results with the fully compressible model are comparable to the ones obtained with

pseudo-incompressible runs as expected at the spatial scales under consideration (see [16]).
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Figure 4.10: Potential temperature perturbation in the density current test case. Computed solution with CFL = 0.5 at
resolution ∆x = ∆z = 50 m. Top to bottom: initial data, computed data at t = 300 s, 600 s, 900 s. Colour shading
every 1 K starting at −16.5 K.

Table 4.5: Maximum and minimum potential temperature Θmax and Θmin, corresponding maximum perturbation Θ′,
and front position xmax at final time T = 900 s for the density current test case, as of Figure 4.10. xmax is defined as the
rightmost intersection of the 1 K contour with the bottom boundary

Θmax Θmin Θ′ xmax

300.17 K 290.03 K 10.14 K 15475.68 m
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Convergence study

We present a convergence study based on the computed potential temperature distribution Θ at time

t = 100 s. Errors are evaluated between computed solutions with grids at resolutions ∆z = ∆x =

800, 400, 200, 100 m and the computed solution with ∆z = ∆x = 50 m as reference. Quadratic conver-

gence rate is found both in the trapezoidal and in the BDF2 case (Figure 4.11 and Table 4.6).
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Figure 4.11: Convergence story for computed potential temperature Θ at time t = 100 s on [0, 25.6] × [0, 6.4] km2.
Relative errors computed with respect to a fine-grid solution with ∆x = 50 m (512×128 cells). Left panel: trapezoidal
method in the second projection. Right panel: BDF2 method in the second projection.

Table 4.6: Variation of relative L2 and L∞ errors and convergence rates for the density current case as of Fig. 4.11.
Errors computed as numerical solution at t = 100 s on grids withNx×(Nx/4) cells with respect to a fine-grid solution
computed on 512 × 128 cells. Left table: trapezoidal method in the second projection. Right table: BDF2 method in
the second projection.

L2 L∞

Nx EΘ σΘ EΘ σΘ

32 3.06e-04 2.76e-04
64 8.48e-05 1.85 1.00e-04 1.47
128 2.19e-05 1.95 2.39e-05 2.06
256 5.17e-06 2.09 4.14e-06 2.53

L2 L∞

Nx EΘ σΘ EΘ σΘ

32 2.73e-04 2.54e-04
64 7.49e-05 1.87 9.13e-05 1.48

128 1.98e-05 1.92 2.26e-05 2.01
256 4.99e-06 1.99 3.94e-06 2.52

4.5.4 Non-hydrostatic inertia-gravity waves

The third test case concerns a perturbation on the thermally stratified background (4.3)–(4.4). Considering

the values N = 0.01 s−1, g = 9.81 m s−2, and Tref = 300 K, we obtain the range Θ ∈ [300, 332.19] K for

z ∈ [0, 10] km for the background thermal stratification. In a [0, 300] × [0, 10] km2 domain we consider

the perturbation (see [103] and top left panel of Figure 4.12):

Θ′(x, z, 0) = 0.01 K ∗ sin(πz/H)

1 + (x− xc/a)2
, (4.25)

H = 10 km, xc = 100 km, a = 5 km. (4.26)
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In addition, there is a background horizontal flow u = 20 m s−1. The simulations are performed using an

advective time step at CFL = 0.3, that is ∆t = ∆tA ≈ 3.75 s. The grid spacing is ∆x = ∆z = 250 m

and the trapezoidal time integrator is employed in the second projection. As in the previous cases, boundary

conditions are set periodic on the sides and solid walls on top and bottom boundaries.

Unlike the previous test cases, here the dominant dynamics is chiefly wavelike rather than vertically

buoyancy-driven. Inertia-gravity waves develop in the horizontal direction, Figures 4.12 and 4.13. The

wave dynamics is especially visible in the right panels which show horizontal cuts of the two-dimensional

plots at height z = 5000 m. A noteworthy feature of the obtained results is the good symmetry of the curves

with respect to the centre of the perturbation.

A quantitative comparison between the fully compressible results and the results of [93] is reported in Table

4.7. Maxima and minima of perturbations of velocity components, potential temperature and Exner pressure

at final time T = 3000 s are in line with published work. Moreover, the potential temperature profile at final

time in the lower right panel of Figure 4.12 bears good comparison with the corresponding picture in [93].

Besides the wave dynamics, the scheme reproduces the correct horizontal advection speed, as the centre of

the perturbation is moved horizontally from x = 100 km to x = 100 km + 3000 s ∗ 20 m s−1 = 160 km.

This finding corroborates the conclusions of Section 3.2.2 about the vortex advection. The wave dynamics

displayed by the vertical velocity (Figure 4.13) is also in agreement with results found in the literature [2].

As in the previous cases, [16] report quantitatively similar results for a thermodynamically consistent version

of a pseudo-incompressible model. The total wallclock time for the simulation of Figure 4.12 was 1261 s

including output at final time. 43% of the total wallclock time was taken up by the predictor step and 55%

by the corrector step.

Table 4.7: Maxima and minima of horizontal velocity u, vertical velocityw potential temperature Θ and Exner pressure
π = TΘ−1 perturbations at final time T = 3000 s in the present study and [93] for the inertia-gravity waves test case.

u′max u′min w′max w′min Θ′max Θ′min π′max π′min

1.054e-02 -1.06e-02 2.739e-03 -2.262e-03 2.808e-03 -1.526e-03 7.75e-07 -5.27e-07
[93] 1.064e-02 -1.061e-02 2.877e-03 -2.4e-03 2.808e-03 -1.511e-03 9.11e-07 -7.13e-07

Finally, we define conservation errors as:

Cφ =
(φtot)T − (φtot)0

(φtot)0

, (4.27)

where φtot =
∫

Ω
φdx denotes the volumetric integral of φ in the domain Ω. Subscripts 0 and T denote

initial and final time, respectively. We expect our scheme to conserve ρtot, ρutot and Ptot. Though our model

does not conserve total energy density E defined in 2.3, we report conservation scores for that variable, too.

Values of the conservation error for ρ, ρu and P are fairly low (Table 4.8) in comparison with published

work [93].
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Figure 4.12: Potential temperature perturbation in the inertia-gravity waves test case, large time step results. Left
column, top to bottom: initial data, colour shading every 10−3 K; computed solution at t = 1000 s, t = 2000 s,
t = 3000 s, colour shading every 5 · 10−4 K in the range [−0.0015, 0.003] K with the 0 K shade removed. Right
column: horizontal cut at height z = 5000 m. In the bottom right panel, the vertical scale is magnified in agreement
with [93].
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Figure 4.13: Vertical velocity in the inertia-gravity waves test case. Left column, top to bottom: computed solution
at t = 1000 s, t = 2000 s, t = 3000 s, 16 colour shades in the intervals (top to bottom) [−0.0029, 0.0049] m s−1,
[−0.0027, 0.0036] m s−1, [−0.0023, 0.0027] m s−1, respectively. Right column: horizontal cut at height z = 5000 m.

Table 4.8: Conservation errors for density, horizontal momentum density, P and total energy density in the inertia-
gravity wave simulation (see text for definitions).

Cρ Cρ|v| CP CρE

1.15e-09 8.05e-11 5.68e-09 1.98 e-09
[93] 1.67e-08 2.6e-07 \ 1.64 E-08





5

A blended soundproof-compressible numerical model

In this chapter we present the blended soundproof-compressible model obtained by extending the techniques

described in Chapter 3. The basic idea involves assigning a weight parameter to the time derivative term in

the energy equation in order to tune the amount of compressibility simulated by the scheme.

In the following, we reappraise our semi-implicit fully compressible model and describe the modifications

required by the blended discretization. Then, we test the features of the blended model in the case of the

rising thermal bubble, laying special emphasis on the first stages on the simulations.

5.1 Analytical framework

The blended compressible/pseudo-incompressible equations are given as follows, for α ∈ {0, 1}:

ρt +∇ · (ρv) = 0, (5.1a)

(ρv)t +∇ · (ρv ◦ v) +∇p = −ρgk, (5.1b)

αPt +∇ · (Pv) = 0. (5.1c)

This formulation recovers the fully compressible dynamics for α = 1. For α = 0 a pseudo-incompressible

model as in [61] is accessed. However, unlike [61], the present model works with p and ρ instead of π and θ.

As noted, for the purposes of this study we do not consider the thermodynamically consistent modification

introduced in [66] and implemented in [16].

In (5.1) the α parameter is introduced to formulate the fully compressible and pseudo-incompressible model

in one and the same set of equations. Only discrete values α ∈ {0, 1} make sense to begin with. However,

if we consider the equations for any α ∈ [0, 1], a seamless discretization that allows integration of (5.1) for

any of these values can be used to our advantage in some meteorologically interesting situation.

Suppose we are initializing the test case of a rising warm-air bubble as in Section 4.5.2, or of flow over a

mountain. Acoustic perturbations are of negligible importance in meteorology, therefore we would like to

simulate acoustically balanced flows. In general, the balanced pressure distributions associated with given

initial data for potential temperature and velocity cannot be determined analytically. However, we know that
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pseudo-incompressible models accurately simulate acoustics-free compressible flows. Then, by running

a simulation in pseudo-incompressible mode with α = 0 for S1 time steps, we can generate reasonable

approximations to the missing pressure distributions. Next, within S2 time steps, we increase the value of

α continuously from 0 to 1. After time step S1 + S2 we maintain α = 1 to operate the model in fully

compressible mode. In this fashion, a compressible flow simulation is obtained that is balanced with respect

to acoustic modes.

Such a smooth blending of balanced and unbalanced model equations within a common discretization frame-

work could substantially contribute to resolving similar balancing issues in the context of data assimilation.

5.2 Numerical Framework

In this section, we describe the modifications to the numerical scheme required by the blending feature.

Hereafter, we will consider α ∈ [0, 1]. Further discussion on the energetic properties of the blended model

for α ∈ [0, 1] can be found in [65].

Predictor

The auxiliary system (3.1) solved in the predictor step is the same for the compressible and pseudo-

incompressible models and is not modified in the blended framework. The discretized equations (3.1)

remain the same for all values of α.

Corrector

In the correction step, two elliptic problems are solved by considering the equation:

[
α

(
∂P

∂t

)
+∇ · (Pv)

]n+ 1
2

= 0 . (5.2)

Expression (5.2) represents a semi-implicit discretization of the energy equation (5.1c) in the fully compress-

ible case for α = 1 and the divergence constraint in the pseudo-incompressible case for α = 0. Proceeding

as in Section 3.1.2, we derive the first discrete Helmholtz problem:

− α

(
Cn+ 1

2 ,∗
H

∆t
δp

)
C

+ ∇̃ ·
[

∆t

2
Θn+ 1

2 ,∗∇δp
]
C

= ∇̃ · [(Pv)n+ 1
2 .∗]C . (5.3)

We refer to Section 3.1.2 and Equation (3.30) above for definitions. Expression (5.3) is responsible for

determining stable time increments of P in the compressible model (α = 1). In the pseudo-incompressible

case expression (5.3) turns into a standard Poisson pressure projection equation and enforces the divergence

constraint for α = 0. In this case, the correction of P in (3.33c) automatically yields Pn+1 ≡ P up to

the tolerance with which the Poisson equation was solved. Thus, in the pseudo-incompressible case, the

pressure variable P is restored to its background value as a result of the first correction. For all values of α,
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the fluxes are corrected with the solution of (5.3) via (3.33). Tuning the parameter α determines the amount

of compressibility present in the system.

In the second correction step, the following version of the energy equation is considered in the blended

case:

α

(
∂P

∂t

)n+ 1
2

+∇ ·
[
θ

2− α
2

(Pv)
n+1

+ (1− θ)α
2

(Pv)
n

]
= 0. (5.4)

We recall that θ denotes the off-centring parameter within the trapezoidal discretization in the fully com-

pressible case. For α = 1 and θ = 1/2, a second-order accurate trapezoidal discretization of the fully

compressible model with no off-centring is obtained. For all the runs in this chapter we kept the value

θ = 1/2 fixed. Furthermore, in the pseudo-incompressible case with α = 0, the value θ = 1 is automati-

cally enforced to obtain the discrete version of the divergence constraint (2.21c).

Proceeding as in Section 3.1.2 we derive the second discrete elliptic problem:

−α
(
Cn+1
H

γ∆t
δpν

)
C

+ ∇̃ ·
[
θ(2− α)

∆t

4
Θn+1∇δpν

]
C

= ∇̃ ·
[
θ

2− α
2

(Pv)n+1,∗∗ +
α

2
(1− θ)(Pv)n

]
C

.

(5.5)

For all values of α, the solution of (5.5) is used to update the momentum value according to (3.34).

Pressure update

In the blended case, the nodal pressure update at the end of the time step is modified as follows:

1. As in Section 3.1.2, an auxiliary cell-centred pressure pc is computed from the energy value P using

the inverse of the equation of state (2.10). The result is then interpolated to the nodes:

pn+1
c =

(
Pn+1,∗∗

ρrefTref

)γ
pref, pn+1

c −→ pn+1
EOS . (5.6)

2. The obtained value is weighted with the old time level pressure update with the solution of (5.5), δpν :

pn+1 = αpn+1
EOS + (1− α) (pn + δpν) . (5.7)

When the model runs in pseudo-incompressible mode with α = 0, the node-centred pressure increment δpν

is added to the old time level value. In compressible mode, with α = 1, the new nodal pressure is locked to

the energy value imposing the equation of state at a discrete level. For intermediate values of α ∈ (0, 1) the

pressure is updated by weighting of the two strategies.

Other solutions are possible and were tested. For example, as a pseudo-incompressible update, an inter-

polated value of the solution δpc of the first correction equation (5.3) can be added to the old time level

pressure value. In that case the solution of the second Poisson problem only serves as a correction to the

momentum flux, expression (3.34), not as an update for the nodal pressure value. However, since we ob-

served no difference by using this method, in all the blended simulations we used expression (5.7) to update

the pressure at the end of the time loop.
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5.3 Numerical results

In Sections 3.2 and 4.5, we aimed at benchmarking the semi-implicit fully compressible method in simula-

tions of advection and buoyancy-driven flows. With the exception of the energy transport in the vortex case

and the simulation of the pressure wave dynamics, the energy derivative term representing compressibility

does not bring about significant differences in the result with respect to soundproof runs, as expected in the

small to meso-scale environment considered.

In this section, the goal is to show that the blended soundproof-compressible formulation (5.1) can be used

to remove the onset of the initial acoustic imbalances generated in the initial stages of compressible runs as

the ones observed in Figure 3.6.

More specifically, we reappraise the rising bubble test case and evaluate the capabilities of our blended

model. After observing that sizeable pressure imbalances are generated by the compressible model with

α = 1, the idea is to employ the blending parameter to launch the simulations in pseudo-incompressible

mode with α = 0. Once a balanced pressure distribution has been achieved within a few time steps, the

value of α is gradually increased to 1. Thereafter, the scheme is run in fully compressible mode. It is worth

remarking that the character of the tests in this section is mostly “empirical”, as an in-depth study of the

numerical properties of the blended model for α ∈ (0, 1) has not been carried out and lies outside the scope

of this work. We refer to [65] for further analysis on the properties of the blended system.

Rising bubble

We consider again the test case of a positively buoyant perturbation on the neutrally stratified atmosphere

(4.2) studied in Section 4.5.2. As noted, pseudo-incompressible results for velocity and potential temperature

do not differ substantially from compressible results at final time, as can be appraised comparing results in

Section 4.5.2 with [61], see also [16].

However, the compressible dynamics can be detected in the onset of sound waves in the initial stages of the

simulation. With the fully compressible model (α = 1) the initial potential temperature perturbation triggers

pressure waves. These are visible in the left panel of Figure 5.1, which displays pressure increments in a

fully compressible run with ∆t = ∆tI = 1.9 s. The oscillations are due to the initial hydrostatic pressure

distribution from (4.2) not being acoustically balanced.

The presence of associated pressure oscillations is confirmed by a time series over the first 350 s of the

nodal pressure time increment values recorded at the point (x, z) = (−7.5, 5) km, marked with a cross in

the left panel of Figure 5.1. The time series is shown in the right panel of Figure 5.1. The oscillations are

suppressed in the pseudo-incompressible run (dashed line) except for an initial adjustment.

However, thanks to the blending feature, the code is able to continuously transition from the pseudo-

incompressible to the fully compressible configuration. The left panel of Figure 5.2 shows the time series

of nodal pressure increments for blended runs. We set the transition parameter α from Section 5.1 to zero



5.3 Numerical results 73

x [km]

z 
[k

m
]

 

 

−10 −5 0 5 10
0

2

4

6

8

10

−2

−1

0

1

2

0 50 100 150 200 250 300 350
−3.0

−2.0

−1.0

0

1.0

2.0

3.0

Time [s]

δp
 [P

a]

Figure 5.1: Nodal pressure time increment in the rising bubble test case. The time step size is ∆t = 1.9 s. Left panel:
16 colour shades in the interval [−2.75, 2.49] Pa, time step 14 (t = 26.6 s), fully compressible model. Right panel:
value over the first 350 s measured at the point (x, z) = (−7.5, 5) km (marked with a cross in the left panel) for fully
compressible (solid line) and pseudo-incompressible (dashed line) configurations.

for S1 time steps. Then, we linearly increase the value of α reaching α = 1 over S2 time steps. Starting at

the time step number S1 + S2, the code runs compressibly with α = 1.

In the left panel of Figure 5.2, the black curve in the background denotes the fully compressible result. The

dashed-dotted red curve and blue dashed curve were obtained with S2 = 20 and S2 = 40, respectively. The

right panel of Figure 5.2 displays the parameter α as a function of the time loop for the three cases. There

are no disturbances for the first S1 = 10 pseudo-incompressible steps in the two blended curves in the left

panel, and the results coincide with those from the run of the pseudo-incompressible model (dashed line in

the right panel of 5.1). Perturbations arise in the transitional period after S1 time steps and fully develop

after S1 + S2 time steps. The amplitudes of the oscillations in the blended runs are considerably lower

than those in the fully compressible run and they are lower for the larger S2 value, that is, the longer the

transitional period.

Figure 5.3 offers a two-dimensional representation of the time series of Figure 5.2. The left panels show the

temporal evolution of the nodal pressure increment values on the horizontal section (x, z) ∈ [−10, 10] ×

{5} km. The right panels show the temporal evolution of the same quantity on the vertical section (x, z) ∈

{−7.5}× [0, 10] km. The horizontal and vertical sections are marked in the left panel of Figure 5.1 with the

dotted and dashed-dotted line, respectively. The time interval considered is [3.8, 190] s, corresponding to

the first 100 time steps of the simulation. Note that the data for the first time step are not plotted to remove

the adjustment in the first time step of the blended runs. Plots as the ones in Figure (5.3) are known in

meteorology as Hovmöller plots and serve as a two-dimensional representation of wave dynamics.

The panels on the top row refer to the compressible run with α = 1 and correspond to the black curve in

Figure 5.2. A fully developed wave pattern can be seen, roughly corresponding to the crests and troughs

in Figure 5.2. The areas colored in red correspond to the passage of a crest through the section, the areas

colored in blue to the passage of a trough. Moreover, the wave dynamics can be detected in the diagonal
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Figure 5.2: Time series of nodal pressure time increment measured at the point (x, z) = (−7.5, 5) km in the rising
bubble test case for the first 350 s of a run at ∆t = 1.9 s. Left panel: blended runs with S1 = 10 initial pseudo-
incompressible steps and S2 = 20 (red dashed-dotted line) and S2 = 40 (blue dashed line) transitional steps. The thin
black line in the background denotes a fully compressible run with S1 = S2 = 0. The right panel shows the value of α
during the first 100 time steps (190 s) in the three cases.

patterns which are especially visible in the right panels.

Plots in the second and third row in Figure 5.3 refer to the blended runs with S1 = 10 initial pseudo-

incompressible steps and S2 = 20 (second row) and S2 = 40 (third row) transitional steps, respectively,

and correspond to the red and blue curves in Figure 5.2. There is no wave pattern during the first 10 time

steps, when the model runs in pseudo-incompressible mode (lower region in the left panels, leftmost region

in the right panels). Afterwards, a wave pattern akin to the one in the compressible plots develops. However,

the amplitude of the waves is sensibly reduced, see the values on the colorbars. The reduction mirrors the

amplitude difference seen in Figure 5.2 for the one-dimensional plot and further highlights the advantage

gained by using the blending technique.

Next, we consider the case of simulations at larger time steps. Figures 5.4 and 5.5 show the time series

of the nodal pressure increments at the point (x, z) = (−7.5, 5) km and on the vertical section (x, z) ∈

{−7.5}× [0, 10] km, respectively. Here, the time step is determined as in the simulations of Figure 4.4 with

CFL = 0.5 in Equation (3.20), see also Figure 4.5. In Figure 5.4, data for the first time step have not been

displayed because of the adjustment present in the pseudo-incompressible and blended cases. The dashed

curve in Figure 5.4 displays the result of the pseudo-incompressible run.

The solid line in Figure 5.4 and the left panel of Figure 5.5 refer to the fully compressible run with α = 1.

The amplitude of the maximum oscillation in Figure 5.4 is substantially reduced with respect to the case

of the small time step in Figure 5.2. However, the effect of compressibility is still present, as shown in the

fully developed wave dynamics in the Hovmöller plot.

The dashed-dotted curve in 5.4 and the right panel of Figure 5.5 refer to a blended run with S1 = 0 pseudo-

incompressible steps and S2 = 3 transition steps. A sizeable reduction in the oscillation amplitude is

observed in the one-dimensional curve and is confirmed by the reduced amplitude of crests and troughs in
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Figure 5.3: Nodal pressure time increments in the rising bubble test case for runs at ∆t = 1.9 s (see Figure 5.2).
Hovmöller plots of the sections (x, z) ∈ [−10, 10] × {5} km (left panels) and (x, z) ∈ {−7.5} × [0, 10] km (right
panels) in the time interval t ∈ [3.8, 190] s. Top row: fully compressible model; middle and bottom row: blended model
with S1 = 10 initial pseudo-incompressible steps and S2 = 20 (middle row) and S2 = 40 (bottom row) transitional
steps. For all panels, 20 contour lines are displayed with extrema ([Pa], left to right, top to bottom): [−3.57, 4.51],
[−4.47, 3.45], [−0.65, 0.71], [−1.51, 1.05], [−0.29, 0.25], [−0.47, 0.46] (note different values on the colorbars).



76 5 A blended soundproof-compressible numerical model

the contour plot for the blended run as compared to the compressible contour plot. These results show that

a blended soundproof-compressible strategy can be of advantage in reducing acoustic imbalances not only

in runs at small, acoustic-resolving time steps, but also in runs at large, advective time steps.
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Figure 5.4: Nodal pressure time increment in the rising bubble test case. Value over the first 350 s measured at the
point (x, z) = (−7.5, 5) km (marked with a cross in the left panel of Figure 5.2) for fully compressible (solid line)
and pseudo-incompressible (dashed line) configurations. The dashed-dotted line is obtained with a blended run with
S1 = 0 pseudo-incompressible steps and S2 = 3 fully compressible steps. The time step is determined by CFL = 0.5,
see Figure 4.5, and the data for the first time step is removed.
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Figure 5.5: Nodal pressure time increments in the rising bubble test case for runs at CFL = 0.5 s (see Figure 5.4).
Hovmöller plots of the section (x, z) ∈ {−7.5} × [0, 10] km in the time interval t ∈ [21.7, 346.6] s. Left panel:
fully compressible model; right panel: blended model with S1 = 0 initial pseudo-incompressible steps and S2 = 3
transitional steps. 20 contour lines in [−1, 1] Pa.

Finally, as in [6], which presents a pseudo-incompressible code for stellar hydrodynamics, we compare

plots of the Mach number in the initial stages of fully compressible, pseudo-incompressible, and blended

runs of the rising bubble. Results at time t = 21.66 s, that is, time step number 57 at ∆t = ∆tI = 0.38 s,

are displayed in Figure 5.6.

The mushroom-shaped fully compressible result (upper left panel) reveals the initial onset of sound waves
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due to the pressure imbalances of the kind inspected in Figure 5.6. The wave dynamics is further highlighted

in a Hovmöller plot of the horizontal section (x, z) ∈ [−10, 10] × {6} km, with the x-coordinate on the

horizontal axis and time on the vertical axis (top right panel in Figure 5.6). The triangular shape signalizes

the arrival of the first crest after 6 seconds and the ensuing wave propagation typical of the hyperbolic

compressible case.

By contrast, the pseudo-incompressible plot (lower left panel in Figure 5.6) and blended plot (lower right

panel in Figure 5.6) show no perturbation away from the bubble. A very small time step was considered in

this case following [6] in order to track more closely the dynamics in the initial stages.

The situation is further explained in the Hovmöller plots of the vertical velocity in Figure 5.7 in the same

run. The upper left panel shows the vertical velocity in the first time step of a pseudo-incompressible run.

The dashed line marks the vertical section (x, z) ∈ {0} × [0, 10] km. The value of the vertical velocity on

this section and in the time interval [0, 21.66] s is displayed in the remaining panels.

Away from the bubble perturbation displayed in the red areas, wave dynamics can be noticed in the fully

compressible run in the upper right panel of Figure 5.7. The perturbed contours in the upper right region

correspond to the mushroom-shaped contour of Figure 5.6. The lower panels of Figure 5.7 correspond to

the lower panels of Figure 5.6. The blended plot in the lower right panel lacks acoustic perturbations and

approaches the balanced pseudo-incompressible plot as seen in the lower left panel. Results in Figure 5.6

and 5.7 confirm what observed in the studies on pressure perturbations above and provide further evidence

for the effectiveness of the blended model.

The numerical results shown in this chapter demonstrate the capabilities of the blended model. Acoustic

perturbations are absent when the model runs in pseudo-incompressible mode with α = 0 and they emerge

significantly damped after the transition to α = 1 in fully compressible mode. Therefore, when blended

continuously with the compressible discretization, the soundproof limit discretization can be used to actively

control imbalances in the initial data.

The blending technique may prove useful whenever new data need to be incorporated in a fully compressible

model. In particular, in a data assimilation framework [91], a blended model such as the one we propose

would be able to turn to balanced soundproof dynamics as new data arrive from, e.g., an observation station.

As noted, these data are generally imbalanced and would spark acoustic oscillations in the framework of

fully compressible numerical schemes as seen in Figure 5.1. By resorting to a blended configuration for

some time steps, the impact of the acoustic imbalances can be reduced as shown above. After the data

assimilation and blending phase, the model can run again in fully compressible mode with the imbalances

filtered out.
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Figure 5.6: Mach number M in the rising bubble test. Upper left and lower panels: value at t = 21.66 s, contours
every 10−4 in the range [0.0001, 0.002]; Upper left panel: fully compressible model S1 = S2 = 0. Lower left panel:
pseudo-incompressible model. Lower right panel: blended model S1 = 10, S2 = 40. The upper right panel displays
a Hovmöller plots of the horizontal section (x, z) ∈ [−10, 10] × {6} km in the time interval t ∈ [0, 21.66] s for the
fully compressible run.
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Figure 5.7: Vertical velocity in the rising bubble test case, ∆t = 0.38 s. The upper left panel shows the value at
the first time step of a pseudo-incompressible run with 16 colour shades in [−0.0045, 0.011] m s−1. The remaining
panels display the Hovmöller plots of the vertical section (x, z) ∈ {0} × [0, 10] km marked with a dashed line on
the upper left panel. 30 contours in [0.01, 0.61] m s−1 are shown for the fully compressible model (upper right panel),
pseudo-incompressible model (lower left panel) and blended model with S1 = 10, S2 = 40 (lower right panel).
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Extension to a scheme with implicit buoyancy

The fully compressible numerical scheme constructed in Chapter 3 together with the buoyancy discretization

described in Chapter 4 is implicit only with respect to sound waves. Such a scheme is sufficient to simulate

flows in a neutrally-stratified environment with time steps constrained only by the advection speed [116].

The thermal perturbations considered in Sections 4.5.2 and 4.5.3 belong to this category.

However, under hydrostatic conditions, i.e. when the domains considered have a large aspect ratio of

horizontal to vertical scales, the time step that can be used with a scheme implicit only with respect to sound

waves is additionally constrained by 1/N [116]. If we recall that a value ofN = 0.01 s−1 is usually adopted

in the troposphere, the additional threshold entails a significant efficiency burden in flow simulations at large

scales. The case of the inertia-gravity waves considered in Chapter 4 is generally regarded as nonhydrostatic

in the literature.

In this chapter we will present an extension of our semi-implicit scheme to the implicit treatment of buoyancy

processes. This development is necessary to extend the results presented in the previous chapters to larger

scales for which the aforementioned additional threshold on the time step size holds.

As noted, existing semi-implicit numerical schemes that treat sound waves as well as gravity waves implicitly

are traditionally written in terms of perturbations around hydrostatically balanced states, see, e.g., [29, 93,

109, 115, 133]. Our goal in this chapter will be to derive such a discretization while working with full

variables.

6.1 The buoyancy-implicit corrections

In the following we will explain the modifications introduced in the implicit correction step in order to

account for an implicit treatment of buoyancy.

First correction step

We will proceed as in Section 3.1.2 and start our analysis from the momentum equation (2.12b) integrated

over a half time step. Considering it in advective form we have:
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Then we consider the following expansions, neglecting higher-order terms:
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ρ
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(6.2)

pn+ 1
4 = p∗ + δp (6.3)

and define:

δv ≡ vn+ 1
2 − vn+ 1

2 ,∗. (6.4)

In particular, in (6.4) the term:
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denotes the predicted velocity.

Above, unknown variables are decomposed into predictor-computed quantities, denoted by an asterisk, and

an increment, denoted by δ. As a result, we get, once more neglecting higher-order terms:

δv = −∆t

2

(
Θ

P

)∗
∇δp− ∆t

2P ∗
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2
Θ∗δ

(
1
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)
∇p∗. (6.6)

In an adiabatic setting, the equation for potential temperature reads:

dΘ

dt
= 0. (6.7)

We integrate this equation over a half time step. Subtracting from the equation:

Θn+ 1
2 −Θn = −∆t

2
vn+ 1

2 · ∇Θ (6.8)

the expression:

Θn+ 1
2 ,∗ −Θn = −∆t

2
vn+ 1

2 ,∗ · ∇Θ (6.9)

we obtain:

Θn+ 1
2 −Θn+ 1

2 ,∗ ≡ δΘ = −∆t

2
δv · ∇Θ∗ (6.10)

where Θ∗ was considered inside the gradient in the last term, as scalars computed in the predictor are already

second-order accurate. Replacing now (6.6) into (6.10) we have
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For brevity, we set:
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Replacing back (6.11b) into (6.6) we obtain:
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Finally, replacing (6.13b) into the energy equation at the half time level:
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we obtain the modified discrete Helmholtz equation:
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where:
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. (6.16)

In order to simplify expression (6.15), we make the approximation of considering only the vertical base

state contributions Θ and p in the gradients in the denominator of expression (6.11b), i.e.:

∇Θ∗ = k
dΘ

dz
= k

Θ

g
N2 (6.17)

∇p∗ = k
dp

dz
= −ρgk (6.18)

where we used hydrostatic balance and the definition of the buoyancy frequency:
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Hence we have, for expressions grouped into 2 and 3 of Equation (6.15):
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respectively, where we used (6.20) and the fact that, up to higher-order terms, P ∗ = P = ρΘ.

Replacing expressions (6.23) and (6.25) into the Helmholtz problem (6.15) we obtain:
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that is:
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where I denotes the identity tensor, and ◦ the tensor product.

Iterating the procedure in the second projection as done in Section 3.1.2 leads to a second Helmholtz

problem of the same form as (6.27) centred on the dual cells C. The resulting discretization is implicit

with respect to gravity waves as well as to sound waves. In (6.27) the information on the stratification is

embedded in the modified coefficient of the second-order term and the additional first-order term.
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Conclusions and outlook

We have presented a semi-implicit fully compressible numerical model for the simulation of atmospheric

flows at low Mach number. The scheme is derived as a direct extension of a pseudo-incompressible sound-

proof framework [61]. The two-time-level conservative finite volume method integrates the nonlinear partial

differential equations representing mass, momentum and energy conservation using a two-step approach.

An explicit predictor provides second-order accurate scalars via linear reconstructions for the compu-

tation of fluxes. The pressure variable is at the old time level in the predictor, which features a stability

condition unconstrained by the speed of sound waves. In the compressible case, the pseudo-incompressible

divergence constraint coming from the energy equation is extended to include the time derivative term. The

neglect of the constraint and the use of the old time level pressure in the predictor are corrected with the

solution of two elliptic problems for cell-centred and nodal pressure increments. Using the equation of state,

the time derivative term in the P equation is implemented as an additional zero-order term in the matrix

of the two Helmholtz equations, thereby implying virtually no computational overhead with respect to the

soundproof case.

The properties of the compressible flow solver were tested in a low-speed, small-scale environment on

the transport of a smooth axysimmetric vortex. The scheme was shown to advect the vortex at the correct

speed. Furthermore, the pressure increments coming from the solution of the two Helmholtz problems were

shown to yield consistent values, thus validating the adopted strategy. In terms of accuracy, the quadratic

convergence rate was verified both with respect to initial data and in the framework of self-convergence tests.

We remark that weak instabilities observed in the vortex case for CFL ≥ 0.6 may be amended by employing

a different time integrator in the predictor or by adopting an exact projection strategy in the corrector step

as in [122]. These solutions are left for future work. Compressibility was observed in imbalances of the

pressure distribution in the initial stages of the vortex runs. Moreover, the study of the propagation of a

simple acoustic wave further highlighted the properties of the scheme in the simulation of compressibility

in the low Mach number regime.

Next, the discretization of the gravity term has been discussed. A strategy that mirrors the advection

of 1/Θ in the predictor was adopted that enables the use of buoyancy-driven time steps up to CFL = 0.99.



84 7 Conclusions and outlook

Accuracy was maintained working with full variables in a well-balanced framework [19, 61]. Modifications

were required in the implementation of initial data, node-cell interpolations and boundary conditions in

order to preserve hydrostatic balance at the discrete level. The absence of spurious velocities was verified

on resting neutrally and stably stratified atmospheres. Then, the dynamics of thermal perturbations was

simulated with large time steps in a small and meso-scale environment. On the one hand, the compressible

results were in agreement with the soundproof results as expected at the scales under consideration. On the

other hand, in all of these benchmarks the proposed scheme bore satisfactory comparison with established

approaches in the literature as measured with reference to published work on nohydrostatic compressible

models. Weak checkerboard modes were observed in runs at acoustics-resolving time steps. Considering

different approaches for the time integrator in the predictor may be of advantage in tackling this issue

before adopting well-established filtering techniques, which were not adopted in the present work. We also

refer to the literature for the description of instabilities arising in the context of projection methods for

incompressible flows [4, 94]. The issue currently remains object of research in the framework of the model

proposed here.

By exploiting the modular character of the compressibility addition in the scheme, the system has

then been cast in a novel blended soundproof-compressible formulation. The blending was accomplished

by attaching a switching parameter to the compressibility term in the energy equation. In view of the

previous developments, the multimodel formulation only required minor changes in the implementation.

The resulting blended scheme flexibly integrates different systems with virtually the same numerics. The

blended approach was shown to be of advantage in filtering acoustic imbalances in the initial stages of

compressible runs of a rising warm air bubble. Launching the code in pseudo-incompressible mode and

then smoothly turning on compressibility, fully compressible simulations effectively balanced with respect

to acoustics were obtained.

Finally, an extension of the scheme to implicit buoyancy has been presented. The proposed modification

involves minor changes in the coefficients of the elliptic problems in the correction step, thus entailing

negligible additional computational cost.

A remark is in order on the motivation that has driven the present work. On the one hand, we very

much subscribe to the common knowledge that sound waves do not play a significant role in small to

mesoscale atmospheric dynamics. Indeed, the results presented in Chapters 3 and 4 as produced by the

compressible scheme are very similar to the results obtained with pseudo-incompressible runs [16]. In this

sense, our study corroborates the recent published work on the employability of soundproof models for

the simulations of small to mesoscale motions under realistic assumptions on the potential temperature

stratification [1, 62, 108]. On the other hand, as pointed out in the mentioned comparison studies [32],

compressibility exerts a nontrivial influence on the structure of slower internal waves, and this influence

can only be detected by solving the fully compressible equations. The compressible solver developed in the

present work defaults to pseudo-incompressible behaviour by design on small scales. Therefore, rather than
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trying to identify a “better” model depending on the scale under consideration, our goal has been to show

that a systematic approach can be adopted that considers both a general and a reduced analytical model –

indeed a seamless blending of the two models – with minor differences in the numerics. We believe such an

approach can be frutiful in evaluating the respective merits of different modelling choices especially with a

view to the smaller and smaller scales accessible by future schemes.

The choice of keeping the formulation in terms of pressure and density instead of the more traditional

Exner pressure and potential temperature was taken in agreement with the coding framework upon which

the developments described in this work draw. Moreover, as discussed in [66, 86], the choice increases

flexibility towards extensions to more complicated equations of state.

On the point of efficiency, our scheme requires the solution of an additional elliptic problem with respect

to most of the existing semi-implicit integrators in the literature. However, the computational burden of our

corrector step appears to be put into perspective by the observed share of wallclock time taken up by the

solution of the elliptic problems. In this regard the authors of [109] observed better conditioning properties

in the compressible Helmholtz problem than in the soundproof Poisson problems.

As for the choice of a discretization independent of a hydrostatically balanced background state, parallel

research endeavours are currently in progress on the subject, see, e.g., [128]. From a qualitative point of

view, one of the noteworthy features of our scheme is the relative simplicity of its analytical and numerical

formulation compared with existing approaches written in terms of perturbations.

As noted, the blending feature has interesting potential applications in the field of atmospheric data as-

similation [91]. In that context the ability to insert new imbalanced data in the model without ad hoc filtering

techniques appears especially attractive. Such an approach may also be employed in mapping external data

into a multidimensional finite volume scheme as in [135]. Furthermore, the idea of blending may be also

useful as an alternative to the mentioned existing unified multiscale approaches [7,35,69] in handling flows

near to hydrostatic or geostrophic balance at synoptic and larger scales. An ideal development of the current

blended scheme would be a blended pseudo-incompressible nonhydrostatic/fully compressible/hydrostatic

model with tunable switching depending on the scale of the flow under consideration. Such a development

would allow for enhanced flexibility and further comparisons with results obtained with reduced models on

a broader range of scales.

A number of further developments and avenues of research are worth exploring based on the ideas

presented in this work. First, the implicit treatment of gravity waves needs to be fully investigated. Once

done, a comparison will be possible with existing approaches on the simulation of baroclinic waves at

synoptic scales [69, 109]. With a suitable implementation of orography, the scheme could be compared

with existing approaches for the simulation of mountain waves on mesoscales [18, 44, 61] and further

soundproof-compressible evaluations. In this connection, a careful choice of a suitable absorbing layer will

be needed [15]. Second, if the model is to run in a multiscale setting, a scale-aware time integrator will be

of advantage, too. An interesting development in this respect will be a multidimensional fully compressible
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implementation of the scale-selective techniques described in [121,123]. There, different time discretization

strategies are combined in a multigrid approach in time that exploits damping and dispersion properties of

different time integrators used to approximate the model on different grids in a suitable weighted fashion.

Third, the implementation of a three-dimensional version of the present scheme will be facilitated by the

3d-ready object-oriented framework of our implementation, while the methods described in [23] appear to

suit well for a formulation on a spherical grid. After systematic efficiency and scalability studies, direct

comparisons will then be possible between existing approaches [106] and developments of the model

proposed in this dissertation on three-dimensional test cases on the sphere.
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