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Abstract

Within the body, every cell contains the same genetic blueprint, the DNA, which is wrapped
around histones and densely packed in the nucleus. Given the same genome, the identity of
each cell is in part defined by modifications to the histones but also the genomic sequence it-
self, such as DNA methylation, that define active and inactive parts of the DNA. In somatic cells,
DNA methylation levels are largely bimodal, with a high genome-wide methylation average that
predominantly excludes CpG islands (CGIs), features often found near gene promoters that re-
main free of methylation. These patterns change across the majority of human cancer types,
which exhibit global loss of methylation accompanied by a gain of methylation at select CGIs.
To date, bisulfite sequencing represents the gold-standard method to profile DNA methylation at
single-base resolution and has been widely used to characterize and understand DNA methylation
landscapes in healthy and tumor cells. This thesis presents advancements in the computational
analysis of bisulfite sequencing data sets, as well as applications to large-scale studies of DNA
methylation in cancer. It showcases the adaptation of a local alignment tool to enable homology
search for bisulfite-converted sequences, which outperforms established semi-global alignment
tools when applied to the search of metagenomic data sets. Additionally, this thesis describes
the development of a new application that provides fast and simplified extraction of DNA methy-
lation heterogeneity metrics from single reads of bisulfite sequencing data. The importance of
such metrics is demonstrated in the context of two studies that focus on DNA methylation changes
within primary tumors and cancer cell lines. Single-read metrics and single-cell methylome pro-
filing show that primary tumors are mainly characterized by heterogeneous, intermediate global
and CGI DNA methylation that is intrinsic to the underlying single tumor cells. In contrast,
cancer cell lines mostly assume one of two different states, where global DNA methylation levels
are either drastically decreased or comparable to healthy tissues, while CGIs become almost fully
methylated in both scenarios. Although rarely seen in solid tumors, extremely high genome-wide
methylation levels can also be observed in an exceptional primary tumor type, acute lymphoblas-
tic leukemia, where this landscape is influenced by specific epigenetic regulators. Together, the
findings of this thesis advance our ability to analyze bisulfite sequencing data sets as well as
to apply these more nuanced measurements to understand DNA methylation changes during
tumorigenesis and in culture.
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Zusammenfassung

Im Körper enthält jede Zelle denselben genetischen Bauplan, die DNA, die um Histone gewi-
ckelt und dicht gepackt im Zellkern liegt. Aufgrund des gleichen Genoms wird die Identität jeder
Zelle zum Teil durch Veränderungen an den Histonen, aber auch an der Genomsequenz selbst,
wie zum Beispiel durch DNA-Methylierung, bestimmt. Diese Modifikationen legen aktive und in-
aktive Teile der DNA fest. In somatischen Zellen ist die DNA-Methylierung weitgehend bimodal
verteilt, mit einem hohen genomweiten Methylierungsdurchschnitt und der Ausnahme von CpG-
Inseln (CGI), die häufig in der Nähe von Genpromotoren zu finden sind und frei von Methylierung
bleiben. Diese Muster ändern sich bei den meisten menschlichen Krebstypen, die einen glo-
balen Methylierungsverlust bei gleichzeitiger Zunahme der Methylierung an ausgewählten CGIs
aufweisen. Bis heute ist die Bisulfit-Sequenzierung der Goldstandard für die Erstellung von
DNA-Methylierungsprofilen und wird häufig zur Charakterisierung und zum Verständnis von
DNA-Methylierungslandschaften in gesunden und Tumorzellen eingesetzt. In dieser Arbeit wer-
den Fortschritte bei der rechnergestützten Analyse von Bisulfit-Sequenzierungsdatensätzen sowie
deren Anwendung in groß angelegten Studien zur DNA-Methylierung bei Krebs vorgestellt. Sie
zeigt die Anpassung eines lokalen Alignment-Tools, um eine Homologiesuche für Bisulfit-konver-
tierte Sequenzen zu ermöglichen, die etablierte semi-globale Alignment-Tools übertrifft, wenn
sie bei der Suche von metagenomischen Datensätzen angewendet wird. Darüber hinaus wird in
dieser Arbeit die Entwicklung einer neuen Anwendung beschrieben, die eine schnelle und ver-
einfachte Extraktion von Metriken der Heterogenität von DNA-Methylierung aus einzelnen Reads
von Bisulfit-Sequenzierungsdaten ermöglicht. Die Bedeutung solcher Metriken wird im Rahmen
von zwei Studien demonstriert, die sich auf DNA-Methylierungsveränderungen in Tumoren und
Krebszelllinien konzentrieren. Einzel-Read-Metriken und die Erstellung von Einzelzell-Methylom-
Profilen zeigen, dass primäre Tumore hauptsächlich durch heterogene, intermediäre globale und
CGI DNA-Methylierung gekennzeichnet sind. Diese betrifft nicht nur den Durchschnitt sondern
auch die zugrunde liegenden einzelnen Tumorzellen. Im Gegensatz dazu nehmen Krebszelllinien
meist einen von zwei verschiedenen Zuständen an, bei denen das globale DNA-Methylierungs-
niveau entweder drastisch verringert oder mit der von gesundem Gewebe vergleichbar ist, wäh-
rend die CGIs in beiden Szenarien fast vollständig methyliert sind. Obwohl extrem hohe genom-
weite Methylierungsniveaus in soliden Tumoren selten zu finden sind, können diese in einem
außergewöhnlichen primären Tumortyp, der akuten lymphoblastischen Leukämie, beobachtet
werden. Hier wird diese Landschaft durch spezifische epigenetische Regulatoren beeinflusst. Ins-
gesamt verbessern die Ergebnisse dieser Arbeit unsere Fähigkeit, Bisulfit-Sequenzierungsdaten-
sätze zu analysieren und diese differenzierteren Messungen anzuwenden, um DNA-Methylierungs-
veränderungen während der Tumorentstehung und in Zellkulturen zu verstehen.
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Chapter 1

Introduction

Cancer has historically been viewed to arise from the accumulation of genetic mutations that
enable the acquisition of specific properties required for transformation and malignancy. These
properties were summarized under the term "hallmarks of cancer" by Douglas Hanahan and
Robert A. Weinberg for the first time in 2000 and expanded further in 2011 [1, 2]. The orig-
inal properties included the evasion of apoptosis, self-sufficiency in growth signals, sustained
angiogenesis, insensitivity to anti-growth signals, limitless replicative potential, and tissue inva-
sion [1]. Over the following years, new core properties emerged based on the growing number of
cancer studies that highlighted the importance of additional layers to account for the complexity
of the diseases. In 2022, new dimensions to the existing and the introduction of emerging hall-
marks were presented by Hanahan (see Figure 1 from [3]). Here, one emerging characteristic
of tumorigenesis was termed "non-mutational epigenetic reprogramming" and refers to changes
in the epigenetic landscape independent of genetic aberrations that can influence gene expres-
sion. These can include changes to various layers of epigenetic regulation, such as chromatin
accessibility, histone modifications, and DNA methylation [3].

Over the last decades, alterations of the epigenetic landscape during tumorigenesis have been
frequently observed, which expanded the traditional view of cancer as purely genetic diseases.
This includes a genome-wide decrease in DNA methylation, selective hypermethylation of CpG-
dense promoters as well as changes in the distribution of histone modifications [4,5]. However,
understanding and disentangling the interplay between and the effect of epigenetic and genetic
aberrations remains a key challenge. Epigenetic alterations can be non-mutational (emerging
hallmark) or caused by a genetic alteration in epigenetic regulators or other proteins that can
affect the epigenome. On the other hand, epigenetic reconfiguration might sensitize the cancer
genome to additional genetic aberrations [6]. For both non-mutational and genetically induced
epigenetic alterations, it can be challenging to identify changes that have a regulatory function,
such as a direct effect on gene expression [3]. However, besides direct links to gene regulation,
the overall characteristics of the cancer epigenome also present interesting avenues to explore.
Alterations of the DNA methylation landscape that are frequently observed during tumorigenesis
are reminiscent of changes that also occur during aging and extraembryonic development [7–
9]. Thus, studying the cancer epigenome could not only reveal tumor-specific gene expression
regulation but also shed light on the emergence of similar epigenetic landscapes during different
physiological processes.
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The high-throughput read-out of epigenetic modifications was facilitated by and is continuously
evolving based on next-generation sequencing technologies. For example, chemical modification
of the DNA enables the read-out of the methylation status of cytosines across the whole genome
during bisulfite sequencing [10, 11]. The resulting genome-wide DNA methylation profiles can
be compared across healthy and tumor samples to detect differences of interest that can be in-
tegrated with gene expression data or other types of information. With the advent of single-cell
sequencing technologies, it is now possible to further deepen our understanding of epigenetic
regulation by investigating the cellular heterogeneity within a sample of interest [12]. Thus, the
current tools at hand enable the profiling and analysis of the distribution of epigenetic modifica-
tions at a continuously larger scale and to a greater detail than previously possible.

This thesis mainly focuses on a specific epigenetic modification, namely DNA methylation, in
the context of human cancer. One goal was to advance applications for the analysis of bisulfite
sequencing data sets to offer new perspectives for studies that make use of them. Additionally,
the use and impact of these applications should be demonstrated in the context of deepening our
understanding of DNA methylation changes that occur during tumorigenesis. Following this in-
troduction, chapter 2 therefore provides the necessary biological background. This includes epi-
genetic modifications, specifically DNA methylation, in mammalian genomes, the known changes
of the DNA methylation landscape that occur during tumorigenesis in humans, as well as the ba-
sis of sequencing-based read-out and the computational processing of the resulting data sets.
Chapter 3 presents the adaptation of a local alignment tool for homology search to accommo-
date bisulfite-converted query sequences. In chapter 4, the development of an application to ex-
tract and analyze read-level methylation metrics from bisulfite sequencing data sets is described.
Chapter 5 and 6 present two large studies that focus on DNA methylation dynamics in cancer.
First, a single tumor type and its respective DNA methylation landscape are described compared
to a pan-cancer context. Second, an extensive study integrating hundreds of newly generated and
publicly available data sets investigates the intrinsic properties of DNA methylation landscapes
across primary tumors and cancer cell lines. Lastly, chapter 7 provides concluding remarks and
discusses open questions following the studies presented in this thesis.
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Part I

Background

The first part of this dissertation introduces different layers of epigenetic regulation in mammals,
specifically DNA methylation, its role in somatic cells, and changes that occur during tumorigen-
esis. Additionally, the read-out of DNA methylation using microarray and sequencing technolo-
gies is described, and established methods for computational processing from sequencing reads
to methylation rates are presented. Due to the main focus of this thesis on DNA methylation in
human cancer and respective data sets, especially in chapter 5 and 6, the nomenclature of genes
and proteins is used accordingly even though many biological processes will generalize across
mammalian species.
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Chapter 2

Layers of epigenetic regulation

2.1 Chromosomal architecture

In eukaryotic cells, the DNA in the form of chromosomes is densely packed in the nucleus of each
cell, and its organization plays an essential role in different biological processes, including gene
expression and genome integrity [13–15]. During interphase, chromosomes occupy different,
non-random territories in the nucleus [16]. Additionally, several nuclear compartments exist, in-
cluding the nuclear lamina, nuclear pore complexes, and different types of nuclear bodies, such
as nucleoli. These nuclear compartments can influence and shape the organization of (parts of)
chromosomes within the nucleus [17]. For example, gene-dense, frequently transcribed euchro-
matic regions preferentially reside in the interior part of the nucleus, while gene-poor, inactive,
highly condensed heterochromatic areas often associate with the nuclear lamina [18,19].

Due to the three-dimensional organization of DNA in the nucleus, parts of the DNA can physically
interact with other regions on the same or different chromosome(s) to form neighborhoods of
coordinated gene regulation. Active (euchromatic) and inactive (heterochromatic) chromatin
compartments have been shown to preferentially interact with compartments of the same type
[18]. Within one chromosome, so-called topologically associated domains (TADs) represent long-
range, self-interacting domains with boundaries frequently marked by CTCF and cohesin, two
proteins that function in chromatin architecture and insulation [20–22]. These boundaries are
highly conserved across cell types, and even species, whereas only a subset of TAD boundaries has
been reported to be cell type-specific [20,23,24]. Multiple studies have proposed that the primary
function of TADs lies in transcriptional regulation by limiting promoter-enhancer interactions
[25,26]. These interactions are considered to be formed by local chromatin loops and are mostly
found within the same TAD due to its insulating borders [27]. The disruption of specific TAD
boundaries has been subsequently implicated in diseases such as limb malformation, adult-onset
demyelinating leukodystrophy, and cancer [28–30].
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2.2 Histone modifications

The basic unit of chromatin is the nucleosome, where the DNA is wrapped around (approxi-
mately 147 base pairs (bp) of DNA per nucleosome). Each nucleosome consists of two tetramers
comprised of the four core histones H2A, H2B, H3, and H4 [31]. These histones can be post-
translationally modified to encode regulatory information, primarily within their N-terminal
tails, including methylation, acetylation, ubiquitination, and phosphorylation of specific amino
acids [32]. Modifications of histone tails act as signals and can be read by other enzymes or com-
plexes, which in turn execute regulatory functions [33]. As a result, chromatin compaction or
opening can be facilitated to enable binding by specific transcription factors. Histone modifica-
tions thereby play a crucial role in many essential processes in the cell, such as DNA replication,
gene expression, DNA repair, and control of the cell cycle [34,35].

Additionally, aberrant changes in histone modifications have been implicated in developmental
defects, and cancer [36, 37]. In the following, the key histone modifications referred to in this
thesis are briefly introduced, and their molecular functions are described. The nomenclature
of histone modifications includes the histone affected (e.g., H3), the modified amino acid (e.g.,
lysine at the fourth position or K4), as well as the modification itself (e.g., methylation (me)). In
the case of methylation, the number of residues added to the amino acid is indicated (1, 2, or 3
reflecting mono-, di- and trimethylation, respectively) [38].

2.2.1 Active histone marks

H3K4me3 marks active transcription and is therefore commonly found at promoters of actively
transcribed genes [39–41]. In contrast to tri-methylation, mono-methylation of the same amino
acid (H3K4me1) can be found at active enhancers and enhancers primed for activation [42,43].
Methylation of H3K4 in mammals is carried out by a variety of histone methyltransferases, includ-
ing MLL1 to MLL5, SET1A, and SET1B that primarily act as part of larger protein complexes that
facilitate H3K4me3 deposition [41, 44]. Additionally, H3K27ac deposited by the histone acetyl-
transferase p300 marks active enhancers as well as active transcription start sites [45, 46]. The
body of transcribed genes is marked by H3K36me3, which is catalyzed by the histone methyl-
transferase SETD2 in mammals. H3K36me3 safeguards transcription by preventing aberrant
transcription initiation and additionally plays a role in DNA damage response [47,48].

2.2.2 Repressive histone marks

H3K27me3 is a mark reflective of transcriptional repression. It is deposited by the Polycomb
repressive complex 2 (PRC2) and catalyzed via its subunit EZH2 [49, 50]. H3K27me3 plays a
crucial role during differentiation and development as it is involved in the silencing of tissue-
specific genes [31, 51]. Additionally, it is involved in silencing one of the two X chromosome
copies in females [52]. H3K9me3 is mainly associated with heterochromatin and long-term
silencing. It is commonly found at pericentromeric and other repeat-rich regions in the genome
and catalyzed by the proteins SETDB1, SUV39H1, and SUV39H in mammals [50,53]. H3K9me3-
mediated repression is generally associated with the lack of chromatin accessibility, while regions
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Figure 2.3.1: The addition of a methyl group at the fifth position of cytosine is commonly
found in mammals, preferentially in a CpG context.

repressed by H3K27me3 frequently remain accessible for transcription factor binding and paused
RNA polymerase [53]. In embryonic stem cells, inactive promoters are also often marked by the
active histone modification H3K4me3 in addition to H3K27me3, reflecting a so-called bivalent
state. Bivalency has been reported to leave promoters in a poised state, ready for activation,
that is essential to timely induce expression upon differentiation into a specific lineage or cell
type [54,55].

2.3 DNA methylation

2.3.1 Function of DNA methylation

In addition to modifications of the histones, the DNA itself can be chemically modified and regu-
lated. Methylation of cytosine (C) at the fifth position (5-methylcytosine or 5mC) is an epigenetic
modification found in many organisms and conserved across most animals, plants, and fungi (Fig-
ure 2.3.1). In mammals, DNA methylation is primarily found in a CpG context and plays a crucial
role in genome stability and transcriptional regulation. Most of the genome is highly methylated
to ensure genome stability and silence transposable elements [56,57]. In contrast, CpG-rich re-
gions, termed CpG islands (CGIs), that are frequently found at promoters and often associated
with housekeeping genes, remain mostly free of methylation [56]. Gain of methylation at pro-
moters is often associated with the silencing of the respective genes, although DNA methylation
rarely acts as a primary silencing mechanism [58]. Methylation levels of gene bodies are often
positively correlated with increased and stable expression. Although initially counterintuitive,
DNA methylation is thought to support transcription by nucleosome stabilization for enhanced
transcription and regulation of alternative promoters [57,59,60].

Furthermore, DNA methylation plays a role in the silencing and inactivation of one of the X
chromosome copies in cells with female karyotype as well as genomic imprinting (the inherited
expression of a gene exclusively from the maternal or paternal allele) [56,57]. Here, imprinted
differentially methylated regions (iDMRs) control gene expression of the associated imprinted
gene(s). These iDMRs are fully methylated on the allele that silences the gene and free of
methylation on the allele from which the gene is expressed [61]. Due to its role in genome
stability, transcriptional regulation, and imprinting, DNA methylation is essential for embryonic
development. It can enable or restrict the differentiation of cells, and aberrant regulation of DNA
methylation has been implicated in diseases such as cancer, autoimmune diseases, and metabolic
disorders [56,62,63].
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Figure 2.3.2: DNA methylation in mammals can be de novo placed by the enzymes
DNMT3A and DNMT3B. After replication, the maintenance enzyme DNMT1 recognizes
methyl groups in a CpG context on the original strand and places a methyl group at
the respective position on the newly generated strand. This figure was adapted from
Kretzmer [70].

2.3.2 Regulation of DNA methylation

In mammals, DNA methylation can be deposited by three enzymes: the DNA methyltransferases
(DNMTs) 1, 3A, and 3B. While DNMT3A and DNMT3B can place methyl groups de novo at
cytosines where previously no methylation was present, DNMT1 mainly functions as the DNA
methylation maintenance enzyme: After replication, the newly synthesized strand is completely
free of methylation (Figure 2.3.2). UHRF1, a co-factor of DNMT1, recruits the enzyme to the
replication forks [56,64,65]. As CpGs are symmetric considering the two strands of DNA, DNMT1
can recognize methyl groups at cytosines in a CpG-context of the original strand and add a re-
spective methyl group to the cytosine on the newly synthesized strand (Figure 2.3.2) [56,57]. In
turn, DNA methylation can be passively lost over cell divisions if DNMT1 activity is blocked or in-
complete [66,67]. Additionally, active removal of methylation can be induced by the ten-eleven
translocation (TET) enzymes TET1, TET2, and TET3 (Figure 2.3.3). These enzymes catalyze the
hydroxylation of 5mC to 5-hydroxymethylcytosine (5hmC) and subsequent oxidation steps that
lead to either 5-formylcytosine (5fC) or further to 5-carboxycytosine (5caC). Both 5fc and 5caC
can be replaced by a regular unmethylated cytosine by the base excision repair machinery, or
during replication (Figure 2.3.3) [67]. Besides the main enzymes that deposit and remove DNA
methylation, other co-factors exist that guide proteins to their respective targets or enhance their
activity. An example of such a co-factor is the non-enzymatic protein DNMT3L, which can interact
with DNMT3A and DNMT3B and has an essential role during gametogenesis [68,69].

2.3.3 Characteristics of the DNA methylation landscape in somatic cells

Highly and partially methylated domains

The mammalian genome is overall highly methylated, as introduced in the previous sections.
However, already during embryogenesis, two types of megabase-scale methylation domains emerge
across the genome, which are termed highly and partially methylated domains (HMDs and PMDs)
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Figure 2.3.3: TET enzymes can induce active de-methylation: Hydroxylation of 5mC
leads to 5hmC while further oxidization steps produce 5fC and 5caC. DNMT1 does not
recognize the intermediate products, and therefore during replication, no methyl group
is added to the respective cytosine on the newly synthesized strand. 5fC and 5caC can
also be replaced by an unmethylated cytosine via the base excision repair pathway. This
figure was adapted from Wu et al. [71].

(Figure 2.3.4). Although both domain types are highly methylated, PMDs exhibit slightly less
methylation than HMDs, span more than half of the genome in total, and have been shown to be
largely conserved across different tissues. In comparison to HMDs, PMDs are overall character-
ized by low gene and CG density and frequently overlap with late replication timing and lamina-
associated domains (see section 2.1) [72,73]. Methylation in PMDs has been shown to decrease
during aging, cell culture, and tumorigenesis (see section 2.5.2), and this loss of methylation
positively correlates with the number of mitotic divisions. Specifically, isolated CpGs not sur-
rounded by other CpGs nearby and directly flanked by either adenine (A) or thymine (T) termed
solo-WCGW CpGs have been shown to be prone to gradual DNA methylation loss in comparison
to other CpG contexts [72]. Highly transcribed genes within PMDs pose an exception to this phe-
nomenon where CpGs independent of the sequence context are highly methylated [72,74].

The discovery of these isolated CpGs facilitated more accurate detection of PMDs: Due to the
overall still highly methylated nature of both HMDs and PMDs in healthy tissues, segmentation
algorithms based on all CpGs within one sample not always successfully identified PMDs. Solo-
WCGW CpGs, however, are prone to loss of methylation even in healthy tissue and have been
found to exhibit increasingly variable methylation levels when comparing different samples. This
variability across samples allowed the detection of common PMDs in healthy and tumor cohorts,
which facilitated the characterization of changes in DNA methylation during tumorigenesis (see
section 2.5) [72,73].

CpG islands

The human genome comprises around 30,000 CGIs, which are classically defined using the CpG
density and GC content of genomic regions [75,76]. A commonly used CGI definition introduced
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Figure 2.3.4: The somatic methylation landscape is characterized by high genome-wide
DNA methylation as well as CGIs and DMVs that usually remain free of methylation. The
genome can be separated into HMDs and PMDs, where PMDs exhibit slightly reduced
methylation levels compared to HMDs, which is seemingly linked to the number of mitotic
cell divisions.

by Gardiner-Garden and Frommer is based on the segmentation of the genome where CGIs are
defined as segments with a GC content > 50 %, a length > 200 bp and a ratio of observed over
expected CpGs > 0.6 [76]. According to this definition, 7.5% of the approximately 28 million
CpGs in the human genome are located in CGIs. Alternative definitions and algorithms have been
proposed considering different cut-offs, the identification of CpG clusters based on distances to
neighboring CpG sites or hidden Markov models to detect CGIs in the genome [77–79]. CGIs
are frequently located in gene promoters (around 70% of human gene promoters are associated
with a CGI) but can also be found in intergenic regions where these so-called orphan CGIs have
been reported to frequently act as enhancers [75]. CGIs located within gene bodies of actively
transcribed genes are often methylated in order to silence alternative transcription start sites and
ensure stable gene expression [80].

Methylation of promoter CGIs is rare, restricted to subsets with lower CpG density [56], and is
linked to silencing of tissue-specific or germline genes [81–83]. However, in many cases, includ-
ing X chromosome inactivation, DNA methylation has been reported to act as a secondary silenc-
ing mechanism where genes are silenced by chromatin modifications such as H3K27me3 first
before methylation marks are deposited for long-term silencing [84, 85]. In contrast, promoter
CGIs with high CpG density remain unmethylated even if the associated genes are not expressed.
Instead, they are commonly repressed by PRC2 and the deposited H3K27me3 mark [56, 86].
In order to maintain an unmethylated state, de novo DNA methylation needs to be constantly
repelled from these sites, which is mediated by transcription factors such as SP1 and histone
modifications such as H3K4me3 that inhibits de novo methyltransferases [87–90]. Additionally,
the de-methylation enzymes TET1 and TET3 are recruited to preferentially unmethylated DNA
via their CXXC domain, and TET1 exhibits specific enrichment at CGIs with intermediate to high
CpG density [91].

The regions flanking CGIs (usually defined as the neighboring two kilobases (kb)) are termed
CGI shores, while the regions flanking CGI shores (usually two kb on the outer sides) are termed
CGI shelves [92]. The function of methylation levels in CGI shores and shelves has yet to be
fully understood. However, studies have shown that methylation in CGI shores is associated
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with changes in gene expression. Specifically, tissue or cell type-specific methylation changes
that negatively correlate with the expression of neighboring genes can also be found in shores of
CGIs instead of or in addition to the island itself [93–95].

DNA methylation valleys

Developmental genes have been reported to frequently reside in larger genomic segments that
are depleted of methylation but drastically extend beyond the boundaries of a CGI, which are
termed DNA methylation canyons or valleys (DMVs). Promoters of genes located within DMVs
are frequently associated with CGIs that are integrated into the larger structure of the respective
DMV (Figure 2.3.4) [96–98]. DMVs span multiple kb (between five and 68 kb detected in hu-
man embryonic stem cells (hESCs)), mostly include at least one or multiple CGIs, are enriched
for transcription factor binding sites, and depleted for repetitive elements. They are frequently
shared across different cell types and mostly remain unmethylated across development and even
in adult tissues, although a subset of DMVs partially gains methylation in a tissue-specific man-
ner [96,98]. Additionally, DMVs have been reported to be highly conserved across species such
as human, mouse, and zebrafish [97].

Between 700 and 1500 DMVs have been identified when analyzing the methylome of somatic
cell types [96–98]. Identifying these regions is commonly based on simple sliding window anal-
yses where consecutive, unmethylated windows of a specific size are merged, and the resulting
regions are termed DMVs [97]. Other studies have applied hidden Markov models to detect
unmethylated stretches of the genome followed by a size cut-off to enrich for larger regions
excluding smaller entities such as single CGIs or transcription factor binding sites [98].

Large DMVs are frequently marked by H3K27me3, extending until the respective regions’ bor-
ders. Additionally, gene promoters residing in these DMVs are often marked by the activating
histone modification H3K4me3, leaving genes in a bivalent state. These associated genes are,
therefore, overall not or only very lowly expressed. In contrast, shorter DMVs are often marked
exclusively by strong H3K4me3 signal, and genes associated with them are highly and constitu-
tively expressed overall. The distribution of these two marks also underlies tissue- or cell type-
specific effects depending on the genes that need to be active in a specific context [96,98].

Both DNMT3A and PRC2 have been reported to be required to maintain the unmethylated state
of DMVs. Loss of DNMT3A in mouse hematopoietic stem cells leads to corrosion of DMV bor-
ders with some DMVs extending and others shrinking via aberrant hypo- and hypermethylation
respectively [98]. Knockout of PRC2 components in mouse embryonic stem cells and embryos re-
sults in aberrant hypermethylation of a subset of DMVs. However, this hypermethylation mostly
does not affect CGIs embedded in the respective regions [97,99].

2.4 Interplay between epigenetic modifications

Although epigenetic modifications can independently influence regulatory processes, as intro-
duced in the previous sections, they can also facilitate the deposition of other epigenetic modi-
fications to jointly act in genome regulation. The maintenance methyltransferase DNMT1 is re-
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cruited to and directly interacts with H3K9me3 at heterochromatic regions to ensure stable silenc-
ing of associated repetitive elements and maintain genome integrity [100,101]. The H3K36me3
histone modification that commonly marks active gene bodies interacts with the de novo methyl-
transferase DNMT3B, which is specifically recruited to these regions via its PWWP domain to
ensure stable transcription [72,102,103]. This dynamic also explains why isolated CpGs within
highly transcribed gene bodies in PMDs remain more highly methylated compared to other parts
of PMDs: The erosion of methylation associated with accumulating cell divisions is counter-
acted by active targeting for de novo methylation [72]. Different types of histone modifications
can also be involved in the recruitment and deposition of each other. Besides PRC2, which de-
posits the H3K27me3 mark, another type of Polycomb repressive complex, PRC1, deposits the
H2AK119ub1 mark. A specific variant of PRC1 can deposit H2AK119ub1 at unmethylated de-
velopmental gene promoters [104, 105]. H2AK119ub1, in turn, is recognized by PRC2, which
subsequently deposits H3K27me3. The canonical form of PRC1 can then recognize this mark.
The two complexes thus act in synergy to establish and maintain a repressed state at their target
genes [106,107].

2.5 Epigenetic changes during tumorigenesis

As described in the previous chapter, Hanahan and Weinberg introduced the concept of cancer
hallmarks in 2000 - universal properties that define the transition of healthy to malignant cells,
including resistance to cell death, sustained proliferation, and evasion of anti-growth signal-
ing. Molecular changes that lead to the establishment of these properties and cancer formation
include activation of oncogenes, the long-term silencing of tumor suppressor genes, and chro-
mosomal aberrations [1]. These properties are frequently established by genetic mutations of
the respective genes. However, they can also be induced by epigenetic aberrations. Epigenetic
regulators such as histone modifying enzymes, chromatin remodelers, and enzymes involved in
the regulation of DNA methylation can be mutated in cancer leading to specific changes in the
epigenome [4]. Additionally, non-mutational types of epigenetic reprogramming exist that are
induced, for example, by changes in metabolism [3]. However, the cause and consequence of
many epigenetic alterations in cancer have not been identified yet. In the following sections,
epigenetic changes in tumors focusing on aberrant DNA methylation are introduced that lay the
basis of the subsequent chapters in this thesis, specifically chapter 5 and 6.

2.5.1 Changes in chromatin organization and structure

Changes in chromatin conformation and organization are frequently found in cancer cells and
include various (often tumor type-specific) mechanisms: Aberrant activity of chromatin remod-
elers can open chromatin, enabling the accessibility of transcription factors and other epigenetic
regulators to previously inaccessible regions [108,109]. Mutations or aberrant DNA methylation
of TAD boundaries can lead to TAD structure disruption, enabling the activation of oncogenes
by distal enhancers [30]. Specific mutations in histone (de-)acetyl- or (de-)methyltransferases
can change the affinity, localization, or fidelity of these enzymes with tumor-promoting effects
[110,111]. For example, rearrangements of H3K4 methyltransferases of the MLL family lead to
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the establishment of aberrant gene activation networks in leukemias resulting in oncogene in-
duction [112]. Additionally, so-called oncohistones can be found in cancer defined by mutations
in the respective histone tail, which inhibit the deposition of histone modifications at the muta-
tion site [113]. The H3K27M oncohistone can be found in brain tumors and leads to a decrease
in H3K27me3 due to the inability of mutated histone tails to be modified by PRC2 [114]. A dif-
ferent type of epigenetic alteration that causes long-term silencing of already unexpressed genes
has been described, a phenomenon termed epigenetic switching. This model is based on obser-
vations that genes repressed by H3K27me3 can switch to a more stable silencing mechanism via
H3K9 or DNA methylation in cancer, which could potentially ensure more stable repression of
tumor suppressor genes [4,5].

2.5.2 Aberrant DNA methylation

Global hypomethylation

Since the 1980s, researchers have observed characteristic DNA methylation changes in cancer
cells across different tumor types. Specifically, in contrast to the highly methylated somatic
genome, tumors were reported to exhibit global hypomethylation (Figure 2.5.1) [115–118].
Later studies defined that this loss of methylation preferentially and to a greater extent occurs
in PMDs compared to HMDs [119–121]. A study using pan-cancer methylation data sets linked
the loss of methylation in PMDs to the accumulation of mitotic cell divisions. Specifically, PMDs
were shown to be largely conserved across healthy and tumor tissues and lose methylation al-
ready in healthy tissues during aging, which correlated with the corresponding mitotic history.
Additionally, the level of PMD hypomethylation was linked to the accumulation of cell divisions
across different cancer types.

These observations led to the hypothesis that late replication timing of PMDs reduces the time
available for re-methylation by the maintenance DNA methyltransferase DNMT1 [72]. Progres-
sive hypomethylation in PMDs might therefore reflect the inability of DNMT1 to fully remethylate
these regions after replication, an effect that gets more pronounced in relation to the number of
cell divisions. Highly proliferative tumor cells that evade cell death and undergo more cell divi-
sions than healthy cells, therefore, would show a strong decrease in PMDs compared to healthy
tissue [72]. However, it remains unknown whether the characteristic global loss of methylation
in tumors represents a tumor-promoting effect or a byproduct of extensive cell division with-
out functional consequences. A drastically different hypothesis was raised by Johnstone et al.,
who associated global loss of methylation with chromatin reorganization in colon cancer. These
topological changes were associated with the repression of oncogenic genes involved in stem-
ness, metastasis, and invasion, reminiscent of a tumor-suppressive state. The study proposed
that these epigenetic reconfigurations might reflect a cellular defense mechanism and that the
respective observations in cancer might not be linked to tumorigenesis itself [122].
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Figure 2.5.1: The methylome of tumor cells is commonly characterized by loss of methy-
lation preferentially in PMDs as well as select CGI hypermethylation.

CGI hypermethylation

In addition to the global decrease in methylation, numerous studies have shown that select pre-
viously unmethylated CGIs gain methylation in tumors (Figure 2.5.1) [4, 123, 124]. Although
the number and identities of methylated CGIs differ across tumor (sub-)types, CGIs that gain
methylation in tumors are frequently targeted by PRC2 in healthy tissues and marked by the cor-
responding H3K27me3 histone modification. These CGIs and corresponding genes (if the CGI
is located in a promoter) are, therefore, already repressed by a different mechanism in healthy
cells and remain continuously silenced in tumors [125–127]. Some of these genes are known tu-
mor suppressor genes, which are hypothesized to be more permanently silenced by DNA methy-
lation as part of the previously introduced epigenetic switch model [4, 126]. However, many
promoter CGIs targeted for hypermethylation in tumors are linked to developmental genes that
are not known to promote tumor-suppressing effects and are not expressed within the cell of
origin [128].

Although some tumor types are known to exhibit mutations in epigenetic regulators such as
DNA methyltransferases and TET enzymes, these aberrations are not universally observed across
cancer types despite the characteristic CGI hypermethylation phenomenon [129]. Additionally,
the gain of methylation in some tumors has been reported to exhibit intra-sample heterogene-
ity where instead of fully methylated alleles, stochastic methylation patterns could be observed
across tumor cells [130–132]. Therefore, different models have been proposed to explain the
almost universal occurrence of CGI hypermethylation in cancer and its intrinsic features. One
model suggests that CGIs previously protected in healthy tissues get exposed to stochastic de novo
methylation as a consequence of changes in chromatin configurations. Differences in the level of
hypermethylation could be explained by tissue-specific chromatin states that result in differential
resistance to de novo methylation [130]. Chromatin marks implicated in such a transition of epi-
genetic states are stochastic loss of the PRC2-deposited mark H3K27me3 at these CGIs and the
emergence of facultative heterochromatin marked by H3K9me3 together with heterogeneously
deposited DNA methylation [4,5,126,128].

A slightly different model assumes that CGI methylation levels result from constant DNA methy-
lation turnover caused by de novo methyltransferases and TET enzymes, an equilibrium that can
be biased in different directions [130]. Regions with low methylation would therefore be subject
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to more efficient DNA methylation removal, while a gain in methylation as observed in tumors
would be the result of a shift in the balance between TETs and DNMTs in favor of de novo methyla-
tion. Finally, it has been hypothesized that both the emergence of PMD hypomethylation as well
as PRC2 target CGI hypermethylation could be explained by clonally propagated methylation
patterns combined with context-specific rates of DNA methylation turnover [133].

CpG island methylator phenotype

In some tumor types, a so-called CpG island methylator phenotype (CIMP) has been charac-
terized, which affects subsets of patients (CIMP-positive) exhibiting increased CGI methylation
levels compared to CIMP-negative patients. CIMP was first described for colorectal cancer and
linked to microsatellite instability (mismatch repair deficiency) and mutations in the BRAF gene
[134, 135]. Additionally, CIMP was associated with different demographic and clinical features
such as sex, age, response to treatment, or tumor location in the colon [135]. However, how
exactly CIMP is established in colorectal cancer patients remains unknown.

Following the description and early investigations in colorectal cancer, CIMP subtypes have been
defined for multiple other tumor types, including glioma, different types of leukemias, melanoma,
endometrial and breast cancer [136–141]. However, the definition of CIMP varies widely across
cancer types and is commonly based on the methylation level of study- and tumor-specific, vari-
able CpGs located in a subset of CGIs. Therefore, although CIMP has been linked to molecular
characteristics and outcomes in each of these tumor types, it remains unclear whether this re-
flects a pan-cancer phenomenon subjected to similar underlying regulatory principles, also given
that the associated covariates do not always align across tumor types. In particular, CIMP was
reported to be associated with better (e.g., breast cancer, colon cancer in females, T cell acute
lymphoblastic leukemia) as well as poorer prognosis (e.g., endometrial cancer, advanced stage
melanomas, renal cell carcinoma) [142]. So far, only one direct cause of CIMP has been identi-
fied in gliomas as well as acute myeloid leukemias: Mutations in IDH1 and IDH2 cause a decrease
in the efficiency of TET enzymes and thus elevated CGI methylation levels [142,143]. However,
other tumor types do not exhibit mutations in these genes, and other respective causal molecular
features have not yet been identified [142].

DMV hypermethylation

Similar to the CGIs located within them, DMVs can aberrantly gain methylation in cancer. Pan-
cancer investigations have shown that DMVs are prone to hypermethylation across different tu-
mor types and that the genes located within these regions are enriched in oncogenes and genes
containing homeobox elements, which are transcription factors involved in cell growth and dif-
ferentiation [144]. Hypermethylation of DMVs - specifically in the gene body of genes that are
usually not or only lowly expressed in healthy tissues - has been shown to be positively associated
with gene expression. Aberrant methylation gain within DMVs can therefore induce abnormal ex-
pression of genes that potentially provide tumor-promoting effects [144]. Additionally, changes
in DMV borders in mouse hematopoietic stem cells upon loss of DNMT3A are associated with
expression changes of genes that are also implicated in human leukemias [98].
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DNA methylation changes in cultured cancer cells

The establishment of immortalized cancer cell lines has offered researchers a critical tool to study
molecular features of cancer, and their response to treatments outside patients [145]. Cancer cell
lines and immortalized fibroblasts have been the basis for many epigenetic models of tumori-
genesis. Specifically, the epigenetic switch model as well as models of stochastic methylation
gain at CGIs have been established using experiments conducted in these in vitro model sys-
tems [126,130,133].

However, studies from the early 2000s reported deviating DNA methylation landscapes between
primary tumors and respective cancer cell lines. By inspecting 1,184 CGIs in 114 primary tumors
and 24 cancer cell lines of different types, Smiraglia et al. showed that although CGIs targeted for
hypermethylation in tumors are also hypermethylated in cell lines, methylation levels rise higher
in cell lines compared to tumors. They also found that the CGI methylation levels in cell lines
were not uniform but reflected the tumor of origin to a certain degree: If a tumor type exhibited
higher methylation levels than another, this relationship was also visible in the corresponding cell
lines. Additionally, more CGIs were hypermethylated in cell lines compared to tumors, which the
authors attributed to a culture-induced effect independent of cancer itself [146].

Another study compared 70 cancer cell lines and 233 primary tumors from 12 different cancer
types at 15 CGIs and also found elevated hypermethylation of cell lines compared to primary
tumors. However, a signature of origin could be maintained as cell lines from the same tumor
type clustered together based on their CGI methylation profile. Additionally, cell lines profiled in
this study were more globally hypomethylated than corresponding primary tumors when mea-
suring the overall methylation content [147]. Later studies confirmed this for both cancer and
non-cancer immortalized cell lines [72]. In summary, although frequently used as a model sys-
tem for epigenetic changes in tumors, cancer cell lines have been early on reported to deviate
from corresponding primary tumors specifically based on their DNA methylation profile. A thor-
ough investigation of the universality of these observations across cancer cell lines and potential
implications is presented in chapter 6.

2.6 Methods for quantifying epigenetic features

2.6.1 Chromosomal architecture

The read-out of chromosomal interactions can be divided into imaging- and sequencing-based
methods. The latter can be further grouped into ligation-based chromosome conformation cap-
ture and ligation-free techniques [148]. Imaging-based methods include fluorescence in situ
hybridization of DNA (DNA-FISH) based on fluorescence-labeled probes designed to hybridize
to genomic loci of interest. These can then be visualized in cells using microscopy, allowing the
calculation of physical distances between two or multiple loci. However, DNA-FISH is limited by
the number of loci that can be visualized at the same time and the inability to accurately mea-
sure short-range distances [148]. Ligation-based methods such as 3C, 4C, 5C, and Hi-C measure
the chromatin interaction frequencies between genomic loci using sequencing. For this purpose,
the chromatin is cross-linked, followed by the digestion of the DNA using restriction enzymes.
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The digested fragments are then ligated, and the cross-link is reversed. The different ligation-
based assays, which employ distinct additional polymerase chain reaction (PCR) or labeling and
fragmentation steps before the actual sequencing, provide the read-out of different types of in-
teractions: Between two known genomic loci (3C), between one known locus and the remaining
genome (4C), between a larger genomic region and the remaining genome (5C) and between all
pairs of genomic loci (Hi-C) [148]. The pair-wise nature of ligation does, however, limit these
techniques, making it difficult to infer if multiple loci are interacting as an ensemble. Newer
ligation-free methods such as genome architecture mapping (GAM) or split-pool recognition of
interactions by tag extension (SPRITE) have been developed based on cryosectioning and tagging
cross-linked chromatin with barcodes, respectively [15,149].

2.6.2 Histone modifications

The localization of histone modifications in the genome is mainly determined using antibodies
specific to the protein of interest. The most commonly used technique to quantify this localiza-
tion is chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-seq). Here, DNA is
fragmented and selectively enriched based on the proteins attached to it, which are recognized by
specific antibodies tailored to histone modifications or other proteins, such as transcription fac-
tors [150]. The DNA fragments associated with the protein of interest are then purified, followed
by library preparation, and sequencing [150]. The resulting sequencing reads enrich at the ge-
nomic locations where the histone modification or transcription factor of interest was localized in
the profiled cell population. Other more recently developed sequencing-based methods include
cleavage under targets and tagmentation (CUT&Tag) or cleavage under targets and release using
nuclease (CUT&RUN), which are based on antibody-guided cleavage of DNA using transposases
or nucleases [151, 152]. In contrast to ChIP-Seq, these techniques require less input material
and have a higher signal-to-noise ratio, thus requiring fewer sequencing reads and lowering the
overall cost [151,152].

Besides sequencing-based approaches, the overall abundance of histone modifications can be
determined experimentally using western blots with specific antibodies recognizing the histone
modification or mass spectrometry, which allows to quantify more than 60 modifications simul-
taneously in the same sample [153].

2.6.3 DNA methylation

Measuring DNA methylation is commonly based on one of three principles: Affinity enrichment,
restriction enzymes, or bisulfite conversion. Affinity enrichment methods include methylated
DNA immunoprecipitation followed by sequencing (MeDIP-Seq) or methyl-binding domain se-
quencing (MBD-Seq), which work similarly to ChIP-Seq (see previous section). MeDIP uses a
specific antibody against 5mC while MBD-Seq makes use of proteins that recognize methylated
DNA and corresponding antibodies [154]. However, the resolution of these methods cannot
capture per-base methylation information and is often biased by the CpG density [154]. Restric-
tion enzyme-based methods such as the HpaII tiny fragment enrichment by ligation-mediated
PCR (HELP) assay make use of enzymes that cut specific sites (in this case 5’-CCGG-3’) either
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Figure 2.6.1: a) Treatment with sodium bisulfite leads to the conversion of unmethylated
cytosine to uracil, while methylated cytosines remain unchanged. b) After bisulfite treat-
ment, the DNA gets amplified (usually via PCR for sequencing-based methods), producing
thymines at the position of previously unmethylated cytosines.

methylation-independent (MspI enzyme) or only if the included CpG is unmethylated (HpaII
enzyme) [155]. Comparing the fractions of DNA cut by both enzymes then gives an estimate
of the methylation rates at the cut sites, which are, however, limited across the genome [155,
156].

The treatment of single-stranded DNA with sodium bisulfite leads to the deamination of un-
methylated cytosines to uracils while methylated cytosines remain unchanged. Subsequent am-
plification of the DNA leads to the synthesis of thymines instead of uracils (Figure 2.6.1) [157].
Therefore, the methylation status of cytosine at a specific position can be determined based on
the conversion frequency caused by bisulfite treatment, and this information can be captured
using microarrays or sequencing [154, 156]. Third-generation sequencing technologies such as
Nanopore sequencing also allow the direct read-out of 5mC. Here, base identities are determined
using an electronic current, which is sensitive to modifications of the DNA and allows to dis-
tinguish unmethylated from methylated cytosine [158]. Additionally, these so-called long-read
sequencing technologies provide the advantage of generating reads in the range of multiple kilo-
to megabases, which allow the evaluation of highly repetitive regions that would be difficult to
assess with short reads [159].

In this thesis, data sets obtained from different technologies based on bisulfite conversion were
used. Therefore, in the following sections, the read-outs that form the basis of the subsequent
chapters are introduced.

Methylation microarray

Methylation microarrays are based on slides that contain hybridization probes that allow specific
DNA molecules to bind. The most commonly used and established methylation arrays are dis-
tributed by Illumina - the Infinium HumanMethylation450 BeadChip (also termed 450k array in
this thesis) and the next generation Infinium MethylationEPIC BeadChip [92, 160]. The probes
hybridize to bisulfite-converted DNA, and each probe detects the methylation rate of a single
cytosine (mostly in a CpG context). The two arrays differ mainly in the number of CpGs that
they can measure (more than 480,000 and 850,000 CpGs, respectively, Table 2.6.1 [92, 160].
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Two different probe designs exist on both arrays in order to measure the methylation of a single
cytosine:

1. Infinium I: Each probe consists of two bead types that span 50 bases where the 3’ end cor-
responds to the CpG of interest. One of the probes is designed to match the methylated
cytosine (reflected by a C after bisulfite conversion), while the other probe is designed to
match the unmethylated cytosine (reflected by a T after bisulfite conversion and subse-
quent amplification using multiple displacement amplification). Other CpGs spanned by
the sequences of the beads are assumed to have the same methylation state (matching
methylated or unmethylated) as previous studies have shown that the methylation status
of neighboring CpGs within a close neighborhood is highly correlated [161]. The beads get
extended using a fluorescence-labeled nucleotide that matches the base next to the CpG of
interest in the DNA fragment that binds to the bead [92].

2. Infinium II: Each probe contains one bead type (50 bases) that allows both unmethylated
and methylated sequences to bind using degenerate bases at the cytosine position of CpGs,
which bind both C and T. Considering the entire 50 bp sequence, up to three CpGs can be
included using this technique. The methylation status of the CpG of interest is determined
by the extension of the bead by a single base at the position of the hybridized methylated
or unmethylated cytosine: In the case of a methylated cytosine, a fluorescence-labeled G
is introduced while an A labeled with a different fluorophore is introduced in case of an
unmethylated cytosine (reflected as a T). This probe type has the advantage that it does not
rely on the assumption that neighboring CpGs exhibit the same methylation state, which
might not always be true [92].

The single-stranded bisulfite-converted DNA is hybridized to the probes, and fluorescence inten-
sity is measured using staining. In the case of the Infinium I probes, the fluorescence intensity
of both beads is compared, and depending on the intensity ratio, a so-called beta value that re-
flects the methylation rate between 0 (unmethylated) and 1 (methylated) can be obtained. For
Infinium II probes, the intensity of the different fluorophores that mark methylated or unmethy-
lated CpGs is compared to achieve the same outcome [92].

The probes for both arrays were designed in order to cover regulatory regions of interest, such
as CGIs, promoters, gene bodies, and enhancers. Although only a small fraction of the genome
can be covered with such an assay, the covered CpGs are consistent across samples. Additionally,
methylation arrays are comparably cheap, which makes them a useful tool when studying large
cohorts [92].

Whole-genome bisulfite sequencing

Whole-genome bisulfite sequencing (WGBS) is based on sodium bisulfite treatment of the DNA,
followed by whole-genome sequencing. Two main protocol types exist: directional and non-
directional. Directional refers to only the original forward and original reverse strand being
sequenced, while non-directional protocols generate reads from both the original forward and
reverse strand but also their respective reverse complements (Figure 2.6.2). MethylC-Seq intro-
duced by Lister et al. is a commonly used directional sequencing protocol [10]. Here, the DNA
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Number of probes HumanMethylation450 MethylationEPIC

Total 485,577 866,895

CpG 482,421 863,904

Non-CpG 3,091 2,932

Random single-nucleotide polymorphism 65 59

Table 2.6.1: Number of probes provided by the Infinium HumanMethylation450 and the
Infinium MethylationEPIC BeadChip [92,160].

is first fragmented, and universal adapters are ligated, followed by bisulfite conversion. The
adapters, therefore, have to be fully methylated such that specific primers, which are comple-
mentary to the universal adapters, can recognize them in the subsequent amplification. After
amplification, the library is subjected to sequencing [10]. This yields two types of reads, one
originating from the forward strand (+OS) and one originating from the reverse strand (-OS),
where unmethylated cytosines are replaced by thymines (Figure 2.6.2).

In contrast, the non-directional BS-Seq protocol developed by Cokus et al. includes first the
ligation of double-stranded unmethylated adapters to the DNA that contain restriction sites rec-
ognized by the enzyme DpnI [11]. The DNA is then treated with sodium bisulfite, which also
affects the previously unmethylated adapters, followed by PCR with primers that recognize the
converted adapter sequences. The resulting double-stranded DNA is then digested with DpnI to
remove the first set of adapters, and the actual sequencing adapters are ligated [11]. This two-
step approach was designed to remove sequences that might be affected by incomplete bisulfite
conversion, which would also affect the sequence of the first adapters. However, it also leads
to the generation of four different types of reads that are obtained after sequencing: the origi-
nal forward and reverse strands as well as their reverse complements, which all differ from each
other due to the bisulfite conversion (Figure 2.6.2) [11]. Notably, directional bisulfite sequencing
using paired-end reads also leads to the generation of all four read types as the second mate of
the pair is obtained from the reverse complement of the fragment (Figure 2.6.2). Nevertheless,
both mates carry methylation information of the same fragment they originate from, which is
important for subsequent methylation calling (see section 2.7).

Following MethylC-Seq and BS-Seq, other protocols have been developed that aim to optimize
different parts of the library preparation process for bisulfite sequencing. Post-bisulfite adaptor
tagging (PBAT) is a method to profile whole-genome DNA methylation that can work without
PCR or be adapted for experiments with low quantities of DNA as input material, including single-
cell sequencing [162]. PBAT circumvents the need for PCR amplification based on the fact that
sodium bisulfite treatment is known to be aggressive and can cause the DNA to break. In regular
protocols, this means that many fragments with already ligated adapters (sequencing templates)
are lost if damaged. In order to increase the input for sequencing, the remaining intact sequenc-
ing templates are then amplified by PCR. In contrast, during the PBAT protocol, the adapter
ligation follows the bisulfite treatment, thereby omitting this effect [162]. This technique, there-
fore, has the advantage that only a low amount of input DNA is required as sequencing templates
remain intact and that the later sequencing of PCR artifacts that need to be removed during com-
putational processing can be avoided (see section 2.7). However, it has been shown that PBAT
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Figure 2.6.2: a) Directional single-end bisulfite sequencing leads to the generation of
reads only from the original forward and reverse strand where unmethylated cytosines
are reflected by C (reference) to T (read) mismatches. b) For non-directional and paired-
end sequencing, four read types resulting from the original two strands and their reverse
complements are generated. Unmethylated cytosines are reflected by C to T mismatches
for reads resembling the original forward and reverse strands and by G to A mismatches
for reads originating from their reverse complements. This figure was adapted from
Kretzmer [70].

can lead to the generation of chimeric read pairs during paired-end sequencing. These chimeric
read pairs then need to be filtered out during the computational processing of PBAT libraries,
which reduces the number of usable reads for later analyses [163].

All bisulfite sequencing libraries suffer from low base composition complexity due to the reduced
variability of bases in the sequences (most cytosines are unmethylated in mammalian genomes
and therefore converted). This can have an effect on data quality and yield from the sequencing
instrument [164]. Thus, higher complexity sequences need to be spiked in for the sequencing
of bisulfite-converted libraries, which can either be other library types such as whole-genome
sequencing (WGS) or PhiX, a phage that is used to create control libraries with high complexity
[165]. Including PhiX as spike-in, however, leads to higher sequencing costs as essentially a
certain fraction of reads stems from the spike-in and not the actual samples, and more fragments
need to be sequenced to reach a desired coverage [165].

Reduced representation bisulfite sequencing

Reduced representation bisulfite sequencing (RRBS) was introduced by Meissner et al. and of-
fers the possibility to sequence DNA methylation at single-base resolution, but limited to roughly
10% of CpGs in the genome [86,166]. For this protocol, the DNA is digested with the restriction
enzyme MspI that cuts both methylated and unmethylated 5’-CCGG-3’ sites upstream of the CpG
(Figure 2.6.3). Often a size selection is subsequently applied to enrich for fragments in the range
of 40-220 bp. As the fragment size correlates with CpG density, the resulting library is compara-
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Figure 2.6.3: The different steps of the RRBS protocol. This figure was adapted from the
Babraham RRBS guide [167].

tively enriched for features such as CGIs and specific retrotransposon families [86]. The resulting
DNA fragments are end-repaired, which introduces an artificial (generally unmethylated) cyto-
sine at the 3’ end of both strands. Subsequently, a single adenine is added to the 3’ end of both
strands in order to enable the ligation of methylated sequencing adapters [86,167]. Specific kits
such as the Ovation RRBS Methyl-Seq System offer so-called diversity adapters that are ligated
before the actual sequencing adapters and introduce artificial sequence variability to reduce the
fraction of PhiX that needs to be spiked-in [168]. Afterwards, the DNA is bisulfite-converted,
amplified, and sequenced (similar to MethylC-Seq) [86,169].

Due to the small fragment sizes enriched in the RRBS library preparation, sequencing with paired-
end is not recommendable as the mates will frequently overlap, leading to a duplicated measure-
ment of the same fragment that could bias later analysis steps. Even a single read might already
extend over the length of the entire fragment leading to the sequencing of the adapter sequence
and the preceding artificial cytosine that is introduced during the end-repair process (see section
2.7) [167].

Single-cell bisulfite sequencing

Both WGBS and RRBS protocols have been adapted to profile the methylomes of single cells.
Here, the greatest limitation is the availability of input DNA material within a single cell com-
pared to bulk sequencing experiments. Therefore, PBAT is frequently used or adapted for whole-
genome methylation profiling of single cells due to low input material requirements and the
circumvention of sequencing template loss introduced by bisulfite treatment after adapter tag-
ging in standard protocols [170]. Additionally, the RRBS protocol has been optimized in various
studies to minimize loss during specific steps such as DNA purification. This allows the use of a
more cost-efficient sequencing method adapted for single cells [170].
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2.7 From bisulfite sequencing to analysis

As the focus of this thesis lies on DNA methylation-based read-outs, specifically using bisulfite
sequencing, in the following sections, common computational processing steps are described that
are essential to extract methylation rates from bisulfite sequencing reads. Reads from RRBS or
WGBS experiments are subjected to similar processing steps as other next-generation sequencing
experiment types, such as WGS or RNA-Seq, before methylation rates can be obtained. However,
the effects of the bisulfite conversion have to be taken into account, and processing steps such as
read alignment have to be adapted in comparison to other sequencing types. In the following,
common processing steps are described, and available tools for bisulfite sequencing data pro-
cessing are introduced. The specific tools and parameters used within the studies described later
in this thesis and processing steps for other types of sequencing data sets (e.g., RNA-Seq) are
described in the respective chapters.

2.7.1 Pre-processing

As a first step, the quality of newly generated data sets is assessed. FastQC is a commonly used
tool for this purpose, which allows scanning read files in FASTQ format and provides different
metrics such as the per-base sequence quality and content, the sequence length distribution,
and potential adapter content [171]. These metrics are helpful to inspect to judge whether the
sequencing experiment worked as expected and whether additional data cleaning steps should be
included in downstream processing, such as the trimming of reads due to low quality or adapter
content. Notably, the effect of bisulfite conversion can be observed at this stage already: the
majority of cytosines in mammalian genomes are unmethylated since they do not occur in a CpG
context, which leads to an almost complete depletion of cytosines or guanines (Gs, depending
on the read type and protocol, see section 2.6) in the respective sequences.

Following quality control, trimming low-quality bases or parts belonging to the sequencing adapters
can be executed using tools such as cutadapt or trimmomatic [172,173]. In addition, the last two
bases at the 3’ end of a read prior to the adapter sequence can be clipped for data sets generated
using the RRBS protocol to ensure that artificially integrated cytosines are removed from the
read. These could later bias the quantification in the case that downstream tools cannot account
for this (see following sections).

2.7.2 Alignment

Reads need to be compared to the sequence of a reference genome to determine the origin of
every read, a process that is called alignment. This is the central step of every next-generation
sequencing processing pipeline. Many tools exist that map short or long reads against a genomic
reference genome using data structures such as FM indices and hash tables [174–176]. The
search for the location of origin is frequently based on "seed and extend" approaches: First, a
substring of a read is searched with no or few errors, and only resulting promising hits are sub-
jected to an extended alignment of the whole sequence using (potentially user-defined) scoring
schemes.
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Alignment tool Data structure Seeding Extension

Bismark [180] FM index (Bowtie2 [174] or HISAT2 [181]) 3 letter 3 letter

BS-Seeker2 [182] FM index (Bowtie2) 3 letter 3 letter

BSMAP [183] Hash table (SOAP [176]) Wild card Wild card

BWA-meth [184] FM index (BWA [175]) 3 letter 3 letter

GEM3 [185,186] FM index 3 letter 3 letter

segemehl [179] Enhanced suffix array 3 letter Wild card

Table 2.7.1: List of common bisulfite alignment tools together with the underlying data
structures and alignment strategies used.

Reads obtained from bisulfite sequencing require specific alignment tools due to the conversion
of unmethylated cytosines to uracils (which are amplified as thymines). In contrast to standard
alignment tools, mismatches from C (reference) to T (read) must be considered matches for reads
originating from the original forward or reverse strand, while T to C mismatches should still be
penalized. Likewise, if reads originate from the reverse complements of the original forward and
reverse strands, mismatches from G (reference) to A (read) should be handled as matches. G
to A conversions must only be considered for non-directional protocols or directional paired-end
sequencing. For WGBS, however, paired-end sequencing is commonly used, which is why in the
following, both types of conversion effects will be considered. Two main strategies exist in order
to tackle the alignment problem:

1. Three-letter alphabet: Both the reads and the reference genome are converted to a three-
letter alphabet, and a regular alignment is executed. To account for reads aligning to the
forward and the reverse strand, this needs to be implemented twice, once comprising the
letters A, G, and T where all C’s are converted to T’s and once comprising the letters A,
C, and T where all G’s are converted to A’s [177, 178]. This has the advantage that it
can be employed using already existing regular alignment tools such as Bowtie2 or BWA
[174, 175]. However, the reduced complexity of a three-letter alphabet can lead to many
false positive hits.

2. Wild card: Two variants of this strategy exist. Either both C’s and T’s are allowed to align
to a C in the reference genome (and vice versa for G’s and A’s for reads originating from the
reverse complements of the original forward and reverse strands), or all possible combina-
tions of C’s and T’s instead of the sequenced T’s or G’s and A’s instead of the sequenced A’s
are considered. The latter results in a "combinatorial explosion" and might lead to extended
runtime to align all possible resulting reads [177,178].

The read alignment tool segemehl combines both strategies to produce accurate and feasible
alignments: Seeds are searched with a three-letter alphabet while valid hits are extended af-
terwards using a wild card approach where C to T mismatches (or G to A mismatches) are not
penalized, which increases the sensitivity of the alignment process (Table 2.7.1) [179].

Some applications, such as BSMAP, also offer a special RRBS mode in which only genomic posi-
tions are considered for the alignment that start with the restriction site of the enzyme used in
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the digest (typically MspI, see section 2.6) [183]. This reduces the runtime substantially, as only
a small fraction of the genome needs to be scanned for potential hits.

Following the alignment, a deduplication step may be applied to remove or flag reads that likely
originated from the same fragments as other reads and, therefore, might represent PCR artifacts.
GATK offers a commonly used deduplication utility, which is based on the comparison of iden-
tical read alignments at the same position [187]. This step is useful to remove reads from the
subsequent methylation rate quantification that do not represent biologically different fragments
compared to other reads at this position. Considering duplicates for the estimation of methyla-
tion rates could artificially bias the quantification as fragments of the same allele appear multiple
times. This deduplication strategy is not possible for reads originating from experiments profiled
using RRBS due to the restriction enzyme digest: The resulting reads always start at the same
genomic positions marked by the restriction site of the enzyme used during library preparation.
Therefore, specific RRBS library kits offer the option to use unique molecular identifiers (UMIs)
to label single fragments before the PCR step. The labeling can then be used to identify dupli-
cates as PCR products of a specific fragment are marked by the same UMI [168]. Otherwise, it
is not possible to properly deduplicate reads sequenced using RRBS.

2.7.3 Calling methylation rates

After alignment and potential deduplication, the methylation rates of single cytosines need to be
determined. Although a single cell with two alleles can only exhibit three different methylation
values or fractions of methylated reads (Figure 2.7.1, 0 = both alleles are unmethylated at a
given cytosine, 1 = both alleles are methylated, 0.5 = one allele is methylated, and one allele
is unmethylated), a bulk bisulfite sequencing sample contains reads originating from fragments
sampled from a large cell population (Figure 2.7.1). Depending on the underlying cells, the
methylation across reads (= alleles) can vary between 0 and 1 (e.g., only 30% of reads could be
methylated at a given cytosine due to a cell type mixture or sample heterogeneity leading to a
methylation rate of 0.3). Methylation rates obtained from bulk bisulfite sequencing, therefore,
always reflect an average measurement across the population. However, since every CpG has its
own population-wide estimate, it is not clear what the underlying methylation patterns across
multiple CpGs are that lead to a specific methylation rate: A methylation rate of 0.5 at a given CpG
could stem from two distinctly methylated cell populations or stochastic methylation distributed
across reads at a given locus (Figure 2.7.1).

All reads that cover the position of a specific cytosine are considered, and the read sequence is
compared to the reference genome to determine the cytosine’s methylation status for every read.
Reads that originate from the original forward strand or its reverse complement independent of
the strand they align to (+OS and +RC, Figure 2.6.2) contain the information about cytosines
on the forward strand, while reads that originate from the original reverse strand or its reverse
complement (-OS and -RC) contain the information of cytosines from the reverse strand. For+OS
reads, the read sequence needs to be compared to the forward strand where C to T mismatches
indicate an unmethylated status of cytosines, while+RC reads need to be compared to the reverse
strand where G to A mismatches indicate no methylation. This works analogously for -OS and
-RC, where -OS is compared to the reverse strand considering C to T mismatches, while -RC
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Figure 2.7.1: a) The methylation status of a CpG in a single diploid cell can be either equal
to zero (both alleles are unmethylated at this position), one (both alleles are methylated
at this position), or 0.5 (one allele is methylated, the other is unmethylated at this po-
sition). b) Considering bisulfite sequencing of a bulk of cells, a number of fragments
sampled from the underlying cell population get sequenced at a specific CpG or locus.
The methylation rate, therefore, presents an average across this population. However, it
is not clear what the underlying methylation patterns across multiple CpGs are that lead
to a specific methylation rate. For example, a methylation rate of 0.5 can be achieved by
two different cell populations that are consistently unmethylated or methylated (left) or
a stochastic methylation pattern across reads (right).

reads are compared to the forward strand considering G to A mismatches. This way, the number
of reads with unmethylated and methylated status (Nu and Nm) of a specific cytosine c can be
determined, and the methylation rate can be calculated:

Methylation (c) =
Nm

Nu + Nm
(2.1)

As methylation of cytosines preferentially occurs in a CpG context in mammals, methylation
calling is commonly restricted to these positions. However, it can also be applied to non-CpG cy-
tosines. In contrast to non-CpGs, CpGs are symmetric on both strands, which allows DNMT1 to
copy the methylation information from one strand to the other after replication (Figure 2.6.2).
Therefore, for CpGs, the methylation rates of the forward and reverse strands are frequently
combined as they likely reflect the same methylation state within one cell (except just after repli-
cation). This strategy allows to increase the coverage when reads originating from both strands
can be considered. Standalone tools that are able to calculate the methylation rates from aligned
reads are, for example, mcall (compatible with BSMAP alignments) or MethylDackel (compatible
with segemehl output) [188, 189]. When using mcall, alignment with BSMAP in RRBS mode is
automatically detected, and potential artificial CpGs at the 3’ end of reads are omitted for the
quantification, which means that trimming these bases before the alignment would not be neces-
sary for this specific tool. Other alignment tools, such as Bismark, already offer built-in options
to calculate methylation rates immediately following the alignment.
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Part II

Tools for bisulfite sequencing data

In the second part of this dissertation, new tools to process bisulfite sequencing data sets are
presented that aim to fill gaps in existing applications and concepts. First, the adaptation of an
existing local alignment search tool to incorporate bisulfite-converted sequences is introduced, al-
lowing contamination screening and enabling future metagenomic studies based on DNA methy-
lation read-out. Second, a tool for fast extraction of DNA methylation heterogeneity scores from
bisulfite sequencing reads is presented, providing a scalable solution for analyzing methylation
heterogeneity on the read level.
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Chapter 3

Local alignments for bisulfite-converted
sequences

Lambda3 is a local alignment tool for protein as well as nucleotide searches in large sequenc-
ing databases developed by Dr. Hannes Hauswedell and implemented in C++ using different
libraries for sequence analysis [190,191]. In this chapter, the adaptation of Lambda3 to include
the search of bisulfite-converted sequences is described, and performance compared to classical
bisulfite-aware read aligners is assessed.

3.1 Introduction

Read alignment, as described in section 2.7, is based on the search of sequencing reads in
databases (usually reference genomes) to find (near-)exact matches of the complete reads in
the reference. Here, the objective is to determine the genomic origin of each read [192]. There-
fore, semi-global alignments are used that allow a limited amount of differing bases between
the read and the reference genome in order to account for potential technical errors or genetic
variation within a species (Figure 3.1.1). After matches of each read in the reference genome are
located, the best-scoring hit is usually reported based on the assumption that sequencing reads
originate from a single genomic location. With the exception of repetitive elements or genomic
regions that have not been assembled yet, this location should be uniquely identified in most
cases.

In contrast to read alignment, homology search represents a different application of query search
in even larger databases. Here, the goal is not to find the exact genomic location of a query (read)
but instead to identify sequences of common evolutionary descent often across different species.
Therefore, the databases used for the search usually contain not only one reference genome but
multiple or even extend to entire collections of sequence databases such as GenBank or Ref-
Seq [193]. In this context, it is less relevant to align a complete sequencing read but instead lo-
cate less exact matches or subparts of the read that might be evolutionary conserved. Homology
search is therefore often applied in metagenomic studies where samples are not associated with
a single organism but instead comprise multiple known or unknown species due to the sampling
method or sources of contamination [193]. Instead of semi-global alignments that aim to map
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Figure 3.1.1: Semi-global alignments aim to align the complete query (read) sequence to
a reference genome with minimal error rates (top). Local alignments require only parts
of the query to map to one or multiple reference sequences while generally allowing for
more errors, which is desirable for applications using homology search (bottom). This
figure has been adapted from Hauswedell [191].

the complete query to the reference genome, homology search uses local alignments. This way,
less exact matches of the entire or parts of the query sequences can be identified, and potentially
evolutionary conserved domains can be detected. Therefore, not only the best-scoring match is
of interest, but identifying many matches per query across the entire database enables the assess-
ment of conservation across species and facilitates downstream taxonomic analyses [193].

The identification of many local matches for a large number of query and reference sequences
represents a computational challenge that is typically addressed using heuristic algorithms [194].
This means that it is not guaranteed to find all matches according to the search and alignment
parameters but many, while at the same time ensuring the feasibility of such searches. To fur-
ther reduce the search space, homology search can make use of protein alignments instead of
using nucleotides. For this purpose sequencing reads can be translated to amino acids and then
searched in a protein database (or translated nucleotide database). The amount of known pro-
tein sequences is much smaller than the number of nucleotide sequences due to the fact that
only a small subset of the genome is protein-coding (e.g., 1% of the human genome [195]). Ad-
ditionally, searches in the protein space might reveal different types of conservation that might
not be apparent from the DNA itself. The tool BLAST is considered the gold standard for local
nucleotide and protein alignments and provided the statistical basis for many tools developed af-
terwards [194]. Other tools that most importantly improve performance include Lambda [190]
and MALT [196] for protein and nucleotide alignments as well as DIAMOND which implements
extremely fast and sensitive protein alignments [197,198].

3.1.1 Aims and scope of the study

The nucleotide search implemented in previous local alignment tools is unsuitable to search
reads from bisulfite sequencing experiments due to the introduced nucleotide conversion de-
scribed in sections 2.6 and 2.7. However, using homology search for this type of data sets can
be desirable. In practice, sequencing experiments can be contaminated, which results in lower
alignment rates to the reference genome of the original organism. Local alignments in larger
databases could therefore help identify the contamination sources and improve experimental
set-ups. Additionally, cell-free DNA is frequently profiled using bisulfite sequencing to identify
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disease states such as tumors based on the methylation patterns [199, 200]. However, cell-free
DNA can also contain remnants of pathogens or other microbes to a low degree, which can also
be detected from bisulfite sequencing experiments [201–203]. For this purpose, previous studies
have implemented an approach where microbial reference databases have been in silico con-
verted by replacing all cytosines with thymines with the subsequent application of BLAST [203].
This way, bisulfite-converted sequences can be detected using a standard local alignment tool.
However, this strategy requires pre-processing of the database. Additionally, it does not account
for the fact that only C (database) to T (query) mismatches are introduced by bisulfite conversion
(not T to C mismatches), which increases the false positive rate. To provide a universal frame-
work to search protein as well as regular and bisulfite-converted sequences, the tool Lambda
was adapted to accommodate bisulfite conversion-aware local nucleotide alignments. For this
purpose, the third and newest version of the tool Lambda - termed Lambda3 hereafter - was
used, which was previously implemented and described by Dr. Hannes Hauswedell [191]. In
the following sections, the workflow of Lambda3 is described, followed by the adaptations made
to implement a bisulfite mode. Lastly, the performance of Lambda3 compared with other local
nucleotide and semi-global bisulfite alignment applications is assessed.

3.2 Lambda3 workflow

Lambda3 is structured into two main parts: the index creation and the search of queries in the
index (Figure 3.2.1). Databases for which an index should be built can be supplied as a (po-
tentially compressed) FASTA file and contain nucleotide or amino acid sequences. If nucleotide
sequences are provided, but a protein index is requested, the nucleotide sequences are translated
into amino acids generating all six possible reading frames (Table 3.2.1). Subsequently, Lambda3
offers the option to reduce the sequence alphabet for index creation and search to decrease the
index size and speed up the search process. Amino acids can be reduced to one of two different
10-letter alphabets (defined by Li et al. [204] or Murphy et al. [205]) that group amino acids
based on chemical and physical properties. Nucleotides can be reduced from a five-letter alpha-
bet (A, C, G, T, and N) to a four-letter alphabet where the wild card letter N is randomly replaced
by one of the other four bases. These reduction techniques do not compromise the quality of the
output, as search results are verified during a subsequent alignment step based on the translated
and not the reduced alphabet.

Sequences are read and potentially translated or reduced using the BioC++ library for sequence
analysis [206]. Optionally, taxonomic information can be provided for the database (or refer-
ence) sequences, which are stored with the index and later used to annotate the output of the
search. Additionally, Lambda3 offers the option to build and store a taxonomic tree that enables
the calculation of the lowest common ancestor (LCA) for all resulting hits of a single query. A uni-
or bidirectional FM index is then built using the FMIndex-Collection library [207]. The index,
the original reference sequences, potential taxonomic annotations as well as the parameters used
for translation or reduction are serialized using the cereal library [208] and stored in a single file
on disk.

For the search, the index is deserialized, and information on translation and reduction steps is
obtained from the stored parameters. The query sequences can be provided as a (potentially
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Figure 3.2.1: Overview of the two main parts of Lambda3, the index creation and the
search.

compressed) FASTA or FASTQ file. After loading the queries, sequences are first translated and
reduced to match the reference sequences (Table 3.2.1). Nucleotide queries are subsequently
reverse-complemented before the reduction to allow possible alignments to the reverse strand
of the reference database. Each query is then split into seeds, which are searched in the index
(Figure 3.2.2). The sensitivity and speed of the search process depend on the length of the seed,
the overlap of seeds (defined by the offset of seed start positions), and the number of mismatches
allowed during the search (seed delta, Figure 3.2.2). Lambda3 offers different profiles (default,
fast, and sensitive) that pre-define these parameters to achieve different trade-offs between speed
and sensitivity. For all modes, mismatches are only considered in the second half of the seed in
order to accelerate the search. Due to the overlap of seeds, mismatches are still considered
along almost the entire query sequence (Figure 3.2.2). If too many hits for a certain seed are
found during the search, the seed is automatically elongated to increase the efficiency of the
downstream alignment step and avoid the detection of generic hits as they are considered less
informative due to their universal occurrence (Figure 3.2.2).

The detected hits are verified using a fast, ungapped alignment around the seed region. Hits
passing a specific threshold (defined by the selected mode or user) are considered for downstream
analyses, while the remaining hits are discarded. If no hits pass the threshold, the search process
is repeated using more sensitive seeding parameters (defined by the different profiles). The hits
that finally survive the pre-filtering are sorted by similar size and distributed into batches that
are used as input for a fast, vectorized local alignment implemented with the SeqAn2 library
[209, 210]. As described above, the alignment steps are performed on the translated reference
and query sequences in order to detect and penalize false positive hits that could arise due to the
reduced alphabets in the search process.

For each resulting match, the bit score and E-value are calculated based on the local alignment
scores, two measurements that are used by BLAST and other local alignment tools to assess the
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alignment quality [194]. Given a local alignment score S (the sum of all match, mismatch, and
gap scores within the alignment), the bit score S′ is calculated as

S′ =
λ ∗ S − ln (K)

ln (2)
(3.1)

Here, higher values of S′ are associated with higher quality. The variables λ and K represent
scaling factors that ensure comparability of results considering different scoring schemes and
different sizes of the search space, respectively [194, 211]. The values of these two variables
for gapped alignments and a selection of scoring schemes were determined experimentally by
Altschul et al. for amino acid and nucleotide alignments using alignments of random sequences
and observing their properties [194]. Subsequently, the reported values of λ and K for different
scoring schemes have been used as such in all following tools that implemented bit score and
E-value calculations [194]. The E-value can be calculated as the bit score normalized to the query
length m and the size n of the database used for the search:

E = m ∗ n ∗ 2−S′ (3.2)

It represents the number of hits that could be expected by chance given a random database of
the same size (e.g., E = 1 means that one hit with a similar score can be expected by chance in
a same-sized database). Therefore, lower E-values are associated with higher alignment quality.
In Lambda3, similar to other tools, only hits that pass the pre-defined bit score threshold or E-
value cut-off are considered valid. Filtering results based on the E-value is desirable if the overall
search space should be taken into account to filter out false positives. However, the E-values of
different local alignment tools have been inexplicably reported to frequently deviate from the
E-values computed by BLAST [190]. Therefore, for comparability across applications with the
same database and query sequences, a bit score threshold should be considered and will be in the
scope of this chapter. For this purpose, the bit-score equivalent of an E-value cut-off of interest
can be computed as:

S′ = log2
�m ∗ n

E

�

(3.3)

The matches that survive either the bit score threshold or E-value cut-off for a specific query are
sorted, deduplicated, and written to the output file. The LCA is computed for all hits of a specific
query if taxonomic annotations were provided during the index creation. Output files can be in
BLAST or SAM/BAM format implemented using the SeqAn2 library.

3.3 Bisulfite mode

In the following sections, the specific adaptations made to different parts of Lambda3 to accom-
modate bisulfite-converted sequences are presented. Similar to the alignment tool segemehl, we
chose to search seeds in a three-letter alphabet where either C and T or G and A are treated as the
same letter but verify the alignments using an imbalanced scoring scheme [179]. This ensures
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BLAST
mode

Subject (S)
alphabet

Query (Q)
alphabet

Translation Reduction
(optional)

BlastN Nucleotide Nucleotide Add reverse complement (Q)
Nucleotide 4-letter

Bisulfite conversion

BlastP Amino acid Amino acid No translation
Li alphabet

Murphy alphabet

BlastX Amino acid Nucleotide Six-frame translation (Q)
Li alphabet

Murphy alphabet

TBlastN Nucleotide Amino acid Six-frame translation (S)
Li alphabet

Murphy alphabet

TBlastX Nucleotide Nucleotide Six-frame translation (S+Q)
Li alphabet

Murphy alphabet

Table 3.2.1: Search modes implemented in Lambda3 and the respective input alphabets,
translation, and optional reduction steps. The first column indicates the respective BLAST
mode.

Figure 3.2.2: Seeding strategy in Lambda3. The query is split into seeds of a pre-defined
length. The distance between seed start positions is defined by the seed offset. By default,
mismatches are only considered in the second half of the seed, and the seed will be
automatically elongated if too many hits are found. Here, an example using seed length
= 11, seed offset = 3, and seed mismatch = 1 is shown.

that only C (reference) to T (query) mismatches are considered as matches, while T (reference) to
C (query) mismatches are still penalized (analogously for G and A mismatches, see section 2.7.2).
The bisulfite mode is available within Lambda3 under two different sub-commands (mkindexbs
and searchbs) that build the index and perform the search, respectively.

3.3.1 Alphabet reduction

As described in the previous section, Lambda3 offers the possibility to reduce the alphabet of the
input sequences and therefore enhance the performance of the index-based search. In order to
account for the effects of bisulfite conversions in nucleotide sequences during the index search,
this option was adapted to implement a new bisulfite conversion-aware reduction mode. For this
purpose, a new alphabet was implemented that incorporates the two three-letter alphabets that
are required to search bisulfite-converted sequences (Figure 3.3.1): one to search queries origi-
nating from the original forward and reverse strands (accounting for C to T mismatches) and one
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to search queries originating from the reverse complements of the original strands (accounting
for G to A mismatches). The first three-letter alphabet contains three artificial characters, two
that equal the bases A and G and one that equals both C and T bases. The second alphabet in-
cludes two characters that equal the bases C and T, respectively and one that equals both G and
A. These are then all combined in a single, new alphabet that the reference and query sequences
are converted (reduced) to before the search (Figure 3.3.1): Before the index is built, reference
sequences are duplicated and for each sequence, one copy is reduced reflecting the effect of
bisulfite conversion on the original strands (first three characters in the new six-letter alphabet),
while the second copy is reduced reflecting the effect on the reverse complements of the original
strands (last three characters in the new six-letter alphabet, Figure 3.3.1). The query sequences
are treated accordingly after a reverse complement for every query sequence is added, similar to
the actual nucleotide mode (Figure 3.3.1). This accounts for every possible origin and alignment
of the query sequences to the database and results in a total of four sequences per original query
sequence.

3.3.2 Index construction

The index is constructed based on the reduced reference sequences analogously to the regular nu-
cleotide mode. The new six-letter alphabet that represents the two bisulfite-specific three-letter
alphabets, therefore, allows the creation of a single index in contrast to some bisulfite alignment
tools that build two indices, one for each three-letter alphabet [179,180]. In addition to the re-
duced disk space, this required minimal changes to the existing code base as the bisulfite-aware
index was implemented based on the already existing reduction concept in Lambda3.

3.3.3 Search

Seeds are searched using the reduced six-letter alphabet. Thus as in the normal nucleotide mode,
equal letters between query and reference are considered matches, while differing letters are
considered mismatches. Due to the reduced bisulfite-specific alphabet, C and T or G and A are
considered the same letter and are therefore treated as matches, which increases the number
of detected seeds in comparison to the normal nucleotide search. Here, the adaptive seeding
strategy previously implemented in Lambda3 becomes even more important as seeds will be
automatically elongated if too many hits are located to make the resulting hits more meaningful.
During the implementation, we realized that if the seed is located at the end of the query, the
number of located hits can drastically increase as the seed can no longer be extended. This,
again, is a much larger problem for hits located in a reduced bisulfite conversion-aware alphabet
than for a regular four-letter DNA alphabet due to the decreased complexity of the seeds (the
detected number of seeds was frequently one order of magnitude larger than for the respective
nucleotide search). Therefore, we implemented a simple filter that discards any seeds for which
too many hits are found after the elongation step.
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3.3.4 Alignment

During the alignment of query and reference sequences, a scoring scheme is used to weight
matches, mismatches, and gaps (different costs for gap opening and extension). The sum of the
individual scores represents the alignment score that is used to calculate the bit score, defining
the quality of the located hit. In contrast to the search, the subsequent local alignments are
calculated using the translated and not the reduced reference and query sequences to eliminate
potential false positives. As described in section 2.7.2, here, the asymmetric effect of the bisul-
fite conversion needs to be taken into account. Therefore, an imbalanced scoring scheme was
implemented for the alignment that considered mismatches from C (reference) to T (query) as
matches for reads reflecting the original forward and reverse strands, while mismatches from G
to A were considered as matches for reads from the reverse complements of the original strands.
For this purpose, the vectorized alignment is carried out in two steps, separating the hits that
were located in reference sequences reduced to the first and the last three letters of the six-letter
bisulfite conversion-aware alphabet (Figure 3.3.1). For each step, the respective imbalanced
scoring scheme is used.

3.3.5 Output

The matches detected by the two local alignment steps are merged per query before the final
sorting and deduplication step. Based on the BLAST output format, it is not possible to infer
which of the four read types that arise during bisulfite sequencing aligned. Instead, it is only
possible to infer whether the read or its reverse complement aligned (start and end positions
are swapped in the second case). However, the information about the actual read type can be
obtained if SAM or BAM output is requested. Although the mandatory positions in a SAM file are
defined and need to follow the sequence alignment format specification [212], alignment tools
can define their own additional tags to provide custom information. Such a tag is commonly
defined by bisulfite alignment tools to indicate which of the four bisulfite read types a specific
read belongs to. In line with this, Lambda3 outputs a custom tag that was initially designed to
report the reading frame for translated protein alignments but now also reports the read type for
bisulfite searches.

3.4 Benchmarks

3.4.1 Data sets

To assess the performance of Lambda3 and semi-global bisulfite alignment tools, we made use
of different simulated and real sequencing data sets (Table 3.4.1). First, we selected three DNA
data sets (q1-q3) that were used to test and evaluate the bisulfite mode in comparison to the nu-
cleotide mode of Lambda3, BLAST (the gold standard for local alignments), and MALT (another
local alignment tool that allows nucleotide searches). The data sets q1 and q2 (simulated) were
obtained from the CAMI challenge II, an initiative that aims to provide gold-standard data sets
to benchmark tools used in metagenomic studies [213]. The data set q3 was obtained from a
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Figure 3.3.1: a) Sodium bisulfite treatment leads to the conversion of unmethylated
cytosines to uracils. During subsequent amplification steps, uracils get replaced with
thymines. As a result, four different read types can be distinguished that stem from the
original forward and reverse strand or their reverse complements. b) To build a sin-
gle index for bisulfite-aware alignments, a new six-letter alphabet was implemented in
Lambda3, where the first three characters represent the reduced alphabet associated with
reads from the original forward and reverse strand (C and T are considered identical).
The last three characters represent the reduced alphabet for reads originating from the
reverse complements of the original forward and reverse strands (G and A are consid-
ered identical). c) Before the index is built, reference sequences are duplicated. The first
copy is subsequently reduced using the characters of the combined alphabet associated
with the original strands, while the second copy is reduced using the characters associ-
ated with the reverse complements. This way, the index is built across the same alphabet
that accounts for both reductions without the necessity to build two indexes. d) Query
sequences are reduced analogously to the reference sequences after the sequences have
been reverse complemented to account for every possible alignment according to the four
read types.

metagenomic study by Bahram et al. [214]. To test Lambda3’s bisulfite mode in comparison to
regular nucleotide searches, we in silico-converted these query data sets (q1-q3) into sequences
mimicking a bisulfite conversion experiment where cytosines were converted to thymines at a
conversion rate of 99% of all cytosines (similar to high-quality mammalian bisulfite sequencing
data sets, scripts obtained from [215]). For simplicity, we converted all query sequences accord-
ingly, which reflects the effect of bisulfite conversion of reads from the original strands (Figure
3.3.1). To ensure that Lambda3 can also detect reads both from reverse complements of the
original strands, we additionally created a version of the two data sets where guanines were
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ID Query set Length Molecule Source

q1 Strain diversity 125 bp DNA (simulated, in silico
bisulfite-converted)

CAMI II challenge (2022)

q2 Plant-associated 125 bp DNA (simulated, in silico
bisulfite-converted)

CAMI II challenge (2022)

q3 Topsoil 251 bp DNA (in silico
bisulfite-converted)

Bahmram et al. (2018)

q4 Xenograft
breast tumor

125 bp bisulfite-converted
cell-free DNA

Liu et al. (2021)

q5 Fungi 76 bp bisulfite-converted DNA Bewick et al. (2019)

Table 3.4.1: Query data sets used to evaluate the performance of Lambda3 and semi-
global bisulfite read alignment applications. Data sets q1-q3 were in silico bisulfite-
converted to compare Lambda3’s bisulfite mode with the original nucleotide mode and
other local alignment tools.

converted to alanines with the same conversion rate, which led to comparable results. The in
silico conversion provides the advantage that the original sequences can be searched with reg-
ular local nucleotide alignment tools, while the matching bisulfite-converted sequences can be
searched with bisulfite alignment tools, allowing a direct comparison.

In addition to these in silico-converted data sets, we made use of real-world bisulfite sequencing
samples. We selected data from a breast tumor xenograft model, where the cell-free DNA of the
xenograft model is expected to contain DNA fragments of both organisms, the host mouse model
and the engrafted human cells, but also potential remnants of microbes [216]. Additionally, we
sampled a pan-fungi data set from a study that profiled different fungi species to mimic a cross-
species sequencing experiment [217]. Of each data set, 200 megabytes (MB) were extracted and
used for performance assessment (see appendix A for more information on the query set selec-
tion). All data sets are single-end, as local alignment tools do not process reads in pairs.

The in silico-converted data sets (q1-q3) were compared against the collection of microbial
genomes assembled within the Human Microbiome Project (5.8 gigabytes (GB), download June
7, 2022, [218]). Reads from the xenograft model (q4) were compared against a database consist-
ing of the human (hg19) and mouse (mm10) genomes as well as the Human Microbiome Project
(12 GB). For the fungi data set (q5), all fully assembled fungi reference genomes (download June
7, 2022) were used as the database (4.4 GB).

3.4.2 Parameter selection and comparison with nucleotide search

After the implementation of the bisulfite mode, default values for the different parameters that
constrain and guide the search process needed to be selected, including distinct sets for a fast
and a sensitive mode (also available for nucleotide and protein searches). The most important
parameters are listed in the following:

• seed length - The initial length of the seed.
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• seed offset - The distance between seed start positions in the same query.

• seed delta - The number of mismatches allowed in the (second half of the) seed.

• pre-scoring threshold - The minimum average score per position in the region that is used
to score each seed after the search but before the alignment.

• bit score threshold - The minimum bit score with which a hit is accepted and reported.

For the regular nucleotide mode, the parameters were selected based on the comparison to other
existing tools such as BLAST, DIAMOND (protein), and MALT (nucleotide), comparing runtime
and the number of detected queries, which is a common measure of sensitivity for local align-
ment tools [219, 220]. The effect of the bisulfite conversion has implications that require these
parameters to be adjusted for the bisulfite mode. Given the regular nucleotide mode parameters,
the number of hits found during the search will likely increase due to the reduced three-letter
alphabets (up to 43% measured for q1-q3). Of these hits, many more will pass the pre-scoring
step, namely the ungapped alignment performed right after the search in a region around the
seed location (up to 2,350% increase measured for q1-q3 using the same seeding parameters for
nucleotide and bisulfite mode). This is expected because C to T (or G to A) mismatches arising
from the bisulfite conversion are indistinguishable from actual mismatches of the same kind in-
troduced, for example, via single nucleotide polymorphisms or larger differences in the genomic
sequences of different species. Therefore, the bisulfite mode will also generally lead to higher
alignment scores.

As introduced in section 3.2, the bit score (and therefore also the E-value) is based on the align-
ment score but additionally relies on the variables λ and K that ensure the comparability of
results across different scoring schemes and search space sizes. The values of these variables
were experimentally determined for amino acid and nucleotide searches using various scor-
ing schemes. However, these experimental conditions are not likely to reflect the search with
bisulfite-converted sequences. Thus, the increased alignment scores of the bisulfite mode will
lead to overall higher bit scores that will not equal alignments with higher quality but instead re-
flect a shift in the bit score distribution due to λ and K not being measured for bisulfite-converted
sequences. Therefore, we decided to adjust the bit score threshold for the bisulfite mode to ac-
count for this effect. Finally, even after the adjustment of different parameters, the overall false
positive rate is expected to be increased with respect to regular nucleotide searches due to ac-
tual mismatches that are shadowed by the bisulfite conversion effect, which likely have a higher
impact for local in comparison to semi-global alignments.

We chose to select parameters for the bisulfite mode in comparison to the regular nucleotide mode
of Lambda3 (version 3.0.0) and BLAST (version 2.13.0). For this purpose, we made use of the
query data sets q1-q3, of which we established regular nucleotide and in silico bisulfite-converted
versions. Since the bisulfite mode also performs a type of nucleotide search, we aimed to generate
results similar to that of the regular nucleotide mode. The larger number of hits that arise due to
the reduced alphabet complexity required the selection of stricter seeding parameters than for the
nucleotide mode to enable sufficient performance and reduce the false positive rate. However,
different search parameters and filtering criteria might not only lead to a decrease in false positive
hits but could also result in missing matches located by the nucleotide mode or finding new hits
that the nucleotide mode does not detect. To evaluate whether the overall results detected by the
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bisulfite mode with different parameters are valid, we used the results of BLAST as an additional
comparison. BLAST still represents the most sensitive tool for local alignments [198]. Therefore,
we reasoned that it could be used as a gold standard for our comparisons. This approach is an
approximation as it is not guaranteed that a query that BLAST cannot detect represents an actual
negative (i.e., a query that has truly no meaningful hits in the database). Therefore, we used
BLAST with the same scoring scheme as Lambda3 and a relaxed cut-off of E < 1 to define an
inclusive set of true positives with the assumption that any query that cannot be detected with
such a cut-off would be likely a false positive if detected by other tools.

For the parameter search, we tested different combinations of seed length, seed offset, seed
delta, pre-scoring threshold, and bit score threshold using the query data sets q1-q3 with their
respective database defined in the previous section. First, the results were compared against the
gold standard defined by BLAST with the objective of increasing the true positive rate T PR and
minimizing the false positive rate F PR. Here, we compared the queries that were detected with
any hit between BLAST and Lambda3’s bisulfite mode. The true positive rate T PR was defined
as

T PR=
T P
P

(3.4)

where T P denotes the number of queries that were detected by both BLAST and Lambda3, while
P denotes the number of queries that were overall detected by BLAST. Accordingly, the false
positive rate F PR was defined as

F PR=
F P
N

(3.5)

where F P denotes the number of queries that were detected by Lambda3 but not BLAST, while N
denotes the number of queries that were not detected by BLAST. In addition to T PR and F PR, we
measured the false discovery rate F DR to assess the fraction of false positives within the overall
results of Lambda3:

F DR=
F P

F P + T P
(3.6)

Additionally, the results were compared to the default, fast, and sensitive profile of Lambda3’s
nucleotide mode, where we considered the same measurements. As an additional constraint, we
aimed to select parameters that would result in increasing numbers of queries found from fast to
default to sensitive mode, with runtime increasing accordingly. We then selected a pre-scoring
threshold for which adequate seeding parameters could be detected for all three profiles (Table
A.2.1).

In order to determine the bit score threshold for each query data set, we employed the following
strategy: For Lambda3’s nucleotide mode, we considered an E-value cut-off of 0.01, which implies
that less than 1% of the reported hits are expected to have occurred by chance. Given the query
sequence lengths and database size, this led to the bit score thresholds 46, 46, and 47 for q1-
q3 (due to the longer queries in q3) according to equation 3.3. We then selected a bisulfite-
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specific bit score threshold for q1 and q2 (that have the same database size and query length)
for which the TPR was comparable to that of Lambda3’s nucleotide mode while minimizing the
FPR (resulting bit score 68). Based on the associated bisulfite-specific E-value that resulted from
this bit score according to equation 3.2 and the respective database sizes and query sequence
lengths, we computed the bit score thresholds for q3-q5 (68, 68, 66, equation 3.3).

The evaluation of the resulting modes is presented in the following section in combination with
the comparison to semi-global alignment tools.

3.4.3 Comparison with bisulfite alignment applications

We then selected commonly used bisulfite alignment tools (BSMAP (version 2.90), Bismark (ver-
sion 0.24.0), and GEM3 (version 3.6.1)) in order to compare the performance of Lambda3’s
bisulfite mode with classic semi-global alignments. Of these tools, Bismark is the only aligner
offering a local alignment mode. Initially, we also selected segemehl for the comparison. How-
ever, it was not possible to build an index for our databases due to the large number of reference
sequences included that were not supported by segemehl. Performance was measured on an
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz. Every tool was executed with 40 threads except
Bismark, which does not offer the option to limit the number of threads reliably. The user can
only specify the number of instances of Bismark that will be started in parallel that, according
to the manual, start between two and six threads each. Therefore, the number of parallel in-
stances was set to eight to approximate 40 threads. Bisulfite alignment tools usually, by default,
assume directional bisulfite sequencing libraries, which means that in the single-end mode, only
conversions from C to T are considered (not G to A, see section 2.6). As Lambda3 only searches
bisulfite-converted sequences in a non-directional fashion, this was also enabled for semi-global
applications. Otherwise, alignment tools were executed with default parameters. As an addi-
tional comparison, performance for the query data sets q1-q3 was also measured with Lambda3’s
nucleotide mode and the local nucleotide aligner MALT (version 0.6.1) using the unconverted
query sequences. For this purpose, MALT was executed using the same scoring scheme and bit
score threshold as Lambda3’s nucleotide mode to ensure comparability.

In order to assess the performance of different tools, we first compared the results of q1-q3 against
BLAST (relaxed search parameters as described in the previous section). Overall, Lambda3’s nu-
cleotide mode exhibits higher true positive rates than MALT (default and sensitive profile, Figure
3.4.1). Additionally, the local nucleotide alignments performed by Lambda3 and MALT exhibit
very low false positive and discovery rates. Similarly, the semi-global alignment applications
present very low false positive rates, but true positive rates are often comparatively decreased
(sometimes close to zero). In comparison, Lambda3’s bisulfite mode shows true positive rates
comparable to and sometimes exceeding Lambda3’s nucleotide mode and MALT (Figure 3.4.1).
As expected, the false positive rates increase for the bisulfite mode but never exceed 0.25 with
default parameters. The same observation can be made for the local alignment mode of Bismark,
which showcases that, as expected, local bisulfite alignments are generally more prone to include
false positives (Figure 3.4.1). Compared to Bismark using local alignments, Lambda3’s bisulfite
mode detects more true positives ranging from 1.6 to 9.7 fold. The FDR is low for all applications
and modes, which is influenced by the overall small amount of queries not detected by BLAST
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Figure 3.4.1: a) True positive rate compared to the false positive rate (top) and false
discovery rate (bottom) for every application with respect to the results of BLAST as the
gold standard. b) Bar plots visualizing the fraction of queries found by BLAST that were
also found by the other applications. Additionally, the fraction of queries is visualized for
which the best hit overlaps with the best hit located by BLAST.

(Figure 3.4.1).

In addition to the queries detected with at least one hit by each application, we compared the
fraction of queries for which the best hit detected by each application overlapped the best hit
reported by BLAST (Figure 3.4.1). The overall fractions determined are rather low, including for
regular nucleotide searches. The best hits detected by Lambda3’s bisulfite mode exhibit slightly
less overlap with BLAST’s best hits than the nucleotide mode. When comparing the results of the
bisulfite mode of Lambda3 with the respective nucleotide mode instead of BLAST, we only find
moderately increased fractions of hits that overlap (Figure A.2.1). This is not unexpected as the
different choice of parameters, together with potentially real mismatches considered as matches
in the bisulfite mode, can likely lead to differences in the reported hits as well as the associated
scoring (as described in the previous section).

Lastly, we aimed to compare the performance across all bisulfite alignment tools, measuring
the number of queries with at least one hit, the runtime, and memory consumption for all five
query data sets (in silico-converted and real-world bisulfite sequencing data sets). Runtime and
memory consumption were measured as the fastest of three runs. Lambda3’s bisulfite mode
consistently outperforms semi-global alignment tools based on the number of queries detected,
with the exception of q5, where Bismark’s local mode detects more queries (Figure 3.4.2). How-
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Figure 3.4.2: Top: Comparison of runtime and number of detected queries across local
nucleotide alignment as well as local and semi-global bisulfite alignment applications.
Bottom: Memory consumption measured for each application (default profile) and query
data set shown above. The memory consumption is primarily linked to the size of the
database, which is why the highest values were measured for q4 as the corresponding
database is the largest (see section 3.4.1).

ever, across all data sets, the number of queries found with at least one hit varies greatly across
the other bisulfite alignment tools, while Lambda3 consistently detects hits for large fractions of
the query sequences outperforming most (if not all) of the bisulfite-aware applications (Figure
3.4.2). The default and sensitive profiles of Lambda3 are, in some cases, slightly slower than
semi-global aligners, which can be expected due to the larger number of seeds and hits that
need to be processed within a local alignment tool. However, the fast mode shows comparable
or faster runtimes to BSMAP and Bismark while still detecting more queries for most data sets
(Figure 3.4.2). GEM3 is the fastest tool (its runtime depends mostly on the time required to
load the database). As a comparison, the performance of Lambda3’s nucleotide mode and MALT
were visualized for q1-q3. BLAST was omitted here due to its extensive runtime (for q1, BLAST
is more than 50 times slower than the default nucleotide mode of Lambda3). As expected, the
nucleotide search is faster than the bisulfite search.

Of all tools, Bismark consumes the most memory (up to 585 GB for q4 with the largest database,
measured as the maximum resident set size (RSS)), while GEM3 and Lambda3 only use up to
103 GB and 71 GB of RAM, respectively. Lambda3’s bisulfite mode uses more memory than the
corresponding nucleotide mode, which is expected due to the doubling of reference sequences.
BSMAP is the most memory-efficient tool (30 GB for the largest database), which could be at-
tributed to the fact that it is the only tool that does not build an FM index but instead is based
on hash tables (Figure 3.4.2).
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3.5 Discussion

Lambda3 has been adapted to accommodate the search of bisulfite-converted nucleotide se-
quences and thereby enabled BLAST-like searches for reads from bisulfite sequencing exper-
iments. The bisulfite mode shows comparable sensitivity to other local nucleotide searches
(Lambda3’s fast nucleotide mode, MALT), while the false positive rate slightly increases as ex-
pected for local bisulfite alignments. Our benchmarks showcased that the bisulfite mode of
Lambda3 consistently detects more queries compared to standard semi-global alignment tools,
which was most pronounced for actual metagenomic data sets (q1-q3). These results show that
standard bisulfite alignment tools are not suitable for performing this type of search, even though
some of them perform seemingly well in a query-dependent fashion. However, semi-global align-
ment tools do not provide a measurement of the statistical significance of a located hit such as
the bit score or E-value. This means that even in the case of q5, where the local mode of Bismark
detects more queries than Lambda3’s bisulfite mode, these additional hits might be detected by
Lambda3 with more relaxed settings. At the same time, the fast bisulfite mode exhibits runtimes
comparable to or exceeding most semi-global alignment tools with less memory consumption.
In summary, Lambda3 now represents a universal tool to perform local alignment searches with
a protein, nucleotide, and bisulfite mode.

The search parameters of Lambda3’s bisulfite mode have been selected such that the true and
false positive rates were optimized with respect to BLAST but also Lambda3’s nucleotide mode.
This included the selection of different bit score thresholds to account for the increased alignment
scores and generally higher false positive rates expected from local bisulfite alignments. For
future versions of Lambda3, it might be desirable to set up an in silico experiment in order to
determine values for λ and K in a bisulfite-converted sequence context given different scoring
schemes. This might improve the quantification of the bit scores (and E-values) and thus might
lead to more accurate quantification of alignment quality and filtering of false positive hits.

In order to further extend Lambda3 as a universal local alignment tool, Lambda3 could be ex-
panded to include a long-read mode that is able to process long query sequences, such as reads
generated by Nanopore or PacBio sequencing. The resulting kilo- to megabase-scale reads are
more error-prone than short reads derived from Illumina sequencing and can include frameshift
errors [221]. These errors occur during the sequencing process and alter the reading frame
within a gene of interest. This is not relevant for nucleotide searches but has an impact on ho-
mology searches in the protein space, where the alignment process needs to be able to account
for that. Such a long-read mode is already implemented in the protein alignment application
DIAMOND and would further improve the usability of Lambda3 [197,198].
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Chapter 4

Measuring DNA methylation heterogeneity
from bisulfite sequencing reads

This chapter presents RLM, a tool providing fast and easy extraction of read-level methylation
metrics as a measure of DNA methylation heterogeneity. This work was published in Bioin-
formatics in November 2021 [222], and the chapter follows the publication closely, including
figures that have been adapted from it. The chapter introduces the concept of DNA methylation
heterogeneity measurements, including a description of commonly used metrics. Subsequently,
the workflow of RLM is described, and test cases and benchmarks are presented, followed by a
discussion of use cases, drawbacks, and biases of read-level methylation metrics.

Dr. Pay Giesselmann and Dr. Helene Kretzmer helped prepare input files for integration tests,
and Dr. Pay Giesselmann assisted in benchmarking RLM.

4.1 Introduction

4.1.1 Sources of DNA methylation heterogeneity

CpG methylation, as measured by short-read bisulfite sequencing methods such as WGBS or
RRBS, represents an average measurement across the underlying cell population (see section
2.7). However, the cells or alleles in the pool subjected to sequencing do not necessarily need
to exhibit the same methylation profile across a specific region. Although most of the genome is
consistently methylated or unmethylated across cell types, deviations exist from these patterns.
An example of strongly deviating alleles within a cell population is genomic imprinting, where
only one allele expresses the imprinted gene, and the other allele is silenced via DNA methylation
of the iDMR (see section 2.3). In this case, half of the respective reads should be unmethylated
while the other half should be methylated, resulting in average CpG methylation values of 0.5
merging the two allelic conditions (Figure 4.1.1).

Similarly, heterogeneous tissue could include different cell types with specific methylation pat-
terns at promoters or enhancers that would be included in the CpG-wise methylation rate and
might be reflected by rather intermediate DNA methylation levels (Figure 4.1.1). This could
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Figure 4.1.1: Schematic of read compositions underlying different sources of DNA methy-
lation heterogeneity. White circles represent unmethylated CpGs, and black circles rep-
resent methylated CpGs. The region of interest that is spanned by all displayed reads is
marked by a square. This figure has been adapted from Scherer et al. [223].

also apply to contamination of a probe by different cell types, for example, during cell culture
where feeders or differentiating cells could accidentally be included in the sequenced cell pool
(Figure 4.1.1). A study using 25 primary human tissue and purified cell types also suggested
that 2% of CpGs in the human genome consistently exhibit intermediate methylation and are
enriched near genes and in enhancers, an evolutionarily conserved state associated with inter-
mediate expression of the associated genes [224]. These intermediate methylation states were
found largely independent of allele-specific methylation, which could imply that, instead, cells
exhibit an intrinsically heterogeneous methylation profile along these regions [224]. Stochastic,
heterogeneous gain of methylation has also been found to accumulate in tumors and cultured
fibroblasts at previously unmethylated CGIs [130]. These stochastic methylation patterns raised
the hypothesis that cell type-intrinsic heterogeneity might stem from active DNA methylation
turnover guided by de novo methyltransferases and TET enzymes, a balance that can be biased
towards different overall methylation levels [130] (see section 2.5.2). Another possible expla-
nation for heterogeneous DNA methylation levels across cell populations is DNA methylation
erosion that could be induced by the infidelity of the maintenance methyltransferase DNMT1 to
stably maintain DNA methylation across many cell divisions preferentially in PMDs [72,223] (see
section 2.3 and Figure 4.1.1).

Cell types with different methylation profiles present within a tissue can be disentangled using
experimental approaches such as sorting and separately sequencing different cell types [223].
However, the cell types present in a tissue might not always be known or lack sufficiently defined
marker genes to sort them. Additionally, computational approaches exist that use deconvolution
techniques such as non-negative matrix factorization, usually applied to data sets generated with
methylation arrays [225, 226]. These algorithms also frequently require previously established
datasets from pure cell types to infer cell type compositions, although reference-free algorithms
exist [226]. Newer techniques, such as single-cell sequencing approaches, allow for inspecting
the methylome of individual cells; however, at currently high costs providing only limited cov-
erage of the genome of each cell. These limitations make single-cell technologies currently not
always suitable, especially for larger cohorts [223].

As an alternative solution, many studies have introduced metrics that aim to quantify the ex-
tent of DNA methylation heterogeneity from the single reads of bisulfite sequencing experiments
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spanning the same regions or loci [130,131,223,227,228]. This has the advantage that regular
WGBS or RRBS can be used to not only profile the average methylation signature of a cell popu-
lation but also offer another layer of information regarding the underlying within-sample hetero-
geneity. Studies in cancer have shown that using such scores to quantify the DNA methylation
heterogeneity across cells of a population can offer important insights into specific phenotypes
as different levels of methylation heterogeneity correlate, for example, with transcription levels
or patient survival [130,131].

4.1.2 Read-level methylation metrics

In the following sections, the underlying properties of single reads are described, and differ-
ent read-level methylation metrics are introduced that were considered in the scope of this
study.

Properties of single reads

Read-level methylation metrics are based on the DNA methylation patterns found on single reads
covering a specific CpG or k-mer. A single read reflects one allele of one cell present in the pool
of cells that was subjected to sequencing. The methylation status of a CpG on a single read can,
therefore, only be methylated or unmethylated (Figure 4.1.2). If a read spans multiple CpGs,
the pattern of methylation across these CpGs can contain valuable information with respect to
the methylation heterogeneity of a single allele. All CpGs on a read can be homogeneously
unmethylated or methylated, a state that is termed concordant. The read can also contain both
methylated and unmethylated CpGs, a state also referred to as discordant, and might reflect
turnover dynamics or methylation erosion at this specific allele fragment (Figure 4.1.2). If a read
spans methylated and unmethylated CpGs, high heterogeneity within this read can be reflected
by a high fraction of transitions from methylated to unmethylated CpGs and vice versa (Figure
4.1.2).

Proportion of discordant reads

The proportion of discordant reads (PDR) describes the number of reads covering a specific CpG
that are discordant. The PDR equals one if all reads covering a CpG are discordant and zero if all
reads are concordant (Figure 4.1.3). The metric has been introduced by Landau et al. [131] to
study local disordered methylation leading to intra-tumor heterogeneity in the context of chronic
lymphocytic leukemia, which they associated with low-level transcription and a poorer prognosis
for patients. PDR is a metric that is meant to reflect intra-molecule heterogeneity (an entire
read is classified as discordant or concordant, and the population average of this measurement is
considered) and, therefore, useful to quantify DNA methylation erosion or stochastic methylation
within single molecules at a given locus [131,223].
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Figure 4.1.2: Properties of single reads from a bisulfite sequencing experiment. Reads
span multiple CpGs that can be unmethylated or methylated. This pattern can be concor-
dant (all CpGs on a read are unmethylated or methylated) or discordant (read contains
both methylated and unmethylated CpGs). Additionally, the pattern of methylated and
unmethylated CpGs can be characterized by the number or fraction of transitions from
methylated to unmethylated CpGs.

Read transition score

Charlton et al. introduced the frequency of transitions between the unmethylated and methylated
state across CpGs measured on the same read as a metric to define the relationship of neighboring
CpGs in phase [227] (Figure 4.1.2). In this study, the authors investigated the re-methylation dy-
namics after replication in human embryonic stem cells and found that methylation of the nascent
DNA strand progresses in two phases: Within the first hour after replication, a strong methyla-
tion increase can be observed that the authors attributed to active DNMT1 recruitment [227].
In the second phase, which occurs within the next few hours, methylation levels slowly increase
until they reach levels quantified in the bulk cell pool. Charlton et al. hypothesized that this sec-
ond phase could be independent of the replication timing and instead might reflect a search for
targets missed previously due to limitations of DNMT1 close to the replication fork. The authors
used the fraction of transitions per read and its decline over time after replication to verify previ-
ous reports that DNMT1 acts processively on the same DNA fragments [227,229]. This fraction
of transitions per read can also be aggregated per CpG by calculating the average across all reads
spanning its position, which is termed read transition score (RTS) in this thesis (Figure 4.1.3).
It reflects similar properties as PDR: It also measures intra-molecule heterogeneity. However, it
offers more resolution with respect to the dynamics of neighboring CpGs.
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Figure 4.1.3: Schematic of read-level methylation metrics per single CpG. a) Every read
that spans a specific CpG can be characterized by either its discordance (0 or 1) or its
fraction of transitions from unmethylated to methylated CpGs and vice versa (0 = no
transitions, 1= alternating pattern of methylated and unmethylated CpGs). The average
of these single-read metrics reflects the PDR and the RTS, respectively. b) Examples of
different read configurations and the resulting PDR and RTS for the CpG marked with a
square.

Entropy

The measurement of DNA methylation entropy has been established by Xie et al. to measure
the randomness of specific DNA methylation patterns within a population at a given locus [228].
They found that different loci along the genome can exhibit different methylation entropy values
but that this is relatively consistent across different samples at the same loci, with the exception
of primary tumors compared to their healthy tissue. Methylation entropy is calculated per 4-
mer w of consecutive CpGs spanned by N reads and considers the number of occurrences nk of
each possible configuration (termed epiallele) k of methylated and unmethylated CpGs across
the 4-mer (16 epialleles possible):

Entropy (w) =
1
4

16
∑

k=1

(−
nk

N
log2

nk

N
) (4.1)

Methylation entropy is equal to zero if all reads exhibit the same epiallele at a given 4-mer and
one if all 16 epialleles are represented with the same number of occurrences (Figure 4.1.4).
In contrast to PDR and RTS, this score is not computed per CpG but per 4-mer and offers the
possibility to detect variance in methylation patterns across reads such as generated by tissue
heterogeneity, contamination, or stochastic methylation patterns.

Epipolymorphism

Epipolymorphism is a measurement that — similar to methylation entropy — is based on the
assessment of epiallele configurations at a given 4-mer. The metric uses the concept of Tallis
entropy (in contrast to methylation entropy that is based on Shannon’s entropy) for a 4-mer w
spanned by N reads given the number of occurrences nk of each epiallele k:
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Figure 4.1.4: Schematic of read-level methylation metrics per 4-mer. a) Every read that
spans a specific 4-mer exhibits one of 16 configurations of methylated and unmethy-
lated CpGs across the respective four CpGs. These configurations are termed epialleles,
and the number of each distinct epiallele present in the population is used to calculate
methylation entropy or epipolymorphism. The higher the entropy or epipolymorphism,
the higher the within-sample heterogeneity. b) Examples of different read configurations
and the resulting entropy and epipolymorphisms for the 4-mer marked with a square.

Epipolymorphism (w) = 1−
16
∑

k=1

(
nk

N
)2 (4.2)

The maximum value of epipolymorphism associated with the highest heterogeneity is 0.9375 in
contrast to methylation entropy that spans the range from zero to one (Figure 4.1.4). The metric
was introduced by Landan et al., who used it to analyze the heterogeneity of DNA methylation
patterns at regions that become differentially methylated over time in cultured immortalized
fibroblasts [130]. The authors then established the hypothesis that hyper- and hypomethylation,
as observed in cancer, occur in a stochastic fashion as described in section 2.5.2.

Other scores

Besides the previously described scores, other metrics exist that aim to quantify different aspects
of within-sample methylation heterogeneity but were not implemented as part of RLM. Briefly,
these include methylation haplotype load (MHL), the fraction of discordant read pairs (FDRP),
and quantitative FDRP (qFDRP). MHL is based on the identification of blocks of consecutively
methylated CpGs per read, while FDRP and qFDRP aim to offer insights into the within-sample
heterogeneity at the single CpG level [223, 230]. For this purpose, FDRP and qFDRP are based
on pair-wise comparisons of all reads that span a given CpG [223]. A pair is called discordant
if the methylation status of any CpG that is spanned by both reads differs between them, and
the overall score is normalized by the number of pairs. qFDRP additionally takes the Hamming
distance of a pair into account. The pair-wise comparison strategy makes this score increasingly
time-consuming to compute depending on the coverage, which is why the authors propose a
down-sampling approach in case of too many reads that span a given CpG [223].
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4.1.3 Aims and scope of the study

Previous studies using read-level methylation metrics frequently used custom scripts or offered
tools with limited usability that only provide one specific metric, are limited to alignment files
of a single read mapping tool, or are only compatible with specific reference genomes (detailed
comparisons in section 4.3.3). Therefore in this study, we developed RLM, a new tool performing
fast and simplified extraction of read-level methylation metrics from bisulfite sequencing data
sets. Our main goal was to provide a generic tool that would allow us to fastly compute multiple
metrics and make it accessible to many users and projects. This also included the ability to
use RLM with alignment files from any reference genome, support for multiple commonly used
bisulfite read mapping tools, as well as compatibility with different sequencing set-ups such as
WGBS, RRBS, and enrichment strategies.

4.2 RLM workflow

RLM was implemented as a standalone tool using the C++-based software library SeqAn3 [191,
231]. The application is available via GitHub (https://github.com/sarahet/RLM) and can be
easily installed using cmake. The following sections describe the workflow illustrated in Figure
4.2.1.

4.2.1 Input

As input, RLM takes already aligned reads in SAM or BAM format [212]. RLM can process align-
ments from all common short-read sequencing set-ups such as WGBS, RRBS, and enrichment
strategies (e.g., amplicon sequencing). Additionally, both single- and paired-end reads can be
handled (set-up defined via runtime parameter). The alignment file does not need to be sorted,
although for paired-end data it would be an advantage if the input is sorted according to the
genomic position or read name since the first read in a pair that is read will be kept in memory
until the second read is found (see section 4.2.3). If the paired-end input alignments are not
sorted, this could lead to an unnecessary overhead in memory consumption.

It is recommended to deduplicate the alignment file after mapping in order to remove PCR du-
plicates. These are reads that originate from the PCR step and do not represent different cells
within the population but copies of a specific fragment (see section 2.7.2). Calculating read-
level metrics could therefore be biased by such artifacts because these reads will be mistakenly
considered as biologically independent.

As described in chapter 3, a SAM tag is commonly defined by bisulfite alignment tools in order
to indicate, which of the four bisulfite read types has been detected for every record (see section
2.7.2). Within RLM, this tag is used accordingly to decide whether the position of the cytosine
on the forward or on the reverse strand is needed to define the methylation status of a CpG.
RLM recognizes the tags and therefore accepts alignment files from the commonly used bisulfite
alignment tools BSMAP, Bismark, segemehl and GEM3. The aligner needs to be specified via a
runtime parameter in order to ensure that RLM considers the correct tag.
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In addition to the SAM or BAM file, RLM requires the reference genome used to align the reads
as additional input file in FASTA format. The reference genome is necessary to find the location
of CpGs and compare the sequence of reads overlapping them.

Figure 4.2.1: Workflow of RLM summarizing the input requirements, filtering steps, op-
tional RRBS mode, processing of paired-end reads, possible output formats, and optional
post-processing as provided by the tool.

4.2.2 Read filtering

RLM streams across the input lines of the BAM or SAM file and processes reads directly to mini-
mize memory consumption (temporary storage of read information is an exception for paired-end
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reads; see next section 4.2.3). Reads that fulfill one of the following criteria (identified via the
SAM flag if not stated otherwise) are skipped and not considered for downstream analyses:

• Unaligned

• Not primary alignment

• Supplementary alignment

• Aligned not in pair if paired-end sequencing set-up

• Marked as duplicate

• Failed the vendor quality checks

• Mapping quality below user-defined threshold (runtime parameter, default: 30)

• Contains indels (extracted from CIGAR string)

Unaligned reads cannot be processed because the genomic origin is unknown, while secondary
alignments and duplicates artificially bias the methylation-based quantifications. Alignments of
only one read of a pair might stem from low quality, where one read did not pass previous QC
steps. Reads that do not pass vendor quality checks or mapping quality thresholds are likely
to include sequencing errors, span heavily mutated sites, or originate from a different source
than the alignment location. Therefore, such reads are excluded in order to calculate metrics
only based on high-confidence reads. Additionally, reads that contain indels might delete or
introduce a CpG. This cannot be accurately reflected by read-level metrics as such modifications
might not affect the whole cell population and, in case of an insertion, lack a genomic reference
for comparison. Thus these CpGs cannot confidently be detected from the bisulfite-converted
reads.

The CIGAR string is not only scanned for indels but also to determine whether a read was soft-
clipped during the alignment. While hard-clipping leads to the actual read sequence that is stored
in the BAM file being shortened according to the number of bases clipped, soft-clipping only
leads to a respective entry in the CIGAR string, but the actual read sequence remains unchanged.
However, the start position of the read with respect to the reference genome always reflects the
first base that is not clipped. Therefore, in the case of soft-clipped reads, the read sequence
gets shortened by RLM before the actual processing to allow an accurate comparison of the read
sequence and the corresponding reference genome sequence.

If the processed reads originate from an experiment profiled using RRBS, another modification
to the read sequence may be applied. As described in section 2.6, during the library preparation
process, artificial (usually unmethylated) cytosines are introduced at the 3’ end of fragments
after restriction enzyme digest. If the DNA fragment is shorter than the read length, the artificial
cytosine is sequenced and biases any methylation-based quantifications because it does not reflect
the actual methylation status of that cytosine. These bases can be either trimmed during pre-
processing or need to be excluded from quantifications such as methylation rate calling later (see
section 2.7). If trimming of these bases has been performed, the RRBS reads can be treated as
any other experiment. If not, RLM offers the option to activate a specific RRBS mode that clips
either the first two or last two bases of the read sequence (depending on the read type, see section
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2.6). The potential downside of this approach is that a natural CpG cannot be distinguished from
an artificial CpG, and information can potentially get lost.

The options specifying the used aligner, single- or paired-end sequencing design, and the RRBS
mode are runtime parameters as they depend on the actual input alignments. However, in order
to reduce the overall runtime, the respective branches are already established at compile-time
using templates.

4.2.3 Paired-end reads

For paired-end sequencing, reads are pre-processed before the read-level information can be
extracted. Depending on the fragment size and read length, the two reads of a pair can overlap
if the fragment is shorter than the combined read lengths. In this case, it is not favorable to
process the two reads separately because CpGs covered by both would be considered twice for
the same fragment/allele, which biases the later quantifications. Considering the first read of a
pair that is read, there are two options:

1. The read passes all filters. It is then kept temporarily in memory until the second read of
the pair is read.

2. The read does not pass a filter. In the case of artifacts like duplicates, mapping quality, or
vendor check fails, the second read is usually affected as well, and the respective artifact
reflects generally problematic properties. Therefore, the pair is not considered further. In
the case of an indel, the second read might not span a similar site and could be used to
calculate read-level methylation metrics. The read name is therefore stored in memory to
allow the processing of the second read as a single read (both reads of a pair share the
same name).

Considering the second read of a pair that is read, the program continues as follows:

1. If the corresponding read of the pair has been read before and has been excluded due to
indels, the current read is immediately processed further (see next section). The read name
is then removed from storage.

2. If the corresponding read of the pair has been read before and is stored in memory, the
overlap between both reads is calculated using the start coordinates and read lengths. If
the two reads do not overlap, they are processed independently. In the case of an overlap,
the reads are merged and processed as one record. For this purpose, the start coordinate of
the read with the smaller genomic coordinate is used, and the read sequence is merged. Af-
terwards, the previously stored read is removed from storage to not unnecessarily increase
memory consumption over time.

4.2.4 Extracting methylation information per read

The individual reads are then compared to the respective reference genome sequence. First, the
number of CpGs covered by a read is determined. If the read spans less than three CpGs or
includes a sequencing error or mutation at a CpG position, it is discarded, and the next read is
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read from the input file. Too few CpGs do not allow meaningful interpretation of metrics such
as discordance or fraction of transitions. Although metrics based on 4-mers, such as entropy,
cannot be calculated from reads that span only three CpGs, they are admitted to allow CpG-
based metrics, such as PDR, to be calculated for less CpG-dense genomic regions. Mismatches
at CpG positions, on the other hand, disturb metrics such as entropy because one position of the
4-mer would be missing.

If a read passes these additional filtering steps, the methylation status of every CpG and 4-mer
is extracted using the information of the bisulfite tag that indicates the read origin and mapping
orientation of the read sequence in comparison to the reference genome. Per CpG, the methyla-
tion of the read at this position, the discordance, and the fraction of transitions of the full read
spanning the CpG are stored. Per 4-mer, the epiallele represented by the read is stored. Finally,
the individual read-specific metrics (methylation pattern and average of the read, discordance,
fraction of transitions) are written to an output file in BED format before the next read is read
from the input file.

4.2.5 Score computation

After the complete alignment input file is read, per CpG, the mean methylation, PDR, and RTS
are computed. Mean methylation, entropy, and epipolymorphism are calculated per 4-mer using
the information that was stored from the associated reads. For 4-mers, additionally, the count of
all epialleles underlying the entropy and epipolymorphism calculations is reported. The metrics
per CpG and 4-mer are reported in a separate BED file, respectively. Only CpGs or 4-mers covered
by a user-defined minimum number of reads are reported (runtime parameter, default: 10). The
calculation of these read-level metrics and the generation of the corresponding output BED files
is optional. By default, all three BED files (single read information, per-CpG, and per-4-mer
metrics) are generated. However, the user can also specify to only generate the CpG-specific or
4-mer-specific output in addition to the single read output (the output file with information per
single read is always provided).

4.2.6 Post-processing

Although RLM is a standalone C++-based application, the GitHub repository also includes an
R markdown script that offers basic summary statistics and overview figures based on the RLM
output files. The script is provided with the intention of allowing users with limited experience
to easily visualize their data sets and offer a selection of possible representations to more ex-
perienced users to be adapted further. It requires multiple R packages to be installed that are
commonly used for visualization by the community, such as ggplot2, vioplot, and RColorBrewer.
The script generates a PDF report including summary statistics (minimum, maximum, quantiles,
average) of the number (total or methylated) of CpGs per read, the fraction of transitions per
read, and the single-read methylation. Additionally, matching histograms are provided, includ-
ing the coverage of reads per CpG or 4-mer. Finally, different types of density plots visualizing the
distribution of read-level methylation metrics separately or in relation to the average methylation
across the entire output or within pre-defined regions are provided.
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To provide further guidelines, the documentation of RLM includes detailed descriptions of the
workflow and the content of the output files. Additionally, code snippets are provided to easily
generate data formats that allow the visualization of the resulting read-level methylation metrics
in genome browser tools such as IGV or UCSC using commonly used tool suites such as UCSC-
tools [232, 233]. Finally, an example report generated using the R markdown post-processing
script is shown, and explanations, as well as possible interpretations with respect to the somatic
methylation landscape, are offered.

4.3 Benchmarks

4.3.1 Test cases

In order to ensure the correctness of RLM functions and output, a variety of test cases were
designed that are part of the GitHub repository and automated using continuous integration
with GitHub Actions. For the design, the SeqAn3 application template was used. Unit tests were
designed that test the calculation of entropy, epipolymorphism, and methylation per 4-mer as
well as the fraction of transitions and discordance per read. For each score, different examples
spanning the range of possible configurations were used. Additionally, the functionality of RLM
was evaluated using integration tests that assess the correctness of the output given a specific
input. The following functionalities of RLM were tested:

1. Argument parsing: In order to ensure that options are correctly parsed, tests were designed
that ensure that the help message appears correctly if RLM is executed without arguments
and that the correct error message appears if an input file is missing.

2. Handling of different read types: Different input SAM files were designed that include all
read configurations that should be covered by the functionality of RLM, ranging from reads
that do not pass the filtering steps to read pairs with and without overlap as well as single
invalid reads. Additionally, test records, including soft and hard clipping as well as records
for the RRBS mode, were designed. The expected matching output files were generated
manually and then used to test the correctness of the RLM output.

3. Read mapping tools: A test read file was generated and aligned with all supported read
mapping tools (BSMAP, Bismark, segemehl, and GEM3). The resulting BAM files were then
used as input for a test case that executes RLM and produces the single-read output file.
The corresponding output files for all alignment tools were then pair-wise compared for
each read that aligned at the same position (this was necessary as some alignment tools
don’t support edit distance or use different scoring schemes or clipping strategies).

4.3.2 Performance

In order to measure the performance of RLM (version 1.0.0), a publicly available WGBS data set
was downloaded (mouse epiblast, GSM4075619) and aligned to the mouse reference genome
mm10 using BSMAP. Different numbers of reads were randomly sampled from the resulting BAM
file covering the number of reads from small-scale experiments such as RRBS up to high-coverage
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Figure 4.3.1: Runtime a) and memory consumption b) measured for RLM in single-end
and paired-end mode for different numbers of randomly sampled BAM records. Dots
represent the average runtime across five iterations. Error bars represent the standard
deviation.

WGBS data sets. Performance of RLM in single- and paired-end mode was measured on an Intel
Xeon Gold 6242 @ 2.80GHz. Runtime and memory consumption were measured as average
across five runs, and the corresponding standard deviation was calculated (Figure 4.3.1). The
runtime scales linearly with the input read number for both paired-end and single-end modes
(e.g., 41 minutes for 500 million records and 87 minutes for one billion records in paired-end
mode). However, RLM in paired-end mode is more than two times slower than in single-end
mode (41 and 87 minutes for one billion records in single- and paired-end mode, respectively).
This gap can be explained by the overhead that is introduced when temporarily storing the first
read of paired-end reads and the subsequent resolution of potential overlaps, which is also re-
flected in memory consumption: While the single-end mode uses less than five GB for the largest
input size, the memory consumption in paired-end mode increases stronger the more reads are
processed.

4.3.3 Comparison with existing tools

Only a few studies that previously used read-level methylation metrics also provided tools that
would allow users to extract these scores from their own data sets. The previously developed
tools are frequently limited based on the input features they allow and the number of metrics
they provide, which is summarized in the following section.

Features

DMEAS, CluBCpG, and WSH are tools that were published previously and provide frameworks
for the computation of read-level methylation from bisulfite sequencing data sets (Table 4.3.1)
[223,234,235]. DMEAS and CluBCpG are standalone applications (although CluBCpG requires
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Tool Scores Compatible
alignment tools

Reference
genome

RRBS mode

RLM Single read discordance
and transitions
Entropy
Epipolymorphism
PDR
RTS
Matching mean
methylation per score

Bismark
BSMAP
segemehl
GEM3

Any Yes

DMEAS Entropy Bismark Any No

CluBCpG Clustering-based
read-level analysis

Bismark Any No

WSH Entropy
Epipolymorphism
PDR
MHL
FDRP
qFDRP

Bismark only for
entropy and
epipolymorphism

Preferably
hg38

No

Table 4.3.1: Features and input requirements of different tools that compute read-level
methylation metrics from bisulfite sequencing data sets.

samtools to be installed and available via the PATH variable), whereas WSH is implemented as
an R package. As output, DMEAS computes methylation entropy, CluBCpG extracts a clustering-
based read-level analysis while WSH provides multiple scores (PDR, MHL, entropy, epipolymor-
phism, FDRP, and qFDRP). For some scores like PDR, WSH requires additional, pre-computed
input in the form of the exact position of all CpGs in the reference genome for which the score
should be computed. DMEAS and CluBCpG only support Bismark alignments. WSH, on the
other hand, is restricted to Bismark alignment files only for entropy and epipolymorphism calcu-
lations. Additionally, according to the documentation, WSH should be preferentially used with
reads aligned to the human genome hg38 (although it remains unclear whether that means that
no other reference genome is supported) [236]. None of the existing tools provides a specific
mode to handle potentially artificial bases as introduced by the RRBS protocol.

In contrast, RLM supports multiple commonly used alignment tools and any reference genome
that was used to align the reads. In addition to the four read-level methylation metrics (PDR,
RTS, entropy, and epipolymorphism), it also outputs matching methylation rates per CpG and
4-mer as due to the filtering steps only a subset of reads at a given position is considered, which
might not reflect the methylation rates as provided by standard methylation calling tools. RLM
also outputs methylation metrics (methylation pattern, discordance, fraction of transitions) for
every single read that passes the filtering steps. It also offers a specific RRBS mode, as described
in the previous section.
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Figure 4.3.2: Runtime measured for RLM and WSH for different numbers of randomly
sampled BAM records. Dots represent the average runtime across five iterations. Error
bars represent the standard deviation.

Runtime comparison

Out of the existing tools, WSH is the most similar tool to RLM as it also offers multiple scores
that RLM provides. As WSH only accepts alignment files produced by Bismark and preferentially
aligned to hg38, a publicly available WGBS data set (human embryonic stem cell line HUES8,
GSM3618718) was downloaded and aligned to the human reference genome hg38 using Bis-
mark. In order to measure the performance, increasing numbers of BAM records were randomly
sampled from the complete alignment file. RLM was executed in single-end mode as WSH does
not offer specific treatment for paired-end reads. Both tools were otherwise executed with de-
fault parameters (WSH does not provide versioning, the package was installed from GitHub in
May 2021). RLM uses two threads, one for the main program and one for the decompression
of the input BAM file. For WSH, the documentation does not provide information about poten-
tially underlying parallelizations. For both tools, the computation of methylation entropy was
measured as WSH requires the pre-computed exact positions of CpGs for the PDR calculation.
Runtime was measured as described in section 4.3.2. While the runtime is relatively compara-
ble for very few alignment records, RLM extracts methylation entropy measurements more than
three times faster than WSH for larger read numbers > 10 million (a typical WGBS experiment
of the human genome consists of around 300 million fragments Figure 4.3.3).

Score comparison

RLM includes multiple filtering steps before the read-level calculations to ensure that only high-
quality reads are considered for the analysis. This leads to a subset of reads being used as a basis
for read-level methylation metrics. For example, out of the 50 million reads shown in Figure
4.3.3, only 8.2 million reads contain at least three CpGs, which is the minimum requirement for
PDR and RTS calculations. Of these, however, only 82% survive the filtering steps before the
read-level calculations. These filters are not implemented in the WSH package, which makes
the resulting scores not comparable as they are based on different read sets. This means that
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Figure 4.4.1: Entropy (left) and epipolymorphism (right) values that are associated with
all possible distributions of one to 16 epialleles in a population, depending on the cover-
age.

for a given CpG or 4-mer, the read-level score could be drastically different between RLM and
WSH due to the different sets of reads used for the calculations. Therefore, the resulting output
of RLM and WSH was not compared, and the correctness of the RLM calculations was instead
verified by the previously described test strategies.

4.4 Discussion

RLM was developed to provide a standalone, fast, and scalable tool that can extract multiple read-
level methylation metrics, is compatible with many experimental set-ups and read mapping tools,
and allows easy integration into existing bisulfite sequencing processing pipelines. In contrast
to previously published tools that frequently offer single scores and support only a specific read
mapping tool or reference genome, RLM is more flexible and thus suitable for a wider user group.
Large consortia like the International Human Epigenome Consortium (IHEC) have standardized
pipelines that include alignment tools such as GEM3 instead of Bismark, for which previously
developed read-level methylation tools are not suitable.

A central question to future studies using metrics scoring the within-sample methylation hetero-
geneity of bisulfite sequencing data sets is which score to use. Different metrics were developed
to study specific aspects of methylation heterogeneity, and they are subject to different biases
and vulnerabilities. Scherer et al. provided a detailed comparison of different within-sample
heterogeneity metrics with respect to their suitability for potential applications and their draw-
backs concerning sources of noise and bias [223]. In the scope of this thesis, only the scores
implemented in RLM are mentioned in the following paragraphs.

In contrast to entropy and epipolymorphism, PDR was developed to quantify intra-molecule het-
erogeneity of single reads (discordant or concordant) followed by the aggregation of this metric
across all reads spanning a CpG. Scherer et al. defined the assessment of methylation erosion as
the main strength of this score, together with the possibility to compute CpG-wise measurements
in contrast to epiallele-based metrics that can only be computed per 4-mer. Based on simulated

60



Figure 4.4.2: a) Distribution of the average methylation (left) and entropy (right) of
iDMRs across healthy human tissues (samples from chapter 6). b) Scatterplot showing
the relationship between average methylation and entropy of each iDMR across healthy
human tissues. Lines reflect the density.

data sets, however, PDR was dependent and influenced by CpG density and read length as long
read lengths and high CpG density increased the chance for a read to be discordant [223]. RTS
was not covered in this comparative study but reflects similar properties as PDR and is, there-
fore, also likely to be influenced by read length and CpG density. These biases, however, are
neglectable when comparing different samples generated with the same sequencing set-up at
the same genomic loci.

Methylation entropy and epipolymorphism were both developed to quantify inter-molecule vari-
ability and were able to detect and quantify heterogeneity in simulated cell type mixtures and
contamination data sets [223]. Scherer et al. showed that PDR was less sensitive in these scenar-
ios. Interestingly, although PDR was developed specifically to detect methylation erosion, also
entropy and epipolymorphism were able to detect simulated erosion events. Overall, inspecting
multiple simulated scenarios of heterogeneous DNA methylation, Scherer et al. showed a rela-
tively high correlation between epiallele-based metrics and PDR, suggesting that inter-molecule
and intra-molecule variability are partially associated across the genome.

The drawback of epiallele-based metrics is that they can only be computed for a limited number
of CpG-rich loci due to the requirement of four consecutive CpGs covered by the same read.
Depending on the read length, this is mainly possible in CGIs, CpG-dense promoters, or CpG-rich
repeat elements such as the 5’ UTR of LINE elements [237]. Repetitive sequences, on the other
hand, are frequently the subject of multi-mapping reads, which makes read-level methylation
quantifications less reliable as the detected origin of a read might be ambiguous. In contrast to
PDR, methylation entropy as a measurement itself is independent of the read length, as a fixed
CpG-based window size is evaluated. However, it could be affected if reads get too short and are
less likely to span four consecutive CpGs. However, methylation entropy and epipolymorphism
have been found to increase with higher sequencing coverage [223]. A reason for this bias could
be that the chance of noise increases with higher coverage. This is reflected by the increasing
number of possible epiallele configurations that can lead to the same entropy or epipolymorphism
values depending on the coverage (Figure 4.4.1).

Additionally, some practical biases should be considered when using read-level methylation met-
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Figure 4.4.3: Distribution of methylation (left), entropy (middle), and coverage (right)
for 4-mers present in CGIs of healthy breast tissue (sample from chapter 6), which have
extreme methylation values (< 0.05 and > 0.95 termed low and high respectively).

rics. A good example to demonstrate this is genomic imprints. As described in the introduction,
iDMRs should be spanned by reads, of which 50% are unmethylated while the other 50% are
methylated, reflecting the methylation status of the two alleles within each cell. These regions
should also be stably maintained across different healthy cell types. In theory, one would ex-
pect a corresponding PDR of zero and a methylation entropy value of 0.25, as shown in Figures
4.1.3 and 4.1.4. In reality, this is frequently not the case, as exemplified in Figure 4.4.2. First,
the average methylation at the shown iDMRs is not accurately reflecting 50% but seems biased
towards lower methylation levels. It has been reported previously that different steps during the
library preparation, such as bisulfite conversion and PCR, can lead to biases that, depending on
the protocol used, could either favor unmethylated or methylated CpGs leading to slightly shifted
distributions in sequencing reads [163]. Additionally, sources of noise, such as sequencing errors
or cells at different cell cycle phases that might be captured in the middle of replication, can
increase the measured heterogeneity. For these reasons, the distribution of iDMR methylation
entropy enriches close to 0.25; however, it also frequently deviates from the theoretical value
(Figure 4.4.2).

The mentioned sources of noise can also lead to different types of artifacts. In theory, read-
level methylation metrics are independent of low or high methylation levels meaning that fully
methylated reads lead to the same score as fully unmethylated reads. The erosion of these pat-
terns to the same extent should be reflected by the same entropy or PDR. In reality, regions with
extremely high methylation are more likely to be affected by noise than extremely lowly methy-
lated regions: During replication, the nascent strand is completely unmethylated, and methyla-
tion has to be copied by DNMT1. Cells captured during replication, therefore, might still contain
hemi-methylated DNA that does not affect unmethylated regions such as CGIs but regions with
intermediate or high methylation levels. At the same time, sequencing errors or mutations that
result, for example, in deamination would appear as unmethylated CpGs in a bisulfite sequenc-
ing data set as such an event is not distinguishable from a bisulfite conversion of unmethylated
cytosines. This means that more mechanisms exist that could lead to the (seeming) removal of a
methylated CpG, including incomplete maintenance, deamination, mutations, or active removal
by TET enzymes, whereas de novo methylation of a CpG can only be carried out by active targeting
by DNMT3 enzymes. This is exemplified in Figure 4.4.3 where the most extremely methylated
4-mers (< 0.05 and> 0.95 termed low and high respectively) within CGIs were extracted from a
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healthy breast tissue sample. When considering the distributions of associated methylation and
entropy, one can observe that the highly methylated 4-mers overall tend to show methylation
values < 1 associated with higher entropy. In contrast, the lowly methylated 4-mers are mostly
completely unmethylated, resulting in zero entropy.

In summary, read-level methylation metrics have different strengths and weaknesses that might
be relevant to consider, especially when interpreting corresponding results. With RLM, a new
application has been developed that provides fast and easy access to a variety of metrics for
the DNA methylation community based on frequently used experimental setups and processing
pipelines. This new availability enables the standard usage of this additional layer of information
from bisulfite sequencing experiments, which has been associated with important phenotypic
aspects, specifically in cancer.
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Part III

DNA methylation in cancer

The third part of this dissertation describes the application of previously introduced concepts and
tools for DNA methylation analysis in cancer. First, a methylation study of a single tumor type,
acute lymphoblastic leukemia, is presented, combining epigenetic information with transcrip-
tional and mutational data to gain insights into the specific regulation of its DNA methylation
landscape. Second, a large-scale pan-cancer study comparing the methylome of primary tumors
and cancer cell lines is presented, integrating newly generated high-coverage sequencing data
sets as well as thousands of publicly available samples.
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Chapter 5

The distinct DNA methylome of acute
lymphoblastic leukemia

This chapter presents the largest to-date study of whole-genome bisulfite sequencing data sets
from patients with acute lymphoblastic leukemia (ALL). This work was published in Nature Can-
cer in May 2022 [238], and the chapter follows the publication closely, including figures that
have been adapted from it. Different subtypes of ALL were analyzed and compared both with
each other and to a variety of publicly available hematopoietic and solid tumor types. Methy-
lation data were integrated with transcriptomic and mutational data sets to identify potential
regulators of the DNA methylation landscape in ALL. Finally, methylation and transcription of
multiple cancer cell lines, including a perturbation experiment, have been profiled to provide
further evidence for the role of epigenetic regulators identified in primary ALL cases.

All patient data sets have been acquired and generated as part of the St. Jude Children’s Research
Hospital - Washington University Pediatric Cancer Genome Project. Most methylation data sets
of cancer cell lines have been generated at the St. Jude Children’s Research Hospital (Memphis,
TN) in the lab of Charles G. Mullighan MBBS (Hons), MSc, MD. Methylation and transcriptional
data sets for two cancer cell lines have been generated at the Max Planck Institute for Molecular
Genetics by Dr. Alexandra L. Mattei (cell culture and library preparation) and the Sequencing
Core Facility. Dr. Alexandra L. Mattei performed perturbation experiments.

5.1 Biological background

5.1.1 Acute lymphoblastic leukemia

Acute lymphoblastic leukemia is the most common pediatric cancer type, which develops from B
or T lymphoblasts resulting in the rapid accumulation of immature lymphocytes that can lead to
death from bone marrow failure (Figure 5.1.1) [239, 240]. Around 50% of the ALL cases affect
adults where the disease has a relatively poor prognosis: While more than 90% of pediatric
patients are alive five years after diagnosis, only 25% of adult patients survive more than five
years (data based on ALL cases in the USA, 2009) [241].
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Figure 5.1.1: Development of lymphocytes from hematopoietic stem cells: Acute lym-
phoblastic leukemia develops from immature lymphocytes called lymphoblasts (adapted
from [242]).

ALL consists of different subtypes characterized by specific mutations, chromosomal rearrange-
ments, aneuploidy, or overexpression of oncogenes. In B cell acute lymphoblastic leukemia (B-
ALL), amongst others, subtypes have been described based on fusion genes such as BCR-ABL1,
DUX4 rearrangements, PAX5 mutations, hypo- and hyperdiploidy [243]. T cell acute lymphoblas-
tic leukemia (T-ALL) originates from different stages of immature thymocytes and can be clas-
sified based on the stage where normal development arrested: Early T cell precursor ALL (ETP-
ALL), early and late cortical T-ALL [244]. Different mutation and expression patterns characterize
these stages. ETP-ALL frequently carries mutations in NRAS, FLT3, ETV6, and RUNX. Early corti-
cal T-ALL often exhibits overexpression of the oncogenes TLX1 and TLX3, mutations of NOTCH1
and WT1, loss of CDKN2A as well as NUP214-ABL1 fusion. Late cortical T-ALL cases are charac-
terized by aberrant expression of TAL1, LMO1, or LMO2 frequently induced via fusion with other
genes in addition to NOTCH1 and CDKN2A mutations [244].

5.1.2 Previous studies on DNA methylation in ALL

Previous studies in ALL have mainly used the Infinium HumanMethylation450 BeadChip (450k
array) or enrichment-based sequencing approaches to study methylation patterns across ALL
subtypes [245–250]. These assays have the advantage that they are relatively low in cost, thus
enabling the use of larger patient cohorts. However, they are also limited in the information
that can be obtained as they prioritize CpG-dense regions such as CGIs and regulatory regions
such as promoters, gene bodies, and enhancers and, therefore, cannot provide a representation
of the complete genome (see section 2.6). Few studies have used genome-wide sequencing and
provided exemplary samples from subtypes such as ETV6-RUNX1, high hyperdiploidy, unclassi-
fied B-ALL, and T-ALL. Here, contradicting results about the global methylation landscape of ALL
have been reported ranging from mild genome-wide hypermethylation to significant hypomethy-
lation [251–253].

Based on methylation array cohorts, a subset of patients in T-ALL has been reported to exhibit
a CpG island hypermethylator phenotype (see section 2.5.2) [254]. The subtyping into CIMP-
positive and -negative patients has been established by clustering the patients based on a selec-
tion of array probes in CGIs. The CIMP-positive T-ALL cases have been shown to coincide with
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increased expression of ANTP homeobox genes, shorter telomere length, and higher mitotic age,
which has led to the hypothesis that these patients might follow a different route to tumorigenesis
compared to CIMP-negative patients. Additionally, patients of the CIMP-positive group have been
associated with better prognosis and overall survival [254]. Another study using mouse models
of T-ALL combined with patient-derived data sets also found an association of CIMP with the pro-
liferative history of cells and suggested that the phenotype could arise following a preleukemic
phase that leads to increased mitotic age and CGI hypermethylation [255].

In previous studies, no link between CIMP subtypes and recurrent mutations or expression dif-
ferences in epigenetic regulators could be identified [254]. A study using mouse models and
T-ALL cancer cell lines described the oncogene MYC to orchestrate expression changes of the key
DNA methylation regulators TET1, TET2, DNMT3B, and DNMT1 in T-ALL where the loss of MYC
led to changes in the DNA methylation landscape. However, the observed dynamics were not
investigated with respect to a CIMP subtyping in patients [256]. Therefore, further studies are
needed to link findings from model systems to reported CGI-based methylation phenotypes in
primary T-ALL cases.

5.1.3 Aims and scope of the study

In this study, we aimed to address open questions in the field of DNA methylation in ALL. We
generated whole-genome bisulfite data sets of a large cohort comprising different ALL subtypes
to study the genome-wide methylation landscape of these tumors and place the ALL methylome
with respect to known global changes of DNA methylation in a pan-cancer comparison. We made
additional use of the higher CpG coverage and revisited the CGI hypermethylation dynamics
previously observed in T-ALL integrated with mutational and transcriptomic data sets. Based
on our findings, we selected a different computational approach compared to previous studies
based on correlation tests to establish links between the expression of epigenetic regulators and
global as well as CGI methylation levels. Finally, we used a perturbation experiment in T-ALL cell
lines specifically selected to resemble different patient-derived methylation features to solidify
observations from T-ALL patients.

5.2 Materials and methods

5.2.1 Cohort overview

WGBS data sets of leukemic cells from 82 patients were generated as part of the St. Jude Chil-
dren’s Research Hospital - Washington University Pediatric Cancer Genome Project. Patients were
diagnosed with one of three B-ALL subtypes (DUX4-rearranged/ERG-deregulated, hypodiploid
and Philadelphia chromosome (Ph)-like ALL) or T-ALL (Figure 5.2.1). Since ALL is a com-
mon pediatric tumor, most samples came from pediatric or adolescent patients, and only for
T-ALL one adult patient was included in the cohort. For a large number of patients, RNA-
Seq and whole-genome or -exome sequencing (WES) data were already generated and pub-
lished previously, which could be re-used in this study (accession numbers: EGAS00001005203,
EGAS00001004810, EGAS00001005250, EGAS00001005084, EGAS00001001923, phs000218,
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Figure 5.2.1: The number of samples of healthy precursor B and T cells, ALL subtypes,
and ALL cancer cell lines profiled with WGBS. Samples are grouped according to their
age into pediatric (P, 0-15 years), adolescents and young adults (AYA, 16-39 years), and
adults (A, ≥ 40).

EGAS00001003266, and EGAS00001000654). As control samples, healthy precursor B and T
cells of different developmental stages were sorted from bone marrow and neonatal thymi, re-
spectively, and profiled with WGBS (four precursor B and 10 precursor T cell samples). Addi-
tionally, WGBS data for five B-ALL and nine T-ALL cell lines were generated. The cell lines were
selected matching the primary patient subtypes: NALM-6 (DUX4/ERG, two replicates), MUTZ5
and MHH-CALL-4 (Ph-like), NALM-16 and MHH-CALL-2 (hypodiploid B-ALL), and the T-ALL
cell lines MOLT-16 (TRA-MYC fusion), PEER (NUP214-ABL1 fusion), PER-117 (STAG2-LMO2 fu-
sion), RPMI-8402 (STIL-TAL1 fusion), LOUCY (SET-NUP214 fusion), TALL-1 (STAG2-PTGER3 fu-
sion), ALL-SIL (NUP214-ABL1 fusion), Jurkat (TAL1 overexpression via enhancer mutation), and
DND41 (TLX3-BCL11B fusion). All cell lines were ordered from DSMZ with the exception of
PER-117, which was gifted by Prof. Dr. Ursula Kees.

External data sets

In order to place the characteristics of the ALL methylome found in this study with respect to
previously published results in ALL but also other cancer types, a selection of publicly available
WGBS data sets was used:

1. B-ALL: Seven B-ALL samples of unknown subtype published by the Blueprint Epigenome
project [257].

2. Other hematopoietic tumor types: 12 acute myeloid leukemia (AML), three T cell prolym-
phocytic leukemia (TPLL), six chronic lymphocytic leukemia (CLL), and five mantle cell
lymphoma (MCL) samples published by the Blueprint Epigenome project [257].

3. Healthy hematopoietic cell types: Different maturation stages of B and T cells from multi-
potent progenitor cells to terminally differentiated memory B and T cells published by the
Blueprint Epigenome project [257]. This included memory B cells as control samples for
CLL and MCL, hematopoietic multipotent progenitor cells (HPCs) as a control sample for
AML, and CD4 and CD8 single positive alpha beta T cells as control samples for TPLL.

4. Solid tumor types: six bladder urothelial carcinoma (BLCA), five breast invasive carcinoma
(BRCA), two colon adenocarcinoma (COAD), five lung adenocarcinoma (LUAD), four lung
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squamous cell carcinoma (LUSC), two rectum adenocarcinoma (READ), four stomach ade-
nocarcinoma (STAD), and five uterine corpus endometrial carcinoma (UCEC) samples from
The Cancer Genome Atlas (TCGA) [72]. One corresponding normal control was available
for each tumor type and included in the pan-cancer comparison.

5.2.2 Initial data processing

The experimental procedures used to generate methylation and expression data sets are described
in the appendix B.

Whole-genome bisulfite sequencing

The quality of the sequencing runs was inspected using FastQC (version 0.11.9) [171]. Reads
were subjected to trimming using TrimGalore (version 0.4.4) [258]: Bases with a quality score
less than 30 were removed, as well as adapter content, which could otherwise impact the align-
ment of the reads. Additionally, 10 bases were trimmed from each end of the read pairs. The
trimmed reads were then aligned to the human reference genome (hg19) using the alignment
tool BSMAP with default parameters (version 2.90) [183]. Following the alignment, PCR dupli-
cates were removed using GATK with the ‘MarkDuplicates’ command (version 4.1.4.1) to avoid
technical bias or artifacts in the subsequent analysis steps [187]. Afterwards, methylation rates
were called with mcall (MOABS package, version 1.3.2) [188]. The resulting methylation rates
were filtered such that only CpGs covered by at least 10 and at most 150 reads on autosomes were
considered for downstream analyses resulting on average in around 22 million CpGs per sample.
The sex chromosomes were omitted to not bias the analysis by sex-specific differences (missing
Y chromosome and one inactivated, fully methylated second X chromosome in females).

RNA sequencing

Both patient and cell line samples were processed the same way. The quality of the sequencing
runs was assessed using FastQC (version 0.11.9) [171]. The reads were then trimmed using
cutadapt (version 2.4) [172]: Low-quality bases (less than Q20) and adapter content were re-
moved. Additionally, poly-A tails were trimmed as these are added post-transcription to the RNA
and, therefore, cannot be aligned to the reference genome. Afterwards, reads were aligned to the
human reference (hg19) using STAR (version 2.7.5a) [259] and gene as well as transcript expres-
sion was quantified using stringtie (version 2.0.6) [260] with the gene annotation obtained from
GENCODE (release 19). Fusion gene calls were provided by the group of Charles G. Mullighan
(St. Jude Children’s Research Hospital).

Whole-genome and whole exome sequencing

WGS and WES data sets of patients were generated and analyzed at the St. Jude Children’s
Research Hospital as described previously, and most data sets were already published in earlier
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studies (see section 5.2.1). Mutation calls were provided by the group of Charles G. Mullighan
(St. Jude Children’s Research Hospital).

5.2.3 ALL subtype and pan-cancer DNA methylation analysis

The following section outlines how the methylome of ALL subtypes was characterized and placed
with respect to other tumor types in a pan-cancer comparison.

Global quantifications

In order to broadly classify healthy and patient samples in terms of their global and CGI methyla-
tion levels, the arithmetic mean across all sufficiently covered CpGs (between 10 and 150 reads)
except those in CGIs (global) or exclusively overlapping CGIs was computed. As a first step,
this allowed us to compare the overall methylation levels of the two broad features differently
affected in cancer methylomes (global hypomethylation and CGI hypermethylation).

Genomic features

Different features were defined and subsequently compared between samples or cancer types (in-
troduced in the following paragraphs). To compare different cancer types, for specific analyses,
a tumor type-specific CpG-wise methylation profile was computed by calculating the arithmetic
mean per CpG across all samples of the respective ALL subtype or cancer type. Only CpGs covered
by at least 80% of the respective samples were considered for the average subtype methylation
profile. The average methylation per sample or subtype of each feature was then calculated using
the arithmetic mean of all CpGs within the defined feature only if at least three covered CpGs
overlapped the region. This ensures that features are not defined based on single CpGs due to
low coverage and, by that, could be more susceptible to noise. In the following, the definition of
the different features used in this study is presented.

Genomic tiles Genomic tiles of size one kb were generated by segmenting the genome into
non-overlapping, consecutive windows using bedtools (makewindows) [261].

CpG islands The annotation of CGIs was downloaded from UCSC for the human reference
genome (hg19). CGI shores were defined as the two kb flanking each island on each side, while
CGI shelves were defined as the two kb flanking each shore.

Highly and partially methylated domains Zhou et al. defined HMDs and PMDs previously
based on the variability of isolated CpGs (solo-WCGW CpGs) across a pan-cancer WGBS cohort
(see sections 2.3 and 2.5.2) [72]. They showed that their genome segmentation into HMDs and
PMDs per 100 kb tile also generalized to healthy tissues and external tumor cohorts with high
overlap, including a public data set of B-ALL cases (Blueprint, unknown subtype). Therefore,
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HMDs and PMDs in this study were assigned using the annotation by Zhou et al., and for exem-
plary heatmap representation, the average of all solo-WCGW CpGs within an HMD or PMD was
calculated.

Sliding windows In order to compare genome-wide methylation distributions more thoroughly,
sliding windows of the genome were computed using bedtools (makewindows) [261]. Windows
were defined to have a size of one kb with a step size of 250 bp (consecutive windows overlap-
ping by 750 bp). Every window was assigned to a PMD or HMD based on the largest overlap with
these previously defined regions (see previous paragraph). The average of each sliding window
per subtype was calculated excluding CpGs in CGIs as this analysis was used to assess global
hypomethylation levels, which could be biased by CGIs that generally deviate from the genomic
background behavior (see 2.3). Sliding windows per subtype or tumor type were compared to
the respective healthy control (see section 5.2.1), and windows with a delta methylation < −0.1
or > 0.1 were defined as hypo- or hypermethylated respectively.

DNA methylation valleys DMVs were defined separately for precursor B and T cells. For this
purpose, the average methylation of the respective healthy samples was calculated in sliding
windows of five kb size with a step size of one kb (consecutive windows overlapping by four
kb). For this purpose, the average CpG-wise methylation signature for healthy B and T cells was
used, and CpGs overlapping CGIs were excluded. Sliding windows were computed using bed-
tools (makewindows) [261]. The window and step size were chosen based on previous studies
on DMVs [96, 97]. The average methylation of CGIs was computed separately. Next, sliding
windows and CGIs were filtered to select candidates with an average methylation < 0.15 and
≥ 10 CpGs. These candidates were merged if overlapping, and regions were retained as DMVs
that did not consist of single CGIs but included unmethylated flanking parts defined by overlap-
ping/neighboring sliding windows.

Promoters Promoters were defined as the 1.5 kb upstream and 500 bp downstream of the
transcription start site (TSS) defined by the GENCODE gene annotation.

DMR calling

Differentially methylated regions (DMRs) between ALL subtypes and healthy precursor lympho-
cytes (precursor T cells as control for T-ALL, precursor B cells as control for DUX4/ERG, hy-
podiploid and Ph-like ALL) were computed using the tool metilene (version 0.2-8) [262]. DMRs
were required to contain at least 10 CpGs not further than 300 bp apart. The average methy-
lation difference between the two groups (healthy control and ALL subtype) was required to be
at least 0.2. The selection of parameters ensures that only strong, local changes consistently af-
fecting multiple CpGs that distinguish tumor from healthy control cells are detected. The output
of metilene consists of candidate regions fulfilling these requirements with a p-value assigned
(calculated using a two-dimensional Kolmogorov–Smirnov test). Only DMRs with an adjusted
p-value < 0.05 (corrected for multiple testing using Bonferroni correction) were selected. DMRs
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were classified into hyper- and hypomethylated (positive or negative difference with respect to
the control cells).

DMRs were then annotated and assigned to specific features if either 20% of the DMR or 20%
of the feature overlapped. The overlap was calculated using bedtools (intersectBed) [261]. The
following features were used:

1. Methylation-based features: CGIs, CGI shores, CGI shelves, DMVs, and PMDs (see 2.3).

2. Chromatin states: Segmentation of the genome based on histone modifications into 15
different chromatin states by ChromHMM defined in hematopoietic stem cells and obtained
from Roadmap [263]. The 15 states were collapsed into the following groups:

• Active TSS (marked mainly by H3K4me3 and H3K27ac; states: 1_TssA and 2_TssAFlnk)

• Bivalent TSS (marked mainly by H3K4me3 and H3K27me3; states: 10_TssBiv and
11_BivFlnk)

• Transcript (marked mainly by H3K36me3; states: 3_TxFlnk, 4_Tx, and 5_TxWk)

• Enhancer (marked mainly by H3K27ac and H3K4me1; states: 6_EnhG, 7_Enh, and
12_EnhBiv)

• Heterochromatin (marked mainly by H3K9me3; states: 8_ZNF/Rpts and 9_Het)

• Repressive (marked mainly by H3K27me3; states: 13_ReprPC and 14_ReprPCWk)

• Quiescent (no modifications; states: 15_Quies)

Random background DMRs were defined to determine whether the number of DMRs overlap-
ping with a specific feature follows the genome-wide distribution or is enriched or depleted in
comparison. For this purpose, regions were selected that fulfill the same requirements as applied
during the DMR calling (at least 10 CpGs, not more than 300 bp apart, same sizes as the called
DMRs). Out of these candidates, an equal number of background DMRs compared to the actual
DMRs was randomly sampled with 1000 repetitions. The resulting set of background DMRs was
annotated with respect to genomic features in the same way as the actual DMRs. The enrichment
EF of DMRs in a specific feature class F compared to the genomic background was calculated
as

EF =
nF

N
/

mF

M
(5.1)

where nF and mF denote the number of DMRs and background DMRs, respectively, overlapping
a feature of class F . N and M represent the total number of DMRs and background DMRs,
respectively. Values > 1 imply enrichment of DMRs in feature class F , while values < 1 reflect
depletion.

5.2.4 CGI cluster analysis

The following section describes how CGIs were clustered based on their methylation profile in
T-ALL and healthy precursor T cell samples and annotated subsequently using different types of
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genomic features.

Consensus clustering

Defining the optimal number of clusters and assessing their robustness and stability are funda-
mental challenges of clustering data. Consensus clustering allows assessing the optimal number
of clusters and their stability by generating a consensus across multiple clustering runs. Using a
clustering algorithm and distance metric of choice (e.g., hierarchical or k-means clustering with
Euclidean or correlation distance), clustering is repeated n times (where n is user-defined). In
each iteration, a subset of features or samples (or both) is randomly sub-sampled and used as
input for the clustering. A consensus of all iterations is then computed for the final assignment
of samples to clusters based on the presented features. This procedure is performed for different
cluster numbers k for k = 2,3, ..., kmax . The optimal number of clusters is selected based on the
number that produced the most stable result across all iterations [264].

To cluster CGIs based on the methylation levels present in T-ALL and precursor T cells, only CGIs
that were covered by all samples with at least three CpGs were considered (48 T-ALL and 10
precursor T cell samples). Additionally, CGIs that remained consistent across all samples were
excluded from the clustering to remove features with low variability. These excluded CGIs were
defined as "low" if the mean methylation for all samples was < 0.2 or as "high" if the mean
methylation for all samples was > 0.8. The remaining islands were clustered using consensus
clustering with partitioning around medoids, Euclidean distance, and 100 repetitions using the R
package "ConsensusClusterPlus" [265] (Figure 5.2.2). After the consensus clustering, this pack-
age reports the empirical cumulative distribution functions (ECDFs), which show the measured
consensus distribution for each value of k that can be used to select the optimal number of clus-
ters with maximum stability [265]. For this purpose, also the relative change in the area under
the ECDF curve between k and k − 1 is reported to allow the selection of k, after which only
minor increases can be observed [265]. Based on these visualizations, the optimal number of
clusters (in this case, n= 4) was determined. The methylation of CGIs across patients per cluster
was visualized using the ComplexHeatmap package [266].

Characteristics of CGIs

In order to characterize the CGIs associated with each cluster and the two previously excluded
groups of CGIs (low and high), the length of each CGI was computed in bp, the number of CpGs
within each island was counted, and the GC content was assessed using

GCcontent =
#C +#G

#A+#C +#G +#T
(5.2)

where #A, #C , #G, and #T denote the number of the respective base within a CGI.
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Figure 5.2.2: Schematic of the consensus clustering of CGIs based on precursor T cell
and T-ALL samples. Starting with all commonly covered CGIs (n = 18,485), stably lowly
or highly methylated CGIs were excluded before the clustering (< 0.2 and > 0.8 in all
samples, respectively). The average methylation of each of the remaining variable CGIs
per sample was used as input for the consensus clustering. In 100 iterations, 80% of CGIs
were randomly sampled and clustered based on all samples using partitioning around
medoids with Euclidean distance. The consensus of all 100 repetitions was reported, and
the optimal number of clusters was picked based on the most stable clusters across all
repetitions (in this case, four clusters).

Association with genomic features

For downstream analysis, CGIs associated with each cluster or previously excluded group were
annotated using genomic features as described for DMRs (see 5.2.3).

5.2.5 T-ALL methylation-based subtyping

The following section describes how T-ALL samples were grouped into methylation-based sub-
types using CGI methylation levels to compare samples of relatively low or high methylation
levels with respect to covariates.

Clustering of samples

T-ALL samples were grouped into CGI methylation-based subtypes using hierarchical clustering
with Euclidean distance based on the variable CGIs defined in 5.2.4. The top three clusters were
selected, which reflected groups of samples with rather low, intermediate, and high CGI methy-
lation and termed T-ALLLM, T-ALLIM, and T-ALLHM respectively. These groups were then subse-
quently used to test the association of CGI methylation levels with different covariates.

Association with genetic and transcriptomic drivers

Based on available mutation and fusion gene calls, as well as demographic data provided by the
St. Jude Children’s Research Hospital, the following covariates were tested for association with
the CGI methylation-based subtypes defined in T-ALL:

1. Demographic data (age group and sex)
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2. Commonly mutated genes (NOTCH1, NRAS, WT1, MED12, SUZ12, ETV6, FLT3)

3. Genetic subtypes based on fusion genes or overexpression (HOXA, TLX3)

The association with either all three methylation groups or only T-ALLLM and T-ALLHM as the
most extreme groups were tested using Fisher’s exact test, which is suitable for small counts in
contingency tables.

Methylation entropy analysis

Methylation entropy per 4-mer in CGIs was calculated using RLM [222], which has been intro-
duced in chapter 4. The entropy of all 4-mers within a CGI was subsequently averaged.

5.2.6 Correlation of DNA methylation and gene expression

In this section, the methods used to identify genes associated with different methylation levels
within and across ALL subtypes are presented.

Correlation test

In order to detect genes whose expression is associated with different levels of CGI or global
methylation in ALL patients in an unbiased manner (without pre-grouping patients into methylation-
based subtypes), a correlation test between the log2-transformed transcript per million (TPM)
of each gene and the global average methylation (excluding CpGs in CGIs) or the overall CGI
methylation across patients was conducted. Only active genes (average TPM across all samples
≥ 0.5) were considered to not unnecessarily inflate the number of tests. The correlation test was
conducted using Spearman’s correlation coefficient. In contrast to Pearson’s correlation coeffi-
cient, which evaluates linear relationships, Spearman’s correlation coefficient evaluates mono-
tonic relationships, which is essential as DNA methylation and expression levels are not neces-
sarily linearly associated [267]. P-values were corrected for multiple testing using FDR. Genes
with an adjusted p-value < 0.01 were termed significant. For this analysis, T-ALL, DUX4/ERG,
and Ph-like B-ALL patients were considered. Hypodiploid B-ALL samples were excluded from
the analysis due to their high aneuploidy, which can affect gene expression (monoallelic instead
of biallelic) and, therefore, might bias the correlation analysis. In this section, the methods used
to identify genes associated with different methylation levels within and across ALL subtypes are
presented.

Promoter methylation analysis of epigenetic regulators

In addition to the correlation test between gene expression and per-patient methylation levels,
the promoter methylation of a selection of epigenetic regulators was inspected to identify poten-
tial silencing events of these genes by methylation. These events might be rare, only affecting
a smaller subset of patients, and thus not be picked up by the correlation analysis. A set of
epigenetic regulators was selected based on the following characteristics:
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1. Proteins that directly regulate DNA methylation, such as methyltransferases and TET en-
zymes (DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3).

2. Proteins that have been reported to be involved in the recruitment or other regulation of
the above-named enzymes in a cancer context:

• MYC: Found in T-ALL mouse models to influence the expression of DNA methylation
regulators such as TET1, TET2, DNMT3B, and DNMT1 [256].

• WT1: Recruits TET2 (shown in AML) [268].

• IDH1/IDH2: Mutations of these genes cause a CIMP phenotype (shown in gliomas)
[143].

3. Polycomb group proteins (EED, EZH2, SUZ12, RING1, RNF2, KDM2B, BAP1).

4. H3K9 histone methyltransferases (SUV39H1, SUV39H2, EHMT2). The cross-talk between
H3K9me3 and DNMT1 has been shown to enable stable methylation maintenance [100].

5. Chromatin remodeler (ARID1A, ARID1B, ARID2, PBRM1, SMARCA4, SMARCB1).

6. Other genes:

• QSER1: Shields a subset of DMVs from de novo DNA methylation [269].

• HELLS: Shown to regulate methylation at repetitive elements while its loss leads to
global hypomethylation [270].

For each of these genes, the methylation of the promoter was assessed the following way: If a CGI
overlapped the promoter by at least 20% of either the CGI or the promoter, the average methy-
lation of the promoter was defined as the CGI methylation level. If multiple CGIs overlapped the
promoter, the average of both CGIs was used. If no CGI overlapped the promoter (only ARID1B
had no promoter CGI), the average methylation of the entire promoter region (1500 bp upstream
and 500 bp downstream of the TSS) was used.

5.2.7 ALL cell line analysis

The following section describes analyses conducted using cancer cell lines as in vitro models
for ALL. The cell lines selected for this purpose have been listed in section 5.2.1. Experimental
methods are described in the appendix B.

Clustering of samples

Healthy precursor B and T cell, ALL patient and cell line samples were clustered using hierar-
chical clustering with Euclidean distance based on the most variable CpGs (top 5% CpGs with
the highest standard deviation across all considered samples) in order to visualize the distance
between samples based on their DNA methylation profile.
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Differential expression analysis

Differential gene expression between Jurkat and DND41 cells, as well as between Jurkat cells
with and without TET2 knockout, was carried out using the R package DESeq2 [271]. For this
purpose, three replicates of each condition were used. Only genes with at least 10 reads across all
replicates used in each comparison were considered. Genes were termed differentially expressed
with an absolute log2 fold change > 1, a p-value adjusted for multiple testing < 0.05, and an
average TPM across all considered replicates ≥ 0.5. The last filter step was applied to remove
genes with a high log2 fold change but overall very low expression levels. A change from 0.2
to 0.8 TPM in expression might be determined as a significant rise. However, the overall low
expression levels might not be biologically meaningful.

5.3 Results

5.3.1 Genome-wide methylation of ALL subtypes

Global methylation levels

Global DNA methylation has been reported to decrease during tumorigenesis as described in
section 2.5.2. Given the few whole-genome bisulfite sequencing data sets published previously
for patients with ALL and the sometimes contradicting results reported, we first analyzed and
displayed genomic background methylation of ALL patients and respective controls in different
ways to assess how ALL positions compared to other tumor types studied previously. For this pur-
pose, we additionally used publicly available data sets of various solid and hematopoietic tumor
types (overview of the data sets provided in section 5.2.1). Examining representative samples
from two tumor types that have been previously reported to present with global hypomethy-
lation - CLL and COAD -, we observed the characteristic loss of methylation compared to the
respective healthy tissue (memory B cells and healthy colon tissue) in genome browser tracks
as well as CpG-wise density plots (Figure 5.3.1 and 5.3.2). When we compared this to patients
from different ALL types, we instead observed that especially T-ALL remained highly methylated
comparable to precursor T cells, while B-ALL samples only mildly lost methylation in contrast to
the more drastic decrease in CLL and COAD.

To improve the quantification and additionally show the indication-intrinsic variability across
samples from our and external cohorts, we compared ALL and other tumor samples per type
using sample-wise average CpG methylation excluding CpGs in CGIs (Figure 5.3.3). CGIs are
CpG-rich regions (8% percent of CpGs on human autosomes are located in CGIs) but are usually
unmethylated in healthy tissues with the possibility to hypermethylate in tumors. CpGs in CGIs
were therefore excluded in this analysis to not skew the genomic background quantification.
Hematopoietic tumor types and healthy blood cells generally exhibited higher methylation levels
than solid tissues and tumors. However, when comparing tumors with their respective control
tissue, ALL subtypes, as well as AML, preserved unusually high genome-wide methylation, which
for some T-ALL samples even exceeded the levels of precursor T cells. B-ALL samples exhibited
a mild decrease but remained highly methylated (of all B-ALL subtypes Ph-like ALL showed the
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Figure 5.3.1: Genome browser tracks of memory B cells, CLL, healthy colon, COAD, pre-
cursor T cells, T-ALL, precursor B cells, and B-ALL subtypes. Both CLL and COAD exhibit
loss of methylation in previously highly methylated regions, while the T-ALL sample re-
mains highly methylated comparable to healthy precursor T cells. B-ALL samples exhibit
minor loss of methylation compared to precursor B cells.

Figure 5.3.2: Density plot showing the CpG-wise comparison between examples of CLL,
COAD, ALL subtypes, and their respective healthy tissue. The barplot indicates the per-
centage of CpGs that are hyper- or hypomethylated in the cancer samples compared to
their healthy counterparts. T-ALL, DUX4/ERG, and Ph-like ALL show smaller proportions
of hypomethylated CpGs compared to CLL and COAD.
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Figure 5.3.3: a) Global average methylation per sample measured excluding CpGs in
CGIs. b) Healthy lymphoid cell types are additionally shown with a limited y-axis.

most substantial decrease). In contrast, TPLL, CLL, and eight different solid tumor types exhibited
strong hypomethylation that, in the case of BLCA, reached levels as low as 0.5.

The unusually high methylation levels of B-ALL (unknown origin) and AML samples from the
Blueprint consortium have been observed previously by Zhou et al. (Blueprint B-ALL cases are
shown in Figure 5.3.3 for comparison) [72]. The authors speculated that in the case of B-ALL,
the high methylation levels might be associated with the pediatric age of the patients: Global
DNA methylation also diminishes as an effect of aging, and Zhou et al. additionally reported
a general association of hypomethylation degree and mitotic cell divisions [72]. Therefore, we
used our T-ALL cohort, which presented with strikingly high methylation levels and included
patients ranging from two to 64 years. Using a two-sided Wilcoxon rank-sum test, we tested the
alternative hypothesis that global methylation levels of pediatric T-ALL patients differed from
that of the older T-ALL patients. However, no significant difference could be observed, and,
additionally, no significant difference based on sex could be determined (p = 0.2 and p = 0.44
respectively, Figure B.2.1).
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Figure 5.3.4: a) Boxplots showing the delta mean methylation of sliding windows in
HMDs and PMDs for different tumor types compared to their respective healthy tissue.
Comparisons between precursor T and B cells (precursor control), as well as between
memory B and precursor B cells (differentiation control), were added to put the decrease
of methylation across tumor types into perspective. b) Fractions of sliding windows that
are hyper- or hypomethylated in each tumor type split by location into HMDs and PMDs.

Partially methylated domains

Previous reports have shown that global hypomethylation in tumorigenesis accumulates primar-
ily in PMDs (see section 2.5.2). To further explore the absence of a strong global methylation
decrease in ALL subtypes, we segmented the genome into sliding windows assigned to either
HMDs or PMDs (see section 5.2.3). We then used the difference in methylation per window
between a tumor type and its matching control to visualize the extent and variability of the loss
of methylation along the genome (Figure 5.3.4). Again, CpGs in CGIs were excluded. For this
analysis, we used two controls: First, the difference between two highly methylated precursor
lymphocyte types that measure cell type-specific changes. Second, the difference between mem-
ory and precursor B cells as a natural differentiation control (during B cell maturation, global
methylation decreases until reaching the memory B cell or plasma cell stage [272]). As in our
previous analysis, T-ALL showed similar methylation levels compared to precursor T cells. B-ALL
subtypes and AML exhibited a minor methylation decrease. However, this loss was less than
the hypomethylation occurring during normal B cell development. Solid tumor types, as well as
TPLL and CLL, again showed a more drastic decrease in methylation. This was also reflected in
the fraction of windows decreasing by more than 0.1 in methylation (Figure 5.3.4, right). Here,
6-16% of windows were hypomethylated according to this criterion in ALL subtypes and AML,
while 30-64% of windows were hypomethylated for other cancer types. For every tumor type,
hypomethylation was most pronounced in PMDs compared to HMDs. T-ALL, B-ALL, and AML
samples exhibited no or only little loss of methylation in HMDs compared to PMDs, while the
other cancer types also lost methylation in HMDs.
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Figure 5.3.5: Heatmap showing the average solo-WCGW CpG methylation of pan-cancer
samples in HMDs and PMDs along chromosome 16p.

Zhou et al. showed that the loss of methylation in PMDs is most pronounced in CpGs that are
flanked by an adenine or thymine and without another CpG nearby (35 bp on either side), the
so-called solo-WCGW CpGs (see section 2.3) [72]. Therefore, in line with the analysis presented
by Zhou et al., we analyzed average solo-WCGW CpG methylation in HMDs and PMDs along
chromosome 16p as an example (Figure 5.3.5). These CpGs that are most susceptible to hy-
pomethylation also remained highly methylated in T-ALL samples compared to healthy control
cells, which was strongly opposed by the effect seen in solid and most other hematopoietic tumor
types. Not only pediatric but also adolescents and adult T-ALL patients lacked a strong methy-
lation decrease at solo-WCGW CpGs in PMDs. This contrasts the age-related hypothesis raised
by Zhou et al. suggesting that the stable genome-wide methylation levels did not occur due to
specifically young ages at tumor formation (two-sided Wilcoxon rank sum test using the average
solo-WCGW methylation in PMDs, p = 0.21).

DMR analysis of ALL subtypes

Following the analysis of the overall genomic background levels in ALL subtypes, we aimed to
identify local but significant changes across the genome compared to the respective healthy tis-
sue. Therefore, we called DMRs between all samples of a subtype and its control cell type (see
section 5.2.3). ALL subtypes exhibited between approximately 13,000 and 26,000 DMRs (Table
5.3.1). T-ALL showed a strong bias towards hypermethylation, with around 88% of its DMRs ex-
hibiting a gain of methylation in line with the overall highly methylated genome. B-ALL subtypes
showed higher fractions of hypomethylated DMRs, which in the case of the DUX4/ERG subtype
reached almost 50% of the overall number of DMRs.

When comparing the DMRs to random control regions with comparable properties, we observed
enrichment of DMRs in similar genomic features across ALL subtypes (Figure 5.3.6). Hyperme-
thylated DMRs are enriched in CpG-dense features frequently unmethylated or lowly methylated
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Type # Hyper DMRs # Hypo DMRs

T-ALL 23,327 3,111

DUX4/ERG 11,693 11,299

Hypodiploid 10,976 2,423

Ph-like 9,526 5,931

Table 5.3.1: Number of hyper- and hypomethylated DMRs called per subtype.

Figure 5.3.6: Enrichment of DMRs in genomic features and chromatin states per ALL
subtype.

in healthy tissues such as CGIs, CGI shores, and DMVs. Additionally, regions marked by the re-
pressive H3K27me3 mark in hematopoietic stem cells (bivalent TSS and Polycomb-repressed) are
targets of hypermethylation similar to previously reported changes in other tumor types [127].
Enhancers are targets of both hypo - and hypermethylation, which could potentially cause ac-
tivation and deactivation of specific enhancers regulating tumor-specific genes or representing
byproducts of generally misregulated pathways. Together these results show that the absence
of global hypomethylation specifically in T-ALL can also be found at the local level. At the same
time, these changes affect similar types of regulatory regions as in B-ALL subtypes.

CGI methylation levels

CGI hypermethylation is one of the characteristic DNA methylation changes occurring during tu-
morigenesis. In line with this, hypermethylated DMRs of all ALL subtypes were enriched in CGIs,
as shown in the previous section. Therefore, we wanted to explore this phenomenon further in
a pan-cancer context. Zooming into exemplary CGIs comparing patients from ALL subtypes as
well as CLL and COAD, all samples showed hypermethylation compared to the healthy tissue but
with a distinct architecture across the island (Figure 5.3.7). Similar to the analysis of global CpG
methylation, we then compared CGI methylation between ALL subtypes and other hematopoietic

84



Figure 5.3.7: Genome browser tracks of memory B cells, CLL, healthy colon, COAD,
precursor T cells, T-ALL, precursor B cells, and B-ALL subtypes at the PAX6 locus.

and solid tumor types (Figure 5.3.8). All ALL subtypes exhibited CGI hypermethylation to vary-
ing degrees, with T-ALL standing out due to extremely high methylation levels but also a high
variability across all samples, with some close to the healthy control cells and others reaching av-
erage methylation levels of 0.5 across all CpGs in CGIs. This pattern was unique even compared
to most other hematopoietic and solid tumors. Comparing the average CGI methylation with the
average methylation of the genomic background excluding CGIs across ALL patients and healthy
cells, we observed that while precursor B and T cells exhibited low CGI and high background
methylation as expected, the methylation levels of both CGIs and genomic background were
positively associated with each other across ALL patients (Figure 5.3.9). Specifically for T-ALL,
patients with the highest genome-wide methylation levels also tended to exhibit the highest CGI
methylation levels.

The high variability of T-ALL CGI methylation levels was reminiscent of the observation of a CIMP
subtyping defined by previous studies. This classification divided T-ALL patients into samples
with extreme CGI hypermethylation (CIMP positive) and lower CGI hypermethylation (CIMP
negative). These classifications were previously established by clustering patients based on a
selection of CpGs in CGIs covered by the 450k array [254]. Instead of directly clustering our
samples, we used a principle component analysis (PCA) based on the average methylation of
the commonly covered and variably methylated CGIs (n = 8,863) of healthy precursor T cell
and T-ALL samples (Figure 5.3.10, left). T-ALL samples did not separate into groups defined by
low or high CGI methylation but, in contrast, distributed according to the CGI methylation levels
(here indicated by the median methylation across all variable CGIs). This can be recapitulated
when using the status of methylation (unmethylated/methylated, methylation> 0.2) as input for
the PCA, underlining that not only the CGI methylation levels display a continuous range across
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Figure 5.3.8: a) CGI average methylation per sample for ALL subtypes, other tumor types,
and their respective controls. b) Healthy lymphoid cell types are additionally shown with
a limited y-axis.

Figure 5.3.9: Correlation of global and CGI methylation across ALL samples.
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Figure 5.3.10: a) PCA based on the mean methylation of variable CGIs of precursor T cell
and T-ALL samples. b) PCA based on the methylation status (methylated/unmethylated)
of variable CGIs of precursor T cell and T-ALL samples.

samples but also the number of targets as indicated by the color scale (Figure 5.3.10, right).
Both measurements covered a wide range from patients with CGI methylation close to healthy
precursor cells and others reaching almost complete methylation of all variably methylated CGIs.
Therefore, the previous classification into CIMP groups might not fully resemble the underlying
dynamics of CGI hypermethylation in T-ALL.

5.3.2 Clustering of CGIs based on T-ALL patients

The PCA showed that patients with T-ALL distribute according to their CGI methylation levels and
the number of targets. To characterize which targets are affected by different methylation levels,
we used a consensus clustering approach based on the variably methylated CGIs (see section
5.2.4). This analysis resulted in four clusters of CGIs exhibiting different methylation dynamics
across our T cell lineage cohort (Figure 5.3.11). Cluster 1 consists of CGIs that are unmethylated
in healthy cells but also, to a large extent, in T-ALL samples. Hypermethylation targets are spo-
radic and rather sample-specific, while their methylation levels rarely reach 100%. Clusters 2
and 3 also contain CGIs that are unmethylated in precursor T cells and mostly hypermethylated
in T-ALL samples. This methylation increases from low to high according to the overall variably
methylated CGI levels, with some patients almost resembling healthy cells and others reaching
complete methylation across almost all CGIs. For cluster 2, the methylation gain is rather het-
erogeneous and sample-specific, while cluster 3 shows a more homogeneous trend across islands
for all T-ALL patients. Methylation levels are generally higher in cluster 3 compared to cluster
2, and more patients show levels close to 100%. Cluster 4 contains CGIs that are already highly
methylated in healthy samples and reach even higher levels in T-ALL patients. Also, the most
substantial gain is observed here in patients with overall high CGI methylation.

Analyzing the four clusters together with the previously excluded groups of stably lowly and
highly methylated CGIs (group low/high), we observed that group low and cluster 1 overall con-
tain CGIs with high numbers of CpGs, high GC content and large region size (Figure 5.3.12).
All three characteristics (CpG number, GC content, length) decrease along the clusters as methy-
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Figure 5.3.11: Methylation of CGIs per sample and cluster identified by consensus clus-
tering.

Figure 5.3.12: Distribution of CpG number (left), length (middle), and GC content (right)
for the defined CGI groups/clusters.

lation levels increase, with the smallest numbers present for cluster 4 and the group of stably
highly methylated CGIs. This is in line with previous findings showing that large, GC-rich islands
usually remain free of methylation even if the corresponding genes are turned off [56,86].

We then aimed to characterize the defined CGI clusters further with respect to their associated
(overlapping) genomic features (Figure 5.3.13). Lowly methylated CGIs (group low and cluster
1) are frequently located in promoters (also often associated with active genes in precursor T
cells) but rarely in PMDs, gene bodies, or intergenic regions. The fraction of CGIs overlapping
with promoters decreases from group low to high along the clusters, which is most pronounced
for active promoters. At the same time, the fraction of CGIs associated with gene bodies rises
until reaching more than 75% in highly methylated CGIs, which is presumably linked to their
transcriptional activity in normal and tumor cells. Methylation in gene bodies is known to fre-
quently positively correlate with and stabilize transcription due to its implicated role in proper
transcription initiation and nucleosome stability [57,59,60]. Additionally, the fraction of CGIs in
PMDs, DMVs, and intergenic regions also rises from low to high. However, the fraction of CGIs
in PMDs and DMVs peaks in cluster 3 and decreases afterwards. This is in line with previous
studies showing preferential hypermethylation of CGIs in PMDs, whereas cluster 4 and group
high contain CGIs already highly methylated in healthy T cells [273]. Similarly, DMVs frequently
contain PRC2-marked CGIs overlapping developmental gene promoters [97]. These CGIs remain
unmethylated in healthy tissues as part of the DMVs and therefore are not expected to be found
in the clusters highly methylated in precursor T cells.

In addition to genomic features, we used publicly available chromatin states for hematopoietic
stem cells (HSCs) and the T-ALL cell line DND41 (as a proxy for T-ALL) to assign a chromatin
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Figure 5.3.13: a) Fraction of CGIs per cluster overlapping different genomic features.
Fractions for all considered CGIs are shown for comparison. b) Fraction of CGIs per
cluster in chromatin states defined for hematopoietic stem cells (left) and the T-ALL cell
line DND41 (right).

state to each CGI and compare the fractions of states across CGI clusters and between healthy
and cancerous cells (Figure 5.3.13). The chromatin states resembling active transcription start
sites and transcripts in HSCs reflect the findings from the genomic feature analysis: The fraction
of CGIs assigned to heterochromatin and quiescent regions is highest in the rather methylated
CGI clusters in HSCs. Enhancers are mainly present in the variably methylated clusters 1 to
4, while Polycomb-repressed states are primarily associated with clusters 2 to 4. Expression of
genes in precursor T cells supports the observed chromatin state dynamics in HSCs: Genes with
a promoter CGI of group low or cluster 1 are frequently expressed, while genes associated with
cluster 2 to 4 and group high in repressed chromatin states in healthy HSCs are mainly already
unexpressed in the healthy state (Figure 5.3.14). When conducting an overrepresentation anal-
ysis of the genes associated with promoter CGIs of each CGI group, only the unmethylated or
lowly methylated clusters lead to significant enrichments (Figure 5.3.15): Unmethylated pro-
moter CGIs of group low are associated with genes implicated in cell maintenance such as pro-
tein translation, DNA replication and cell cycle regulation, which explains why these promoters
stay unmethylated across healthy and tumor samples. Turning off these genes would also be
unfavorable for a tumor cell as it would inhibit pathways essential to its survival. Genes with a
promoter CGI assigned to cluster 1 are enriched in MAPK and JNK signaling pathways, which
are frequently disturbed or deregulated in cancer [274].

When comparing the distribution of chromatin states per cluster between HSCs and DND41 (re-
sembling the healthy and cancerous state), we observed that chromatin states associated with
the low and high groups stayed relatively stable. In contrast, for the variable clusters 1 to 4,
the fraction of quiescent and heterochromatic regions increased in the cancerous state. At the
same time, bivalent promoters disappear almost entirely in DND41 compared to HSCs. These
findings resemble previous reports on chromatin changes observed in primary tumors [4]. Using
a two-sided Chi-squared test, we assessed that changes in chromatin states between HSCs and
DND41 are statistically significant for every CGI cluster (Table B.2.1). However, the effect size
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Figure 5.3.14: Expression of genes associated with promoter CGIs per cluster.

was large only for clusters 1 to 3 (Table B.2.1), suggesting that the changes in chromatin states
for these three clusters were most pronounced.

Lastly, we used the CGI clusters defined in T-ALL to visualize methylation levels of the respective
CGIs in other hematopoietic and solid tumor types (Figure 5.3.16). Although defined based on
a different tumor type, we found that methylation levels changed similarly from low to highly
methylated CGI clusters across tumor types. Underlining the housekeeping role of genes asso-
ciated with CGIs of group low, these CGIs remained unmethylated across all tumor types and
healthy tissues. Similarly, CGIs of the high group were highly methylated but exhibited slightly
less methylation in tumor types that show global hypomethylation, such as TPLL, CLL, and solid
tumors, suggesting that a genome-wide effect might influence their methylation. Besides the two
extreme groups, methylation rose from lower to higher levels along clusters 1 to 4. However, the
exact levels appeared tumor-specific, where some tumor types like TPLL and LUAD generally ex-
hibited lower CGI methylation than others. These results suggest that although CGI methylation
has been shown to be tumor-specific, a pan-cancer mechanism might exist that primes certain
groups of CGIs for specific hypermethylation levels.

5.3.3 Relation of DNA methylation with other characteristics in T-ALL

We aimed to investigate the association between T-ALL CGI methylation levels and genetic as
well as transcriptomic drivers and demographic covariates. For this purpose, we used hierarchi-
cal clustering to cluster T-ALL patients based on the methylation levels of variably methylated
CGIs (n = 8, 863). We extracted the three top-level clusters that represented patients with ex-
treme methylation levels (very low or high CGI methylation levels) as well as intermediate CGI
methylation and termed them accordingly T-ALLLM (cluster 1), T-ALLIM (cluster 2), and T-ALLHM

(cluster 3) (Figure 5.3.17). We then used these clusters to test the association of rather different
CGI methylation levels in T-ALL patients with age group, sex, genetic subtypes, and recurrent
mutations using Fisher’s exact test (Figure 5.3.18, Table B.2.2). None of the covariates were
significantly associated with our T-ALL methylation-based subtypes, although HOXA and TLX3
subtypes seemed to co-occur frequently with T-ALLIM (cluster 2) and T-ALLHM, which has been ob-
served for previously defined CIMP-positive T-ALL cases [254]. However, it should be noted that
the cohort was not initially designed to allow a thorough analysis of clinical features, genomic
alterations, and methylation states and therefore did not include enough samples for these types
of analysis (transcription and mutation data sets were also not available for all patients).
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Figure 5.3.15: Overrepresentation analysis of genes associated with lowly methylated
CGIs (top) and CGIs of cluster 1 (bottom).

We additionally performed clustering of T-ALL patients based on the top 500 variably expressed
genes, which included known T-ALL marker genes, in order to investigate whether transcriptome-
and methylation-based clustering would lead to similar groups of patients (Figures 5.3.19 and
B.2.4). However, transcriptome-based clustering did not agree with the methylation-based sub-
types defined using CGI methylation levels and instead grouped samples according to their ge-
netic subtype.

Finally, we used methylation entropy to measure intra-tumor heterogeneity of DNA methylation
to compare T-ALL patients from different methylation-based subtypes (Figure 5.3.20). Entropy
was significantly higher in patients of the T-ALLLM and T-ALLIM groups compared to T-ALLHM,
suggesting more homogeneous methylation across reads in highly methylated T-ALL samples
(Wilcoxon rank-sum test, p = 2.3 ∗ 10−6 and p = 0.0002 respectively). Previous studies in other
cancer types, such as B cell lymphoma, found that higher intra-tumor heterogeneity is associated
with poorer prognosis and survival [132, 275]. This would align with previous studies with
much larger methylation array-based T-ALL cohorts showing that their defined CIMP-positive T-
ALL cases demonstrated better overall survival than T-ALL samples with lower CGI methylation
[254].
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Figure 5.3.16: Methylation levels of CGIs per cluster across different hematopoietic and
solid tumor types.

Figure 5.3.17: Hierarchical clustering of T-ALL patients identified three main clusters
exhibiting different CGI methylation levels.
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Figure 5.3.18: Frequently mutated genes and their respective mutation status across T-
ALL patients.

Figure 5.3.19: Hierarchical clustering of the 500 most variably expressed genes across
T-ALL patients. Samples overall group based on the genetic or transcriptomic subtype
such as TLX3 overexpression or HOXA subtype.
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Figure 5.3.20: Methylation entropy of variable CGIs in T-ALL patients. The entropy is
highest for patients of the T-ALLLM and T-ALLIM group.

5.3.4 Expression of epigenetic regulators associated with methylation levels

Given the generally higher methylation levels of CGIs and the complete genome in T-ALL com-
pared to B-ALL but also the wide range of methylation levels across T-ALL patients, we aimed to
identify genes - specifically epigenetic regulators - that could play a role in establishing and reg-
ulating these different landscapes. No recurrent mutations in epigenetic regulators have been
detected in T-ALL patients that could explain the differences in this subtype (Figure 5.3.18).
We, therefore, conducted a correlation test using the log2-transformed expression of each gene
(measured in TPM) and the average global or CGI methylation across patients with T-ALL or B-
ALL (subtypes DUX4/ERG and Ph-like). We excluded patients with hypodiploid B-ALL to avoid
confounding expression effects due to the high aneuploidy. We detected 1,898 genes signifi-
cantly correlated with average global DNA methylation and 1,833 significantly correlated with
CGI mean methylation levels (1,390 genes detected in both analyses). Many of these genes were
associated with B or T lymphocyte-specific pathways such as lymphocyte differentiation and B
cell activation because of the generally higher methylation levels in T-ALL compared to B-ALL
subtypes (Figure B.2.5).

When examining a panel of epigenetic regulators that are involved in the direct or indirect regu-
lation of DNA methylation, we found that the de novo methyltransferase DNMT3B was among the
significantly correlating genes with respect to both global and CGI methylation (Figure 5.3.21,
selection of epigenetic regulators described in section 5.2.6). This includes the expression of cat-
alytically active DNMT3B isoforms (DNMT3B-002 and, in some patients, DNMT3B-001). These
isoforms are usually not expressed in adult tissues where instead, the catalytically inactive iso-
form DNMT3B-003 is expressed [276]. Additionally, the maintenance DNA methyltransferase
DNMT1 significantly positively correlated with CGI methylation levels. Besides, TET1 and IDH2
were detected to correlate positively with both global and CGI methylation levels. TET1 actively
removes DNA methylation, which could hint at a potential feedback loop between de novo methyl-
transferase and TET activity. IDH2 has been implicated in strong CGI hypermethylation and a
CIMP subtyping in glioma; however, through mutation and not expression differences [143]. Pre-
viously reported epigenetic regulators in T-ALL model systems, such as MYC, did not correlate
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Figure 5.3.21: Epigenetic regulators significantly correlated with global or CGI methyla-
tion levels.

with the differences in methylation levels.

Although the correlation analysis revealed potential candidates that could be involved in reg-
ulating different methylation levels across ALL subtypes and within T-ALL, it might miss genes
that are affected only in a small subset of patients. We, therefore, additionally inspected the pro-
moter methylation status of our epigenetic regulator selection (Figure 5.3.22). Promoters were
mostly unmethylated across B-ALL samples with sporadic exceptions. However, 26% of T-ALL
patients showed hypermethylation of the TET2 promoter (methylation > 0.2) accompanied by a
decrease or complete loss of expression of the TET2 gene and associated with overall high CGI
and global methylation levels (Figures 5.3.22, 5.3.23 and 5.3.24). Additionally, some T-ALL pa-
tients exhibited hypermethylation of the TET1 promoter, which frequently coincided with TET2
promoter hypermethylation (Figure 5.3.22). The tumor suppressor gene WT1 also exhibited fre-
quent promoter hypermethylation associated with decreased expression across T-ALL patients.
Interestingly, hypermethylation of WT1 was largely mutually exclusive to mutations in WT1 but
primarily affected patients with high CGI methylation levels and frequently also TET2 promoter
hypermethylation (Figure 5.3.22). Studies in AML showed that WT1 recruits TET2 to its target
sites, suggesting a connection between the loss of the two genes in T-ALL patients that might lead
to strong hypermethylation levels [268].

5.3.5 ALL cell lines as model systems

Promoter hypermethylation correlated with decreased expression of TET2 in a subset of T-ALL
patients with generally high global and CGI methylation. To test whether the loss of TET2 affects
the methylation levels, we aimed to use T-ALL cancer cell lines as model systems as these offer the
possibility to manipulate the genome via CRISPR-mediated knockout and study the effects. How-
ever, cell lines have also been shown to deviate epigenetically from primary tumors frequently.
More specifically, many cell lines have been shown to hypermethylate CGIs to greater extents
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Figure 5.3.22: Promoter methylation and expression status of epigenetic regulators.
TET1, TET2, WT1, and KDM2B exhibit elevated levels of promoter methylation in highly
methylated T-ALL samples reaching up to 100% for TET2 and WT1.

Figure 5.3.23: Correlation of promoter methylation and expression for TET1, TET2, WT1,
and KDM2B. For TET2 and WT1, high promoter methylation is associated with low or no
expression of the respective gene.
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Figure 5.3.24: Correlation of TET2 (top) and WT1 (bottom) methylation status with
sample-wise CGI (left) and global (right) methylation levels. High promoter methylation
of these two genes seems to co-occur with high CGI and global methylation levels.

than the respective primary tumors [146,147]. Additionally, long-term culture can affect global
methylation levels and lead to the deepening of PMDs (see section 2.5.2) [72, 147]. Therefore,
we first sequenced a selection of nine T-ALL and five B-ALL cell lines to assess whether their
methylation landscape would reflect the respective primary patient samples. Clustering based
on the 5% most variably methylated CpGs using healthy, tumor, and cell line samples showed
that cell lines overall group with samples from their lineage of origin except for NALM-6, which
groups together with T-ALL cell lines and highly methylated T-ALL cases (Figure 5.3.25). Three
T-ALL cell lines resembled the intermediate CGI methylation of patients from the T-ALLIM group
(namely MOLT-16, Jurkat, and PEER). The remaining T-ALL cell lines (DND41, PER-117, RMPI-
8402, LOUCY, TALL-1 and ALL-SIL) exhibited high CGI methylation levels comparable to T-ALLHM

patients (Figures 5.3.26 and B.2.7). In contrast, B-ALL cell lines frequently showed higher CGI
methylation levels than their primary subtype, except for MHH-CALL-2, which more closely re-
sembled the hypodiploid B-ALL primary methylome. NALM-6, a B-ALL cell line of the DUX4/ERG
subtype, exhibited particularly high CGI methylation levels, which could explain why it clusters
with highly methylated T-ALL cell lines. On the global level, cell lines frequently showed stronger
hypomethylation, which might stem from culture-induced effects and clearly distinguishes the
cell lines from the highly methylated genome of primary ALL samples (Figure 5.3.26).

The high CGI methylation levels of six T-ALL cell lines are difficult to interpret as they could either
reflect the epigenetic regulation of T-ALLHM patients or, similar to the global decrease in methy-
lation, represent a culture-induced artifact. Therefore, we inspected the promoter methylation
levels of the panel of epigenetic regulators previously examined for primary patients (Figure
5.3.27). The cell lines DND41, TALL-1, and LOUCY showed complete methylation of the TET2
and WT1 promoters similar to the effect observed in a subset of patients. Other T-ALL cell lines
such as Jurkat, PEER, and MOLT-16 exhibited an unmethylated TET2 promoter. In contrast, the
WT1 promoter was methylated in almost all cell lines, although to different extents with some-

97



Figure 5.3.25: Hierarchical clustering of healthy lymphocytes, ALL patient samples, and
ALL cell lines. Most cell lines group to primary patient samples of the same lineage, with
the exception of NALM-6, which groups together with T-ALL cell lines and patients.

Figure 5.3.26: Violin plot of HMD and PMD (top) as well as variable CGI (bottom) methy-
lation in ALL subtypes and cell lines. Cell lines frequently show a decrease in genome-
wide methylation and more extreme CGI methylation levels than their corresponding
primary ALL subtypes.
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Figure 5.3.27: a) Promoter methylation status of epigenetic regulators in ALL cell lines.
b) Epigenetic regulator expression in DND41 and Jurkat T-ALL cell lines.

times relatively low methylation levels. In line with our findings in the primary patients, B-ALL
cell lines did not exhibit hypermethylation of the TET2 promoter. Instead, TET1 was methylated
in all five cell lines. We then selected the cell line Jurkat resembling T-ALLIM patients and the
T-ALLHM-like cell line DND41 and subjected them to expression profiling using RNA-Seq (Fig-
ure 5.3.27). Indeed we found that TET2 is expressed in Jurkat (unmethylated promoter) and
silenced in DND41 (highly methylated promoter). Using differential expression analysis based
on three replicates per cell line, we detected significant up-regulation of the DNA methyltrans-
ferases DNMT1 and DNMT3B in DND41 compared to Jurkat (Figure 5.3.27). These two enzymes
are also positively correlated with increased CGI methylation levels across primary ALL patients
(DNMT3B also correlated with global methylation levels).

We next knocked out TET2 in Jurkat cells to characterize the effects of TET2 loss in a T-ALLIM-
like cell line (Figure B.2.8). After 20 days, cells were collected for WGBS and RNA-Seq profiling.
When comparing the methylation levels of Jurkat cells with and without TET2 knockout (KO),
we observed hypermethylation of largely already highly methylated CpGs (Figure 5.3.28). How-
ever, methylation levels in Jurkat with TET2 KO did not yet reach levels of the higher methylated
cell lines PEER and DND41. Using sliding windows separated by HMDs and PMDs, we found
that globally both HMDs and PMDs gain methylation in Jurkat KO cells compared to the wild
type (WT), which is most pronounced in PMDs (Figure 5.3.29). However, potentially due to the
low PMD methylation levels in Jurkat WT cells, PMDs still lag compared to cell lines with high
methylation levels, while HMDs reach comparable levels. CGIs also gained methylation upon loss
of TET2 and reached levels similar to the cell line PEER but remained less methylated than the
extreme levels of DND41 (Figure 5.3.29). Notably, upon loss of TET2, we observed significant
up-regulation of DNMT3B, which is also positively correlated with CGI and global methylation
across ALL patients (Figure 5.3.29). We, therefore, concluded that TET2 seems to have a par-
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Figure 5.3.28: CpG-wise comparison of Jurkat with and without TET2 knockout (left),
PEER, and Jurkat with TET2 knockout (middle), as well as DND41 and Jurkat with TET2
knockout (right).

tial contribution to the CGI and global methylation levels in Jurkat cells. However, it does not
fully explain the methylation differences between intermediately and highly methylated T-ALL
cell lines. Additionally, a feedback loop between TET2 and DNMT3B might exist as DNMT3B
expression is triggered by the loss of TET2 and could add to the hypermethylation effect caused
by the loss of a DNA demethylase enzyme by increased de novo methylation activity. Together our
findings in T-ALL patients and cell lines highlight a role for both TET2 and DNMT3B in shaping
the T-ALL methylome.

5.4 Discussion

This study provides extensive whole-genome methylation data sets of healthy lymphocyte pro-
genitors, ALL patients, and cell lines and enables insights into the unique DNA methylation land-
scape of ALL. In contrast to most other hematopoietic and solid tumor types, ALL - specifically
T-ALL - exhibits a stably highly methylated genome without the classic global hypomethylation
previously described as a pan-cancer phenomenon. The highly methylated genome is present in
pediatric, adolescent, and adult samples, contrasting previous hypotheses that a lack of global
hypomethylation could be an exclusive feature of pediatric tumors. Besides ALL, this unusual
tumor methylation landscape could only be observed in AML as reported previously [72]. Both
ALL and AML are acute leukemias, in contrast to chronic leukemia types like CLL, and are char-
acterized by the rapid accumulation of immature hematopoietic cell types (lymphoid precursors
in ALL, myeloid precursors in AML). In contrast, other hematopoietic tumors like CLL and MCL
arise from further differentiated cell types (germinal center or memory B cells). These cells are
already less methylated genome-wide compared to precursor lymphocytes (Figure 5.3.3), which
could imply a link of global hypomethylation to the cell-of-origin methylation levels or stage. On
the other hand, TPLL - a different type of T cell leukemia - exhibits global loss of methylation
despite the high background methylation in the original primary T cells. Additionally, although
precursor B and T lymphocytes show very similar methylation levels and should arise from com-
parable differentiation stages, T-ALL and B-ALL subtypes exhibit mild differences in the global
methylation levels. Although we observed positive correlations between the expression of DNA
methyltransferases (DNMT3B, DNMT1) and the level of methylation across T- and B-ALL sam-
ples, we cannot causally explain this difference yet. Further - ideally, pan-cancer - studies would
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Figure 5.3.29: a) Boxplots showing the delta mean methylation of sliding windows in
HMDs and PMDs for different T-ALL cell lines, including Jurkat with and without TET2
knockout. Upon loss of TET2 in Jurkat, methylation in both HMDs and PMDs rises and
reaches HMD levels comparable to that of more highly methylated T-ALL cell lines such
as DND41 and PEER, while PMDs still lack behind. b) Density of mean methylation
in variable CGIs and one kb genomic tiles split into HMDs and PMDs. CGIs also gain
methylation after the loss of TET2 in Jurkat cells but do not reach levels of DND41 or
PEER. c) Epigenetic regulator expression in Jurkat with and without TET2 knockout.

be needed to determine whether differentiation stages are related to global hypomethylation
levels.

As introduced in section 2.5.2, the prevailing model of global hypomethylation assumes that
it progressively occurs in PMDs that are late in replication timing, and thus PMD methylation
levels deepen in cancer due to the unusually high numbers of cell divisions. However, both
ALL and AML are highly proliferative despite exhibiting little to no global loss of methylation.
Another study based on colon cancer suggested that instead of a tumor-promoting feature, global
hypomethylation is associated with chromatin reorganization and topological changes, which in
turn could represent a defense mechanism of the cell based on their findings [122]. As acute
leukemias progress rapidly, the absence or low degree of PMD methylation loss under this model
might indicate that the cells were able to deactivate a potential defense mechanism or failed
to induce such a response. Studies investigating and developing this model further will likely
benefit from exceptional cases such as ALL and AML to fully understand the underlying regulatory
mechanisms.

In this study, we additionally show that instead of clearly separating into previously defined CIMP
groups, T-ALL patients exhibit a wide-spread range of CGI hypermethylation levels and targets.
The concept of CIMP has been introduced in section 2.5.2 with the main drawback that it has been
previously characterized based on a small selection of probes on the 450k array (single CpGs)
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located in CGIs that are often uniquely defined for each tumor type or study (see section 2.5.2).
Therefore, the actual CGI methylation levels for CIMP-positive cases of different tumor types
might be variable and not comparable, leading to limited interpretability: CIMP-positive patients
with breast cancer might have very different CGI methylation levels and targets compared to
CIMP-positive colon cancer patients. CIMP-positive cases of one tumor type might even exhibit
levels comparable to CIMP-negative samples of another. Therefore, taking all or most CGIs into
account when investigating this feature in a given tumor type might help place the extent of
hypermethylation in context with other malignancies while simultaneously allowing to compare
patients within the indication.

The dynamic CGI methylation levels across T-ALL patients in this study led to a classification of
CGIs into different target types defining CGIs that stay consistently unmethylated in the healthy
and tumor context and others that seemed to be primed for different hypermethylation levels
across T-ALL patients. Most of the frequent hypermethylation targets were associated with pro-
moters whose corresponding genes were already silent in healthy cells. This aligns with previous
findings that reported tumor-specific preferential hypermethylation of CGIs that are, for exam-
ple, repressed by Polycomb complexes in normal tissues [127]. The preference for systematically
lower or higher methylation levels of CGI groups defined based on T-ALL patients could be re-
capitulated in a pan-cancer comparison. This suggests that although CGI hypermethylation has
been reported to be specific for different tumor types and even subtypes, a pan-cancer mecha-
nism might exist that predisposes CGI groups with certain features to different hypermethylation
levels. Combining these results with pan-cancer chromatin data and chromosomal architecture
could give important insights into the underlying dynamics. Given the observed pan-cancer ef-
fect, our CGI groups can serve as a guideline in future studies, allowing more specific analyses
tailored to CGIs of interest.

Although T-ALL patients have been previously reported to show different levels of CGI methy-
lation (CIMP-positive and -negative), no recurrent mutations or expression differences in epige-
netic regulators were identified that could be associated with the two groups. Instead, one study
hypothesized that high CGI methylation levels might stem from differences in the mitotic age
of the original thymocytes due to a preleukemic phase using data from mouse models and pa-
tients with T-ALL [255]. Patients spanning different age groups could serve as a model for some
age-related DNA methylation effects. However, we could not observe a significant association
of T-ALL methylation-based subtypes with the age of patients. On the other hand, the grouping
into CIMP-positive and -negative cases is based on a limited amount of CpGs as well as extracted
from a clustering approach, while we observed a wide range of CGI methylation levels. There-
fore, comparing two rather simplistic groups might not identify associated expression changes.
Our correlation test-based analysis showed a positive correlation of DNMT3B, DNMT1, and TET1
expression with global or CGI methylation levels across ALL subtypes. Additionally, we observed
TET2 promoter hypermethylation in a subset of T-ALLIM and T-ALLHM patients accompanied by
decreased TET2 expression. The correlation between methylation levels and expression of both
DNMTs and TET1 leads to the possibility that part of the observed CGI hypermethylation levels
is, in fact, hydroxymethylation, which is not distinguishable from 5-methylcytosine by WGBS.
Increased expression of DNMT3B and TET1 might increase methylation turnover at CGIs [277].
If TET2 is additionally lost in some patients, this equilibrium could be disturbed and shifted
towards de novo methylation, increasing the overall DNA methylation levels.
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Finally, we could recapitulate an effect of TET2 hypermethylation and association between TETs
and DNMTs in Jurkat cells by knocking out the TET2 gene, which led to up-regulation of DNMT3B
and was accompanied by an increase in global as well as CGI methylation levels. This shows that
the loss of TET2 seems to have an effect on the overall methylation levels. However, we can-
not distinguish whether the loss of TET2 represents a driving event of high methylation levels
or a side effect of already extensive hypermethylation in T-ALL patients. Although our selection
of T-ALL cell lines seemed to mimic certain aspects of the DNA methylation dynamics in T-ALL
patients, the methylome of ALL cell lines, in general, frequently deviated from that of the pri-
mary indication. This was most apparent on the genome-wide level, where cell lines presented
with strong hypomethylation likely originating from long-term culture. These findings highlight
that selected cancer cell lines can be used to investigate epigenetic dynamics and regulation in
tumors. However, their ability to serve as a model for a specific indication or subtype needs to
be assessed carefully. Additionally, results need to be interpreted in light of potential changes
in the epigenetic landscape and machinery that can be induced through extensive culturing of
cells.
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Chapter 6

Redefining DNA methylation landscapes across
tumors and cell lines

In this study, the DNA methylomes of healthy human tissues, primary tumors, and cancer cell
lines were compared, and the main forms of DNA methylation landscapes across these data
sets were defined. Our investigations showed that primary tumors are characterized mainly
by intermediate methylation levels intrinsic to the underlying cells and cannot be explained by
tumor purity alone. In contrast, cancer cell lines frequently converge to one of two different
DNA methylation states rarely found in primary tumors but are associated with the tumor type
of origin.

Genomic DNA of healthy tissues and primary tumors for six different solid tumor types was pur-
chased from OriGene and profiled using WGBS at the Broad Institute by Dr. Kathleen Steinmann
and Dr. Andreas Gnirke. Cancer cell lines were ordered from DSMZ, ATCC, the Korean Cell
Bank, and the JCRB Cell Bank, cultured by Dr. Raha Weigert, and profiled using WGBS at the
Max Planck Institute for Molecular Genetics by Dr. Nina Bailly (library preparation) and the
Sequencing Core Facility.

6.1 Biological background

6.1.1 Cancer cell lines as model systems

In the previous chapter, a single tumor type, acute lymphoblastic leukemia, was analyzed in de-
tail, and its unusually highly methylated genome was put into perspective regarding the observed
degree of pan-cancer global hypo- and CGI hypermethylation. After epigenetic regulators were
identified in patients that potentially play a role in establishing and maintaining the unusual ALL
landscape, the immediate effect of TET2 loss was tested using a perturbation experiment in the
T-ALL cancer cell line Jurkat. This is a commonly used strategy when the consequences of spe-
cific changes observed in cancer need to be investigated: Analyzing the effect of mutations, loss,
or overexpression of a particular gene as well as drug screenings and many other experiments
related to understanding the regulation of cancer cells are frequently carried out in cancer cell
lines [145]. Primary tumors already established the genetic and epigenetic landscapes that can be
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observed after sequencing and cannot be manipulated to understand the underlying regulations.
Cancer cell lines, on the other hand, can be kept in culture indefinitely and offer the opportunity
to easily test the effect of genetic perturbations or drug treatments. Consortia like the Genomics
of Drug Sensitivity in Cancer project (GDSC) or the Cancer Cell Line Encyclopedia (CCLE) use
large collections of cancer cell lines to conduct detailed studies on genetic dependency mapping,
molecular profiling, and drug screenings that aim to link drug responses and genetic as well as
epigenetic set-ups to advance therapeutic development [278–284].

6.1.2 DNA methylation in primary tumors and cancer cell lines

Gain of methylation at PRC2-targeted CGIs and genome-wide loss of methylation have been
not only widely reported as a hallmark of tumors but also as an effect of aging and long-term
culture [7,72,128]. Specifically, cancer cell lines have been shown to exhibit more extreme hy-
permethylation levels (as well as additional CGI targets) [146,147] and more pronounced global
hypomethylation compared to their primary counterparts [72, 147] (see section 2.5.2 for more
details). This was also observed when profiling the methylome of Jurkat cells as a model of T-ALL
described in section 5.3.5 where the genome-wide methylation landscape was characterized by
hypomethylation in contrast to the highly methylated genome of primary T-ALL cases. On the
other hand, B-ALL cell lines such as NALM-6 and MHH-CALL-4 exhibited higher CGI methylation
levels than corresponding patients reaching methylation levels up to 100%.

Such observations have been previously attributed to the increase in the number of cell divisions
in culture, which also applies to tumor progression compared to healthy, somatic cells: Progres-
sive genome-wide loss of methylation could be linked to the potentially compromised fidelity of
the maintenance DNA methyltransferase DNMT1 in late-replicating PMDs, an effect that accu-
mulates over time [72]. Hypermethylation of CGIs is also thought to occur stochastically over
cell divisions as a consequence of changes in chromatin state where previously PRC2-repressed
CGIs transition to a more stable silencing by DNA methylation and H3K9me3 (epigenetic switch
model) [4,5,126,128]. These hypotheses essentially point to a proliferation- and, therefore, also
a time-dependent model: Starting with the early stages of tumorigenesis, PMD hypo- and CGI
hypermethylation become more pronounced the more the cells proliferate. This phenomenon
then leads to more extreme methylation levels in culture as cancer cell lines can grow indefi-
nitely in contrast to an actual primary tumor whose lifespan is ultimately linked to its removal
or death of the patient.

In addition to this time-related model, the complexity of primary tumors compared to cancer
cell lines represents a source that could contribute to the observed DNA methylation differences:
Primary tumors are often heterogeneous, comprising different genetic subclones but also infiltra-
tion by immune cells, neighboring healthy tissue and stromal contribution [285–287]. Different
cell types can also exhibit differential methylation at promoters or enhancers linked to their cel-
lular identity and associated transcriptional differences [263]. In contrast, cancer cell lines are
unaffected by somatic contamination, and long-term culture is known to reduce the population
complexity [288, 289]. Together with the general prevalence of methylation changes across tu-
mor types, this raises the question of whether a uniform “cancer DNA methylation landscape”
with low PMD and high CGI methylation levels exists that tumors progress towards or already
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Figure 6.2.1: Overview of healthy, tumor, metastasis, and cell line samples analyzed in
this study.

maintain, shadowed by clonal evolution and reduced purity.

6.1.3 Aims and scope of the study

Here, we aimed to investigate global DNA methylation dynamics during tumorigenesis and com-
pare these to the genomic distribution of this modification within cancer cell lines. For this
purpose, we generated a high-resolution reference of primary tissues, tumors, and cancer cell
lines profiled with WGBS and subsequently integrated thousands of publicly available data sets.
Our study reveals that intermediate DNA methylation is a defining feature of most tumor types
and samples across both PMDs and CGIs. In contrast, cell lines largely maintain extreme states,
including an “inverse bimodal” landscape where PMD methylation is exceptionally low and CGI
methylation is strikingly high, as well as a state of extreme global hypermethylation affecting the
entire genome. Investigation of read-level methylation across our cohort and of publicly avail-
able single tumor cell methylation profiles confirm that intermediate methylation is an intrinsic
feature of most tumor cells in vivo, largely independent of tumor purity and can persist across
aggressive population bottlenecks such as metastasis. Finally, we demonstrate that distinct tumor
types are prone to acquire certain DNA methylation landscapes in culture, which is reflected by
their mutational signatures as well as sensitivity to specific classes of small molecule inhibitors.
Our study highlights the striking conservation and maintenance of specific properties of a pan-
cancer epigenome as well as distinct types of major shifts that frequently occur in vitro.

6.2 Materials and methods

6.2.1 Cohort overview

For this study, a broad selection of publicly available methylation data sets of different types was
used and complemented by newly generated WGBS data sets (Figure 6.2.1 and Table 6.2.1). In
the following, the compiled cohorts are introduced and described.
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Tumor type Abbreviation WGBS source Array source

Adrenocortical carcinoma ACC - TCGA

B cell acute lymphoblastic leukemia B-ALL EGAS00001005203 GSE49031

Bladder urothelial carcinoma BLCA - TCGA

Breast adenocarcinoma BRCA This study TCGA

Cervical squamous cell carcinoma
and endocervical adenocarcinoma

CESC - TCGA

Colon adenocarcinoma COAD This study TCGA

Glioblastoma multiforme GBM - TCGA

Head and neck squamous
cell carcinoma

HNSC - TCGA

Kidney renal clear cell carcinoma KIRC This study TCGA

Acute myeloid leukemia LAML Blueprint TCGA

Brain lower grade glioma LGG - TCGA

Liver hepatocellular carcinoma LIHC This study TCGA

Lung adenocarcinoma LUAD This study TCGA

Lung squamous cell carcinoma LUSC - TCGA

Ovarian serous cystadenocarcinoma OV - TCGA

Pancreatic adenocarcinoma PAAD This study -

Prostate adenocarcinoma PRAD - TCGA

Rectum adenocarcinoma READ - TCGA

Skin cutaneous melanoma SKCM - TCGA

T cell acute lymphoblastic leukemia T-ALL EGAS00001005203 GSE49031

Thyroid carcinoma THCA - TCGA

Uterine corpus
endometrial carcinoma

UCEC - TCGA

Table 6.2.1: Tumor types that are part of the WGBS and 450k array cohort, their abbre-
viations used in the text and figures, and the public source the data sets were obtained
from.

Whole-genome bisulfite sequencing

The WGBS cohort used in this study is comprised of nine different indications: breast adenocar-
cinoma (BRCA), colon adenocarcinoma (COAD), renal cell clear cell carcinoma (KIRC), hepato-
cellular carcinoma (LIHC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD),
acute myeloid leukemia (LAML) as well as B and T cell acute lymphoblastic leukemia (B-ALL,
T-ALL, Table 6.2.1).
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Genomic DNA for solid healthy and primary tumor samples (BRCA, COAD, KIRC, LIHC, LUAD,
and PAAD) was obtained from OriGene. Only tumor samples with a purity ≥ 80% were selected.
Two healthy and four tumor samples were obtained for each indication, except for PAAD, where
only two tumor samples of sufficient purity were available.

Four primary LAML samples and one multipotent hematopoietic progenitor sample as control
were obtained from the Blueprint Epigenome project [257]. Precursor B and T cells (two sam-
ples each) as well as B- and T-ALL patients (four samples each) were obtained from the ALL
study described in the previous chapter [238]. B-ALL patients were selected from the DUX4-
rearranged/ERG-deregulated subtype, and T-ALL samples were selected from different methylation-
based subtypes to span the wide range of T-ALL methylation levels.

The following cell lines were purchased from the German Collection of Microorganisms and Cell
Cultures (DSMZ): CL-11, TALL-1, MOLT-16, SUP-B15, RCH-ACV, MHH-CALL-2, PL-21, AML-193,
OCI-M1, SIG-M5, MONO-MAC-1, HCC827, T-47D, MDA-MB-231, MDA-MB-468, EFM-19, CL-14,
CL-40, SW948, BXPC-3, HUP-T3, PA-TU-8988S, PANC-1, A549, Hep-G2, A498, NALM-6, Jurkat,
and DND-41. The following cell lines were purchased from ATCC: HCT116, MCF7, BT-20 (HTB-
19), HCC38, A704, and SW1417. The cell line SNU-1272 was purchased from the Korean cell
bank, and the cell line KMRC-1 was purchased from the JCRB cell bank. All cancer cell lines were
cultured according to the vendor’s recommendations. To the best of our knowledge, we aimed
to avoid cell lines known to be contaminated, and we prioritized cell lines grown out of primary
tumors and not their respective metastasis, although this could not always be ensured.

In total, the WGBS cohort included 17 healthy samples, 34 primary tumor samples, and 37 cancer
cell lines.

450k array

The Cancer Genome Atlas comprises the largest collection of methylation data sets for healthy
and tumor samples profiled with the Infinium HumanMethylation450 BeadChip (450k array).
Additionally, for some tumor types, also metastasis samples were profiled and available via TCGA.
Similarly to the WGBS cohort, we aimed to only select samples from TCGA with high tumor purity
(≥ 80%) to minimize confounding effects due to contamination. A detailed description of our
filtering process is described in the next section 6.2.2. To complement this cohort, we added
additional samples from a study profiling B- and T-ALL patients [290] as well as a large cancer
cell line cohort [279] that was reduced to the cell lines matching a tumor type for which primary
tumor samples were available (Table 6.2.1).

In total, the 450k array cohort contained 5,030 samples, including 705 healthy samples, 3,681
primary tumor samples, 137 metastases, and 507 cancer cell lines.

Single-cell WGBS

A colon cancer cohort comprising 10 patients profiled using single-cell WGBS was obtained from
Bian et al. [291]. For each patient, healthy and primary tumor cells from up to six different
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sampling sites were available (Figure 6.2.1). Additionally, for most patients, cells from different
types of metastasis were measured.

6.2.2 Initial data processing

Whole genome bisulfite sequencing

The experimental procedures of WGBS library preparation are described in the appendix C. The
quality of the sequencing runs was inspected using FastQC (version 0.11.9) [171]. Reads were
subjected to trimming using cutadapt (version 2.4, [172]): Bases with a quality score less than
20 were removed as well as adapter content, followed by the trimming of 10 and 5 nucleotides
from the 5’ and 3’ end of the first read and 15 and 5 nucleotides from the 5’ and 3’ end of the
second read respectively. The trimmed reads were then aligned to the human reference genome
(hg19) using BSMAP (version 2.90; parameters: -v 0.1 -s 16 -q 20 -w 100 -S 1 -u -R) [183].
Following the alignment, PCR duplicates were removed using GATK with the ‘MarkDuplicates’
command (version 4.1.4.1) [187]. Afterwards, methylation rates were called with mcall (MOABS
package, version 1.3.2) [188]. The resulting methylation rates were filtered such that only CpGs
covered by at least 10 and at most 150 reads on autosomes were considered for downstream
analyses.

450k array

Publicly available ALL data sets generated using the Illumina Infinium HumanMethylation450
BeadChip were processed using the Minfi R package (version 1.32.0) [292]. Data was loaded
with the ‘read.metharray.exp’ function. Failed positions were identified using the function ‘de-
tectionP’ (parameters: type = "m+u"). Data were normalized using the Noob normalization
(‘preprocessNoob’, parameters: dyeMethod = "single). The methylation ratio was computed us-
ing the ‘ratioConvert’ function (parameters: what = "both", keepCN = TRUE). The following
probes were excluded from downstream analyses:

• Probes overlapping known SNPs (Minfi: ‘addSnpInfo’, ‘dropLociWithSnp’, parameters: snps
= c("Probe", "SBE", "CpG"), maf= 0.01) as these might no longer reflect CpGs in respective
patients.

• Non-CpG positions as only CpGs were considered for the analyses.

• Probes locates on sex chromosomes in line with sequencing data analyses.

• Probes that failed the detection test (p-value ≥ 0.05). These can be considered failures
during the experiment because methylated and unmethylated channels both report levels
of background signal [293].

• Probes known to frequently cross-react, which means they align to multiple positions in
the genome [294].
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For samples from TCGA and Iorio et al. [279] processed beta values were downloaded, but po-
sitions were reduced to the probes passing all filtering steps during the processing of the ALL
samples.

Tumor purity estimation for TCGA tumor samples was obtained from Aran et al. [295]. Different
methods exist to estimate tumor purity from various data sources, including DNA methylation,
gene expression, and mutations [296–298]. We decided to use purity estimates from a consensus
prediction method instead of one of the many tools that estimate tumor purity based on DNA
methylation alone, even though not all TCGA tumor types are covered by Aran et al. In addition
to providing purity estimates based on more data types, we also found that consensus predic-
tion may be better suited to address the confounding nature of intermediate DNA methylation
in cancer. DNA methylation-based purity estimates rely on the assumption that intermediately
methylated probes in primary tumors are mostly the result of cellular contamination between hy-
permethylated cancer and hypomethylated somatic cells [296]. However, our analyses confirm
that primary tumors generally maintain CGIs in intermediately methylated states (see sections
6.2.5 and 6.3.3). As such, DNA methylation-based estimates appear to over-estimate the de-
gree to which cellular contamination explains intermediate CGI levels, leading to consistently
lower purity estimates than found using a consensus prediction method (Figure 6.2.2). Based
on our data, purity estimates using DNA methylation alone might not be perfectly suited to es-
timate tumor purity, given the mixed effect of intrinsic intermediate methylation and additional
contamination from healthy cells to varying degrees. To this point, we decided to additionally
include the TCGA-LAML cohort, which based on the DNA methylation-based purity estimator
InfiniumPurify exhibits purity levels of almost 100% [296]. This is in line with the fact that
leukemic samples are usually flow-sorted or purified using density gradient centrifugation and,
therefore, might generally exhibit higher purities than solid tumors [238,299]. The TCGA cohort
was thus reduced according to the following criteria:

1. Only tumor and metastasis samples that were either part of the TCGA-LAML cohort or had
an estimated purity ≥ 80% were considered.

2. Only healthy, tumor and metastasis samples were selected that were associated with a type
for which at least one cancer cell line was available from Iorio et al. [279]

3. For the LGG cohort specifically, only tumor samples with a known classification into IDH
wild type or mutant were considered (see next section).

Similarly, the cancer cell line cohort obtained from Iorio et al. was reduced to cell lines from
tumor types that survived the filtering criteria applied to TCGA or matched the ALL cohort (B-
ALL and T-ALL).

Single-cell WGBS

CpG methylation measurements for single-cell WGBS colon cancer data sets were obtained from
Bian et al. [291]. Matching CpGs on the plus and minus strands were combined, and only CpGs
on autosomes were considered (matching the processing of WGBS methylation rates). Only
cells with ≥ 3 million covered CpGs were selected for downstream analyses. For each patient, a
pseudo bulk was generated at the level of CGIs and 100 kb genomic tiles (not per CpG due to the
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Figure 6.2.2: Comparison of tumor purity estimates using a consensus prediction method
[295] and a methylation-based prediction method (InfiniumPurify) [296].

sparsity of single-cell WGBS data sets). Here, the average methylation of each CGI and tile was
calculated per cell, and the respective methylation values were subsequently averaged across
cells of the same patient and condition (healthy tissue, primary tumor, and different types of
metastases) to mimic a bulk methylation sample similar to the standard WGBS data sets.

6.2.3 Overview of healthy, tumor, and cancer cell line methylomes

Genomic features

One and 100 kb genomic tiles were generated by segmenting the genome using bedtools makewin-
dows (version 2.30.0; parameters: -w 1000 -s 1000 and -w 100000 -s 100000 respectively) [261].
Annotations of HMDs and PMDs, as well as solo-WCGW CpGs for hg19, were downloaded from
https://zwdzwd.github.io/pmd [72]. The hg19 gene annotation was downloaded from GEN-
CODE (V19). Promoters were defined as 1500 bp upstream and 500 bp downstream of the TSS.
The annotation of tumor suppressor genes was downloaded from the TSGene database [300].
ChromHMM annotations for the human embryonic stem cell line HUES64 were downloaded from
Roadmap (E016).

Annotations of CGIs were downloaded from UCSC. The chromatin state of CGIs was defined as
the ChromHMM state with the largest overlap with each island, and a CGI was termed PRC2 tar-
get if the corresponding chromatin state was one of 10_TssBiv, 11_BivFlnk, 12_EnhBiv, 13_ReprPC,
and 14_ReprPCWk. CGIs were defined as promoter CGI if at least 20% of the CGI or the promoter
overlapped, as a gene body CGI if at least 20% of the CGI or the gene body overlapped but not
with a promoter and intergenic for all remaining islands.

Feature-specific and genome-wide methylation measurements

For WGBS samples and single-cells from the single-cell WGBS colon cancer cohort, the arith-
metic mean was calculated across features (tiles, CGIs). A feature was only considered if at least
three CpGs were covered within a region. For samples profiled with the 450k array, the average
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methylation of each CGI was computed using beta values of probes located within the respec-
tive CGI. For any analysis and technology, CGIs with an average methylation > 0.2 were termed
methylated, otherwise unmethylated.

Compared to WGBS, the 450k array spans a limited number of CpGs enriched for regulatory
features such as CGIs, promoters, enhancers, and gene bodies [92]. This represents a chal-
lenge for estimating PMD methylation levels: PMDs are typically characterized as large-scale
late-replicating domains that are GC- and gene-poor [72], properties that can be assessed well
using WGBS but less so using the biased sampling of the 450k array. As described in section 2.3,
isolated solo-WCGW CpGs are most prone to hypomethylation and therefore provide an accurate
measurement to determine the degree of hypomethylation in a sample. Of these CpGs, 6,214 are
located within previously defined common pan-cancer PMDs and covered by the 450k array. Of
these, 4,832 survive the filtering steps applied on the 450k array cohort as described above [72].
In order to enable and streamline analyses of WGBS and array samples alike, the methylation
levels of solo-WCGW CpGs in common pan-cancer PMDs were therefore used to assess genome-
wide PMD methylation levels across healthy, tumor, metastasis, and cell line samples. These
CpGs were challenging to use within the single-cell data sets as within a single-cell, a CpG can,
in theory, only reflect three different methylation measurements (0, 0.5, or 1 depending on the
allelic methylation status), creating uninformative median values across solo-WCGW CpGs of
either 0 or 1 in most cases. As these measurements do not enable a clear assessment of the de-
gree to which individual cells maintain their PMDs, we performed an independent analysis of the
single-cell data that differs from our analyses of WGBS or 450k array data. Specifically, we calcu-
lated the average methylation of 100 kb tiles in common pan-cancer PMDs as our genome-wide
methylation measurement.

Genome browser tracks were generated using IGV (version 2.15.2) [232].

Definition of hypermethylated CGIs

Hypermethylated (hyper) CGIs per tumor, metastasis, and cell line sample (WGBS and 450k
array) in comparison to healthy tissues were defined as follows: For each CGI, first, the median
signature of healthy control samples profiled with the respective technology was defined (median
over the average CGI methylation of each healthy sample). If available, the matching healthy
tissue was used for this purpose. Otherwise, the median signature of all healthy array-based
control samples was used (only applicable to some TCGA cohorts where no matching normal
tissue was available, such as ACC or LGG). Then the average methylation of each CGI in the
malignant sample was compared to the healthy signature. CGIs that were unmethylated in the
healthy condition (methylation≤ 0.2), methylated in the malignant sample (methylation> 0.2),
and with a difference> 0.1 between malignant and median normal signature were termed hyper
CGIs for the respective sample. For the single-cell WGBS patients, hyper CGIs per patient were
defined analogously using the in silico generated pseudo bulk of normal and tumor cells for each
patient specifically.

Hypermethylated CGIs per tumor type (WGBS and 450k array) were defined based on the sets
of hypermethylated CGIs defined for each tumor sample (see above): CGIs that were termed
hypermethylated in at least 75% of tumor samples of a specific type were considered as “common”
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hyper CGIs for that type. Hypermethylation sets were defined separately for WGBS and array
cohorts spanning the same tumor types due to differences in CpG coverage between the two
technologies. For TCGA-THCA and TCGA-KIRC, 50% of the tumor samples were considered
sufficient to select a CGI as hypermethylated due to the overall lower degree and more subtle
trends of CGI hypermethylation across these cohorts. For the TCGA-LGG cohort, samples were
split by IDH mutational status, and a separate set of hyper CGIs was defined for each subtype.
We performed this additional subselection to ensure a fair comparison between primary tumors
and cell lines: LGG tumors are mostly classified as IDH mutant, while all cell lines are reported
as wild type, and IDH mutations appear to target a distinct CGI range (see section 2.5.2 on
the glioma CIMP subtype) [143]. Performing our analyses without this stratification led to the
selection of CGI sets that were biased towards the IDH mutant profile and confounded our ability
to accurately infer the DNA methylation landscape of IDH wild type cell lines. Close inspection
of all additional cancer types confirmed that this issue is substantially more prominent for LGG
than other cohorts.

Saturation analysis of hypermethylated CGIs

In order to assess how uniformly the sets of common hyper CGIs are sampled across the tumor
data sets of each type, a saturation analysis was performed. For this purpose, only tumor types
with at least 100 samples were considered. For each tumor type, 100 iterations were performed,
and within each iteration, 100 tumors were randomly sampled, followed by a calculation of the
cumulative proportion of CGIs added with each subsequent sample. The results were then av-
eraged across the 100 iterations to provide a more stable assessment of the degree to which
individual samples contribute additional information to each tumor type-specific hyper CGI pro-
file. The same analysis was performed for the entire sets of tumor samples and cancer cell lines,
respectively.

6.2.4 Definition of DNA methylation states

A primary objective of this study was to broadly group WGBS and 450k array samples according
to the methylation levels of hyper CGIs and solo-WCGW CpGs (in PMDs) instead of the genetic
identity of target sequences. To accomplish this, we first clustered healthy, tumor, and cell line
samples based on ECDF of each feature (hyper CGIs and solo-WCGW CpGs). This analysis was
performed separately for each technology and feature as the distribution of methylation lev-
els between WGBS and array samples can be affected by the differences in CpG sampling (the
rather universal coverage of different genomic regions in WGBS compared to biased enrich-
ment of regulatory features in 450k arrays). Technological differences are especially relevant
for the solo-WCGW CpGs that are covered to a much larger extent in WGBS compared to array
samples (on average 1.4 million per WGBS sample). The sample-to-sample distances based on
the distribution of hyper CGI or solo-WCGW CpG methylation levels were computed using the
Kolmogorov-Smirnov (KS) distance. Samples were then hierarchically clustered and visualized
using the ComplexHeatmap R package (version 2.9.4) [266]. Four clusters for hyper CGIs and
solo-WCGW CpGs each were extracted from the hierarchical clustering to examine the properties
of broad sample groupings.
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Ultimately, a simple scoring method was implemented that allowed simultaneous examination
of both PMD and CGI compartments in a manner that was largely robust to the technology used.
For this purpose, the median methylation of solo-WCGW CpGs in common PMDs, as well as the
median methylation of tumor type-specific hyper CGIs, was used. WGBS samples were clus-
tered based on both features using the ConsensusClusterPlus R package (version 1.48.0; func-
tion: ConsensusClusterPlus; parameters: maxK=12, reps=100, pItem=0.8, pFeature=1, clus-
terAlg="pam", distance = "euclidean", seed = 42) [265]. By assessing the change in the area
under the ECDF curve as described in section 5.2.4 as well as the intra-cluster variability, the
optimal number of clusters (n = 5) was determined. The clusters were annotated based on the
overall PMD and hyper CGI methylation levels (low, intermediate, or high) and considered as
different DNA methylation states (or landscapes). Specifically, the resulting methylation states
were termed PMDhigh CGIlow (somatic), PMDhigh CGIint (intermediate), PMDint CGIint (interme-
diate), PMDhigh CGIhigh (extreme hypermethylation) and PMDlow CGIhigh (inverse bimodal). The
array samples were subsequently assigned to the nearest WGBS-based cluster using a k nearest
neighbor (k-NN) classification (k = 10). The WGBS samples were chosen as the reference even
though the array cohort contains a larger number of samples because the CpG and, therefore,
feature-wise coverage was considered more complete and better reflective of the actual genomic
methylation distribution than those obtained from the array cohort. We found that clustering on
the median methylation values of CGI and PMD methylation ECDFs was robust, and results con-
ducted on more detailed parts of their methylation distributions (interquantile range or 10/90th
percentiles) provided highly similar results.

6.2.5 Read-level analysis

The average methylation for each read for WGBS samples was obtained using RLM (version
1.0.0, see chapter 4) [222]. Read-wise average methylation measurements were aggregated per
hypermethylated CGI to compare the cumulative distribution of read-level methylation across
healthy, tumor, and cell line samples. In order to generate browser tracks, the read-wise methy-
lation levels were aggregated in 500 bp sliding windows (step size 100 bp). Entropy per 4-mer
of CpGs was calculated using RLM. Mean entropy per CGI was calculated using the arithmetic
mean. Only 4-mers covered by at least 10 and at most 150 reads were considered.

In order to assess if higher methylation entropy in tumors is a consequence of cellular hetero-
geneity (such as contamination) versus per-molecule, stochastic methylation across cells (allelic
heterogeneity), we performed an in silico mixing experiment. For this purpose, we selected
high-purity T-ALL and matching T cell samples [238]. T-ALL allowed us to model the effects of
cellular contamination with high-purity samples as well as to directly investigate the effects of
fully hypermethylated tumor samples versus those with more intermediate methylation levels.
Our selected samples included a T-ALL sample with extremely high CGI methylation levels as
well as a sample with intermediate CGI methylation levels, and a healthy sample with somatic
DNA methylation landscape. For each 4-mer and tumor sample, different in silico mixtures of
epialleles were randomly sampled, reflecting different purities. Specifically, for each 4-mer, 20
epialleles were randomly selected, of which a specific fraction was sampled from the tumor,
while the remaining fraction was sampled from the control. The sampling was restricted to 4-
mers covered by at least 20 reads in each sample and located within a hyper CGI specific for
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T-ALL. For each 4-mer, the methylation entropy, fraction of discordant epialleles, and average
methylation were computed. This way, two scenarios could be modeled and compared with the
entropy measurements obtained from primary samples:

1. Highly methylated CGIs in tumor cells contaminated by unmethylated somatic CGI methy-
lation levels to different degrees (mixture of T-ALL tumor 1 with normal 1).

2. The effect of contamination with somatic cells on stochastic, intermediate methylation
levels intrinsic to primary tumor cells (mixture of T-ALL tumor 4 with normal 1).

6.2.6 Correction of DNA methylation measurements by tumor purity

In order to correct methylation measurements of solid tumors based on the reported purity
(pathology for WGBS, consensus prediction by Aran et al. for 450k arrays), an aggressive but
simple strategy was employed. This strategy is very likely to overestimate the effect of cellular
contamination with non-tumor cell types but allowed us to strictly assess the stability of our state
assignments. For every sample and the associated fraction of actual tumor cells p (purity) with
0.8 ≤ p ≤ 1 for samples within our cohort, it was assumed that the remaining fraction of cells
1 − p stemmed from healthy, somatic cells with a perfect bimodal distribution where CGIs are
completely unmethylated and the remaining genome is fully methylated (Figure 6.2.3). For a
given feature (CGI or solo-WCGW CpG), the (average) methylation of the actual tumor cells MeT

together with the contaminating somatic cells and their assumed methylation MeN lead to the
combined methylation measurement MeC (as observed in the primary data) as follows:

MeC = p ∗MeT + (1− p) ∗MeN (6.1)

According to the assumption of fully unmethylated CGIs in normal somatic cells (MeN = 0), the
following tumor-specific (corrected) CGI-specific methylation levels can be obtained:

MeT =
MeC

p
(6.2)

When considering a fully methylated somatic genome outside of CGIs, including solo-WCGW
CpGs with MeN = 1, the actual tumor cell background methylation can be calculated as

MeT =
MeC − (1− p)

p
(6.3)

This correction was applied to both WGBS and 450k array solid tumor samples, and the corrected
hyper CGI and solo-WCGW CpG methylation measurements were used to re-assign samples to
DNA methylation states as described above (k-NN approach).
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Figure 6.2.3: Schematic illustrating the correction method applied to WGBS and 450k
array methylation estimates for CGIs and PMDs. A perfect bimodal distribution of somatic
cells was assumed where CGIs are fully unmethylated while the genomic background is
fully methylated. The methylation levels of solid tumors were adjusted using this model
together with the tumor purity reported or estimated per sample.

6.2.7 Single-cell WGBS analysis

Euclidean distances between healthy and tumor cells and between cells within and across dif-
ferent tumor and metastasis sampling sites were computed per patient based on the average
methylation of each hyper CGI or 100 kb tile in common PMDs. Heatmaps of hyper CGI and 100
kb tile methylation per patient were visualized using the ComplexHeatmap R package.

6.2.8 Association of cancer cell line DNA methylation states with tumor type

For all analyses related to the association of cancer cell line DNA methylation landscapes with
tumor type, only cancer cell lines of the 450k array cohort were used that were assigned to
their respective state with a probability ≥ 0.7 (based on the k-NN classification). Cell lines that
lacked sufficient drug screenings were excluded (less than 90% of the overall screened drugs
tested, see next paragraph). Additionally, only tumor types with at least eight available cell lines
after the filtering steps were considered. The association of 1) the two main cancer cell line
landscapes (PMDhigh CGIhigh and PMDlow CGIhigh) with tumor type as well as 2) the intermediate
(PMDhigh CGIint, PMDint CGIint) compared to the remaining states with tumor type were assessed
using two-sided Fisher’s exact test. P-values were corrected for multiple testing using FDR and
adjusted P-values < 0.05 were considered significant.

Culture conditions, drug responses (measured by IC50, the molecular concentration of the drug
to inhibit a biological process by 50% [301]), and mutations of the cancer cell line cohort were
obtained from Iorio et al. The set of epigenetic regulator genes was obtained from dbEM [302],
and the Cancer Gene Census, with common oncogenes and tumor suppressor genes, was obtained
from COSMIC [303]. Epigenetic regulators and cancer driver genes were selected as recurrently
mutated if a mutation was reported in 5% and 10% of all considered cancer cell lines, respectively
(mutations in epigenetic regulators are overall rarer than in driver genes). Additionally, driver
genes previously reported for each tumor type and their associated population frequency were
obtained from Bailey et al. [304] (TCGA), Studd et al. [305] (B-ALL) and Liu et al. [306] (T-ALL).
Heatmaps and oncoprint were visualized using the ComplexHeatmap R package. The association
between mutation status per recurrently mutated gene and either the DNA methylation state
or tumor type was assessed using a two-sided Fisher’s exact test (significance was assessed as
described above).
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For the drug response analysis, only drugs tested in at least 90% of the considered samples
were included. The analysis was limited to cell lines of the two most frequent states (PMDhigh

CGIhigh and PMDlow CGIhigh) due to the overall low sample size of cell lines in an intermediate
methylation state. The association of DNA methylation landscape and response to a specific drug
was assessed independently for each drug using a simple logistic regression model:

ln

�

Yi j

1− Yi j

�

= β0 + β1 ∗ X1i j (6.4)

Here, Yi j represents the DNA methylation landscape (two possible outcomes) of cell line i of
tumor type j, X1i j represents the drug response (centered, ln-transformed IC50) of cell line i of
tumor type j, β0 represents the intercept and β1 represents the coefficient of X1 with i ∈ 1, ..., n j

and j ∈ 1, ..., m. m represents the total number of tumor types within the cohort. P-values
derived from each logistic regression were corrected using FDR, and adjusted P-values < 0.05
were considered significant. The odds ratio for each drug was obtained as eβ . Additionally, a
mixed effects model was built for every drug using the lme4 R package (version 1.1-23) [307]
where the tumor type of the cell lines was added as a known random effect. For this purpose,
a random intercept model was used based on the observation that different types have a higher
likelihood of being associated with one of the two landscapes:

ln

�

Yi j

1− Yi j

�

= (β0 + u0 j) + β1 ∗ X1i j (6.5)

Here, u0 j represents the random intercept for each tumor type j. Significance was assessed as
described for the simple logistic regression models.

6.2.9 Copy number analysis

The copy number analysis for WGBS samples was performed using Control-FREEC (version 11.6)
[308]. Due to the wide ranges of karyotypes being reported for the same cancer cell lines and
because the overall ploidy of a cell line was not relevant for the analysis, a diploid genome was
assumed as the baseline of all samples, including cell lines. Then, instead of the exact copy
number indicated by the tool, only the copy number deviation status (amplification, deletion)
was used to assess whether specific chromosomes or genomic regions have more or fewer copies
compared to the baseline. For each sample, the total size of genomic regions that were amplified
or deleted was visualized.

6.3 Results

6.3.1 Characterizing DNA methylation landscapes of tumors and cell lines

Given our aim to investigate the DNA methylation landscapes across primary tumors and can-
cer cell lines, we first verified that tumors of our WGBS cohort resemble the widely reported
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Figure 6.3.1: Mean methylation distribution of one kb tiles in HMD/PMDs and hyperme-
thylated CGIs defined per tumor type profiled using WGBS. Pie charts show the fraction
of hypermethylated CGIs targeted by PRC2 in hESCs.

DNA methylation hallmarks of tumorigenesis. We observed gain of methylation at previously
unmethylated CGIs, ranging from 376 commonly hypermethylated CGIs in KIRC to 5,379 in T-
ALL (see section 6.2.3 for the definition of common hyper CGIs per tumor type. Simultaneously,
PMDs decrease genome-wide compared to matching healthy tissue (Figure 6.3.1). In line with
previous studies, we also find that hypermethylated CGIs are highly enriched for regulation by
PRC2 in stem cells, which includes nearly all tumor suppressor genes that become hypermethy-
lated in primary tumors within our cohort (Figures 6.3.1 and C.2.2). As previously reported,
cancer cell lines tend to exhibit more extreme methylation levels: In both solid and hematopoi-
etic cancer cell lines, CGI methylation levels are frequently much higher than in primary tumors,
often reaching methylation states close to 100% (Figure 6.3.1). Additionally, many cell lines
exhibit extremely depleted PMD methylation levels in comparison to primary tumors. However,
we also observe cell lines with PMD methylation levels comparable to healthy samples, a phe-
nomenon previously only reported for primary acute leukemias (see chapter 5, Figure 6.3.1).
Finally, some cell lines exhibit intermediate CGI and PMD methylation levels comparable with
the distributions of primary tumors (Figure 6.3.1).

We inspected the same features across the larger 450k array-based cohort to generalize our find-
ings. For this purpose, we generated a simple scoring method to examine PMDs and CGIs within
both technologies. For this purpose, we defined each sample (WGBS and array) according to the
median methylation status of solo-WCGW CpGs within a set of previously defined, pan-cancer
PMDs [72] as well as for a tumor-specific subset of hypermethylated CGIs (separately defined for
WGBS and array cancer types, see section 6.2.3, Figure 6.3.2). A combined investigation of both
PMD and CGI methylation showed striking consistency across primary tumors of both cohorts
(Figure 6.3.2). In general, primary tumors show only mild loss of PMD methylation alongside
de novo methylation of CGIs, although PMD methylation levels can exhibit substantial variation.
Nonetheless, cancer cell lines consistently reside in the periphery of primary tumor samples,
suggesting one or multiple alternative epigenomes. In particular, CGI methylation levels are
abnormally high, while PMD methylation levels exhibit a striking range from near complete to
almost no methylation (Figure 6.3.2).
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Figure 6.3.2: Comparison of the median methylation of solo-WCGW CpGs in common
PMDs and hyper CGIs per WGBS and array sample.

In addition to our investigation of methylation levels, we wanted to understand how the identity
of hypermethylated CGIs (which CGIs are targeted) relates to the tumor type. Here, we also
aimed to address previous reports that cancer cell lines tend to methylate more CGIs than ob-
served in vivo. We find that each sample hypermethylates an additional set of CGIs compared
to the “common set” per tumor type, which is frequently larger in cancer cell lines than pri-
mary tumors (Figure 6.3.3). The additional CGIs are generally lower in methylation compared
to the commonly hypermethylated CGIs, and the number of additional targets correlates with
the methylation level of commonly hypermethylated CGIs. This observation seems consistent
with the stochastic but continuous acquisition of de novo methylation over time and cell divi-
sions.

Broadly, these trends can also be observed over the larger array cohort, with cell lines methylating
a larger number of CGIs than their matched tumor type but with similar patterns (Figure C.2.3).
However, we noticed a specific exception within the LGG cohort that could be explained by biased
sampling between IDH mutant (IDHMT) and wild type (IDHWT) samples: While most of the LGG
primary tumor samples carry an IDH mutation, all cell lines are classified as IDHWT (Figure C.2.3).
As IDH mutational status is known to affect the number and identity of CGI targets (see section
2.5.2 on the glioma CIMP subtype), we, therefore, split the LGG cohort into IDHMT and IDHWT

and corrected our tumor to cell line comparison to only include IDHWT samples (Figure C.2.3).
After this correction, we found the same overall trends between LGG primary tumors and their
cell lines as for other cancer types.

Despite the larger number of hypermethylated CGIs in individual cancer cell lines, these CGIs
are generally also methylated elsewhere within our primary patient data: We observe a nearly
complete overlap between hypermethylated CGIs observed across either primary tumors or can-
cer cell lines. This indicates that the overall set of CGIs that can potentially be methylated is
restricted (Figure 6.3.4). Individual cancer types hypermethylate a limited and defined subset of
these CGIs that characterize and distinguish them. We find that these cancer type-specific subsets
are rapidly saturated across patient samples: every CGI that is commonly methylated within a
given cancer type is observed after including a small number of individual patients (Figure 6.3.4).
In contrast, cell lines tend to sample hypermethylated CGIs to a greater extent, which suggests
that they are less constrained by their cell type of origin (Figure 6.3.4). These observations are
overall in line with the CGI-centered analysis in the previous chapter, where we showed that
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Figure 6.3.3: a) Hypermethylated CGIs per tumor and cell line sample (WGBS) sepa-
rated by common targets across their respective tumor type and additional targets. Each
sample hypermethylates other CGIs on top of the commonly hypermethylated CGIs per
type, a number that is overall more extreme in cancer cell lines than primary tumors. b)
Scatterplots comparing the methylation levels of commonly and additionally hyperme-
thylated CGIs with the overall fraction of hypermethylated CGIs per WGBS sample.

specific sets of CGIs always remain unmethylated or consistently methylated across a pan-cancer
cohort, while the remaining CGIs exhibit different levels of methylation across tumor types (see
section 5.3.2).

6.3.2 Tumors and cell lines converge to distinct DNA methylation landscapes

Our initial observations suggested that the combination of PMD and CGI methylation levels could
be used to broadly group cancer samples into “DNA methylation landscapes.” We, therefore,
aimed to develop a clustering approach that would reflect the patterns we observe in healthy,
tumor, and cell line samples and could be applied to both cohorts (WGBS and 450k array). We
would then use the separation into clusters to describe how consistently different DNA methyla-
tion states are observed across different types of cancers, tumor stages, metastasis, and adapta-
tion to culture. First, we investigated the distribution (not identity) of DNA methylation levels at
hypermethylated CGIs and PMDs (defined by solo-WCGW CpGs). For this purpose, we applied a
clustering approach based on the ECDF for each feature and data type. For both cohorts (WGBS
and 450k array) and features, we identified clusters of different ranges of DNA methylation distri-
butions, reflecting low, intermediate, and high methylation. By CGI methylation, intermediately
methylated clusters are comprised almost completely of primary tumor samples, while low and
high CGI methylation are properties of normal and cell line samples, respectively (Figures 6.3.5
and C.2.4). By PMD methylation, normal as well as tumor samples are part of clusters with high
or intermediate levels, while the clusters with low PMD methylation are mainly comprised of
cell lines (Figures 6.3.5 and C.2.4). Clusters with extremely high PMD methylation contain not
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Figure 6.3.4: a) Top: Venn diagram showing the nearly complete overlap of CGIs called
hypermethylated in any tumor or cell line sample (array cohort). Bottom: Number of
CGIs hypermethylated per tumor and cell line sample. Cell lines hypermethylate a larger
number of CGIs in comparison to primary tumors. b) Saturation analysis of the number
of hyper CGIs cumulatively observed from random samples of 100 patient tumors per
type, including across types or all cell lines (see section 6.2.3). The majority of CGIs
hypermethylated per group is observed after only a few samples, suggesting that each
cancer type is constrained in the overall number of possible targets, which also applies
to the entirety of tumor and cell line samples when randomly sampling across types.

only healthy samples but also acute leukemia patients, which have been previously reported to
exhibit essentially no to minimal genome-wide loss of methylation (see chapter 5).

Methylation levels of CGIs and PMDs consistently appeared to distinguish normal, primary, and
cell line samples. Therefore, we aimed to develop a combined clustering approach that accounts
for both features (CGIs and PMDs) to identify major forms of DNA methylation landscapes in can-
cer. For this purpose, we used a consensus clustering-based method based on the high-resolution
WGBS cohort. As features, we considered the median methylation of hyper CGIs as well as of
solo-CpGs within common PMDs per sample (see sections 5.2.4 and 6.2.4). This approach re-
sulted in five basic DNA methylation states that generally separated samples according to their
status as somatic, primary, or cell line (Figures C.2.5 and 6.3.6). As expected, healthy samples
were primarily assigned to a “somatic landscape” (PMDhigh, CGIlow), while primary cancers were
generally found to be intermediately methylated, either in a PMDhigh, CGIint or PMDint, CGIint

state (Figures 6.3.6 and C.2.6). The remaining two states are associated with properties observed
across cancer cell lines: a state of “extreme hypermethylation” (PMDhigh, CGIhigh) that also in-
cludes primary ALL samples and an “inverse bimodal” (PMDlow, CGIhigh) state that is enriched
almost entirely for cell lines (Figures 6.3.6 and C.2.6). Only a minority of cancer cell lines are
associated with intermediate states. Although the clustering was established based on the WGBS
cohort, we found that we could also assign the larger 450k array cohort to these states using a
k-nearest neighbor classification. The resulting assignments reflected the overall distribution of
healthy, tumor, and cell line samples across the five states as observed based on the WGBS data
(Figures 6.3.6, and C.2.6 and C.2.7).
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Figure 6.3.5: Hierarchical clustering of WGBS samples based on the ECDF of hyper CGIs
(left) or solo-WCGW CpGs in common PMDs (right).

6.3.3 Allelic heterogeneity underlies intermediate DNA methylation in tumors

The intermediate methylation levels observed in primary tumors could be reflective of differ-
ent phenomena: a cellular heterogeneity model where intermediate methylation is explained by
a combination of tumor purity and epigenetic heterogeneity between cells (mixing of somatic
and cancer cell line-associated states) or an allelic heterogeneity model where independent DNA
molecules primarily exhibit a similar degree of intermediate methylation (intrinsic to tumor cells,
Figure 6.3.7). To distinguish between these two scenarios, we used the single-read methylation
information that reflects single molecules within the bulk population profiled by WGBS. Read
methylation distributions across tumor type-specific hypermethylated CGIs demonstrated strong
enrichment of intermediate-methylated molecules within primary cancer samples of different
types (Figures 6.3.7, 6.3.8 and C.2.8). Somatic cells and cell lines also exhibit read-level methy-
lation distributions consistent with their assignments, with the majority of reads either being
fully unmethylated or fully methylated, respectively (Figures 6.3.7, 6.3.8 and C.2.8).

To further strengthen the observation that intermediate CGI methylation is an intrinsic form of
regulation within primary tumors and not the consequence of cellular heterogeneity, we mea-
sured the methylation variation across independent molecules (sequencing reads) using DNA
methylation entropy, which examines the configuration of methylated and unmethylated CpGs
on the same read in a given sequence context (see chapter 4). Again, methylation entropy levels
are highly consistent with our global landscape assignments, with the somatic-enriched CGIlow

state showing low entropy and methylation, primary-enriched CGIint states showing high en-
tropy and cell line-enriched CGIhigh states returning to a lower entropy but high methylation
state (Figure 6.3.9).
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Figure 6.3.6: a) Relation of the median methylation of solo-WCGW CpGs in common
PMDs and hyper CGIs per WGBS and array sample colored by DNA methylation state
defined by consensus clustering. b) Distribution of DNA methylation states across healthy,
tumor, and cell line samples for the WGBS and array cohort. c) Genome browser track of
the PAX2 locus showing exemplary WGBS samples for all five methylation states identified
by consensus clustering. d) Schematic of the four main DNA methylation landscapes
that can be observed across somatic, tumor, and cell line samples. e) Chromosome-scale
heatmap of the average methylation of the WGBS cohort along chromosome 16p (100
kb tiles).

124



Figure 6.3.7: a) Schematic of cellular versus allelic forms of DNA methylation hetero-
geneity as they could contribute to intermediate DNA methylation observed in primary
tumors. Cellular heterogeneity reflects the mixture (or contamination) of cells with dis-
tinct methylation patterns at individual CGIs, while allelic heterogeneity is defined by
stochastic methylation that spans the majority of molecules within the population. b)
Cumulative read-level methylation distributions across hyper CGIs within healthy colon
tissue, primary tumors, and cell lines. Lines reflect the median, 25%, and 75% quantile
across CGIs. c) Cumulative read-level methylation distributions across hyper CGIs for all
healthy, tumor, and cell line samples (lines reflect the median).

Figure 6.3.8: Genome browser tracks of read-level methylation across SIM2 and DM-
RTA2 loci for exemplary WGBS samples associated with different states. In addition to
the population average CpG methylation rates (black), the methylation distributions of
the underlying single reads are shown, confirming the substantial enrichment of inter-
mediately methylated DNA molecules within primary tumor samples compared to either
healthy samples or cell lines.
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Figure 6.3.9: a) Boxplots of the average methylation entropy across hyper CGIs for sam-
ples associated with the five different DNA methylation states. The entropy is highest
for samples associated with intermediate CGI methylation, which are primarily primary
tumor samples. b) Scatterplots showing the relationship between mean CpG methylation
and mean methylation entropy at hypermethylated CGIs for healthy tissues, correspond-
ing cancer samples, and cell lines.

6.3.4 The effect of tumor purity on DNA methylation levels

All samples selected for this study were reported to have a tumor purity of ≥ 80% based on
pathology (WGBS) or consensus purity prediction (450k array). Nonetheless, we wanted to ad-
dress the effects of tumor purity on the assignment of individual primary samples to a given
“DNA methylation landscape” in comparison to purer cancer cell lines. For this purpose, we
made use of high-purity T-ALL and matching T cell samples and performed an in silico mixing
experiment where sequencing reads from tumor and healthy cells were combined at different
concentrations reflecting different artificial purities. Due to the large range of CGI methylation
levels observed in T-ALL (see chapter 5), we were able to select one T-ALL sample with interme-
diate and one with extremely high, cancer cell line-like CGI methylation levels (Figure 6.3.10).
Notably, even at purities far lower than reported for our tumor samples, our entropy-based results
showed high consistency between our primary WGBS cohorts and the intermediate methylation
spike-in. In contrast, spike-in with an extremely hypermethylated sample showed much lower
entropy-based values than those observed for our primary data cohort. This suggests that despite
potential contamination, intermediate methylation observed in our tumor samples does not stem
from a cellular mixture of somatic and cancer cell line-like cells (Figure 6.3.10).

An analysis comparable to read level-based metrics cannot be performed for 450k arrays due to
the nature of the technology (see section 2.6). Therefore, we employed an aggressive strategy
to correct methylation levels according to the reported purity for both hyper CGIs and PMDs. As
somatic cell contamination would cause the underestimation of hyper CGI and overestimation
of solo-WCGW CpG (PMD) methylation levels, we corrected the methylation measurements for
primary solid tumor samples by assuming that healthy cells would be completely unmethylated
at CGIs and fully methylated elsewhere (Figure 6.2.3). Although very likely to overestimate the
effects of cellular contamination, these corrections allowed us to evaluate how much closer pri-
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Figure 6.3.10: Boxplots showing the methylation entropy (top), the fraction of discor-
dant reads (middle), and methylation (bottom) per 4-mer in hyper CGIs) for a) healthy
and tumor samples as well as b) an in silico mixing experiment mimicking the effect of
different purity levels on the three measurements (see section 6.2.5).

mary tumors could get to levels observed in cell lines (primarily the inverse bimodal PMDlow,
CGIhigh landscape). After correction, we reassigned our WGBS and array cohort samples using
the revised methylation measurements for hyper CGIs and PMDs (Figures 6.3.11 and C.2.9).
Only a minority of samples changed their state compared to their original assignment, and these
were not always moved into regimes consistent with cancer cell line signatures (20% of array
tumor samples were assigned to a different state, 7% were assigned to a PMDlow CGIhigh, and
7% were assigned to a PMDhigh CGIhigh landscape). Moreover, samples that changed their as-
signment were generally characterized as being on the border between states and were assigned
with lower probability pre- and post-correction (Figure C.2.9). Although the assignment of solid
primary tumors to cancer cell line-enriched states increases slightly, the distribution of primary
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Figure 6.3.11: a) Distribution of solo-WCGW CpG and hyper CGI methylation before
and after stringent tumor purity correction demonstrates minimal changes to the overall
landscape (solid tumors, WGBS cohort). Violin plots are colored by the assigned DNA
methylation state pre- and post-correction (left and right side of each violin plot, respec-
tively). b) Distribution of DNA methylation states across solid tumor samples before and
after tumor purity correction compared to cancer cell lines (WGBS and array cohort).

tumors across states still differs greatly in comparison to cancer cell lines 6.3.11. Together, these
results highlight that stochastic, intermediate methylation is intrinsic to tumor cells and that
the observed differences in DNA methylation landscapes between tumors and cell lines are not
mainly an effect of reduced tumor purity.

6.3.5 Intermediate DNA methylation levels across single tumor cells

To consolidate our observations of intra-tumor DNA methylation heterogeneity, we examined
a previously published cohort of 10 colorectal cancer patients where the methylation status of
single cells was profiled at different positions along the tumor. Of these 10 tumors, a range
of six to 142 cells were profiled from up to six distinct positions (ranging from one to 50 cells
per tumor site). In order to mimic the detection of hypermethylated CGIs in bulk tumors, we
generated “pseudo bulk” samples per patient using the average methylation across healthy or
tumor cells per CGI. These pseudo bulk samples group closely to actual bulk methylomes from
colon cancer patients (WGBS), verifying this approach (Figure 6.3.12). We identified between
702 and 1,795 hypermethylated CGIs per patient, which showed the same enrichment for PRC2
as found in bulk cohorts (Figure 6.3.13). When examining CGI and PMD methylations levels
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Figure 6.3.12: Heatmap showing the clustering of WGBS and single-cell WGBS (pseudo
bulk) patients based on the union of hypermethylated CGIs defined for each colon cancer
patient (single-cell WGBS cohort). Pseudo bulk samples group closely to the colon cancer
patients profiled with WGBS.

of single cells from all 10 patients, we observed a similar departure from normal as seen in the
pseudo bulk samples, including de novo methylation of CGIs and loss of PMD methylation that
resulted in intermediate methylation levels (Figure 6.3.13). For the majority of patient tumors,
single tumor cell methylomes group closely together by these metrics with minimal variation
between one another (Figures 6.3.13 and 6.3.14). When inspecting the single-cell methylation
levels across hyper CGIs defined on the pseudo-bulk, we observed that single cells consistently
methylate targets to similar degrees with minor deviations, which indicates shared regulation at
these sites across tumor cells (Figures 6.3.14 and C.2.10).

In order to measure the consistency of DNA methylation levels across the spatial tumor organi-
zation, we calculated the within-sampling site and across-sampling site distances of hyper CGI
and PMD methylation for all 10 patients (Figure 6.3.15). Although this test confirms the con-
sistency of methylation signatures across most cells, regardless of sampling site, we observed
instances where different tumor regions show deviating hyper CGI or PMD methylation patterns
(Figure 6.3.15). In patients 4 and 11, clonal heterogeneity at hyper CGIs can be detected, which
nonetheless affects the minority of sampled cells within each tumor ( 9 and 8% of cells with a
difference > 2 between within and across sampling site distance for the two patients, respec-
tively). However, these clonal patterns remain in an intermediate methylation regime, reflecting
the expected primary solid tumor methylation landscape (Figure C.2.11). Additionally, clonal
heterogeneity at hyper CGIs does not seem to be coupled with heterogeneity across PMDs. Here,
patients 1, 13, and 14 exhibit mostly sampling site-specific differences, where PMD methylation
levels drop within a fraction of tumor cells approaching a PMDlow state (Figures 6.3.15, 6.3.16
and C.2.12). Notably, in these cases, the consistent genome-wide loss of PMD methylation across
regions appears to be more reflective of a cellular adaptation rather than a gradual stochastic
loss linked to cell divisions. For example, when we compare the global CpG methylation levels of
PMDlow tumor fractions to other sampling sites, we see that the genome overall is comparatively
hypomethylated (Figure 6.3.16). However, even within these PMDlow cell subpopulations, CGI
methylation levels remain stable and resemble the remaining cells of the tumor (Figure 6.3.16).
Based on most of our data, the maintenance of intermediate methylation, therefore, appears to
be a primary event during tumorigenesis.
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Figure 6.3.13: a) Comparison of the median methylation of 100 kb tiles in common
PMDs and hyper CGIs per healthy and tumor cell measured for 10 colon cancer patients.
Triangles mark the corresponding pseudo bulk measurements generated in silico. b) The
same scatterplot as in a) colored specifically by cells of each patient. Similar to the WGBS
cohort, hyper CGIs are frequently targeted by PRC2 in hESCs (pie charts).

6.3.6 DNA methylation across tumor stages and metastases in vivo

Our analyses highlighted the striking stability of an intermediately methylated epigenome within
most primary tumors, a signature that appears to be commonly lost as cells adapt to culture. To
proxy the effects of cell division and genetic bottlenecks, we next investigated the stability of
intermediate DNA methylation levels across clinical stages and metastasis. For this purpose,
we made use of the 450k array cohort, which includes samples from different tumor stages as
well as metastases. When considering the methylation status of variable CGIs, we find healthy,
tumor, metastasis, and cell line samples largely group closely according to their tissue-of-origin
signature (Figures 6.3.17 and C.2.13, samples visualized using Uniform Manifold Approximation
and Projection). Within these subclusters, samples are distributed with healthy and cell line
samples at the endpoints, which primarily reflects the overall number of hypermethylated CGIs
per sample (Figures 6.3.17 and C.2.13). This is consistent with our findings in section 6.3.1
that different tumor types have the potential to methylate a distinct subset of CGIs from the
full set that can be methylated in cancer with varying levels and additional targets from primary
samples to cell lines. When inspecting hyper CGI and PMD methylation split by clinical stage and
metastasis, we observed that the overall levels are mostly stable across tumor progression and
exhibit consistent differences compared to healthy somatic cells but also cancer cell lines (Figures
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Figure 6.3.14: a) Pairwise Euclidean distance between healthy and tumor cells per pa-
tient. Within patients, the largest difference in methylation pattern exists between normal
and tumor cells, whereas healthy or tumor cells show comparatively minimal differences
between cells of the same type. b) Cumulative single-cell-level methylation distributions
for hyper CGIs within two exemplary patients. Lines reflect the median, 25%, and 75%
quantile across CGIs. c) Heatmaps of hyper CGI methylation across healthy and tumor
cells for two exemplary patients (1 and 10). The methylation status of CGIs within single
cells is largely similar to one another and maintained at intermediate levels. d) For all
10 patients, the fraction of cells for which hypermethylated CGIs are called methylated
(restricted to cells for which the CGI is covered).

6.3.18 and C.2.14). These observations do not seem to support a model in which CGI hyper- and
PMD hypomethylation accumulate as a function of increasing numbers of cell divisions that can
be associated with later tumor stages and metastases.

To further deepen our understanding of DNA methylation distributions in primary tumors and
metastases, we re-examined the eight colorectal cancer patients for which single-cell measure-
ments included one or several distinct well-sampled metastases. Consistent with our primary
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Figure 6.3.15: Pairwise Euclidean distance between tumor cells within or across inde-
pendent sampling sites for each patient calculated based on hyper CGI (left) and PMD
(right) methylation. CGIs within and across sampling sites are generally homogeneously
methylated across sites, while some patients exhibit heterogeneity in PMD methylation
that corresponds to an adaptive loss of methylation within specific subclones.

Figure 6.3.16: a) Chromosome-scale heatmaps of the average methylation across cells
of two exemplary patients (patients 1 and 10) along chromosome 16p (100 kb tiles).
For patient 1, a subset of cells from a specific sampling site exhibits a sharp drop in
PMD methylation levels. b) 100 kb tile-wise density plot comparing the methylation of
different sampling sites in patient 1. The loss of methylation across cells from the PT2
site seems to affect the whole genome, with the exception of most hyper CGIs that remain
consistently intermediate.
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Figure 6.3.17: Uniform manifold approximation and projection (UMAP) plot of 705
healthy, 3,681 tumor, 137 metastasis, and 507 cell line samples based on the binary
methylation status of 23,345 commonly covered CGIs (≤ 0.2 unmethylated,> 0.2 methy-
lated, array cohort).

Figure 6.3.18: Top: Median hyper CGI and solo-WCGW CpG methylation across sam-
ples per type and separated by tumor stage or condition. Bottom: Distance of tumor,
metastasis, and cell line to healthy samples based on hyper CGI and solo-WCGW CpG
methylation.
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Figure 6.3.19: Relation of the median methylation of 100 kb tiles in common PMDs and
hyper CGIs across single-cells as in Figure 6.3.13 including profiled metastases.

tumor analysis (Figure 6.3.13), we find that metastatic cells reside within the same intermedi-
ate state as the primary tumor population average (Figure 6.3.19). Moreover, when examining
hyper CGI and PMD methylation independently, we mostly see minimal deviation between cells
at either the PMD or CGI level, which also extends across multiple independent metastases of
the same patient from distinct tissues (Figures 6.3.20 and C.2.15). Across these eight patients,
we find a single example where a metastasis displays a CGI methylation pattern consistent with
cellular heterogeneity: a lymph node metastasis of patient 4 closely matches a subclonal pattern
found within the primary tumor (Figures 6.3.20 and C.2.15). More generally, metastatic adap-
tations generally reflect changes that can also be found in the corresponding primary tumors,
including a loss of PMD methylation that does not affect intermediate CGI methylation levels
(see patient 11, Figures 6.3.20 and C.2.15). Taken together, our results confirm the stability of
intermediately methylated DNA methylation landscapes over the duration of tumorigenesis, in-
cluding across aggressive cellular bottlenecks such as metastases. Our investigation of single-cell
methylation data confirms that predominantly similar methylation levels are maintained across
many cells and large spans of tumor development with only minimal cellular heterogeneity. A
key exception appears to be the loss of methylation in PMDs in a subset of cells of some tumors,
which does not seem to reflect the accumulation of stochastic, gradual loss over time but in-
stead is reminiscent of a global adaptation as it does not extend to intermediately methylated
CGIs.

6.3.7 Associating cell line methylation landscape with additional features

In contrast to primary tumors, cancer cell lines frequently present with one of two alternative
DNA methylation landscapes that are rarely found in vivo. We aimed to identify factors associated
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Figure 6.3.20: a) For patient 10, heatmaps of hyper CGI and chromosome-scale methy-
lation across primary tumor cells and cells of a lymph node metastasis. Different sam-
pling sites are indicated. b) Pairwise Euclidean distances between primary tumor cells
and their associated metastases for all eight colon cancer patients for which sufficient
metastatic cells were collected. Overall, single tumor cells display remarkably similar
methylation profiles both within and across sampling sites, and these trends also hold
when multiple independent metastases are considered (see patients 1 and 15). Only
a single sufficiently sampled tumor (patient 4, see c) demonstrates a degree of cellular
heterogeneity that gives rise to a metastatic subclone. Pairwise distances for PMD methy-
lation (bottom) highlight three instances where global methylation levels drop, including
two contributing to metastases (see an example in d).

with either of these landscapes to understand what defines the epigenetic trajectory of a cancer
cell line. For this purpose, we focused on the larger 450k array cohort and cell lines that were
assigned to their respective state with a high probability (≥ 0.7, Figure 6.3.21). We first inves-
tigated the enrichment of different cancer types in DNA methylation landscapes and found that
many types seem biased towards one of the two main states (Figure 6.3.21). Specifically, T-ALL
and KIRC cell lines are significantly associated with the extreme hypermethylation state, while
GBM and LIHC are significantly associated with the inverse bimodal state (two-sided Fisher’s
exact test, Figure 6.3.21, Table C.2.1). When comparing the fraction of cell lines that are ex-
tremely hypermethylated with the fraction of primary tumors in a PMDhigh state per cancer type,
we observe a positive correlation with the exception of LAML, brain and thyroid tumors (Figure
6.3.21). This indicates that cell lines derived from tumor types with relatively high PMD methy-
lation levels tend to exhibit high genome-wide methylation levels and less frequently transition
to an inverse bimodal state. Different culture conditions do not seem to influence the separation
of cell lines into different states but are most strikingly associated with tumor type (leukemia vs
solid tumor, Figure C.2.16).
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Figure 6.3.21: a) Fraction of cell lines in different DNA methylation states considering all
samples and samples with high k-NN probability (≥ 0.7). Both panels are limited to the
tumor types with at least eight cell lines after selection by k-NN probability. b) Fraction of
cell lines in the extreme hypermethylation compared to the inverse bimodal state as the
two dominant in vitro DNA methylation landscapes (excluding intermediate cell lines). T-
ALL and KIRC are significantly associated with the extreme hypermethylation state, while
GBM and LIHC are significantly associated with the inverse bimodal state (two-sided
Fisher’s exact test). The horizontal line indicates the overall fraction of cell lines in an
extreme hypermethylation state across the cohort when only considering PMDhigh CGIhigh

and PMDlow CGIhigh cell lines. c) Fraction of cell lines in an intermediate state compared
to the extreme hypermethylation and inverse bimodal state. No tumor type is significantly
associated with the intermediate state compared to the two other states, which could also
be impacted by the overall low number of intermediate cell lines (two-sided Fisher’s exact
test). The horizontal line indicates the overall fraction of intermediate cell lines across
the cohort. d) Scatterplot comparing the fraction of tumors in a PMDhigh state with the
fraction of cell lines in a PMDhigh CGIhigh (left) and PMDlow CGIhigh (right) state per tumor
type (considering all cell line samples in comparison to b). Except for LAML, brain, and
thyroid tumors, the fraction of tumor samples in a PMDhigh state correlates well with the
fraction of cell lines in an extreme hypermethylation state (Pearson’s r = 0.49 with and
0.94 without the exceptional types) and anti-correlates with the fraction of cell lines in an
inverse bimodal state (Pearson’s r = -0.52 with and -0.88 without the exceptional types).
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We hypothesized that commonly mutated genes might be linked to the establishment of differ-
ent DNA methylation landscapes in cancer cell lines. Therefore, we compared the frequency of
mutations in known cancer drivers (the Cancer Gene Census defined by COSMIC) and epige-
netic regulators across cell lines associated with different methylation states (data from Iorio et
al. [279], Figures 6.3.22 and C.2.18). We observed that some genes are more frequently mutated
in either the extreme hypermethylation or the inverse bimodal state. This includes the PRC2 com-
ponent EZH2 as well as H3K4me3 demethylases that are more frequently mutated in cell lines
with extreme hypermethylation, while nuclear receptor coactivators seem to be rather targeted
in inverse bimodal cell lines. However, none of these are significantly associated with landscape.
Instead, many are linked to the underlying tumor types, which include known driver genes such
as TP53, APC and KRAS (two-sided Fisher’s exact test, 6.3.22). More generally, we found that
extremely hypermethylated and inverse bimodal lines are prone to an increase in genetic mu-
tations per line compared to the few intermediate cell lines, potentially indicating a tendency
towards higher mutational load (Figure C.2.17). However, these trends were subtle. More strik-
ingly, we investigated our WGBS cohort for changes in copy number variation and found that
cell lines in an inverse bimodal state show greater variance in chromosomal amplifications and
deletions compared to either primary tumors or other cell lines (WGBS cohort, Figure 6.3.23).
DNA methylation plays a role in genome stability, suggesting that the drastic decrease in PMD
methylation levels might expose the genome to chromosomal aberrations.

Lastly, we used the extensive drug screens of cell lines provided by the GDSC to identify drugs
that might have a differential effect on cell lines with specific methylation states. We identified
47 significant associations of methylation state with drug response (measured by IC50) using lo-
gistic regressions (Figures 6.3.24 and C.2.19). Of these, most drugs displayed an increased IC50
(and therefore relative resistance) related to the inverse bimodal state. Only for three drugs an
increase in resistance was associated with the extreme hypermethylation state. However, in line
with our previous findings, these effects seem to be mainly linked to the underlying tumor types
that are associated with the different states: no significant associations between DNA methy-
lation state and drug response were identified when type was added as a random effect to the
regression models (see section 6.2.8). Together our findings highlight an association between in
vitro DNA methylation landscapes and the tumor type of origin, which is reflected by mutational
signatures and drug response.

6.4 Discussion

Cancer cell lines have long been known to exhibit more extreme methylation levels at selected
CGIs and PMDs compared to primary tumors [146,147]. However, a clear genome-wide assess-
ment of the consistency and genomic nature of these alterations across commonly established
cancer cell lines and compared to a large set of primary tumors has not been undertaken. Here,
we showed that while most tumors display intermediate CGI and PMD methylation levels, cancer
cell lines converge not to one but two main alternate DNA methylation landscapes: an inverse
bimodal landscape with high CGI and low PMD methylation levels as well as an extreme hyper-
methylation state that affects CGIs and PMDs alike (Figure 6.4.1). Only a minority of cell lines
seem to be able to maintain intermediate DNA methylation levels. Using read-level analysis and
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Figure 6.3.22: Overview of the mutational landscape across cancer cell lines showcasing
commonly mutated cancer driver genes and epigenetic regulators (see section 6.2.8).
Top: The log2 ratio indicates the enrichment of mutations in cell lines with an extreme
hypermethylation state over cell lines from an inverse bimodal state. Adjusted P-values
were obtained using two-sided Fisher’s exact tests. Middle: Fraction of cell lines mutated
per state and type for each gene. Bottom: Mutation frequency of cancer driver genes
previously reported across primary tumor cohorts and pan-cancer [304–306].

Figure 6.3.23: The total size of chromosomal aberrations separated into amplifications
and deletions across WGBS healthy, tumor, and cell line samples separated by state. Cell
lines in an inverse bimodal state show a greater variance in the amount/size of chromo-
somal aberrations.
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Figure 6.3.24: Odds ratio per drug with respect to the DNA methylation landscape (see
section 6.2.8). Values > 1 indicate that cell lines are more likely to be in an inverse
bimodal state with growing IC50 (increased drug resistance), while values < 1 indicate
that cell lines are more likely to be in an extreme hypermethylation state with increasing
IC50.

single-cell WGBS data sets, we showed that intermediate methylation is an intrinsic property of
most primary tumors that is reflective of the majority of tumor cells and cannot be explained
by diminished tumor purity. This genome-wide intermediate methylation is propagated through
advanced cancer stages and metastasis, suggesting that extended proliferation in vivo generally
does not drive DNA methylation to the extreme levels observed in culture. Finally, we uncovered
a type-dependent relationship between cell line states and PMD methylation levels in primary
tumors, which was verified by mutational profiles and drug sensitivity patterns.

Although the predominant cell line states are rarely observed in vivo, some exceptions exist where
primary tumors display similar methylation levels. T-ALL has been reported to exhibit extreme
hypermethylation of CGIs in a subset of patients, while PMDs lose almost no methylation com-
pared to healthy precursor T cells (see chapter 5) [238]. In line with these findings, T-ALL patients
in our cohort are frequently associated with the extreme hypermethylation state, similar to their
respective cell lines. Additionally, some tumor types, such as LIHC, frequently exhibit relatively
low PMD methylation levels; however, CGI methylation remains intermediate in contrast to the
inverse bimodal state observed in many cell lines. This suggests that extreme hypermethylation
of CGIs coupled with almost complete loss of methylation in PMDs mainly represents an artifact
of cell culture as suggested previously [147]. It remains to be examined whether the extreme
hypermethylation state in a subset of cancer cell lines is linked to the observed landscapes in
T-ALL patients or whether these represent distinct forms of epigenetic regulation with a shared
phenotype.

Using a colon cancer cohort profiled with single-cell WGBS, we showed that intermediate DNA
methylation in primary tumors is largely consistent per cell across CGIs and PMDs. In addition
to the relatively sparse single-cell data, our read-level analysis of contiguous CpGs on the same
molecule verifies the intrinsic nature of intermediate methylation at CGIs that is characterized
by a highly entropic state. High DNA methylation entropy reflects the presence of many distinct
epialleles within the population. The stability of these genome-wide intermediate methylation
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landscapes through cancer progression and metastasis suggests a different type of regulation
compared to previously suggested models of stochastic methylation gain or loss linked to mitotic
cell divisions. The propagation of stochastic methylation patterns could be facilitated by ongoing
methylation turnover, which might be impaired over time in culture for cell lines with an inverse
bimodal landscape.

The near universality of intermediate methylation at CGIs and PMDs across cells in primary tu-
mors seems striking given the clonal evolutions within primary tumors [309]. Within the single-
cell WGBS cohort, we observed few cases of seeming clonal adaptation at CGIs. However, the
CGIs targeted for hypermethylation in each clone and the associated cells remained in an in-
termediate regime. This suggests that while the adaptation of clones for selective advantage
is possible, this does not interfere with the general nature of DNA methylation across primary
tumor cells. Additionally, we observed rare cases where cells of a tumor sampled at a specific
site transitioned to a PMDlow state in comparison to other sampling sites. The loss of methyla-
tion in comparison to other measured sites appeared genome-wide with the exception of hyper
CGIs that remained intermediately methylated. Additionally, this landscape was not necessar-
ily propagated to metastasis derived from the respective tumors. Together, these observations
rather point to a global adaptation of a specific clone within the tumor in contrast to a purely
proliferation-related loss of methylation (Figure 6.4.1). It also suggests that intermediate DNA
methylation likely occurs early in tumorigenesis as it is largely shared across cells, with global
adaptations only affecting a subset of cells if present.

Given the data at hand, we were not able to investigate whether primary tumors and cancer cell
lines are subject to different types of DNA methylation regulation, how the two main in vitro
landscapes are established, and what potential consequences could arise with respect to targeted
therapies that rely on established or newly generated cell lines for drug screens. Additionally,
given the nature of the cohorts and the bias of certain tumor types towards one of the two land-
scapes, a much larger sample size and different sampling strategy would be needed to investigate
molecular differences between cell lines of the same type but different DNA methylation states.
This could help to identify molecular markers that might be linked to one of the two main cell
line landscapes independent of the tumor type-specific bias that limits this pan-cancer study. In
this line, we also cannot link our observations of different DNA methylation landscapes across
tumors and cell lines to previous studies reporting changes in chromatin modifications during tu-
morigenesis (H3K27me3, H3K9me3) [4, 5, 126, 128]. Future studies with more comprehensive
and evenly sampled cohorts would be needed to uncover the underlying regulatory principles of
the different DNA methylation landscapes and potential effects when using cancer cell lines as
model systems.
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Figure 6.4.1: a) Single-cell and read-level analyses indicate that primary tumors are
largely characterized by the maintenance of intermediate hyper CGI and PMD methy-
lation levels. The transition to culture, however, directs cells towards either an extreme
inverse bimodal or globally hypermethylated state, which seems to be tightly linked to the
tumor type of origin. b) The intermediate DNA methylation levels in most primary tumors
are intrinsic to the underlying cell population and cannot be explained by decreased tu-
mor purity alone. The prevalence of highly similar CGI methylation patterns across cells
corresponds to minimal cellular heterogeneity for most targets. This indicates that this
pattern represents an ancestral state that precedes subclonally acquired mutations. Cells
may acquire an additional epigenetic adaptation that drives global methylation levels to
lower values, but the conservation of CGI targets would indicate that this represents a
secondary event. It remains to be seen if this adaptation stems from genetic mutations
within a specific pathway. This figure was generated with the help of Dr. Zachary D.
Smith.

141



142



Chapter 7

Concluding remarks

This thesis highlights the importance of understanding the underlying heterogeneity of population-
wide DNA methylation measurements. For this purpose, chapter 4 presented a new application to
make read-level methylation metrics easily accessible from bisulfite sequencing data sets. Chap-
ter 5 and 6 showcased what we can learn by considering fragment- or cell-wise methylation
patterns, including the behavior of tumors or cells in culture. Average methylation rates remain
a robust measure and our most important tool when defining DNA methylation landscapes or
identifying differentially methylated regions between samples, such as patients or cell types. Av-
erage methylation rates are also robust across scales and can describe features from single base
pairs to megabase-level domains. Nonetheless, average methylation on its own can be misleading
without additional interpretation, in particular using methods such as those described in this the-
sis. This is most notably the case with respect to relatively intermediate DNA methylation levels,
as the distinction between cellular and allelic heterogeneity could have implications regarding
the underlying form of genome regulation or the complexity of the sample. Thus, considering
the methylation levels per molecule in addition to the average across the population could lead
to important insights that might be missed otherwise.

The key advantage of read-level methylation metrics, as presented in this thesis, is that they
can be extracted from already existing data sets. Whenever a bulk population is profiled us-
ing whole-genome or reduced representation bisulfite sequencing, these measurements can be
computed and integrated with the analyses of the average methylation rates. It is, therefore,
easily accessible, and its use should be generally considered by sequencing-based DNA methyla-
tion studies. However, as discussed in chapter 4, these metrics are limited to CpG-rich regions,
and fragments across different loci cannot be connected to each other as the cellular identity of
each fragment is unknown. Therefore, in the future, it will become more and more important
and valuable to generate high-quality single-cell methylation data sets. Currently, the genera-
tion of high-quality single-cell data sets is still costly and has comparatively low throughput if
high-coverage methylomes should be produced. Additionally, single-cell data sets cover fewer
CpGs per cell than what would be expected from a bulk experiment due to the more problematic
effect of degradation after bisulfite conversion (more material is available for bulk experiments
to compensate for this) [170]. Due to the high costs, many studies pivot to single-cell RRBS,
which again enriches for CpG-dense regions and therefore covers even fewer CpGs compared
to the respective bulk sequencing. However, chapter 6 showed that a substantial amount of in-
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formation could be extracted already from higher-coverage single-cell WGBS data sets, which
includes regions with relatively low CpG density, such as PMDs. Recent studies have started to
address the need for cheaper, high-coverage single-cell DNA methylation solutions, which will
lead to better opportunities to generate such cohorts in the future [310].

Long-read sequencing represents an additional branch that could be of interest to future studies
analyzing read-level methylation. Although, similar to short reads, it is not possible to connect
different reads to the same cell, the length of the reads themselves enables the analysis of read-
wise methylation on a different level compared to classic next-generation sequencing data sets.
Reads that span from multiple kilobases up to megabases of the genome can be used to link the
methylation of different regulatory elements within a single allele and also span large parts of
CpG-poor partially methylated domains. For this purpose, new read-level methylation metrics
would need to be developed that can account for the longer reads and the possibility of drop-outs,
which reflect a low likelihood during methylation calling and might therefore lead to missing CpG
measurements within a read [311]. Excitingly, in addition to cytosine methylation, the long-read
technology developed by Oxford Nanopore can capture other base modifications, which could
be integrated into future studies. However, improved base calling algorithms would be required
for this purpose as currently only a few modifications, such as 5hmC and N6-methyladenosine
(m6A), can be reliably detected in addition to regular 5mC [312]. At the same time, Nanopore se-
quencing can already be coupled with chromosome conformation capture techniques. This could
open interesting avenues also for read-wise methylation measurements, such as in the context of
enhancer-promoter interactions and the accompanying methylation patterns [313].

Using read-level and single-cell methylation measurements, chapter 6 introduced that intermedi-
ate, stochastic DNA methylation is intrinsic to most tumor cells in vivo, a feature that is commonly
lost in culture. Because this landscape seems to be almost ubiquitously observed across cells of
the same tumor and robustly maintained in vivo, the question arises whether this represents a
distinct form of genome regulation, and if so, why it is so faithfully propagated. The stochastic
methylation observed in tumor cells could be a footprint of consistent DNA methylation turnover,
which would require a constant targeting of the whole genome by de novo methylation enzymes.
From the perspective of potentially desired genomic instability or stable silencing of tumor sup-
pressor or other genes, a truly demethylated genome or extremely high methylation of promoter
CGIs, such as those observed in culture, seem more beneficial and easier to maintain. Therefore,
further investigation of the differences between primary tumors with exceptional methylomes,
such as ALL (chapter 5), other tumor types, and cancer cell lines could help disentangle why
most tumors maintain their genome in an intermediately methylated state. Additionally, explor-
ing the parallels and similarities of the primary tumor DNA methylation landscape with different
physiological processes, such as aging and extraembryonic development, could help elucidate the
underlying regulation and potential purpose of this unusual methylome. Especially in light of
more and more epigenetic therapies that are tested and admitted to treating tumors in patients,
including inhibitors to DNA methylation transferases, it seems crucial to consistently improve
our understanding of the regulation and function of the cancer epigenome [314].
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Appendix A

Lambda3

This appendix contains additional figures and tables referenced in chapter 3.

A.1 Query data sets

The query data sets used to test and evaluate the performance of Lambda3’ nucleotide mode were
sampled as follows: Query data sets were downloaded from their respective sources. The data
sets q1 and q2 were obtained from https://frl.publisso.de/data/frl:6425521/plant_associated/
short_read/rhimgCAMI2_sample_0_reads.tar.gz and https://frl.publisso.de/data/frl:6425521/
strain/short_read/strmgCAMI2_sample_0_reads.tar.gz, respectively. The data sets q3 and q4
were obtained from the Sequencing Read Archive (accession numbers ERR1877758 and SRR6043351).
Only the first read files were used to mimic a single-end sequencing experiment. For q5, we ob-
tained multiple bisulfite sequencing experiments of different fungi species from the Gene Expres-
sion Omnibus (accession numbers GSM3074692, GSM3074693, GSM3074694, GSM3074695,
GSM3074696, GSM3074705, GSM3074706, GSM3074711, GSM3074716, and GSM3074718),
which were combined and randomly samples. The data sets q1-q3 were in silico bisulfite con-
verted as described in section 3.4. All FASTQ files were subsequently converted to FASTA format
and the first 200 MB were extracted as test data sets.

A.2 Supplementary figures and tables
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Parameter
Nucleotide mode Bisulfite mode

Default Sensitive Fast Default Sensitive Fast

seed length (search0) 14 14 - 17 16 -

seed offset (search0) 9 3 - 10 8 -

seed delta (search0) 0 0 - 0 0 -

seed length 14 14 14 17 15 17

seed offset 7 3 9 10 10 10

seed delta 1 1 0 1 1 0

pre-scoring threshold 1.4 1.5

bit score threshold 46, 46, 47 (q1, q2, q3) 68, 68, 68 (q1, q2, q3)

Table A.2.1: Parameters selected for the bisulfite mode in comparison to the regular
nucleotide search. The keyword "search0" indicates that these were parameters selected
for the first round of the iterative search described in section 3.2. For the fast modes,
only one iteration of the search is performed.

Figure A.2.1: Bar plots visualizing the fraction of queries found by Lambda3’s nucleotide
mode that were also found by the bisulfite mode separated by profile (default, fast, and
sensitive). Additionally, the fraction of queries is visualized for which the best hit overlaps
with the best hit located by the respective profile of Lambda3’s nucleotide mode.
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Appendix B

Acute lymphoblastic leukemia

This appendix contains additional methods, figures, and tables referenced in chapter 5.

B.1 Supplementary methods

B.1.1 Library preparation

Whole-genome bisulfite sequencing

WGBS libraries from patient samples and ALL cell lines (except Jurkat and DND41) were gen-
erated at the St. Jude Children’s Research Hospital. 200 ng of genomic DNA was bisulfite con-
verted, including 0.2% of DNA from the Lambda phage. Libraries were generated according
to the manufacturer’s instructions using the TruSeq DNA Methylation kit. Four independent li-
braries per sample were prepared and sequenced on a HiSeq 2000, generating 101 base pair
paired-end reads. WGBS libraries for Jurkat and DND41 were generated at the Max Planck Insti-
tute for Molecular Genetics by Dr. Alexandra L. Mattei and the Sequencing Core Facility. Genomic
DNA was extracted using the PureLink Genomic DNA Mini Kit, sheared, and bisulfite converted
using the EZ DNA Methylation-Gold Kit. Libraries were generated according to the manufac-
turer’s instructions using the Accel-NGS Methyl-seq DNA library kit. Per sample, one library was
prepared and sequenced on a NovaSeq 6000, generating 150 bp paired-end reads. On average,
536 million fragments were generated per sample.

RNA sequencing

RNA sequencing data sets of the cell lines Jurkat and DND41 were generated at the Max Planck
Institute for Molecular Genetics by Dr. Alexandra L. Mattei and the Sequencing Core Facility.
RNA was extracted using the Qiagen RNeasy Mini Kit, and RNA-Seq libraries were prepared using
the KAPA Stranded mRNA-seq Kit according to the manufacturer’s instructions. Libraries were
sequenced on a NovaSeq 6000, generating 100 bp paired-end reads. Transcriptome sequencing
of patients was carried out at the St. Jude Children’s Research Hospital as described previously,
and most data sets were already published in earlier studies (see section 5.2.1).
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B.1.2 Cell line experiments

Cell culture

Jurkat (DSMZ ACC 282) and DND41 (DSMZ ACC 525) cells were cultured at the MPIMG in
RPMI 1640 medium (Thermo Fisher 61870044) with 10% FBS. PEER (ACC6, DSMZ), PER-117
(Gift from Ursula Kees, Perth), MOLT-16 (ACC29, DSMZ), RPMI-8402 (ACC290, DSMZ), LOUCY
(ACC394, DSMZ), TALL-1 (ACC521, DSMZ), ALL-SIL (ACC511, DSMZ), NALM-6 (ACC128, DSMZ),
NALM-16 (ACC680, DSMZ), MHH-CALL-2 (ACC341, DSMZ), MHH-CALL-4 (ACC337, DSMZ),
and MUTZ5 (ACC490, DSMZ) were cultured at the St. Jude Children’s Research Hospital in RPMI
1640 medium containing 10% or 20% fetal bovine serum (HyClone), penicillin/streptomycin
(100 U/mL), and glutamine (100 µM). Cell identity was confirmed by short tandem repeat (STR)
profiling using a PowerPlex Fusion System (Promega). All of the cell lines were confirmed as
Mycoplasma spp. free using the Universal Mycoplasma Detection Kit (American Type Culture
Collection, Manassas, VA).

TET2 knockout in Jurkat cells

Jurkat cells were transfected with px458 (Addgene plasmid no. 48138) containing a guide RNA
(target sequence: CTTATGGTCAAATAACGACT [315]) targeting exon 3 of the TET2 gene and
expressing a GFP reporter. The transfection was carried out using the Amaxa 4D nucleofector X-
Unit (Lonza) following the manufacturer’s recommendations. GFP-positive cells were sorted by
FACS as single cells into a 96 well plate for clonal expansion and screening. Percentages of sorted
cells were analyzed using FlowJo (version 10.3). Disruption of the targeted locus was verified
by genotyping PCR and sanger sequencing (primer pair: forward GTCTGGTCAACAAGCTGCGC,
reverse AAAGCTGGGGTGTGGCTATC).

B.2 Supplementary figures and tables
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Figure B.2.1: Global average methylation per sample measured excluding CpGs in CGIs
for T-ALL samples split by sex (left) and age (right) of the patients.

CGI group/cluster p-value Effect size (Cramer’s V)

Low < 2.2 ∗ 10−16 0.23

Cluster 1 < 2.2 ∗ 10−16 0.38

Cluster 2 < 2.2 ∗ 10−16 0.67

Cluster 3 < 2.2 ∗ 10−16 0.69

Cluster 4 < 2.2 ∗ 10−16 0.18

High 1.69 ∗ 10−10 0.1

All covered < 2.2 ∗ 10−16 0.25

Table B.2.1: Change in chromatin state proportions of CGI clusters (Chi-squared test).
The p-value is shown as a measure of significance. Cramer’s V is shown as a measure of
the effect size.
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Figure B.2.2: Violin plots of HMDs and PMDs for each healthy and ALL sample.

Figure B.2.3: Violin plots of variable CGIs for each healthy and ALL sample.
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Variable row Variable column p-value

Sex T-ALL group (LM, IM, HM) 1

Age group T-ALL group (LM, IM, HM) 0.152

HOXA subtype (yes/no) T-ALL group (LM, IM, HM) 0.324

TLX3 subtype (yes/no) T-ALL group (LM, IM, HM) 0.343

HOXA or TLX3 subtype (yes/no) T-ALL group (LM, IM, HM) 0.03

NOTCH1 mutation (yes/no) T-ALL group (LM, IM, HM) 0.891

NRAS mutation (yes/no) T-ALL group (LM, IM, HM) 1

WT1 mutation (yes/no) T-ALL group (LM, IM, HM) 0.853

MED12 mutation (yes/no) T-ALL group (LM, IM, HM) 0.839

SUZ12 mutation (yes/no) T-ALL group (LM, IM, HM) 1

ETV6 mutation (yes/no) T-ALL group (LM, IM, HM) 0.272

FLT3 mutation (yes/no) T-ALL group (LM, IM, HM) 0.807

Sex T-ALL group (LM, HM) 1

Age group T-ALL group (LM, HM) 0.064

HOXA subtype (yes/no) T-ALL group (LM, HM) 0.282

TLX3 subtype (yes/no) T-ALL group (LM, HM) 1

HOXA or TLX3 subtype (yes/no) T-ALL group (LM, HM) 0.119

NOTCH1 mutation (yes/no) T-ALL group (LM, HM) 1

NRAS mutation (yes/no) T-ALL group (LM, HM) 1

WT1 mutation (yes/no) T-ALL group (LM, HM) 1

MED12 mutation (yes/no) T-ALL group (LM, HM) 0.576

SUZ12 mutation (yes/no) T-ALL group (LM, HM) 1

ETV6 mutation (yes/no) T-ALL group (LM, HM) 0.471

FLT3 mutation (yes/no) T-ALL group (LM, HM) 1

Table B.2.2: Association of T-ALL subtypes and covariates (Fisher’s exact test). The first
two columns indicate the variables tested. The p-value is shown as a measure of signifi-
cance.
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Figure B.2.4: Standardized expression of T-ALL marker genes across T-ALL samples.

Figure B.2.5: Overrepresentation analysis of genes significantly correlated with global
or CGI methylation levels. Enriched GO terms are associated with B and T lymphocyte
development because of the overall higher methylation levels in T-ALL compared to B-
ALL.
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Figure B.2.6: Expression of DNMT3B isoforms across ALL patients. T-ALL patients ex-
press the catalytically active isoforms DNMT3B-001 and DNMT3B-002 in addition to the
catalytically inactive isoform DNMT3B-003.

Figure B.2.7: a) PCA based on the mean methylation of variable CGIs of precursor T cell
and T-ALL samples. T-ALL cancer cell lines are projected onto the PCA based on the same
features. b) PCA based on the methylation status (methylated/unmethylated) of variable
CGIs of precursor T cell and T-ALL samples. T-ALL cancer cell lines are projected onto the
PCA based on the same features.

Figure B.2.8: a) TET2 was targeted at exon 3 in Jurkat cells using a GFP-expressing Cas9
plasmid with a single guide RNA. Transfected Jurkat cells were sorted by GFP expression
using FACS, and single clones were picked, expanded, and screened by genotyping. b)
cDNA genotyping PCR results amplifying a region close to the cut site of the guide RNA
shows a product in wild type cells but not in the knockout. c) 7 kb insertion in Jurkat
cells at the guide RNA cut sites after TET2 knockout, which results in a premature stop
codon in exon 3.
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Appendix C

Cancer cell lines

This appendix contains additional methods, figures, and tables referenced in chapter 6.

C.1 Supplementary methods

C.1.1 Library preparation

Whole-genome bisulfite sequencing

The DNA was sheared in Covaris micro TUBE AFA Fiber Pre-Slit Snap-Cap tubes (SKU: 520045)
and cleaned up with the Zymo DNA Clean & Concentrator-5 kit (#D4013) following the manu-
facturer’s guidelines. Sheared gDNA was bisulfite converted following manufacturer’s guidelines
with the EZ DNA Methylation-Gold Kit (Zymo #D5005), and libraries were prepared using the
Accel-NGS Methyl-seq DNA library kit (Swift Biosciences, #30024-SWI). Libraries were cleaned
using Agencourt AMPure XP beads (Beckman Coulter, #A63881), and the absence of adapters
was confirmed on the Agilent TapeStation HS D5000. The final libraries were sequenced on a
NovaSeq platform (Illumina), yielding 150 bp paired-end reads.

C.2 Supplementary figures and tables
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Figure C.2.1: Violin plots of HMD, PMD, and hyper CGI methylation per healthy, tumor,
and cell line sample.

Figure C.2.2: a) Enrichment of hypermethylated CGIs per tumor and cell line sample
(dots) as well as tumor type (black crosses) for PRC2 targets for both the WGBS (left)
and 450k array (right) cohort. b) Heatmap showing the mean CGI methylation for those
associated with tumor suppressor gene promoters (TSGs), PRC2-based regulation, or
both across our initial WGBS cohort. Notably, TSGs are prone to hypermethylation if
they are canonically repressed by PRC2. c) Overlap of promoter CGIs hypermethylated
in any tumor types as measured by WGBS, CGIs targeted by PRC2 in hESCs, and CGIs
associated with TSG promoters.
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Figure C.2.3: a) Heatmap showing the union of commonly hypermethylated CGIs across
all tumor types (array cohort). Cell lines hypermethylate similar targets to their corre-
sponding primary tumors but with a greater frequency. They also frequently methylate
additional targets in comparison to the primary tumor samples. Primary tumors overall
show similar hypermethylation patterns to one another, with the exception of LGG that
stratify into two distinct patterns. b) Correlation heatmap of LGG tumor and cell line
samples with IDH mutational status indicated on the top.
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Figure C.2.4: Hierarchical clustering of 450k array samples based on the ECDF of hyper
CGIs (left) or solo-WCGW CpGs in common PMDs (right).

Figure C.2.5: Relative change in the area under the ECDF curve and intra-cluster variabil-
ity associated with different numbers of clusters during consensus clustering of the me-
dian hyper CGI and solo-WCGW CpG methylation levels (see section 6.2.4). Five clusters
were chosen as optimum (six clusters only separated the intermediate tumor-enriched
states further).
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Figure C.2.6: a) Methylation of solo-WCGW CpGs (left) and hypermethylated CGIs
(right) for single healthy, tumor, and cancer cell line samples (profiled with WGBS) col-
ored by their methylation state assignment. b) Distribution of DNA methylation states
across healthy, tumor, and cell line samples shown for both WGBS and array cohorts and
separated by tumor types.

Figure C.2.7: Comparison of hyper CGI and solo-WCGW CpG methylation levels of cell
lines profiled by WGBS and 450k array. Hyper CGI methylation levels are relatively con-
sistent between WGBS and arrays, whereas solo-WCGW CpG methylation tends to be
higher in arrays than in WGBS. This trend could be linked to the bias in the 450k array
probe selection towards functional regulatory elements.
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Figure C.2.8: Cumulative read-level methylation distributions across hyper CGIs for all
healthy, tumor, and cell line samples separated by tumor type (lines reflect the median).

Figure C.2.9: a) Relation of the median methylation of solo-WCGW CpGs in common
PMDs and hyper CGIs per WGBS and 450k array sample colored by solid tumor samples
that either retain or change their DNA methylation state assignment after correction.
Tumor samples that change states after correction are primarily located at the borders
between two or more states. b) Probability of solid tumor samples (array cohort) with
which they were assigned to their state according to the k-NN classification before and
after purity correction. Tumor samples that changed methylation states after correction
showed overall lower assignment probabilities before and after correction compared to
the tumor samples whose status remained unchanged. c) Scatterplots showing the differ-
ence in methylation levels between the corrected and uncorrected average methylation
values of CGIs and PMDs demonstrate the minor effect of this correction on the overall
landscape.
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Figure C.2.10: a) Heatmaps of hyper CGI methylation across healthy and tumor cells
for the remaining patients not shown in Figure 6.3.14. b) Cumulative single cell-level
methylation distributions for hyper CGIs within the remaining patients not shown in Fig-
ure 6.3.14. Lines reflect the median, 25%, and 75% quantile across CGIs.

Figure C.2.11: Density of HMD, PMD, and hyper CGI methylation levels for each patient
shown for healthy and tumor cells.
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Figure C.2.12: Chromosome-scale heatmaps of the average methylation across cells of
the remaining patients not shown in Figure 6.3.16 along chromosome 16p (100 kb tiles).

Figure C.2.13: UMAP as shown in Figure 6.3.17 colored by type (left), stage (middle),
and fraction of methylated CGIs (right).
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Figure C.2.14: a) Distribution of hyper CGI and PMD methylation levels across healthy
samples, different tumor stages, metastasis, and cell lines (array cohort). Horizontal
lines denote the IQR; vertical lines denote the median. Overall, methylation levels across
different tumor stages and metastatic samples are more similar to each other than the
methylation levels of corresponding cancer cell lines. b) Comparison of median hyper
CGI (top) and PMD (bottom) methylation levels between primary tumors and metastases
(left) as well as cell lines (right) for the SKCM array cohort. Metastases resemble the
methylation levels of primary tumors more closely than corresponding cancer cell lines
despite a comparable genetic bottleneck and more extensive proliferation than within
primary tumors.
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Figure C.2.15: a) Heatmaps of hyper CGI methylation across healthy, tumor, and metas-
tasis cells for the remaining colon cancer patients with profiled metastases not shown in
Figure 6.3.20. b) Chromosome-scale heatmaps of the average methylation across healthy,
tumor and metastasis cells of the remaining patients not shown in Figure 6.3.20 along
chromosome 16p (tile resolution = 100 kb).

Figure C.2.16: Fraction of cell lines associated with different culture conditions (left) and
media (right) separated by state and broad type (leukemia vs. solid tumor).
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Type Adjusted p-value
high vs inverse

Adjusted p-value
intermediate vs other

B-ALL 0.18 0.86

BLCA 0.18 0.86

BRCA 0.07 0.05

COAD 0.07 0.89

GBM 0.02 0.46

HNSC 0.2 0.35

KIRC 0.02 0.86

LAML 0.83 0.35

LGG IDHWT - 1

LIHC 0.02 0.86

LUAD 1 0.59

OV 0.14 1

SKCM 0.48 0.35

T-ALL 0.002 1

THCA 0.48 0.8

Table C.2.1: Association of methylation landscape and tumor type (Fisher’s exact test).
The p-value corrected by FDR is shown as a measure of significance for the compari-
son of extreme hypermethylation with inverse bimodal landscape and the comparison of
intermediate with any other landscape.

Figure C.2.17: Number of mutated genes (any, recurrently mutated driver, or epigenetic
regulator genes) across cell lines associated with the extreme hypermethylation, inverse
bimodal, or an intermediate methylation state. While different cell line states do not show
substantial enrichment for specific driver or epigenetic regulator mutations, the overall
number of mutated genes per line is subtly higher for PMDhigh CGIhigh and PMDlow CGIhigh

lines than for intermediately methylated lines that more closely resemble primary tumors.
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Figure C.2.18: Oncoprint showing mutations in recurrently mutated driver genes and
epigenetic regulators across all cell lines ordered by state and type.

Figure C.2.19: Standardized IC50 for drugs significantly associated with extreme hyper-
methylation or inverse bimodal state. Differential response to drugs between the PMDhigh

CGIhigh and PMDlow CGIhigh state seems to be predominantly defined by leukemia com-
pared to solid tumor samples.
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