
Chapter 5

Robot's walking

5.1 Introduction
The biped walking process or biped locomotion area has been studied for a
long time, but it is only in the past years, thanks to the fast development of
computers, that real robots started to walk on two legs. Since then the problem
has been tackled from di�erent directions.

First, there were robots that used static walking. The control criteria was
to maintain the projection of the center of gravity (COG) on the ground, inside
of the foot support area.

This approach was abandoned because only slow walking speeds could be
achieved, and only on �at surfaces.

For the dynamic walking robots the center of gravity (or center of mass) can
be outside of the support area, but the zero momentum point (ZMP), cannot [33].
The ZMP criteria has been broadly used to generate biped control algorithms
[34], [35].

In this thesis, the walking problem is divided and focus on two themes: the
balance control and the walking sequence control.

In balance control, a feedback-force system at each robot's foot was imple-
mented to calculate the ZMP and then feed it in to the incremental fuzzy PD
controller to decrease the ZMP error [14]. The controller's goal is to adjust the
lateral robot's positions to maintain the ZMP point always inside of the support
region.

The walking sequence control of a biped robot can be determined by con-

94

CHAPTER 5. ROBOT'S WALKING 95

Single support phase
Stable position

Double support phase
Stable position

Unstable position

Figure 5.1: Static walking.

trolling the hip and foot trajectories [15]. To achieve stable dynamic walking,
the change between simple supports walking phase and double supports walking
phase should be smooth. In this thesis cubic polynomials algorithms are used to
control the sagittal motion and guaranties a smooth change between the walking
phases [6].

The robot's stability at dynamic walking was achieved applying the ZMP
criteria in the incremental fuzzy PD controller to guaranties the balance control
at walking [14] and the cubic polynomials algorithms to control the walking
sequence control.

In the next sections, the static and dynamic walking are presented, the ZMP
concept is widely explained, then the balance control and the walking sequence
control are explained.

5.2 Static walk
Static walking assumes that the robot is statically stable. This mean that, at
any time, if all motion is stooped the robot will stay inde�nitely in a stable
position. It is necessary that the projection of the center of gravity of the robot
on the ground must be contained within the foot support area (Figure 5.1).
The support area is either the foot surface in case of one supporting leg or the
minimum convex area containing both foot surfaces in case both feet are on the
ground.

These are referred to as single and double support phases, respectively .
Also, walking speed must be low so that inertial forces are negligible [33][36].

This king of walking requires large feet, strong ankle joints and can achieve
only slow walking speeds. It has been abandoned by most researchers for dy-

CHAPTER 5. ROBOT'S WALKING 96

ZMP ZMP

Unstable position Stable position

Figure 5.2: Dynamic walking.

namic walking, which provides more realistic and agile movements.

5.3 Dynamic walk
Biped dynamic walking allows the center of gravity to be outside of the support
region for limited amounts of time. There is no absolute criteria that determines
whether the dynamic walking is stable or not. Indeed a walker can be designed
to recover from di�erent kinds of instabilities. However, if the robot has active
ankle joints and always keeps at least one foot �at on the ground then the ZMP
can be used as a stability criteria. The ZMP is the point where the robot's
total moment at the ground is zero. As long the ZMP is inside the support
region the walking is considered dynamically stable because is the only case
where the foot can control the robot's posture. It is clear that for robots that
do not continuously keep at least one foot on the ground or that do not have
active ankle joints (walking on stilts), the notion of support area does not exist,
therefore the ZMP criterion cannot applied [37].

Dynamic walking is achieved by ensuring that the robot is always rotating
around a point in the support region (Figure 5.2). If the robot rotates around a
point outside the support region then this means that the supporting foot will
tend to get o� the ground or get presses against the ground. Both cases lead
to instability. To draw an analogy with static walking, if all motion is stopped
then the robot will tend to rotate around the ZMP [33].

CHAPTER 5. ROBOT'S WALKING 97

 Ti

 Fi

CG

 Ri

Figure 5.3: Force applied to a link.

5.4 Zero Moment Point (ZMP)
To achieve dynamic walking the center of gravity (or center of mass) can be
outside of the support area of the robot, but the zero momentum point (ZMP),
cannot.

The ZMP is the point where the total angular momentum is zero. The
position of the ZMP is computed by �nding the point (X, Y, Z) where the total
torque is zero. Since we are only interested in the ground plane we assume that
Z=0. To avoid confusion, torque and moment mean in this thesis the same
thing. The robot has n links; each link is subject to a total force fi applied at
a point determined by the vector ri relative to the center of gravity of the link.
Ti determines the total motor torque applied to the link. Rz is the ZMP vector
and T is the robot's total torque [33]. An example of the forces applied to a
link is represented in Figure 5.3.

The force, torque and position vectors have the following coordinates:

Fi : (Fxi + Fyi + Fzi)

Ti : (Txi + Tyi + Tzi)

Ri : (xi + yi + zi)

Then the total torque is computed as:

T =
n∑

i=1

(Ri + Rz)xFi +
n∑

i=1

Ti = 0 [4.1]

Where x represents the cross product. [4.1] is then expanded as:

CHAPTER 5. ROBOT'S WALKING 98

n∑
i=1

(yi + Y)Fzi −
n∑

i=1

(zi + Z)Fyi +
n∑

i=1

Txi = 0

n∑
i=1

(zi + Z)Fxi −
n∑

i=1

(xi + X)Fzi +
n∑

i=1

Tyi = 0 [4.2]

n∑
i=1

(xi + X)Fyi −
n∑

i=1

(yi + Y)Fxi +
n∑

i=1

Tzi = 0

Making z=0 and solving these equations for x and y we obtain the ZMP
coordinates:

X =

n∑
i=1

(ziFxi−xiFzi)+
n∑

i=1

Tyi

n∑
i=1

Fzi

[4.3]

Y =

n∑
i=1

(ziFyi−yiFzi)+
n∑

i=1

Txi

n∑
i=1

Fzi

[4.4]

Considering the gravitational acceleration, mass and the inertia moment
components, the ZMP can be also computed as follows:

xZMP =
∑

i mi(
..
z +g)xi −

∑
i mi

..
x zi −

∑
i Iiy

..

θiy∑
i mi(

..
z +g)

[4·5]

yZMP =
∑

i mi(
..
z +g)yi −

∑
i mi

..
x zi −

∑
i Iix

..

θix∑
i mi(

..
z +g)

[4·6]

Where xZMP and yZMP , are the ZMP coordinates, xi, yi, zi are the
coordinates of the mass center of the i link, m is the mass of the link i, g is
the gravitational acceleration. Iix and Iiy are the inertia moment components,
θiy and θix are the angular velocity around the x and y axes (take as a point
from the mass center of the i link) .

In sagittal plane, the ZMP is directly calculated dividing the ankle torque
by the force reaction at the ground:

xZMP =
τx∑

i mi(
..
zi +g)

[4·7]

CHAPTER 5. ROBOT'S WALKING 99

Figure 5.4: Stable area of the ZMP in the x axis.

5.4.1 ZMP as a control criteria
As mentioned, in dynamic walking, the center of gravity (or center of mass) can
be outside of the support area, but the ZMP (the point where the total angular
momentum is zero) cannot. The ZMP will be take as a control criteria (from
now on this criteria will be mentioned as the ZMP criteria)

To maintain the balance in dynamic walking the ZMP point must be in the
foot convex area, in contact with the �oor as shown in �gure 5.4.

The ZMP can be de�ned as [38],[14]:

xZMP ∈ {S|S ∈ R, S ∈ (−xa, xb)} [4·8]

The negative sign of xa means that point P is at the origin.
Since, the force sensors values are direct used to calculate the ZMP and for

the lateral control is only necessary to know the ZMP value for one axis, the
ZMP calculus is simpli�ed as:

PZMP =

3∑
i=1

firi

3∑
i=1

fi

[4.9]

where fi represents the force at the i sensor and ri represent the distance
between the coordinate origin and the point where the sensor is located. The
�gure 5.5, shows the sensors distribution (the tree circles) used for each robot's
foot.

The total ZMP calculus will be obtained by the di�erence between each foot:

Total_PZMP = PZMP1 − PZMP2 [4.10]

CHAPTER 5. ROBOT'S WALKING 100

r1 f1

y

x 0

 f2

f3

 r2

r3

Figure 5.5: Sensor's distribution.

 PZMP1 PZMP2

Total_PZMP

 PZMP1

 PZMP2

Total_PZMP

Figure 5.6: ZMP point (black point) in two cases, left) when the robot is stand,
right) after the robot give a step.

Where PZMP1 is the ZMP for one foot and PZMP2 is the ZMP for the other
foot. To maintain the robot's stability during walking, the Total ZMP must
be always inside of the support polygon. The support polygon, is the polygon
described by the robot's foots as shown in Figure 4.6 (pointed line).

Figure 5.6 shows the ZMP point (black point) in two cases, one with the
robot standing (left), and other after give a step (right). The pointed line
represent the support polygon.

5.5 Balance control
In traditional legged robots, stability is maintained by having at least three
contact points with the ground surface at all time. With biped machines, only
two points are in contact with the ground surface for that reason algorithms to

CHAPTER 5. ROBOT'S WALKING 101

achieve balance most be implemented.
There are some techniques to implement a balance control for a biped robot,

many of them are implemented using classic control techniques, but some others
are implemented using soft computing or arti�cial intelligent techniques. In this
thesis an incremental fuzzy PD controller to achieve balance in a biped robot is
proposed.

An important control criteria to achieve dynamic walking (as already was
mentioned) is to maintain the ZMP inside of support region (ZMP criteria). The
use of this criteria has been broadly used to generate biped control algorithms
[34], [35].

In order to implement the balance control in the �Dany walker�, a feedback-
force system at each foot was implemented to obtain the ZMP and feed it in
to the incremental fuzzy PD controller. Then, it calculate the ZMP error and
the ZMP rate. The controller goal is to adjust the lateral robot's positions to
maintain always the ZMP inside of the support region.

The next section introduce the basis of the control system theory to a better
understanding of the fuzzy PD incremental controller proposed in this thesis.

5.5.1 Control system theory
A control system is an arrangement of physical components designed to regulate,
or to command, through a control action, another physical system so that it
exhibits certain desired characteristics or behavior [39]. Control systems are
typically of two types: open-loop control systems, in which the control action is
independent of the physical system output, and closed-loop control systems (also
known as feed-back control systems), in which the control action depends on the
physical system output. Examples of open-loop control systems are a toaster, in
which the amount of heat is set by a human, and an automatic washing machine,
in which the controls for water temperature, spin-cycle time, and so on are preset
by the human. In both these cases the control actions are not a function of the
output of the toaster or the washing machine. Examples of feedback control are
a room temperature thermo-stat with senses room temperature and activates a
heating or cooling unit when a certain threshold temperature is reached, and an
autopilot mechanism, which makes automatic course corrections to an airplane
when heading or altitude deviations from certain preset values are sensed by the
instruments in the plans cockpit.

In order to control any physical variable �rst, it must be measure. The sys-

CHAPTER 5. ROBOT'S WALKING 102

Controller Plant

Sensor

∑
Error

Control
output

System
 Output

System
input

+
-

Figure 5.7: A closed-loop control system.

tem for measurement of the controlled signal is called a sensor. The physical
system under control is called a plant. In a closed-loop control system, certain
forcing signals of the system (called inputs) are determined by the responses of
the system (called outputs). To obtain satisfactory responses and characteris-
tics for the closed-loop control system, it is necessary to connect an additional
system, known as a compensator, or a controller, into the loop. The general
form of a closed-loop control system is illustrated in Figure 5.7 [40].

Control systems are sometimes divided into two classes. If the goal of the
control system is to maintain a physical variable at some constant value in the
presence of disturbances, the system is called a regulatory type of control, or a
regulator.

The room temperature control and autopilot are examples of regulatory
controllers. The second class of control systems are tracking controllers. In
this scheme of control, a physical variable is required to follow or track some
desired time function. An example of this type of system is an automatic aircraft
landing system, in which the aircraft follows a ramp to the desired touchdown
point.

The control problem is stated as follows [40]. The output, or response, of
the physical system under control (i.e. the plant) is adjusted as required by
the error signal. The error signal is the di�erence between the actual response
of the plant, as measured by the sensor system, and the desired response, as
speci�ed by a reference input. In the following section we derive di�erent forms
of common mathematical models describing a closed-loop control system.

A mathematical model that describes a wide variety of physical systems is
a nth order ordinary di�erential equation of the type [41].

dny(t)

dtn = w
[
t, y(t), ẏ(t), ..., dn−1y(t)

dtn−1 , u(t)
]
[4.11]

Where t is the time parameter, u() is the input function, w() is a general
non linear function, and y() is the system output or response function. If we

CHAPTER 5. ROBOT'S WALKING 103

de�ne the auxiliary functions.

x1(t) = y(t)
x2(t) = ẏ(t)

...
xn(t) = dn−1y(t)

dtn−1

[4.12]

Then the single nth-order equation [4.11] can be equivalently expressed as a
system of n �rst-order equations:

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...
ẋn−1(t) = xn(t)

ẋn(t) = w [t, x, (t), x2(t), ..., xn(t)u(t)]

[4.13]

Finally, if we de�ne n-vector- valued functions x() and f() by

x(t) = [x1(t), x2(t), ..., xn(t)]T [4.14]

f(t, x, u) = [x2, x3, ..., xn, w(t, x1, ..., xn, u)]T [4.15]

Where x(t) is the system state vector at time t (T is standard vector trans-
pose), then the n �rst-order equations [4.13] can be combined into a �rst-order
vector di�erential equation:

ẋ(t) = f [t, x(t), u(t)] [4.16]

and the output y(t) is given from Eq [4.12] as

y(t) = [1, 0, ..., 0]x(t) [4.17]

Similarly, a system whit p inputs, m outputs, and n states will be described,
in general, using the vector-valued functions f () and g() as:

ẋ(t) = f [t, x(t), u(t)] [4.18]

y(t) = g [t, x(t), u(t)] [4.19]

where u(t) and y(t) vectors are de�ned as:

u(t) = [u1(t), u2(t), ..., up(t)]
T [4.20]

CHAPTER 5. ROBOT'S WALKING 104

y(t) = [y1(t), y2(t), ..., ym(t)]T [4.21]

And are an input vector and an output vector, respectively. The state vari-
ables vector x(t) is de�ned by Eq. [4.14]. Physical systems descriptions based on
Eqs.[4.18] and [4.19] are known as state-space representations and x1, x2, ..., xn

are known as state variables of the system. In the case of nonlinear time-
invariant continuous-time systems, Eqs. [4.18] and [4.19] become:

ẋ(t) = f [x(t), u(t)] [4.22]

y(t) = g [x(t), u(t)] [4.23]

and for a linear time-invariant system (LTI) will reduce to the following
form:

ẋ(t) = A · x(t) + B · u(t)
y(t) = C · x(t) + D · u(t)

[4.24]

where constants A, B, C, and D are known as system matrices.
A �rst- order single-input-single-output nonlinear system is described using

a discrete-time equation as:

xk+1 = f(xk, uk) [4.25]

where xk+1, xk are the values of state at the kth and (k + 1) th time moments,
and uk is the input at the kth moment. a nth-order single- input-single-output
system can be put in the following form:

yk+n = f(yk, yk+1, ..., yk+n−1, uk) [4.26]

and for a nth-order, multiple-input-single-output discrete system:

yk+n = f(yk, yk+1, ..., yk+n−1, u1(k), u2(k), ..., up(k)) [4.27]

System Identi�cation Problem

The general problem of identifying a physical system based on the measurements
of the input, output, and state variables is de�ned as obtaining functions f and
g in the case of a nonlinear system, and system matrices A, B, C, and D in
the case of a linear system. There are algorithms that adaptively converge to
these system parameters based on numerical data taken from input and output
variables [42]. Fuzzy systems and arti�cial neutral network paradigms are two
evolving disciplines for non linear system identi�cation problems.

CHAPTER 5. ROBOT'S WALKING 105

Control System Design Problem

The general problem of feedback control system design is de�ned as obtaining
a generally non-linear vector-valued function h(), de�ned as follows [43]:

u(t) = h [t, x(t), r(t)] [4.28]

where u(t) is the input to the plant or process, r(t) is the reference input,
and x(t) is the state vector. The feedback control law h is supposed to stabilize
the feedback control system and result in a satisfactory performance.

In the case of a time-invariant system with a regulatory type of controllers
are based on one of the general models given in Esq. [4.29] and [4.30], that is,
either full state feedback or output feedback, as shown in the following:

u(t) = h [x(t)] [4.29]

u(t) = h
[
y(t), ẏ,

∫
ydt

]
[4.30]

In the case of a simple single-input-single-output system and a regulatory
type of controller, the function h takes one of the following forms:

u(t) = KP · e(t) [4.31]

for a proportional, or P, controller:

u(t) = KP · e(t) + KI ·
∫

e(t)dt [4.32]

for a proportional-plus-integral ,or PI, controller:

u(t) = KP · e(t) + KD · ė(t) [4.33]

for a proportional-plus-derivative, or PD, controller:

u(t) = KP · e(t) + KI ·
∫

e(t)dt + KD · ė(t) [4.34]

for a proportional-plus-derivative-plus-integral, or PID, controller, where
there are the output error, error derivative, and error integral, respectively,
and for a full state-feedback controller:

u(t) = − [k1 · x1(t) + k2 · x2(t) + ... + kn · xn(t)] [4.35]

The problem of control system design is de�ned as obtaining the generally
nonlinear function h() in the case of nonlinear systems; coe�cients KP , KI and
KD in the case of output-feedback systems; and coe�cients k1, k2, ..., kn in the
case of a full state-feedback control policy for linear systems. The function h()
in Eqs. [4.29] and [4.30] describes a general nonlinear surface that is known as
a control, or decision, surface, discussed in the next section.

CHAPTER 5. ROBOT'S WALKING 106

Control (Decision) Surface

In this section, the concept of a control surface, or decision surface, is de�ned.
It is very important in fuzzy control systems [43]. The function h as de�ned in
Eqs. [4.28], [4.29] and [4.30] is, in general, de�ning P non-linear hyper surfaces
in a n-dimensional space. For the case of linear systems with output feedback
or state feedback it generally is a hyper plane in a n-dimensional space. This
surface is known as the control, or decision, surface shape.

The control surface describes the dynamic of the controller and is generally a
time-varying non-linear surface. Owing to a model dynamic present in the design
of any controller, techniques should exist for adaptively tuning and modifying
the control surface shape.

Fuzzy logic rule-based expert systems use a collection of fuzzy conditional
statements derived from an expert knowledge base to approximate and construct
the control surface [44].

This paradigm of control system design is based on interpolate and ap-
proximate reasoning. Fuzzy logic rule-based controllers or system identi�ers,
are generally, model-free paradigms. Fuzzy logic rule-based expert systems are
universal non-linear function approximators, and any non-linear function (e.g.,
control surface) of n independent variables and one dependent variable can be
approximated to any desired precision.

Alternatively, arti�cial neural networks are based on analogical learning and
try to learn the non-linear decision surface through adaptive and converging
techniques, based on numerical data available from input-output, measurements
of the system variables and some performance criteria.

Control System Design Stages

In order to obtain the control surface for a non-linear time-varying real-world
complex dynamic system, there are a number of simplifying steps used in mod-
eling a controller for the system. The seven basic steps in designing a controller
for a complex physical system are as follows:

1.- Large-scale systems are decentralized and decomposed into a collection
of decoupled subsystems.

2.- The temporal variations of plant dynamics are assumed to be slowly
varying.

3.- The non-linear plant dynamics are locally linearized about a set of oper-
ating points.

CHAPTER 5. ROBOT'S WALKING 107

4.- A set of state variables, control variables, or output features are made
available.

5.- A simple, P, PD, PID (output-feedback), or state-feedback controller
is designed for each decoupled system. The controllers are of regulatory type
and are fast enough to perform satisfactorily under tracking control situations.
Optimal controllers might also prove useful.

6.- In addition to uncertainties introduced in the �rst �ve steps, there are
uncertainties due to external environment. The controller design should be made
as close as possible to the optimal one based on the control engineers knowledge,
in the form of input-output numerical observations data and analytic, linguistic,
intuitive, and other kinds of information regarding the plant dynamics and the
external environment.

7.- A supervisory control system, either automatic or a human expert opera-
tor, forms an additional feedback control loop to tune and adjust the controllers
parameters, in order to compensate for the e�ects of variations caused by un-
model dynamics.

Assumptions in a Fuzzy Control System Design

A number of assumptions are implicit in a fuzzy control system design. Six basic
assumptions are commonly made whenever a fuzzy logic-based control policy is
selected.

1.- The plant is observable and controllable: State, input, and output vari-
ables are usually available for observation and measurement or computation.

2.- There exists a body of knowledge comprised of a set of expert produc-
tion linguistic rules, engineering common sense, intuition, a set of input/output
measurements data, or an analytic model that can be fuzzi�ed and from which
rules can be extracted.

3.- A solution exists.
4.- A good enough solution is been looking for, not necessarily the optimum

one.
5.- A controller will be designed to the best of our available knowledge and

within an acceptable range of precision.
6.- The problems of stability and optimality are still open problems in fuzzy

controller design.
The following sections discuss the procedure for obtaining the control surface,

h(), from approximations based on a collection of fuzzy IF-THEN rules that

CHAPTER 5. ROBOT'S WALKING 108

describe the dynamics of the controller. Fuzzy rule-based expert models can
also be used to obtain acceptable approximations for the functions f() and g()
in the case of a system identi�cation problem. A fuzzy production rule system
consists of four structures [45].

1.- A set of rules that represents the policies and heuristic strategies of the
expert decision maker.

2.- A set of input data assessed immediately prior to the actual decision.
3.- A method for evaluating any proposed action in terms of its conformity

to the expressed rules, given the available data.
4.- A method for generating promising actions and for determining when to

stop searching for better ones.
The input data, rules, and output action, or consequence, are generally

fuzzy sets expressed as membership functions de�ned on a proper space. The
method used for the evaluation of rules is known as approximate reasoning,
or interpolate reasoning, and is commonly represented by composition of fuzzy
relations applied to a fuzzy relational equation.

The control surface, which relates the control action u() to the measured
state or output variables, is obtained using these four structures.

It is then sampled at a �nite number of points, depending on the required
resolutions, and a look-up table is constructed. The look-up table thus formed
could be downloaded onto a read-only memory chip and would constitute a �xed
controller for the plant.

5.5.2 Simple fuzzy logic controllers
First-generation (non-adaptive; i.e., the four structures above are �xed) simple
fuzzy logic controllers can generally be depicted by a block diagram such as that
shown in �gure 5.8.

The knowledge-base module in Figure 5.8 contains knowledge about all the
input and output fuzzy partitions. It will include the term set and the corre-
sponding membership functions de�ning the input variables to the fuzzy rule-
base system and the output variables, or control actions, to the plant under
control.

The steps in designing a simple fuzzy logic control system are as follows:
1.- Identify the variables (inputs, states, and outputs) of the plant.
2.- Partition the universe of discourse or the interval spanned by each variable

into a number of fuzzy subsets, assigning each a linguistic label (subsets include

CHAPTER 5. ROBOT'S WALKING 109

System
input Fuzzification Plant

Sensor

System
 output

Inference Defuzzification

Denormalization
Rule-base

Knowledge
base

Output-scaling
Factors, normalization

Scaling factors,
normalization

Figure 5.8: Simple fuzzy logic control system block diagram.

all the elements in the universe).
3.- Assign or determine a membership function for each fuzzy subset.
4.- Assign the fuzzy relationships between the inputs or states fuzzy subsets

on the one hand and the outputs fuzzy subsets on the other hand, thus forming
the rule-base.

5.- Choose appropriate scaling factors for the input and output variables in
order to normalize the variable to the [0. 1] or the [- 1.1] interval.

6.- Fuzzify the inputs to the controller.
7.- Use fuzzy approximate reasoning to infer the output contributed from

each rule.
8.- Aggregate the fuzzy outputs recommended by each rule.
9.- Apply defuzzi�cation to form a crisp output.
In a non-adaptive simple fuzzy logic controller, the methodology used and

the results of the nine steps mentioned above are �xed, whereas in an adaptive
fuzzy logic controller, they are adaptively modi�ed based on some adaptation
law in order to optimize the controller.

A simple fuzzy logic control system has the following features:
1.- Fixed and uniform input-and output-scaling factors.
2.- Flat, single-partition rule-base with �xed and non-interactive rules. All

the rules have the same degree of certainty and con�dence, equal to unity.
3.- Fixed membership functions.
4.- Limited number of rules, which increases exponentially with the number

of input variables.
5.- Fixed meta-knowledge including the methodology for approximate rea-

soning, rules aggregation, and output defuzzi�cation.

CHAPTER 5. ROBOT'S WALKING 110

6.- Low-level control and no hierarchical rule structure.

5.5.3 General fuzzy logic controllers
The principal design elements in a general fuzzy logic control system (i.e., non-
simple) are as follows [46]:

1.- Fuzzi�cation strategies and the interpretation of a fuzzi�cation operator,
or fuzzi�er.

2.- Knowledge base:
a. Discretization/normalization of the universe of discourse.
b. Fuzzy partitions of the input and output spaces.
c. Completeness of the partitions.
d. Choice of the membership functions of a primary fuzzy set
3.- Rule-base:
a. Choice of process state (input) variables and control (output) variables.
b. Source of derivation of fuzzy control rules.
c. Types of fuzzy control rules
d.- Consistency, interactivity, and completeness of fuzzy control rules.
4.- Decision-making logic:
a. De�nition of a fuzzy implication
b. Interpretation of the sentence connective and
c. Interpretation of the sentence connective or
d. Inference mechanism
5.- Defuzzi�cation strategies and the interpretation of a defuzzi�cation op-

erator (defuzzi�er)
Adaptation or change in any of the �ve design parameters above creates an

adaptive fuzzy logic control system. If all �ve are �xed, the fuzzy logic control
system is simple non-adaptive.

5.5.4 Incremental fuzzy PD algorithm
In this thesis, the incremental fuzzy PD control algorithm is proposed as a
variant extension of the fuzzy PD controller [47] to implement biped's balance
control. The incremental fuzzy PD control algorithm consists of only 4 rules
and has the structure illustrated in �gure 5.11.

The gains Gu, Ge and Gr are determined by tuning and they correspond
respectively to the output gains, the error (ZMP error) and error rate (ZMP
rate) gains.

CHAPTER 5. ROBOT'S WALKING 111

y Ge

rate

error
u Fuzzyfication

Control rules
Defuzzyfication

u*

Gu
Gr

+ -

 de/dt

Process

Figure 5.9: Fuzzy PD incremental algorithm structure.

The value u* is the defuzzy�cated output, or crisp output. The value u is
de�ned by:

u =

{
Gu ∗ (u∗) if |e| < θ for (t = 0, Ginc = 0)

Ginc ∗ (u∗) if |e| > θ Ginc = Ginc + inc, until Ginc ≥ Gu

}
[4.36]

Where e is the error (error*Ge), θ is a error boundary selected by tuning,
and Ginc is the incremental gain obtained adding the increment inc.

Figure 5.10 shows the �ow diagram for the incremental gain of u and Figure
5.11 shows the area where the absolute error is evaluated and the controller
output is incremental (u=Ginc+inc).

Fuzzy�cation

As is shown in �gure 5.12, there are two inputs to the controller: error and rate.
The error is de�ned as:

error = set point-y [4.37]

Where set point is the point to be reached by the controller and y the
controller output.

Rate is de�ned as follows:

rate = (ce - pe) / sp [4.38]

Where ce is the current error, pe is the previous error and sp is the sampling
period. Current and previous error, are referred to an error without gain. The
fuzzy controller has a single incremental output, which is used to control the
process.

The input an output membership functions for the fuzzy controller are shown
in �gure 5.12 and �gure 5.13, respectively. H and L are two positive constants

CHAPTER 5. ROBOT'S WALKING 112

 no

Abs(error)>θ

no

yes

 Ginc ≥ Gu

 u*

 For t=0, Ginc =0

 Ginc =Ginc +Inc

 u =Gu * u*

 u =Ginc * u*

yes

Figure 5.10: Flow diagram for the output gain.

Abs(error)>θ Abs(error)>θ

Error + 0 -

Figure 5.11: Fuzzy PD incremental absolute error area.

CHAPTER 5. ROBOT'S WALKING 113

Ge*error
Gr*rate

 1.0

Ge* positive error
Gr* positive rate

Ge* negative error
Gr* negative rate

 -L 0 L

Figure 5.12: Input membership functions.

to be determined. For convenience we will take H=L to reduce the number of
control parameters to be determined.

For the error input are: Ge*negative error (en) and Ge*positive error (ep)
and for the rate input are: Gr*negative rate (rn) and Gr*positive rate (rp),
while the output fuzzy terms are shown in Figure 5.13 and they are: Negative
output (on), Zero output (oz) and Positive output (op).

Figure 5.12 shows that each input has two linguistic terms.
As shown in �gure 5.12, the same membership function is applied for error

and rate but with di�erent scaling factors or gains: Ge and Gr respectively.
The membership functions for the input variables, error and rate, are de�ned

by equations 4.39.

L

errorGeL
ep 2

)*(+=µ
L

errorGeL
en 2

)*(−=µ

L

rateGrL
rp 2

)*(+=µ
L

rateGrL
rn 2

)*(−=µ
[4.39]

Fuzzy rules

Exist four rules to be evaluated by the fuzzy PD incremental controller :

R1. If error is ep and rate is rp then output is op

R2. If error is ep and rate is rn then output is oz

CHAPTER 5. ROBOT'S WALKING 114

 0

H -H

Positive Output

Negative Output

Zero Output

 Output (u*)

Figure 5.13: Output membership functions.

R3. If error is en and rate is rp then output is oz

R4. If error is en and rate is rn then output is on

In the those four rules, the Mamdani inference is used [48] that is:

min (a,b) [4.40]

being a the membership function of the antecedent and b the membership
function of the control action.

Since the rules R2 and R3 generate the same output, the rule's union is
calculated on those rules. The Lukasiewicz OR operator is applied [39] who is
de�ned as:

min (a+b, 1) [4.41]

The and conjunction in each of the four rules corresponds to the Zadeh
logical operation AND, de�ned by:

µA(x) ∧ µB(x) = min{µA(x), µB(x)} [4.42]

Where µA(x) and µB(x) are the membership values of the fuzzy sets A and
B in the x point, respectively.

Defuzzy�cation

The defuzzy�cation method used is the gravity center, in this case is represented
by:

CHAPTER 5. ROBOT'S WALKING 115

L

L -L

-L

IC18
error < -L
rate > L

IC17
error > L
rate > L

IC19
error < -L
rate < -L

IC20
error > L
rate < -L

IC12
-L < error < 0

rate > L

IC11
0 < error < L

rate > L

IC15
-L < error < 0

rate < -L

IC16
0 < error < L

rate < -L

IC13
error < -L

0 < rate < L

IC10
error > L

0 < rate < L

IC14
error < -L

-L < rate < 0

IC9
error > L

-L < rate < 0

IC4
error > -rate

IC7
error > rate

IC1
error > -rate

IC2
error > rate

IC5
error < -rate

IC8
error < -rate

IC3
error < rate

IC6
error < rate

error

rate

Figure 5.14: Input regions for error and rate.

u =
−H(µR4(x))+0(µR2(x)+µR3(x))+H(µR1(x))

µR4(x)+(µR2(x)+µR3(x))+µR1(x)
[4.43]

The error and rate values ranges can be represented in 20 input regions
(IC), as is shown in �gure 5.14.

If the membership functions and the 4 control rules are evaluated, H=L
and the defuzzy�cation is applied in each of the 20 inputs combinations, then
9 equations [6.34] can be obtained [49], which can determine the control signal
u that should be applied, depending on the region in which the error and rate
are.

CHAPTER 5. ROBOT'S WALKING 116

Figure 5.15: �Dany walker� balance during a positive and negative inclination
angle.

u =





L
2(2L−Ge|error|) [Ge ∗ error + Gr ∗ rate] in IC1, IC2, IC5, IC6

L
2(2L−Gr|rate|) [Ge ∗ error + Gr ∗ rate] in IC3, IC4, IC7, IC8

1
2 [L + Gr ∗ rate] in IC9, IC10

1
2 [L + Ge ∗ error] in IC11, IC12

1
2 [−L + Gr ∗ rate] in IC13, IC14

1
2 [−L + Ge ∗ error] in IC15, IC16

L in IC17

−L in IC19

0 in IC18, IC20
[4.44]

Thus, to implement the incremental fuzzy PD controller algorithm in a com-
pact way (less number of calculus), will be necessary only to know the region
in which the inputs variables are and later evaluate the corresponding equation
for this region. For example the �rst equation of [4.44] acts in regions IC1, IC2,
IC5, IC6.

The incremental fuzzy PD controller algorithm was implemented for the
�Dany walker� biped robot's balance in a microcontroller. Figure 5.15 shows
the �Dany walker� in a real balance case trying to maintain the vertical during
a positive and negative inclination angle.

5.6 Walking sequence control
As explained in 4.4, to implement the robot's balance in this thesis, the incre-
mental fuzzy PD algorithm was proposed. But, walking sequence control was

CHAPTER 5. ROBOT'S WALKING 117

Figure 5.16: Motors movement preformed: left) by the leg in contact with the
�oor, right) by the leg rising in the air.

achieved using cubic polynomial interpolation. The walking sequence control of
a biped robot can be determined by controlling the hip and foot trajectories.
To achieve stable dynamic walking, the change between simple supports phase
and double supports phase should be smooth. Usually in the beginning of the
double supports phase, the foot impact against the �oor (when it returns from
the air) is very strong and obviously a�ects the walking balance. In this the-
sis cubic polynomials are used to control the sagittal motion and guaranties a
smooth change between the walking phases [38].

The walking sequence control problem is divided in two parts, the �rst is
represented by the leg in contact with the �oor. The second part is represented
by the leg rising in the air moving from backward to forward.

In the �rst case the hip motor don't changes its position. At the same time,
the necessaries movements to perform the foot trajectory are made only by the
knee and ankle motors as shown in �gure 5.16 left. Here, the four balance control
motors are omitted for the walking sequence analysis.

In the second case the ankle motor don't changes its position. At the same
time, the necessaries movements to perform the foot trajectory are made only
by the knee and hip motors as shows �gure 5.16 right.

5.6.1 Walking phases
A walking cycle can be divided into single support phase and double support
phase. As shown in the �gure 5.17, in the single support phase, one foot support
the robot's weight while the other foot is moving on the air from backward to
forward, at the same time the hip moves along a trajectory Th as shown in
�gure 5.18 (the others parameters will be de�ned later).

CHAPTER 5. ROBOT'S WALKING 118

Figure 5.17: Walking phases, (a) single support, (b) double support.

Figure 5.18: Hip and foot trajectory.

The simple support phase begins when the foot in movement leaves the �oor
and lift on the air and �nishes when it returns to the �oor. The double support
phase begin when the foot in movement (at single support phase) touch the
�oor and ends when the foot at the �oor (at single support phase) leaves the
�oor. To achieve dynamic walking, the change between simple supports phase
and double supports phase should be smooth.

Usually in the beginning of the double supports phase, the foot impact
against the �oor (when it returns from the air) is very strong and obviously
a�ects the walking balance. In this thesis cubic polynomials are used to control
the walking sequence (sagittal motion) and guaranties a smooth change between
the walking phases.

CHAPTER 5. ROBOT'S WALKING 119

5.6.2 Cubic polynomial interpolation algorithm
The process of building a f(x) function, such verify, that in predetermined values
of the independent variable x0, x1, . . . , xn can takes values like y0=f(x0),
y1=f(x1), . . ., yn=f(xn) is known as interpolation and can be de�ned as a classic
procedure for function approach [38].

Is very important to establish the type function such satisfy the interpolation
condition yi=f(xi) with i=0, . . . , n . Then exists an in�nity number of functions
that satisfy the data conditions to be interpolate.

A polynomial generic function can be generated by n+1 coe�cients with
regard to a �xed base. The n+1 conditions produces an equations system
whose resolution generates the searched function.

Considering as a base

= =
{
1, x, x2..., xn

}
[4.45]

a polynomial can be de�ned as:

Pn(x) = a0 + a1x + a3x
2 + + anxn [4.46]

Considering an interpolation support of x0 <x1 <, ... ,<xn and their cor-
responding function values y0, y1,. . . , yn the equations system to generate the
interpolation conditions are:




1 x0 x2
0 ... xn

0

1 x1 x2
1 ... xn

1

....

1 xn x2
n ... xn

n







a0

a1

...

an




=




y0

y1

...

yn




[4.47]

The Matrix of this system acquires a special structure denominated Vander-
monde Matrix whose determinant can be calculated easily by:

det(B) =
∏
i>j

(xi − xj) [4.48]

Because the interpolation nodes x0 <x1 <, ... ,<xn are di�erent, is evi-
dent that det(B) 6= 0 independently of the interpolation support. Thus, the
interpolation problem always have an unique solution.

Cubic polynomial interpolation example

Consider the interpolation points (0,2), (1,1), (2,0) ,(3,5). The nodes support
are S={1,2,3} that corresponds to n=3, then, the searched polynomial have to
be of third degree or smaller.

CHAPTER 5. ROBOT'S WALKING 120

Figure 5.19: Polynomial interpolation.

P3(x) = a0 + a1x + a2x
2 + a3x

3 [4.49]

The equations system represented as:



1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27







a0

a1

a2

a3




=




2
1
0
5




[4.50]

Solving the equation system, we obtain a0=2, a1=1, a2=-3 and a3=1, and
the polynomial is represented as (Figure 5.19):

P3(x) = 2 + x− 3x2 + x3 [4.51]

Implementation

The walking sequence control algorithm is computed as follow:
1. For each step, the desired velocity (vxhe, vzhe) and the step length Ls are

previously speci�ed.

CHAPTER 5. ROBOT'S WALKING 121

2. The desired angle is previously speci�ed (�gure 5.18).
3. The hip and foot trajectories are generated by di�erent walking periods,

then is chosen the trajectory that guarantees the ZMP criteria.

Hip trajectory for single support phase

The hip trajectory can be generated by cubic polynomials algorithms, if the
initial and �nal state are known from single phase. In �gure 5.18 the initial
state is de�ned by [xhs,zhs] and the �nal state by [xhe,zhe]. The initial velocity
[vxhs,vzhs] (produced when the robot leaves the initial position) is also speci�ed
in the trajectory model. The same case is for the �nal velocity [vxhe,vzhe] (when
the robot arrives to his �nal position) [6].

The initial and �nal state positions for the cubic trajectory in z (the zh(t)
direction) can be expressed as:

zh(t) =

{
zhs if t = kT

zhe if t = kT + Ts

[4.52]

where T is the period for the robot's step and Ts the period in single support
phase.

z•h(t) =

{
zzhs if t = kT

zzhe if t = kT + Ts

[4.53]

The cubic polynomial can be generalized by the following expression:

zh(t) = a0 + a1t + a2t
2 + a3t

3 [4. 54]

obtaining:

zh(t) = zhs + vzhs(t− kT) +
3(zhe − zhs)− 2vzhsTs − vzheTs

T 2
s

(t− kT)2

+
2(zhs − zhe) + (vzhs + vzhe)Ts

T 3
s

(t− kT)3 kT < t 6 kT + Ts [4.55]

xh(t) is divided in two parts: from xh(KT) to xh(KT + T1) and from
xh(KT + T1) to xh(KT + Tp). The de�nition for xh(t) is shown in equation
[4.56].

CHAPTER 5. ROBOT'S WALKING 122























==

+==

+==

==

+==

+==

==

+−

kTtatx

TkTtvtx

TkTttxtx

kTtvtx

TkTtxtx

TkTtxtx

kTtxtx

h

pxheh

hh

xhsh

pheh

hh

hsh

0

..

.

1

..

.

11

)(

)(

)()(

)(

)(

)(

)(

[4.56]

where a0 should be previously speci�ed to satisfy the initial condition of
acceleration. The cubic polynomial trajectory can be obtained using equation
[4.57].






















+≤<+
−

−−−++−
+

−
−−−−−

+

−−+

+≤<
−−−−

+

−+−+

=

p

p

pxxhheh

p

pxhhhe

xhh

xhshsh

xhshs

h

TkTtTkT
TT

TkTtTTvvxx

TT

TkTtTTvxx

TkTtvx

TkTtkT
T

kTtTaTvxx

kTtakTtvx

tx

13

1

3

11211

2

1

2

1111

111

13

1

32

1011

2

0

)(

)))()(()(2(

)(

)))((2)(3(

)(

))(
2

1
(

)(
2

1
)(

)(

[4.57]

Swing and foot trajectory at single support phase

The cubic interpolation is used to generate the foot trajectory in single support
phase. The initial and �nal foot position which represents the satis�ed states
and velocities are [6]:

CHAPTER 5. ROBOT'S WALKING 123
















+==

==

+==

==

=

sf

f

sfef

fsf

f

TkTttx

kTttx

TkTtxtx

kTtxtx

tx

0)(

0)(

)(

)(

)(

.

.

[4.58]
















+==

==

+==

==

=

sf

f

sfef

fsf

f

TkTttz

kTttz

TkTtztz

kTtztz

tz

0)(

0)(

)(

)(

)(

.

.

[4.59]

Knowing the initial and �nal states in x and z axis, a smooth trajectory can
be generated by the cubic polynomial interpolation. De�ned as follows:

for xf (t):

xf (t) = xfs +3(xfe−xfs)
(t− kT)2

T 2
s

− 2(xfe−xfs)
(t− kT)3

T 3
s

kT < t 6 kT +Ts

[4.60]

for zf (t):{
zfs + 3(zfm − zfs)

(t−kT)2

T 2
m

− 2(zfm − zfs)
(t−kT)3

T 2
m

kT < t 6 kT + Tm

zfm + 3(zfe − zfm) (t−kT−Tm)2

(Ts−Tm)2 − 2(zfe − zfm) (t−kT−Tm)3

(Ts−Tm)3 kT + Tm < t 6 kT + Ts

[4. 61]

Determination of the Tp,vxhs,T1,Tm and zfm parameters

The determination of the parameters Tp,vxhs,T1,Tm and zfm is not trivial
because the modi�cation of one of them supposes a change in the trajectory
and conditions of smoothness in the velocity and accelerations. One of the
main characteristics of this approach is that the velocity at the end of single

CHAPTER 5. ROBOT'S WALKING 124

Figure 5.20: Matlab program to calculate the algorithm parameters.

support phase is zero or near to zero, therefore a smooth contact with the �oor
surface is guaranteed [15].

To determine these parameters aMatlab interface was programmed, it allows
to modify all the important parameters (represented at the equations [4.55],
[4.57], [4.60] and [4.61]) quickly. Thus, we can easily vary the parameters and
verify the consistency of the trajectories. The �gure 5.20 show the program
interface.

The trajectories for the hip and the foot at single support phase are cal-
culated using equations [4.55], [4.57], [4.60] and [4.61]. A real walk sequence
on �Dany walker� biped robot obtained using these equations is shown in �gure
4.21. This sequence is only for a leg, but the same sequence is used for the other
leg, completing the walk sequence.

CHAPTER 5. ROBOT'S WALKING 125

Figure 5.21: Real walk sequence on �Dany walker� biped robot.

