
Chapter 4

Robot's mathematical model

4.1 Introduction
In order to adjust the robot's controllers, a kinematic and dynamic mathe-
matical model of the biped robot (include the robot's physical characteristics)
are needed. In this section the deduction of the kinematics and the dynamic
model are exposed. The mathematical robot's kinematic model is obtained to
implement the simulation of the biped's robot kinematic. The kinematics is
obtained by the handle of homogeneous transformation matrix applying the
Denavit Hartenverg method. The robot's dynamic is obtained by the use of the
inverted pendulum approach, to model the sagittal plane (walking sequence),
an arti�cial neural network used as a system identi�cation to model the ZMP
robot's dynamic (balance).

4.2 Kinematics model
The kinematics is the study of the robot's movements with regard to a reference
system. Is an analytic description of the spacial movement of the robot like a
function of time and a relationship, between the position and the orientation
(localization) of the robot's �nal link and the values of their joint coordinates.

The direct kinematics consists on place the robot's �nal link (position and
orientation), with regard to a reference system of coordinates, resolving the
values of each link and the geometric parameters of the robot's elements. In
other words, from the solution of each link coordinates, the �nal link localization
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Figure 4.1: Direct and inverse kinematics.

is deduced (without having control where the �nal link is going to be).
Also is possible to �nd the position and the orientation of the robot's �nal

link based only on its geometric relations (by a geometric method) but this is
not a systematic method and can be used only in a robot with a few degrees of
liberty.

The inverse kinematics consists on determining the con�guration that should
adopt the robot at each link to reach a goal position and orientation for the �nal
link. The �gure 3.1 shown the relationship between the direct and the inverse
kinematics. Table 3.1 shown a summary of the kinematics process.

Kinematic Having Finds
Direct kinematic Each joint coordinate Position and orientation

of each joint at the �nal
robot's link

Inverse Kinematic Position and orientation
of the �nal robot link

Each joint coordinate

Table 3.1: Summary of the kinematics process.

4.2.1 Representation by homogeneous transformation ma-
trix

The kinematic model of a robot, can be represented by the homogeneous trans-
formation matrix [HTM] (as explained in section 2.3). This representation is
necessary for robots with more than two degrees of freedom. From that reason,
is convenient to have a systematic method based on homogeneous transforma-
tion matrix.

A robot of n degrees of freedom (DOF) is formed by n links assembled
by n articulations, in such way that each articulation-link constitutes a DOF.
To each link a reference system could be associated and using homogeneous
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transformations, is possible to represent the rotations and relative translations
from the di�erent links which compose the robot [23].

When homogeneous transformation matrix are used to represent the position
and the relative orientation between two consequent links, a reference system
to each link must be associated. Thus, is possible to represent the translations
and relative rotations between the di�erent links. Where the matrix Ln+1 rep-
resents the position and relative orientation between the associated systems of
two consequent robot's links. This matrix allows a total or partial representa-
tion of the robot's kinematics. For example, 0L1 represents the position and
orientation of the �rst link relative to the base reference, and 0L3 = 0L1

1L2
2L3

represents the position and orientation of the third link relative to the base
reference coordinate system.

When all the DOF are considered, the nLn+1 matrix is called T. Thus, for a
six degree of freedom robot, the �nal links position and orientation is represented
by the R matrix:

R = 0L6 = 0L1
1L2

2L3
3L4

4L5
5L6 [3.7]

To locate the coordinate systems from each link and to obtain the robot's
kinematics there are systematic methods, like the Denavit-Hartenberg (D-H)
method.

4.2.1.1 Denavit Hartenberg method (D-H)

D-H, describe robot's kinematics and represent its motions. The method works
with the quadruple {ai,αi,di,θi} and label an orthonormal (x,y,z ) coordinate
system to each robot joint. Relating this way, each joint's reference system to
the next and forming a complete robot's geometry representation.

D-H Notation

Anthropomorphic robots generally are made up of links that are connected by
each joint to their preceding and subsequent links. The origin herein is the base
reference coordinate system. Joints could be rotational or translational. Each
joint has one degree of freedom (DOF). Therefore, a concatenation of n+1 links
by n joints means in total n DOF. �Dany walker� has 5 servos in each leg (a
servo represent a rotational joint). Also, in total the robot has 10 DOF.

As Dieter Kraft explains in [24], these kinematics parameters are divided in
two groups: link parameters and joint parameters. The �rst group comprises
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Figure 4.2: Link length (ai).

link length and link twist, which are determined by the mechanical construction
and are thus invariant. The latter group de�nes the joint distance, which is the
drooping of a translational joint and the joint angle, which is the de�ection of
a rotational joint.

Link Parameters

Link i is the interconnection of the joints ki and ki+1. The shortest distance of
both skew joint axes is the distance between both root points of their common
normal. It is called ai link length [25] (Figure 4.2).

The origin of link is the coordinate system Xi = {xi,yi,zi} is congruent with
the root point of the common normal in the axis of ki+1. Likewise, link i-1s
coordinate origin Xi−1 = {xi−1,yi−1,zi−1} lies in the foot point of the common
normal at the ki side.

The angle covered by the coordinate axes zi and zi+1, when shifting Xi into
Xi−1 along ai, is called link twist αi (Figure 4.3 ).

describe robot's kinematics and is a standard way to represent and model
their motions.

Joint Parameters

These parameters refers to possible movements and are variable. The distance
between the origin of the coordinate system Xi−1 and the root point of the
common normal on ki is referred to by joint distance di (Figure 4.4). This is
the degree of freedom of a translational joint.

More important, in the case of �Dany walker� is the so-called joint angle θi
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Figure 4.3: Link twist (αi).
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Figure 4.4: Joint distance (di).
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Figure 4.5: Joint angle (θi ).

(�gure 4.5 ), which represents the variable of rotational joints. The rotation of
link i in joint ki rolls axis xi−1 into xi by moving it by θi .

D-H Representation

The D-H method allows the step from a link to the following link by 4 basic
transformations that depends only on the robot's constructive characteristics.
These are basic transformations that relate the reference system of the element
n+1 with the reference system of the element n (�gure 4.6 ) [26].

1. A rotation θn+i about the Zn axis (to bring Xn parallel with Xn+1 )

2. A translation dn+i along the Zn axis (to make the x-axes collinear)

3. A translation an+i along the X axis (to make the z-axes coincide)

4. A rotation αn+i about the Xn axis (to bring Zn parallel with Zn+1 )

Together, these four transformations in the above order lead to an unique
homogeneous transformation matrix with four variables representing the
relationship between these two links. Since the matrix product is not
commutative, the operation should be made in that order. In resume [27]:

nLn+1 = rot(z, θn+1)trn(0, 0, dn+1)trn(an+1, 0, 0)rot(x, αn+1) [3.8]

The correspondent matrices are:
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Figure 4.6: Basic transformations that relate the reference system of the element
n+1 with the reference system of the element n.

nLn+1 =

=




Cθ −Sθ 0 0
Sθ Cθ 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 dn+1

0 0 0 1







1 0 0 an+1

0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 Cα −Sα 0
0 Sα Cα 0
0 0 0 1




after made the product between the matrix es is obtained:

=




Cθn+1 −Sθn+1Cαn+1 Sθn+1Sαn+1 an+1Cθn+1

Sθn+1 Cθn+1Cαn+1 −Cθn+1Sαn+1 an+1Sθn+1

0 Sαn+1 Cαn+1 dn+1

0 0 0 1



[3.9]

Where θn+1, dn+1, an+1, αn+1 are the D-H parameters for the i link. Thus, is
enough to identify the θn+1, dn+1, an+1, αn+1 parameters to obtain the nLn+1

matrices and relate each robot's link.

In order to relate the {S1} and {S2} systems by a nLn+1 matrix, the sys-
tems must be previously conformed according to some norms described by the
following algorithm.
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D-H Algorithm

Denavit-Hartenberg proposed an algorithm to represent the kinematics of a
robot, next a detailed algorithm step by step explanation is presented [28]:

Algorithm 1 Denavit-Hartenberg Algorithm
1: Numerate links beginning with 1 (�rst mobile link of link's chain) and ending
with n (last mobile link). The �xed base reference coordinate system will be
numbered as link 0.
2: Numerate each articulation beginning with 1 (that is the �rst DOF for a
joint) and ending with n.
3: Locate axis of each articulation. If this is revolving, the axis will be its own
turn axis. If it is prismatic, it will be the axis along which the displacement
takes place.
4: For n+1 of link 0 to n locate Zn+1 axis on the axis of articulation n.
5: Place the origin of the base reference coordinate system in any point of z0

axis. Axes z0 and y0 will be located so that they form a right-handed system
with z0.
6: For n+1 of link 1 to n, place the {Sj} system with regard to the link n+1 )
in the intersection of Zn+1 axis with the normal line common to Zn and Zj . If
both axes cuts, {Sj} would be located in the cut point. If they were parallel
then {Sj} would be located in the articulation n.

According to D-H algorithm, all links have to be labeled from zero to n,
beginning in the base reference coordinate system link. The concatenated link
chain include links, connected by n joints and establishes a set of 4n parameters,
n parameters are variable, there are no translational and rotational joints at the
same time. Joint i connects link i-1 with link i.

Also, Dieter Kraft proposes an algorithm [24]:
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Algorithm 2 Dieter Kraft algorithm
1: Libeling the joints from 1 to n.
2: De�ne base coordinate system X0 = {x0,y0,z0} in the base body, so that
moving axis 1 and coordinate axis z0 are collinear.
3: Joint coordinate systems ∀(1 6 i 6 n− 1).
Align z1 axis in direction of joint i+1.
Choose origin of coordinate system Xi in:
- intersection of zi and zi−1 axis or
- intersection of common normal (zi−1 → zi)and the axis.
Determine xi axis either:
- ortho normal to both z -axes

xi = ± (zi−1 × zi)
|zi−1 × zi |

or
- along common normal, if both z axes are parallel.
Complete right-handed coordinate system with yi axis

yi = ± (zi−1 × xi)
|zi × xi |

4: Link Parameter ∀(1 6 i 6 n).
Link length ai is the distance between the intersection of zi−1 axis with xi axis
and the origin of the coordinate system Xi, along xi axis.
Link Twist αi is the angle, around xi axis, that turns zi−1 axis into zi axis.
5: Joint Paramer ∀(1 6 i 6 n).
Joint distance di is the distance between the origin of Xi−1 and the intersection
of its zi−1 and xi axis, along zi−1 axis.
Joint angle θi is the angle around zi−1 axis that xi−1 axis into xi axis.

4.2.1.2 �Dany walker� kinematics model

The D-H Algorithm is applied to obtain the �Dany walker� kinematics model.
Thus, the �rst step is to label each joint, with a coordinate system of reference.
Figure 4.7 and �gure 4.8 shown the reference coordinate system assignation for
left and right leg respectively. The tables 3.3 and 3.4 shown the right and left
leg's parameters respectively.
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Figure 4.7: Coordinate systems assignation for left leg (left: side view, right:
front view)

i link joint ai/ [mm] αi/ [◦] di/ [mm] θi/ [◦]
0 Waist None 0 0 0 0
1 90◦Joint Top Waist-Lateral 7 90 0 wl
2 Thigh Waist-Thigh 11 0 0 wt
3 Shank Knee 11 0 0 kn
4 90◦Joint Down Ankle-lateral 7 90 0 al
5 Foot Ankle 0 0 0 an

Table 3.3: D-H Parameters Left leg.

All z-axes are pointed in the direction, so that they perform a right-screw in
mathematical term.
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Figure 4.8: Coordinate systems assignation for right leg (left: isometric view,
right: back view)

i link joint ai/ [mm] αi/ [◦] di/ [mm] θi/ [◦]
0 Waist None 0 0 0 0
1 90◦Joint Top Waist-Lateral 7 90 0 wl
2 Thigh Waist-Thigh 11 0 0 wt
3 Shank Knee 11 0 0 kn
4 90◦Joint Down Ankle-lateral 7 90 0 al
5 Foot Ankle 0 0 0 an

Table 3.4: D-H Parameters Right leg.

Since, the ai and di D-H parameters for both legs are �xed, the only pa-
rameters who changes are θi (leg's angles of each joint). As convention in this
thesis, the positions of each joint, show in �gure 4.7 and �gure 4.8 mean a 0◦

angle.
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Apparently, from tables 3.3. and 3.4, both legs have the same values, however
at walking, the angles are not the same, because the two legs are not in the same
position (except when the robot is standing).

To express coordinate system Xi in Xi-l , the previously determined param-
eters can be used to calculate the transformation with each two translations and
rotations. According to [24], the matrix in 3.10 transforms from Xi to Xi-l ;

Since the two legs are identical, the link-to-link transformations are also
identical for both legs:

i−1
i L = rot(θi) · trn(di) · rot(αi) · trn(ai)

i−1
i L =




cos θi − cos αi · sin θi sin αi · sin θi a · cos θi

sin θi cosαi · cos θi − sin αi · cos θi a · sin θi

0 sin αi cosαi di

0 0 0 1




[3.10]

0
1L =




cos θwl 0 sin θwl 7 · cos θwl

sin θwl 0 − cos θwl 7 · sin θwl

0 1 0 0
0 0 0 1



[3.11]

1
2L =




cos θht − sin θht 0 11 · cos θht

sin θht cos θht 0 11 · sin θht

0 0 1 0
0 0 0 1




[3.12]

2
3L =




cos θkn − sin θkn 0 11 · cos θkn

sin θkn cos θkn 0 11 · sin θkn

0 0 1 0
0 0 0 1




[3.13]

3
4L =




cos θal 0 sin θal 10 · cos θal

sin θal 0 − cos θal 10 · sin θal

0 1 0 0
0 0 0 1



[3.14]
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4
5L =




cos θan − sin θan 0 0
sin θan cos θan 0 0

0 0 1 0
0 0 0 1



[3.15]

The transformation matrix from foot to hip is the concatenated transforma-
tion from link-to-link 0

5L =
5∏

i=1

i−1
i L. Because both legs have the same mathe-

matical representation, only one matrix had to be calculated for both legs. This
matrix, considers as a base coordinate system, the origin of the hip servos axis
of each leg. But now, considering an unique base reference coordinate system,
for both legs, which be locate between the two former ones (in the middle of the
hip), a constant must be add to the base reference coordinate system on the yi-
axis. In the matrix calculation, element (4,1) must be add by a constant value,
which speci�es the displacement along the yi-axis. The matrix is represented as
follows:

0
5

cos cos sin cos 7 (1 cos( )
cos

11cos( )cos( ) cos( ) cos
sin( )

11cossin sin cos sin

cos sin

cos(

an wl an wl al kn wt
wl

kn wtal kn wt al kn wt wl
al kn wt

wtan wl an wl

an wl

al kn wT

θ θ θ θ θ θ θ
θ

θ θθ θ θ θ θ θ θ
θ θ θ

θθ θ θ θ

θ θ
θ θ θ

− ⋅ + + + 
 + +⋅ + + ⋅ + +  ⋅ + +  ++ +  

⋅ + +
=

7 (1 cos( )
sin sin sin

11cos( )sin
) cos( ) sin( )

11cos
sin sin cos cos

cos sin( ) sin sin( ) cos(

al kn wt
an wl wl

kn wtwl
t al kn wt al kn wt

wt
an wl an wl

an al kn wt an al kn wt al kn

θ θ θ
θ θ θ

θ θθ
θ θ θ θ θ θ

θ
θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

⋅ + + + 
− −  + + ⋅ + + ⋅ + +  + − −

+ − + + − + +
7 sin(1 cos( )

11sin( ))

11sin

0 0 0 1

al kn wt

kn wtwt

wt

θ θ θ
θ θθ
θ

 
 
 
 
 
 
 
 
 
 
 
 
 

⋅ + + + 
 + + 
 +
 
 
 
 

 

[3.16]

Not only transformations from one foot to the hip are needed, but also vice
verse. Therefore, the matrix shown above must be inverted. In addition to this,
matrices translating from shank to hip, and from thigh to hip are necessary.
These matrices are also needed in both directions, bottom-up and top down
[29].
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Thus, twelve matrices are calculated: Foot-to-Hip, Shank-to-Hip, and Thigh-
to-Hip, all of them for the left and right leg, and all inverted. Below, all matrices
are shown, to point out the similarities:

Foot-to-Waist with common-base extension:

cos cos sin cos 7 (1 cos( )
cos

11cos( )cos( ) cos( ) cos
sin( )

11cossin sin cos sin

cos sin

an wl an wl al kn wt
wl

kn wtal kn wt al kn wt wl
al kn wt

wtan wl an wl

an w

Waist
Foot

left
right

T

θ θ θ θ θ θ θ
θ

θ θθ θ θ θ θ θ θ
θ θ θ

θθ θ θ θ

θ θ

− ⋅ + + + 
 + +⋅ + + ⋅ + +  ⋅ + +  ++ +  

=

7 (1 cos( ))
sin sin sin

11cos( )sin 6
cos( ) cos( ) sin( )

11cos
sin cos cos cos

cos sin( ) sin sin(

al kn wt
l an wl wl

kn wtwl
al kn wt al kn wt al kn wt

wt
an wl an wl

an al kn wt an al k

θ θ θ
θ θ θ

θ θθ
θ θ θ θ θ θ θ θ θ

θ
θ θ θ θ

θ θ θ θ θ θ θ

⋅ + + + 
−  + + ± ⋅ + + ⋅ + + ⋅ + +  + − −

+ + − +
7 sin( )

11sin( )) cos( )

11sin

0 0 0 1

al kn wt

kn wtn wt al kn wt

wt

θ θ θ
θ θθ θ θ θ
θ

 
 
 
 
 
 
 
 
 
 
 
 
 

⋅ + + 
 + ++ − + + 
 +
 
 
 
 

 

[3.17]

Waist-to-Foot:

7 (1 cos( )
cos cos cos sin

11cos( )coscos
cos( ) cos( )

11cossin( )
sin sin sin cos

cos sin
6

al kn wt

an wl an wl
al knanan

al kn wt al kn wt
alal kn wt

an wl an wl

an

Foot
Waist

left
right

T

θ θ θ
θ θ θ θ θ θθθ

θ θ θ θ θ θ θθ θ θ
θ θ θ θ

θ θ

⋅ + + + 
 + + ⋅ + + ⋅ + +  +⋅ + +  + −

±

=

( )

sin cos

7 (1 cos( ))

11cos( )sinsin cos sin sin sin

11coscos( ) cos( ) sin( )

cos sin cos cos

wl al kn wt

an wl

an wl wt

al knanan wl an wl an

alal kn wt al kn wt al kn wt

an wl an wl

θ θ θ
θ θ
θ θ θ

θ θθθ θ θ θ θ
θθ θ θ θ θ θ θ θ θ

θ θ θ θ

+ + 
 − 

⋅ + + +
 + +− − − 

+⋅ + + ⋅ + + ⋅ + + 

+ − sin sin os( )
6

cos cos

7sin( )

11sin( ) 11sincos sin( ) sin sin( ) cos( )

6(sin( )sin

0 0 0 1

an wl al kn wt

an wl

al kn wt

al kn alwl al kn wt wl al kn wt al kn wt

al kn wt wl

cθ θ θ θ θ
θ θ

θ θ θ
θ θ θθ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ









 
 
 

 


− + + 
±  − 

− + +
− + −+ + + + − + +
± + +















 
 
 
 
 
 
 
 
 
 
 
  


 

[3.18]

Shank-to-Waist:
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11cos( )
cos cos( ) cos sin( ) sin cos

11cos 7

11cos( )
sin cos( ) sin sin( ) cos sin

11cos 7) 6

sin( ) cos

kn wt
wl wt kn wl wt kn wl wl

wt

kn wtWaist
Shank wl wt kn wl wt kn wl wl

left wt
right

kn wt

T

θ θ
θ θ θ θ θ θ θ θ

θ

θ θ
θ θ θ θ θ θ θ θ

θ

θ θ

+ 
+ − +  + + 

+ 
+ − + −  = + + ± 

+ ( ) 11sin( ) 11sin0

0 0 0 1

kn wt kn wt wtθ θ θ θ θ

 
 
 
 
 
 
 
 
 
 

+ + + 
 
 
 
 

 

[3.19]

Waist-to-Shank:

( )

( )

(cos( )
cos cos( ) sin cos( ) sin( )

6sin 7) 11cos( ) 11

sin( )
cos sin( ) sin sin( ) cos( )

6sin 7) 11sin( )

si

wt kn

wl wt kn wl wt kn wt kn
wl kn

wt knShank
Waist wl wt kn wl wt kn wt kn

left wl kn
right
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[3.20]
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[3.22]

All matrices show a small number of di�erent trigonometrical functions,
which are used in altered combinations. Substitutions can reduce the number
of trigonometrical calculations by using pre-calculation and a look up table.

The matrices obtained in this section, allow to calculate the relative link's
position for the biped robot structure and build a kinematics simulator. Dy-
namic is analyzed in section 4.3.

4.2.1.3 Kinematics simulator

After implemented the kinematics's representation of the �Dany walker� biped
robot by Denavit-Hartenberg method and having analyzed the walking sequence
control algorithm (described in section 5.6). A program to visualize and simulate
the robot's movements during the walking process, was developed (Figure 4.9),
in this program the di�erent output angles (produced by the walking sequence
control algorithm) were took to feed the robot's D-H model. Also some useful
functions were added to the simulator allowing to modify di�erent parameters
like: size of the step, simulation time, maximum height of the step, etc. This
tool was very helpful to obtain an e�cient real-time walking routine which was
�nally implemented on the real robot. This program also was able to output
the signals to the real robot, thus allows to prove in real time the walking
routine. The simulator was developed to allow 6 degrees of freedom (degrees
that intervene during the walking), the other 4 degrees of freedom concern only
to the robot's balance. This kinematics simulator was able to simulate the
walking pattern by using the robot's kinematics.

4.3 Dynamic model
In this section, two approaches to model the dynamic of the robot's structure are
propose. The �rst, is the inverted pendulum to model the sagittal robot's move-
ments. The second, is a neural network as a system identi�cation to model the
balance process (lateral robot's movements). Both models, together represent
the robot's dynamics. With those models more information about the robot's
dynamics can be used to simulate the robot's walking. Figure 4.10 shown the
robot's dynamic process divided on two parts and the part that each approach
model attends.
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Figure 4.9: Simulator for the robot's kinematic.
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Figure 4.10: Biped robot dynamic approach models.
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Figure 4.11: Biped robot's model obtained from the inverted pendulum model.

4.3.1 Inverted pendulum approach
This approach is used to model the sagittal dynamic of the biped's movements
using the inverted pendulum model. Suppose that the biped robot has a mass
point in the hip and the support knee is in a constant position, for these condi-
tions the inverted pendulum model can be used to model the dynamics move-
ments of the robot's structure [15][30]. The �gure 4.11 shows the robot's model
based on the pendulum model used to determine the ankle torque.

Where, L is the leg longitude, τxa(θ) and τxb(θ)) are the maximum and mini-
mum possible torques for the ankle in the sagittal plane. Thus, this relationship
can be described as:

τxa(θ) = m(g + (
τxa(θ)
Lm

− g sin(θ)) sin(θ)− v2

L
cos(θ))xa [3 · 23]

where v is the hip velocity and v2

L is the centripetal acceleration.
The centripetal acceleration is smaller than the others components so it can

be eliminated from equation 3.23, then the ankle torque can be rede�ned as:

τxa =
mgxa(1− sin2(θ))

1− sin(θ)
L xa

[3.24]

τxb =
mgxb(1− sin2(θ))

1− sin(θ)
L xb

[3.25]
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This model approach is useful also to know the maximum torques in the
ankle and make a decision on these motors value but, don't take on count the
lateral forces add it by the balance.

4.3.2 Arti�cial neural network approach
In this section, a neural network used to model the nonlinear biped robot's
lateral movements dynamic was implemented. The strategy was to use a neural
network as a system identi�cator, in this case the system to be identi�ed is the
biped robot's lateral movements dynamics. A part of the lateral movements are
generated by the fuzzy controller to correcting the ZMP. The ZMP dynamic,
will be the parameter to be learned by the neural network. Some di�erent
training methods were used to compare the performance of the neural network
to approximate the real robot's ZMP dynamic at walking. In all the di�erent
training methods, a back-propagation neural network architecture was choose.
The following section describes the system identi�cation process for the lateral
robot's movements.

4.3.2.1 System Identi�cation

System identi�cation is the task of inferring a mathematical description, a model
of the dynamics system from a series of measurements on the system. A typical
system identi�cation application is the simulation of a dynamics system.

Neural networks have been applied in the control of dynamics systems and
its identi�cation. The approximation capabilities of the multilayer perceptron
make it an interesting option for modeling nonlinear systems [31].

In this thesis, to implement the system identi�cation was necessary to train
a neural network to represent the ZMP dynamic for the biped robot. The
structure of the neural network plant model is given in the �gure 4.12. The
neural network plant model uses previous inputs and previous plant outputs to
predict future values of the plant output.

The �gure 4.13 shows the architecture used to train a back-propagation
neural network to identify the biped robot's ZMP dynamic model. First, from
the real biped robot (real robot's dynamics) the ZMP is obtained (ZMP(k)) and
feed to the incremental fuzzy PD controller. The controller produces an output
(lateral motors output) to correct the ZMP inside of the support polygon.

Thus, the inputs to the neural network are M(k), M(k-1), M(k-2), and
ZMP(k-1).They are respectively, the output produced by the incremental fuzzy
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PD controller (lateral motors output), this output delayed one time unit (k-1),
and the same output delayed two time units (k-2). Finally ZMP(k-1) is the
ZMP(k) delayed one time unit. The neural network output is ZMP(k)*. This
ZMP(z)* is the ZMP learned by the neural network and should be very similar
to the real ZMP (ZMP(k)).

In resume, to model the biped robot's balance dynamics, a back propagation
neural network with four input neurons and an output neuron and with linear
output activation function, was choose .

The network was trained o�ine in batch mode, using data collected from the
real walking operation of the biped robot. Some di�erent training algorithms
were tested for the network training, each, obtain a di�erent biped robot's ZMP
dynamic model behavior.

4.3.2.2 Neural Network model's performance

It is di�cult to establish a criteria to know which training algorithm will better
describes the ZMP robot's dynamic at walking. However, the criteria used in
this thesis will be a compromise between the velocity and economy of the algo-
rithm. The algorithm's performance could depend on many factors, including
the complexity of the problem, the number of data points in the training set, the
number of weights and biases in the network, the error goal, and the application
it self (discriminant analysis, regression, etc). The last, is the case of this the-
sis, since the goal is to �nd, means a neural network, a function approximation
which model the biped robot's ZMP dynamic. Next, a graphical comparison of
the biped robot's models performance obtained using some training algorithm
is exposed.

Training algorithm comparison

This section present the results of a back-propagation neural network architec-
ture used to identify the biped robot's ZMP dynamics dynamics. The neural
network was training using di�erent training methods. To test the performance
of each of them, the controller's output at walking was feed to the neural net-
work. Expecting that the neural network, now trained with the biped's ZMP
dynamics, be able to predict the ZMP that the real biped robot will produce.
In the following �gures, a data set of ZMP real values obtained at walking, is
compared with the ZMP produced by the neural network using di�erent training
algorithms.
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Figure 4.14: Levenberg-Marquardt algorithm's performance to model the biped
robot's ZMP dynamics.

Levenberg-Marquardt training algorithm

In general, on function approximation problems, for networks that contain up
to a few hundred weights, the Levenberg-Marquardt algorithm will have the
fastest convergence. This advantage is especially noticeable if very accurate
training is required. In many cases, Levenberg-Marquardt training algorithm is
able to obtain lower mean square errors than any of the other algorithms tested.
However, as the number of weights in the network increases, the advantage of
the Levenberg-Marquardt training algorithm decreases.

Figure 4.14 shows the performance of the Levenberg-Marquardt training
algorithm to model the biped robot's ZMP dynamics.

However, the storage requirements of Levenberg-Marquardt training algo-
rithm are larger than the other algorithms tested.

Resilient Back-propagation training algorithm

The Resilient Back-propagation training algorithm is the fastest algorithm on
discriminant analysis problems. However, in general it does not perform well on
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Figure 4.15: Resilient back-propagation algorithm's performance to model the
biped robot's ZMP dynamics.

function approximation problems. Its performance also degrades as the error
goal is reduced. The memory requirements for this algorithm are relatively
small in comparison to the other algorithms considered. Figure 4.15 shows the
performance of the resilient back propagation training algorithm to model the
biped robot's ZMP dynamics.

Scaled Conjugate Gradient (SCG) training algorithm

The conjugate gradient algorithms, in particular Scaled Conjugate Gradient
(SCG) training algorithm, seem to perform well over a wide variety of prob-
lems, particularly for networks with a large number of weights. The SCG algo-
rithm is almost as fast as the Levenberg-Marquardt training algorithm on func-
tion approximation problems (faster for large networks) and is almost as fast
as Resilient Back-propagation training algorithm on discriminant analysis prob-
lems. Its performance does not degrade as quickly as Resilient Back-propagation
training algorithm. Figure 4.16 shows the performance of the scaled conjugate
gradient training algorithm to model the biped robot's ZMP dynamics.

The conjugate gradient algorithms have relatively modest memory require-
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Figure 4.16: Scaled Conjugate Gradient algorithm's performance to model the
biped robot's ZMP dynamics.

ments.

BFGS Quasi-Newton training algorithm

The quasi-Newton method that has been most successful in published studies is
the Broyden, Fletcher, Goldfarb, and Shanno (BFGS). The Quasi-Newton train-
ing algorithm performance is similar to that of Levenberg-Marquardt training
algorithm. It does not require as much storage as Levenberg-Marquardt training
algorithm, but the computation required does increase geometrically with the
size of the network, since the equivalent of a matrix inverse must be computed at
each iteration. Figure 4.17 shows the performance of the Quasi-Newton training
algorithm to model the biped robot's ZMP dynamics.

One-Step Secant training algorithm.

Since the BFGS algorithm requires more storage and computation in each iter-
ation than the conjugate gradient algorithms, there is need for a secant approxi-
mation with smaller storage and computation requirements. The one step secant
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Figure 4.17: BFGS Quasi-Newton algorithm's performance to model the biped
robot's ZMP dynamics.

(OSS) method is an attempt to bridge the gap between the conjugate gradient
algorithms and the quasi-Newton (secant) algorithms. This algorithm does not
store the complete Hessian matrix; it assumes that at each iteration, the pre-
vious Hessian was the identity matrix. This has the additional advantage that
the new search direction can be calculated without computing a matrix inverse.

This algorithm requires less storage and computation per epoch than the
BFGS algorithm. It requires slightly more storage and computation per epoch
than the conjugate gradient algorithms. It can be considered a compromise
between full quasi-Newton algorithms and conjugate gradient algorithms.

Figure 4.18 shows the performance of the one-step secant training algorithm
to model the biped robot's ZMP dynamics.

In summary, due the graphical performance comparison, the best training
algorithm to model the robot's ZMP dynamics is the BFGS Quasi-Newton train-
ing algorithm. It is selected for its convenient relationship between economy and
fast convergence.
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Figure 4.18: One-step secant algorithm's performance to model the biped
robot's ZMP dynamics.




